Classification of adrenocortical carcinoma, pheochromocytoma, and adrenal adenomas using contrast-enhanced computed tomography with machine learning and texture features: a cross-sectional study

Cover Image

Cite item

Full Text

Abstract

BACKGROUND: Differential diagnosis of adrenocortical carcinoma, pheochromocytoma, and adrenal adenomas based on contrast-enhanced computed tomography remains challenging because of substantial overlap in their radiologic characteristics. Existing classification approaches based on conventional morphological criteria demonstrate limited accuracy, which may result in misdiagnosis and inappropriate treatment strategies.

AIM: This study aimed to develop a machine learning model for multiclass classification of adrenal lesions (adenomas, adrenocortical carcinoma, and pheochromocytoma) using contrast-enhanced computed tomography data with texture features.

METHODS: This was a single-center, cross-sectional study with retrospective computed tomography data acquisition and prospective re-analysis of imaging results. Contrast-enhanced computed tomography images were processed using PyRadiomics to extract texture features for each computed tomography phase. Data standardization was performed to reduce the impact of variability in scanning parameters. LightGBM, XGBoost, and CatBoost gradient boosting models were trained using stratified five-fold cross-validation. Diagnostic performance was assessed using recall, precision, F1-score, macro-averaged F1-score, specificity, balanced accuracy, and area under the receiver operating characteristic curve (AUC) for each diagnostic category.

RESULTS: The study included data from 425 patients with histologically verified adrenal tumors: 42 cases of adrenocortical carcinoma, 204 pheochromocytomas, and 179 adrenal adenomas. The developed machine learning models demonstrated high classification performance by cross-validation for adrenal adenomas (F1-score up to 0.916 for the XGBoost model) and pheochromocytomas (F1-score up to 0.855 for the XGBoost model), but substantially lower performance for adrenocortical carcinoma (F1-score up to 0.521 for the CatBoost model). The highest AUC values reached 0.971 for adenomas (LightGBM), 0.924 for pheochromocytomas (LightGBM), and 0.879 for adrenocortical carcinoma (CatBoost). Balanced accuracy reached up to 0.773, and the macro-averaged F1-score reached 0.747 (CatBoost model). Analysis of the most informative features showed that parameters reflecting texture homogeneity and intensity across different contrast-enhancement phases were most relevant for classification.

CONCLUSION: Radiomics and machine learning methods provide high diagnostic accuracy for multiclass classification of adrenal lesions on contrast-enhanced computed tomography for adrenal adenomas and pheochromocytomas. However, diagnostic performance for adrenocortical carcinoma remains limited, which may be related to tumor heterogeneity and the relatively small number of cases.

About the authors

Almaz V. Manaev

Endocrinology Research Centre; National Research Nuclear University “MEPhI”

Email: a.manaew2016@yandex.ru
ORCID iD: 0009-0003-8035-676X
SPIN-code: 2902-9767
Russian Federation, Moscow; Moscow

Natalia V. Tarbaeva

Endocrinology Research Centre

Email: ntarbaeva@inbox.ru
ORCID iD: 0000-0001-7965-9454
SPIN-code: 5808-8065

MD, Cand. Sci. (Medicine)

Russian Federation, Moscow

Svetlana A. Buryakina

Endocrinology Research Centre

Email: sburyakina@yandex.ru
ORCID iD: 0000-0001-9065-7791
SPIN-code: 5675-0651

MD, Cand. Sci. (Medicine)

Russian Federation, Moscow

Liliya D. Kovalevich

Endocrinology Research Centre

Email: liliyakovalevich@gmail.com
ORCID iD: 0000-0001-8958-8223
SPIN-code: 1642-5694
Russian Federation, Moscow

Angelina V. Khairieva

Endocrinology Research Centre

Email: komarito@mail.ru
ORCID iD: 0000-0002-6758-5918
SPIN-code: 4516-8297
Russian Federation, Moscow

Liliya S. Urusova

Endocrinology Research Centre

Email: liselivanova89@yandex.ru
ORCID iD: 0000-0001-6891-0009
SPIN-code: 5151-3675

MD, Dr. Sci. (Medicine)

