Current challenges and future development of India’s healthcare system’ towards tuberculosis free India – research evidence and programmatic initiatives

封面

如何引用文章

全文:

详细

Tuberculosis (TB), the single most infectious killer deserves special attention in a focussed manner, to reduce morbidity and mortality. We describe the challenges in the four pillars of TB control: detect or diagnosis, treat, prevent, build and elaborate the success stories, listing out newer and advanced tools like artificial intelligence, whole genome sequencing, clustered regularly interspaced short palindromic repeats based technologies, one health approach and cost effectiveness strategies for an all- round reduction in TB control. Special problems posed by paediatric and extra-pulmonary TB are dealt with. Post TB lung sequalae, reverse zoonosis and behavioural modification that can influence catastrophic costs are explored. Use of molecular and genomic methods of TB detection has revolutionized TB care with increased sensitivity of diagnosis, and timely detection of drug resistance, saving many a precious lives. Undoubtedly, the need of the hour would be shortening TB treatment duration and comprehensive preventive strategies that simultaneously decrease both the incidence and prevalence of TB. The various schemes and initiatives undertaken by the Government of India including the Pradhan Mantri TB Mukt Bharat Abhiyaan – “TB free India” stand as a unique solution in the wake of eliminating TB. India has been extending its success stories to other countries as well, by creating platforms for multilateral research and multinational implementation. This manuscript gives a concise and comprehensive outlook of process involved in TB elimination, amalgamating the research evidences with the programmatic initiatives, enlisting the existing challenges, envisaging the current achievements, providing a road map for TB elimination.

