磁共振成像在恶性肺结节检测中的作用:系统回顾和荟萃分析

封面图片

如何引用文章

详细

目的是评估胸部MRT与CT检测肺结节的可能性,怀疑有恶性肿瘤。

材料与方法。截至 2021 年 4 月 7 日(含) 进行了 PubMed 和 Google Scholar 数据库 根据资格标准,选择了评估 MRI 和 CT 识别可疑恶性肺淋巴结能力的研究。 分析方法的选择和敏感性和特异性数据的分组是根据评估研究异质性的结果进行的。 为了评估荟萃分析中包括的研究的统计异质性,使用了 Pearson χ2 拟合检验和 I2 异质性指数。

结果。根据检索结果,筛选出 168 项研究,21 项研究纳入荟萃分析。 入选作品包括 1188 名患者。 根据 χ2 标准和异质性指数 I2 = 99% 的敏感性和特异性,荟萃分析显示存在统计学上显着的异质性 p <0.00001。 对此,采用随机效应的方法对数据进行分析。 MRT 的灵敏度值范围从 70.4 到 100%,特异性 - 从 60.6 到 100%。

结论。因此,MRI 具有足够的敏感性和特异性来确定 CT 诊断中发现的肺淋巴结的恶性程度。

作者简介

Yuriy A. Vasilev

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies of Moscow Health Care; City Clinical Oncological Hospital No. 1

Email: dr.vasilev@me.com
ORCID iD: 0000-0002-0208-5218
SPIN 代码: 4458-5608

MD, Cand. Sci. (Med)

俄罗斯联邦, 24/1 Petrovka str., 127051, Moscow; Moscow

Olga Y. Panina

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies of Moscow Health Care; City Clinical Oncological Hospital No. 1; Moscow State University of Medicine and Dentistry named after A.I. Evdokimov

Email: o.panina@npcmr.ru
ORCID iD: 0000-0002-8684-775X
SPIN 代码: 5504-8136
Scopus 作者 ID: 57219837311

Junior Scientist Researcher

俄罗斯联邦, 24/1 Petrovka str., 127051, Moscow; Moscow; 20, p. 1, Delegatskaya str., Moscow, 127473

Evgeniia A. Grik

Moscow State University of Medicine and Dentistry named after A.I. Evdokimov

Email: evgeniyagrik@gmail.com
ORCID iD: 0000-0002-7908-3982
SPIN 代码: 5558-7307

MD

俄罗斯联邦, 20/1, Delegatskaya str., Moscow, 127473

Kate S. Akhmad

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies of Moscow Health Care

Email: e.ahmad@npcmr.ru
ORCID iD: 0000-0002-8235-9361
SPIN 代码: 5891-4384
俄罗斯联邦, 24/1, Petrovka street,127051 Moscow

Yulia N. Vasileva

Moscow State University of Medicine and Dentistry named after A.I. Evdokimov

编辑信件的主要联系方式.
Email: drugya@yandex.ru
ORCID iD: 0000-0003-4955-2749
SPIN 代码: 9777-2067

MD, Cand. Sci. (Med.)