Russian Federation, Moscow

Nano V. Pachuashvili

Endocrinology Research Centre

Email: npachuashvili@bk.ru
ORCID iD: 0000-0002-8136-0117
SPIN-code: 3477-8994

MD, Cand. Sci. (Medicine)

Russian Federation, Moscow

Galina A. Mel'nichenko

Endocrinology Research Centre

Author for correspondence.
Email: Melnichenko.Galina@endocrincentr.ru
ORCID iD: 0000-0002-5634-7877
SPIN-code: 8615-0038

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow

Natalia G. Mokrysheva

Endocrinology Research Centre

Email: mokrisheva.natalia@endocrincentr.ru
ORCID iD: 0000-0002-9717-9742
SPIN-code: 5624-3875

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow

Valentin E. Sinitsyn

Lomonosov Moscow State University; Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies

Email: vsini@mail.ru
ORCID iD: 0000-0002-5649-2193
SPIN-code: 8449-6590

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow; Moscow

References

  1. Albano D, Agnello F, Midiri F, et al. Imaging features of adrenal masses. Insights into Imaging. 2019;10(1):1–16. doi: 10.1186/s13244-019-0688-8 EDN: ETVIBX
  2. Fassnacht M, Tsagarakis S, Terzolo M, et al. European Society of Endocrinology clinical practice guidelines on the management of adrenal incidentalomas, in collaboration with the European Network for the Study of Adrenal Tumors. European Journal of Endocrinology. 2023;189(1):G1–G42. doi: 10.1093/ejendo/lvad066 EDN: EZKFAO
  3. Ebbehoj A, Li D, Kaur RJ, et al. Epidemiology of adrenal tumours in Olmsted County, Minnesota, USA: a population-based cohort study. The Lancet Diabetes & Endocrinology. 2020;8(11):894–902. doi: 10.1016/s2213-8587(20)30314-4 EDN: ICZBID
  4. Bancos I, Taylor AE, Chortis V, et al. Urine steroid metabolomics for the differential diagnosis of adrenal incidentalomas in the EURINE-ACT study: a prospective test validation study. The Lancet Diabetes & Endocrinology. 2020;8(9):773–781. doi: 10.1016/S2213-8587(20)30218-7 EDN: ZXDDAR
  5. Hong AR, Kim JH, Park KS, et al. Optimal follow-up strategies for adrenal incidentalomas: reappraisal of the 2016 ESE-ENSAT guidelines in real clinical practice. European Journal of Endocrinology. 2017;177(6):475–483. doi: 10.1530/EJE-17-0372
  6. Schloetelburg W, Ebert I, Petritsch B, et al. Adrenal wash-out CT: moderate diagnostic value in distinguishing benign from malignant adrenal masses. European Journal of Endocrinology. 2022;186(2):183–193. doi: 10.1530/EJE-21-0650
  7. Marty M, Gaye D, Perez P, et al. Diagnostic accuracy of computed tomography to identify adenomas among adrenal incidentalomas in an endocrinological population. European Journal of Endocrinology. 2018;178(5):439–446. doi: 10.1530/EJE-17-1056
  8. Vilar L, Freitas M, Canadas V, et al. Adrenal Incidentalomas: Diagnostic Evaluation and Long-Term Follow-up. Endocrine Practice. 2008;14(3):269–278. doi: 10.4158/EP.14.3.269
  9. Winoker JS, Ahlborn DT, Omidele OO, et al. Minimally invasive adrenal surgery: virtue or vice. Future Oncology. 2018;14(3):267–276. doi: 10.2217/fon-2017-0420
  10. Elhassan YS, Alahdab F, Prete A, et al. Natural history of adrenal incidentalomas with and without mild autonomous cortisol excess. Annals of Internal Medicine. 2019;171(2):107–116. doi: 10.7326/M18-3630
  11. Collienne M, Timmesfeld N, Bergmann S, et al. Adrenal incidentaloma and subclinical Cushing’s syndrome: a longitudinal follow-up study by endoscopic ultrasound. Ultraschall in der Medizin - European Journal of Ultrasound. 2015;38(04):411–419. doi: 10.1055/s-0041-107996 EDN: YCAZGU
  12. Corwin MT, Chalfant JS, Loehfelm TW, et al. Incidentally detected bilateral adrenal nodules in patients without cancer: is further workup necessary? American Journal of Roentgenology. 2018;210(4):780–784. doi: 10.2214/AJR.17.18543
