Electrocardiography signal processing method for effective assessment of a patient's heart rate using a convolutional neural network

Cover Page

Cite item

Full Text

Abstract

BACKGROUND: The initial step in annotating an electrocardiogram is the evaluation of the patient's heart rhythm. In the presented study, a method has been developed to process the electrocardiographic signal and estimate the heart rhythm. The method is based on the application of a trained convolutional neural network, which will provide the physician with preliminary information about possible atrial fibrillation or the presence of other rhythm disturbances as soon as possible after receiving the electrocardiogram. Furthermore, such methodologies can be incorporated into telemedicine systems, thereby facilitating remote monitoring of cardiac status.

AIM: The aim of the study was to develop an electrocardiography signal processing method for the classification of a patient’s heart rhythm into three classes: sinus rhythm, atrial fibrillation, and other arrhythmias.

MATERIALS AND METHODS: The publicly available electrocardiograms of patients were selected for model training and testing. The software was written in the Python programming language using the TensorFlow framework. The training, validation, and test samples were formed with a ratio of 10:1:1:1, with a uniform distribution by classes. Three variants of data sets for each record were prepared: combining plots of all 12 leads of the electrocardiogram on one image, obtaining spectrograms of II and V1 leads using Gaussian wavelet, and representing the record as a vector cardiogram. The architecture of the convolutional neural network was based on the ResNet18 architecture, which was further modified, and a series of modifications were made for each of the input data representations.

RESULTS: A serialized model was obtained with the following accuracy metrics: accuracy=43% for matching 12 electrocardiographic leads in the image; accuracy=43% for vector representation of the electrocardiogram; and accuracy=69% for wavelet transform of the electrocardiogram. In the case of a two-class problem involving sinus rhythm and atrial fibrillation, the accuracy metric for the wavelet transform reaches 93% with metrics recall, precision, and F1-score values of 93%, 94%, and 93%, respectively.

CONSLUSIONS: The results demonstrate the potential of using convolutional neural networks to assess the heart rhythm of patients. Further development of the project involves the selection of the most effective machine learning algorithm, testing of this algorithm for the two-class problem, and expansion of the solution for other classes of rhythm disorders. Additionally, it is possible to improve classification results for the three-class problem by using a superior model and introducing additional clustering.

About the authors

Daniel V. Gordienko

Bauman Moscow State Technical University

Author for correspondence.
Email: mrvanderk@mail.ru
ORCID iD: 0009-0007-9813-3475
Russian Federation, Moscow

Artem O. Kravchenko

Bauman Moscow State Technical University

Email: ikrav514@gmail.com
ORCID iD: 0009-0007-0507-4294
Russian Federation, Moscow

References

  1. PTB-XL — Atrial Fibrillation Detection [Internet]. Kaggle [дата обращения: 16.12.2023]. Доступ по ссылке: https://www.kaggle.com/datasets/arjunascagnetto/ptbxl-atrial-fibrillation-detection
  2. DOI: https://doi.org/10.17816/DD627084

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».