俄罗斯联邦, 20/1, Delegatskaya str., Moscow, 127473

参考

  1. Ost D, Fein AM, Feinsilver SH. Clinical practice. The solitary pulmonary nodule. N Engl J Med. 2003;348(25):2535–2542. doi: 10.1056/NEJMcp012290
  2. Nasim F, Ost DE. Management of the solitary pulmonary nodule. Curr Opin Pulm Med. 2019;25(4):344–353. doi: 10.1097/MCP.0000000000000586
  3. MacMahon H, Naidich DP, Goo JM, et al. Guidelines for management of incidental pulmonary nodules detected on CT images: From the Fleischner Society 2017. Radiology. 2017;284(1):228–243. doi: 10.1148/radiol.2017161659
  4. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Med. 2009;6(7):e1000100. doi: 10.1371/journal.pmed.1000100
  5. Whiting PF, Rutjes AW, Westwood ME, et al. Quadas-2: A revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155(8):529–536. doi: 10.7326/0003-4819-155-8-201110180-00009
  6. Higgins JP, Thomas J, Chandler J, et al. Cochrane handbook for systematic reviews of interventions. John Wiley & Sons, Hoboken; 2019. doi: 10.1002/9781119536604
  7. Both M, Schultze J, Reuter M, et al. Fast T1- and T2-weighted pulmonary MR-imaging in patients with bronchial carcinoma. Eur J Radiol. 2005;53(3):478–488. doi: 10.1016/j.ejrad.2004.05.007
  8. Bruegel M, Gaa J, Woertler K, et al. MRI of the lung: Value of different turbo spin-echo, single-shot turbo spin-echo, and 3D gradient-echo pulse sequences for the detection of pulmonary metastases. J Magn Reson Imaging. 2007;25(1):73–81. doi: 10.1002/jmri.20824
  9. Meier-Schroers M, Kukuk G, Homsi R, et al. MRI of the lung using the PROPELLER technique: Artifact reduction, better image quality and improved nodule detection. Eur J Radiol. 2016;85(4): 707–713. doi: 10.1016/j.ejrad.2015.12.016
  10. Meier-Schroers M, Homsi R, Schild HH, Thomas D. Lung cancer screening with MRI: characterization of nodules with different non-enhanced MRI sequences. Acta Radiol. 2019;60(2):168–176. doi: 10.1177/0284185118778870
  11. Ohno Y, Koyama H, Yoshikawa T, et al. Standard-, reduced-, and nodose thin-section radiologic examinations: Comparison of capability for nodule detection and nodule type assessment in patients suspected of having pulmonary nodules. Radiology. 2017;284(2):562–573. doi: 10.1148/radiol.2017161037
  12. Regier M, Schwarz D, Henes FO, et al. Diffusion-weighted MR-imaging for the detection of pulmonary nodules at 1.5 Tesla: Intraindividual comparison with multidetector computed tomography. J Med Imaging Radiat Oncol. 2011;55(3):266–274. doi: 10.1111/j.1754-9485.2011.02263.x
  13. Satoh S, Kitazume Y, Ohdama S, et al. Can malignant and benign pulmonary nodules be differentiated with diffusion-weighted MRI? Am J Roentgenol. 2008;191(2):464–470. doi: 10.2214/AJR.07.3133
  14. Schaefer JF, Schneider V, Vollmar J, et al. Solitary pulmonary nodules: Association between signal characteristics in dynamic contrast enhanced MRI and tumor angiogenesis. Lung Cancer. 2006;53(1):39–49. doi: 10.1016/j.lungcan.2006.03.010
  15. Schroeder T, Ruehm SG, Debatin JF, et al. Detection of pulmonary nodules using a 2D HASTE MR sequence: comparison with MDCT. Am J Roentgenol. 2005;185(4):979–984. doi: 10.2214/AJR.04.0814
  16. Sommer G, Tremper J, Koenigkam-Santos M, et al. Lung nodule detection in a high-risk population: Comparison of magnetic resonance imaging and low-dose computed tomography. Eur J Radiol. 2014;83(3):600–605. doi: 10.1016/j.ejrad.2013.11.012
  17. Vogt FM, Herborn CU, Hunold P, et al. HASTE MRI versus chest radiography in the detection of pulmonary nodules: comparison with MDCT. Am J Roentgenol. 2004;183(1):71–78. doi: 10.2214/ajr.183.1.1830071
  18. Yi CA, Jeon TY, Lee KS, et al. 3-T MRI: usefulness for evaluating primary lung cancer and small nodules in lobes not containing primary tumors. Am J Roentgenol. 2007;189(2):386–392. doi: 10.2214/AJR.07.2082
  19. Chang S, Hong SR, Kim YJ, et al. Usefulness of thin-section single-shot turbo spin echo with half-fourier acquisition in evaluation of local invasion of lung cancer. J Magn Reson Imaging. 2015;41(3):747–754. doi: 10.1002/jmri.24587
  20. Schaefer JF, Vollmar J, Schick F, et al. Solitary pulmonary nodules: Dynamic contrast-enhanced MR imaging ― Perfusion differences in malignant and benign lesions. Radiology. 2004;232(2):544–553. doi: 10.1148/radiol.2322030515
  21. Kono R, Fujimoto K, Terasaki H, et al. Dynamic MRI of solitary pulmonary nodules: comparison of enhancement patterns of malignant and benign small peripheral lung lesions. Am J Roentgenol. 2007;188(1):26–36. doi: 10.2214/AJR.05.1446
  22. Feng H, Shi G, Liu H, et al. Free-breathing radial volumetric interpolated breath-hold examination sequence and dynamic contrast-enhanced MRI combined with diffusion-weighted imaging for assessment of solitary pulmonary nodules. Magn Reson Imaging. 2021;75:100–106. doi: 10.1016/j.mri.2020.10.009