  13. Goh Z, Phillips I, Hunt PJ, et al. Three-year follow up of adrenal incidentalomas in a New Zealand centre. Internal Medicine Journal. 2020;50(3):350–356. doi: 10.1111/imj.14332 EDN: ULXDXA
  14. Leung K, Stamm M, Raja A, Low G. Pheochromocytoma: the range of appearances on ultrasound, CT, MRI, and functional imaging. American Journal of Roentgenology. 2013;200(2):370–378. doi: 10.2214/AJR.12.9126
  15. Eloyan A, Yue MS, Khachatryan D. Tumor heterogeneity estimation for radiomics in cancer. Statistics in Medicine. 2020;39(30):4704–4723. doi: 10.1002/sim.8749 EDN: HJELUM
  16. Zhang H, Lei H, Pang J. Diagnostic performance of radiomics in adrenal masses: a systematic review and meta-analysis. Frontiers in Oncology. 2022;12:975183. doi: 10.3389/fonc.2022.975183 EDN: OJYRFN
  17. Ferro M, Tataru OS, Carrieri G, et al. Artificial intelligence and radiomics applications in adrenal lesions: a systematic review. Therapeutic Advances in Urology. 2025;17. doi: 10.1177/17562872251352553
  18. Cao L, Yang H, Wu H, et al. Adrenal indeterminate nodules: CT-based radiomics analysis of different machine learning models for predicting adrenal metastases in lung cancer patients. Frontiers in Oncology. 2024;14. doi: 10.3389/fonc.2024.1411214 EDN: YPYTOT
  19. Qi S, Zuo Y, Chang R, et al. Using CT radiomic features based on machine learning models to subtype adrenal adenoma. BMC Cancer. 2023;23(1):1411214. doi: 10.1186/s12885-023-10562-6 EDN: TAHRXY
  20. Tucci L, Vara G, Morelli V, et al. Prediction of adrenal masses nature through texture analysis and deep learning: Preliminary results from ENS@T RADIO-AI multicentric study. In: Endocrine Abstracts. Harrogate: Society for Endocrinology; 2024. doi: 10.1530/endoabs.99.oc11.3 EDN: SYRWPF
  21. Weiss LM. Comparative histologic study of 43 metastasizing and nonmetastasizing adrenocortical tumors. The American Journal of Surgical Pathology. 1984;8(3):163–170. doi: 10.1097/00000478-198403000-00001
  22. Bisceglia M, Ludovico O, Di Mattia A, et al. Adrenocortical oncocytic tumors: report of 10 cases and review of the literature. International Journal of Surgical Pathology. 2004;12(3):231–243. doi: 10.1177/106689690401200304
  23. Thompson LDR. Pheochromocytoma of the adrenal gland scaled score (PASS) to separate benign from malignant neoplasms. The American Journal of Surgical Pathology. 2002;26(5):551–566. doi: 10.1097/00000478-200205000-00002
  24. Urusova LS, Kletskaya IS, Porubayeva EE, Beltsevich DG. Adrenocortical carcinoma: modern concepts of morphological diagnosis and classification. Russian Journal of Archive of Pathology. 2023;85(4):32–38. doi: 10.17116/patol20238504132 EDN: XEDMRQ
  25. van Griethuysen JJM, Fedorov A, Parmar C, et al. Computational radiomics system to decode the radiographic phenotype. Cancer Research. 2017;77(21):e104–e107. doi: 10.1158/0008-5472.CAN-17-0339
  26. Varghese BA, Cen SY, Jensen K, et al. Investigating the role of imaging factors in the variability of CT-based texture analysis metrics. Journal of Applied Clinical Medical Physics. 2023;25(4):e14192. doi: 10.1002/acm2.14192
  27. Brodersen KH, Ong CS, Stephan KE, Buhmann JM. The balanced accuracy and its posterior distribution. In: Proceedings of the 20th International Conference on Pattern Recognition. Istanbul; 2010. P. 3121–3124. doi: 10.1109/ICPR.2010.764
  28. Saito T, Rehmsmeier M. The Precision-Recall Plot Is More Informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLOS ONE. 2015;10(3):e0118432. doi: 10.1371/journal.pone.0118432 EDN: YBEDRE
