Emission textural features I-131 of differentiated thyroid cancer tissue

Capa

Citar

Texto integral

Resumo

BACKGROUND: The management of differentiated thyroid cancer includes single-photon emission tomography combined with X-ray computed tomography after radioiodine therapy. Despite a good response to surgery and radioiodine therapy, recurrence is noted in some cases, leading to an unfavorable prognosis in 8% of cases [1]. A preliminary analysis of the distribution of I-131 in residual thyroid tissues and foci of metastasis allows for the estimation of the probability of differentiated cancer recurrence. Currently, there is no method that is simultaneously effective and easy to perform for predicting the recurrence of differentiated thyroid cancer.

AIM: The aim of the study was to develop a technique for extracting and computing textural features of the I-131 accumulation region using a single-photon emission tomography system corresponding to differentiated thyroid cancer tissue.

MATERIALS AND METHODS: A retrospective analysis of single-photon emission tomography combined with X-ray computed tomography of the neck and thorax of 23 patients was conducted. Regions of interest, including foci of I-131 accumulation in the primary tumor bed, regional and distant metastases, were delineated in Xeleris 4DR software. The obtained mask with the original image was processed in a program written with the help of the Matlab package, which localizes the foci. The textural features of foci are calculated based on the obtained spatial adjacency matrix. This matrix shows how often pixels with certain gray scale brightness values occur in an image. Therefore, the features based on the spatial adjacency matrix reflect the frequency distribution of different pixel neighborhoods in a given context.

RESULTS: An algorithm for constructing three-dimensional matrices of a radiation source surrounded by tissue of differentiated thyroid cancer was developed. The textural features of three-dimensional matrices were investigated. It was demonstrated that there are tendencies for differences in texture features corresponding to the ordering of pixel values and image contrast. The values of the obtained features obey the lognormal distribution.

CONCLUSIONS: An algorithm for extracting textural features of I-131 accumulation foci allows post-therapy single-photon emission tomography images combined with X-ray computed tomography to be analyzed for the likelihood of recurrence of differentiated thyroid cancer.

Sobre autores

Mikhail Maltsev

National Research Nuclear University MEPhI

Autor responsável pela correspondência
Email: misha.malcev.01@bk.ru
ORCID ID: 0009-0009-2420-4650
Rússia, Moscow

Alexey Trukhin

National Research Nuclear University MEPhI; Endocrinology research centre

Email: Alexey.trukhin12@gmail.com
ORCID ID: 0000-0001-5592-4727
Código SPIN: 4398-9536
Rússia, Moscow; Moscow

Almaz Manaev

National Research Nuclear University MEPhI; Endocrinology research centre

Email: a.manaew2016@yandex.ru
ORCID ID: 0009-0003-8035-676X
Código SPIN: 2902-9767
Rússia, Moscow; Moscow

Maria Reinberg

Endocrinology research centre

Email: mrezerford12@gmail.com
ORCID ID: 0009-0002-1632-2197
Rússia, Moscow

Bibliografia

  1. Reinberg MV, Slashchuk KY, Trukhin AA, Avramova KI, Sheremeta MS. Preparation for radioiodine therapy in patients with differentiated thyroid cancer: a modern perspective (a review). Digital Diagnostics. 2023;4(4):543–568. doi: 10.17816/DD532728

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Eco-Vector, 2024

Creative Commons License
Este artigo é disponível sob a Licença Creative Commons Atribuição–NãoComercial–SemDerivações 4.0 Internacional.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».