  23. Kim JH, Kim HJ, Lee KH, et al. Solitary pulmonary nodules: A comparative study evaluated with contrast-enhanced dynamic MR imaging and CT. J Comput Assist Tomogr. 2004;28(6):766–775. doi: 10.1097/00004728-200411000-00007
  24. Ohno Y, Nishio M, Koyama H, et al. Solitary pulmonary nodules: Comparison of dynamic first-pass contrast-enhanced perfusion area-detector CT, dynamic first-pass contrast-enhanced MR imaging, and FDG PET/CT. Radiology. 2015;274(2):563–575. doi: 10.1148/radiol.14132289
  25. Heye T, Sommer G, Miedinger D, et al. Ultrafast 3D balanced steady-state free precession MRI of the lung: Assessment of anatomic details in comparison to low-dose CT. J Magn Reson Imaging. 2015;42(3):602–609. doi: 10.1002/jmri.24836
  26. Akata S, Kajiwara N, Park J, et al. Evaluation of chest wall invasion by lung cancer using respiratory dynamic MRI. J Med Imaging Radiat Oncol. 2008;52(1):36–39. doi: 10.1111/j.1440-1673.2007.01908.x
  27. Hittmair K, Eckersberger F, Klepetko W, et al. Evaluation of solitary pulmonary nodules with dynamic contrast-enhanced MR imaging-a promising technique? Magn Reson Imaging. 1995;13(7):923–933. doi: 10.1016/0730-725x(95)02010-q
  28. Alper F, Kurt AT, Aydin Y, et al. The role of dynamic magnetic resonance imaging in the evaluation of pulmonary nodules and masses. Med Princ Pract. 2013;22(1):80–86. doi: 10.1159/000339475
  29. Frericks BB, Meyer BC, Martus P, et al. MRI of the thorax during whole-body MRI: Evaluation of different MR sequences and comparison to thoracic multidetector computed tomography (MDCT). J Magn Reson Imaging. 2008;27(3):538–545. doi: 10.1002/jmri.21218
  30. Cieszanowski A, Lisowska A, Dabrowska M, et al. MR imaging of pulmonary nodules: Detection rate and accuracy of size estimation in comparison to computed tomography. PLoS One. 2016;11(6):e0156272. doi: 10.1371/journal.pone.0156272
  31. Ohno Y, Hatabu H, Takenaka D, et al. Solitary pulmonary nodules: Potential role of dynamic MR imaging in management ― Initial experience. Radiology. 2002;224(2):503–511. doi: 10.1148/radiol.2242010992
  32. Zou Y, Zhang M, Wang Q, et al. Quantitative investigation of solitary pulmonary nodules: dynamic contrast-enhanced MRI and histopathologic analysis. Am J Roentgenol. 2008;191(1):252–259. doi: 10.2214/AJR.07.2284
  33. Dewes P, Frellesen C, Al-Butmeh F, et al. Comparative evaluation of non-contrast CAIPIRINHA-VIBE 3T-MRI and multidetector CT for detection of pulmonary nodules: In vivo evaluation of diagnostic accuracy and image quality. Eur J Radiol. 2016;85(1):193–198. doi: 10.1016/j.ejrad.2015.11.020
  34. Fatihoglu E, Biri S, Aydın S, et al. MRI in evaluation of solitary pulmonary nodules. Turkish Thorac J. 2019;20(2):90–96. doi: 10.5152/TurkThoracJ.2018.18049
  35. Heye T, Ley S, Heussel CP, et al. Detection and size of pulmonary lesions: How accurate is MRI? A prospective comparison of CT and MRI. Acta Radiol. 2012;53(2):153–160. doi: 10.1258/ar.2011.110445
  36. Koo CW, Lu A, Takahashi EA, et al. Can MRI contribute to pulmonary nodule analysis? J Magn Reson Imaging. 2019;49(7): e256–e264. doi: 10.1002/jmri.26587
  37. Koyama H, Ohno Y, Kono A, et al. Quantitative and qualitative assessment of non-contrast-enhanced pulmonary MR imaging for management of pulmonary nodules in 161 subjects. Eur Radiol. 2008;18(10):2120–2131. doi: 10.1007/s00330-008-1001-2
  38. Koyama H, Ohno Y, Seki S, et al. Value of diffusion-weighted MR imaging using various parameters for assessment and characterization of solitary pulmonary nodules. Eur J Radiol. 2015;84(3):509–515. doi: 10.1016/j.ejrad.2014.11.024
  39. Huang YS, Niisato E, Su MY, et al. Detecting small pulmonary nodules with spiral ultrashort echo time sequences in 1.5 T MRI. MAGMA. 2021;34(3):399–409. doi: 10.1007/s10334-020-00885-x
  40. Ying GS, Maguire MG, Glynn RJ,et al. Calculating sensitivity, specificity, and predictive values for correlated eye data. Investig Ophthalmol Vis Sci. 2020;61(11):29. doi: 10.1167/iovs.61.11.29
  41. Bradley SH, Kennedy MP, Neal RD. Recognising lung cancer in primary care. Adv Ther. 2019;36(1):19–30. doi: 10.1007/s12325-018-0843-5
  42. Nikolаev E, Gombolevskiy V, Gonchar AP, et al. Incidental findings during lung cancer screening by low-dose computed tomography. Tuberc Lung Dis. 2018;96(11):60–67. doi: 10.21292/2075-1230-2018-96-11-60-67
  43. Loverdos K, Fotiadis A, Kontogianni C, et al. Lung nodules: A comprehensive review on current approach and management. Ann Thorac Med. 2019;14(4):226–238. doi: 10.4103/atm.ATM_110_19

补充文件

附件文件
动作
1. JATS XML
2. 图 3特异性(a)和敏感性(b)分组数据的森林图[40]。注意:SMD (standardized mean difference) ― 标准化平均差;CI (confidence interval) ― 置信区间。

下载 (1MB)
3. 图 1研究选择过程概述 (flow diagram)。

下载 (155KB)
4. 图 2偏差风险直方图

下载 (136KB)

版权所有 © Vasilev Y.A., Panina O.Y., Grik E.A., Akhmad K.S., Vasileva Y.N., 2021

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».