  29. Fassnacht M, Dekkers OM, Else T, et al. European Society of Endocrinology Clinical Practice Guidelines on the management of adrenocortical carcinoma in adults, in collaboration with the European Network for the Study of Adrenal Tumors. European Journal of Endocrinology. 2018;179(4):G1–G46. doi: 10.1530/EJE-18-0608
  30. Sonoda S, Murata N. Neural network with unbounded activation functions is universal approximator. Applied and Computational Harmonic Analysis. 2017;43(2):233–268. doi: 10.1016/j.acha.2015.12.005
  31. Chen T, Guestrin C. XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco; 2016. P. 785–794. doi: 10.1145/2939672.2939785
  32. Grinsztajn L, Oyallon E, Varoquaux G. Why do tree-based models still outperform deep learning on typical tabular data? In: Proceedings of 36th Conference on Neural Information Processing Systems (NeurIPS 2022) Track on Datasets and Benchmarks. 2022. Available from: https://papers.neurips.cc/paper_files/paper/2022/
  33. Walz MK, Metz KA, Theurer S, et al. Differentiating benign from malignant adrenocortical tumors by a single morphological parameter—a clinicopathological study on 837 adrenocortical neoplasias. Indian Journal of Surgical Oncology. 2020;11(4):705–710. doi: 10.1007/s13193-020-01205-4 EDN: OBEYXF
  34. Robertson-Tessi M, Gillies RJ, Gatenby RA, Anderson ARA. Impact of metabolic heterogeneity on tumor growth, invasion, and treatment outcomes. Cancer Research. 2015;75(8):1567–1579. doi: 10.1158/0008-5472.CAN-14-1428
  35. Kotelnikova LP, Zhizhilev YV. Computed tomography in the differential diagnosis of adrenal tumors. Endocrine Surgery. 2022;15(4):38–43. doi: 10.14341/serg12761 EDN: NPFHOR
  36. Phadte A, Krishnappa B, Memon SS, et al. High diagnostic accuracy of arterial phase CT in differentiating pheochromocytoma in good/poor washout adrenal masses. Journal of the Endocrine Society. 2024;9(1):bvae199. doi: 10.1210/jendso/bvae199
  37. Altay C, Basara Akin I, Ozgul AH, et al. Machine learning analysis of adrenal lesions: Preliminary study evaluating texture analysis in the differentiation of adrenal lesions. Diagnostic and Interventional Radiology. 2023;29(2):234–243. doi: 10.5152/dir.2022.21266 EDN: TEUYQK
  38. Florek P, Zagdański A. Benchmarking state-of-the-art gradient boosting algorithms for classification. arXiv. 2023. (in press). doi: 10.48550/arXiv.2305.17094
  39. Lau SK, Weiss LM. The Weiss system for evaluating adrenocortical neoplasms: 25 years later. Human Pathology. 2009;40(6):757–768. doi: 10.1016/j.humpath.2009.03.010
  40. Lam AK. Update on adrenal tumours in 2017 World Health Organization (WHO) of endocrine tumours. Endocrine Pathology. 2017;28(3):213–227. doi: 10.1007/s12022-017-9484-5 EDN: DZHAOK
  41. Manaev AV, Tarbaeva NV, Roslyakova AA, et al. Predicting high proliferative Ki-67 index in patients with adrenocortical carcinoma based on texture analysis of contrast-enhanced computed tomography images: a cross-sectional study. Digital Diagnostics. 2025;6(3):360–372. doi: 10.17816/DD643532 EDN: JRXXMQ

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Heat map of texture feature values for different adrenal gland formations. The standardised mean value (equal to the ratio of the difference between the mean value of a specific diagnosis and the mean value of the entire sample to the standard deviation of the entire sample) and the initial mean value (in brackets) of the corresponding texture feature indicator are given. ACC — adrenocortical carcinoma.

Download (315KB)
3. Fig. 2. Classification accuracy of test sample observations (for all three models considered): 0 — adenomas; 1 — pheochromocytomas; 2 — adrenocortical carcinoma.

Download (53KB)

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).