参考

  1. Dickinson JM, Mitchison DA. In vitro studies on the choice of drugs for intermittent
  2. chemotherapy of tuberculosis. Tubercle. 1966;47:370-380.
  3. doi: 10.1016/S0041-3879(66)80022-3
  4. Abbas AK, Andrew H. Lichtman, et al. Cellular and Molecular Immunology. 10th ed.
  5. Elsevier; 2022.
  6. Cabibbe AM, Sotgiu G, Izco S, Migliori GB. Genotypic and phenotypic M. tuberculo-
  7. sis resistance: guiding clinicians to prescribe the correct regimens. Eur Respir J.
  8. ;50(6):1702292. Published 2017 Dec 28.
  9. doi: 10.1183/13993003.02292-2017
  10. Cabibbe AM, Spitaleri A, Battaglia S, et al. Application of Targeted Next-Generation
  11. Sequencing Assay on a Portable Sequencing Platform for Culture-Free Detection of
  12. Drug-Resistant Tuberculosis from Clinical Samples. J Clin Microbiol.
  13. ;58(10):e00632-20. Published 2020 Sep 22.
  14. doi: 10.1128/JCM.00632-20
  15. Shanmugam SK, Kumar N, Sembulingam T, et al. Mycobacterium tuberculosis Line-
  16. ages Associated with Mutations and Drug Resistance in Isolates from India. Micro-
  17. biol Spectr. 2022;10(3):e0159421.
  18. doi: 10.1128/spectrum.01594-21
  19. Jayaprakasam M, Pandey RM, Choudhary H, et al. Evaluation of molecular diagnos-
  20. tic test for detection of adult pulmonary tuberculosis: A generic protocol. Indian J
  21. Med Res. 2024;159(2):246-253.
  22. doi: 10.4103/ijmr.ijmr_2316_23
  23. Grzybowski S, Enarson D. Le devenir des tuberculeux pulmonaires dans diverses
  24. circonstances de programmes de traitement [Results in pulmonary tuberculosis
  25. patients under various treatment program conditions]. Bull Int Union Tuberc.
  26. ;53(2):70-75.
  27. Tuberculosis Chemotherapy Centre. A concurrent comparison of home and sanato-
  28. rium treatment of pulmonary tuberculosis in South India. Bull World Health Organ.
  29. ;21(1):51-144.
  30. Study of chemotherapy regimens of 5 and 7 months' duration and the role of corti-
  31. costeroids in the treatment of sputum-positive patients with pulmonary tuberculo-
  32. sis in South India. Tubercle. 1983;64(2):73-91.
  33. doi: 10.1016/0041-3879(83)90032-6
  34. Tuberculosis Research Centre, Chennai (2002) Shortening short course
  35. chemotherapy: a randomized clinical trial for the treatment of smear positive pul-
  36. monary tuberculosis with regimens using ofloxacin in the intensive phase. Indian
  37. Journal of Tuberculosis, (1):27-38. ISSN 0019-5705
  38. Intermittent treatment of pulmonary tuberculosis: A Concurrent Comparison of
  39. Twice-weekly Isoniazid plus Streptomycin and Daily Isoniazid plus p-Aminosalicylic
  40. Acid in Domiciliary Treatment. The Lancet. 1963; 281(7290):1078-1080.
  41. doi: 10.1016/S0140-6736(63)92115-9
  42. Controlled comparison of oral twice-weekly and oral daily isoniazid plus PAS in
  43. newly diagnosed pulmonary tuberculosis. Br Med J. 1973;2(5857):7-11.
  44. Swaminathan S, Narendran G, Venkatesan P, et al. Efficacy of a 6-month versus 9-
  45. month intermittent treatment regimen in HIV-infected patients with tuberculosis: a
  46. randomized clinical trial. Am J Respir Crit Care Med. 2010;181(7):743-751.
  47. doi: 10.1164/rccm.200903-0439OC
  48. Jawahar MS, Banurekha VV, Paramasivan CN, et al. Randomized clinical trial of
  49. thrice-weekly 4-month moxifloxacin or gatifloxacin containing regimens in the
  50. treatment of new sputum positive pulmonary tuberculosis patients. PLoS One.
  51. ;8(7):e67030. Published 2013 Jul 3.
  52. doi: 10.1371/journal.pone.0067030
  53. Swaminathan S, Padmapriyadarsini C, Venkatesan P, et al. Efficacy and safety of
  54. once-daily nevirapine- or efavirenz-based antiretroviral therapy in HIV-associated
  55. tuberculosis: a randomized clinical trial. Clin Infect Dis. 2011;53(7):716-724.
  56. doi: 10.1093/cid/cir447
  57. Velayutham B, Jawahar MS, Nair D, et al. 4-month moxifloxacin containing regimens
  58. in the treatment of patients with sputum-positive pulmonary tuberculosis in South
  59. India – a randomised clinical trial. Trop Med Int Health. 2020;25(4):483-495.
  60. doi: 10.1111/tmi.13371
  61. Gopalan N, Santhanakrishnan RK, Palaniappan AN, et al. Daily vs Intermittent Anti-
  62. tuberculosis Therapy for Pulmonary Tuberculosis in Patients With HIV: A Random-
  63. ized Clinical Trial. JAMA Intern Med. 2018;178(4):485-493.
  64. doi: 10.1001/jamaintern-med.2018.0141
  65. Gopalan N, Chandrasekaran P, Swaminathan S, Tripathy S. Current trends and intricacies in the management of HIV-associated pulmonary tuberculosis. AIDS Res Ther. 2016;13:34. Published 2016 Sep 26.
  66. doi: 10.1186/s12981-016-0118-7
  67. Narendran G, Menon PA, Venkatesan P, et al. Acquired rifampicin resistance in thrice-weekly antituberculosis therapy: impact of HIV and antiretroviral therapy. Clin Infect Dis. 2014;59(12):1798-1804.
  68. doi: 10.1093/cid/ciu674
  69. Goodall RL, Meredith SK, Nunn AJ, et al. Evaluation of two short standardised regimens for the treatment of rifampicin-resistant tuberculosis (STREAM stage 2): an open-label, multicentre, randomised, non-inferiority trial [published correction appears in Lancet. 2022 Nov 19;400(10365):1766.
  70. doi: 10.1016/S0140-6736(22)02307-
  71. . Lancet. 2022;400(10366):1858-1868.
  72. doi: 10.1016/S0140-6736(22)02078-5
  73. Imperial MZ, Nahid P, Phillips PPJ, et al. A patient-level pooled analysis of treatment-shortening regimens for drug-susceptible pulmonary tuberculosis [published correction appears in Nat Med. 2019 Jan;25(1):190.
  74. doi: 10.1038/s41591-018-0294-1].
  75. Nat Med. 2018;24(11):1708-1715.
  76. doi: 10.1038/s41591-018-0224-2
  77. Gopalan N, Srinivasalu VA, Chinnayan P, et al. Predictors of unfavorable responses
  78. to therapy in rifampicin-sensitive pulmonary tuberculosis using an integrated approach of radiological presentation and sputum mycobacterial burden. PloS one.
  79. ;16(9):e0257647.
  80. Dorman SE, Nahid P, Kurbatova EV, et al. Four-Month Rifapentine Regimens with or without Moxifloxacin for Tuberculosis. N Engl J Med. 2021;384(18):1705-1718.
  81. doi: 10.1056/NEJMoa2033400
  82. Perumal Kannabiran B, Palaniappan NA, Manoharan T, et al. Safety and Efficacy of
  83. mg/kg and 35 mg/kg vs 10 mg/kg Rifampicin in Pulmonary TB: A Phase IIb Randomized Controlled Trial. Open Forum Infect Dis. 2024;11(3):ofae034. Published 2024 Feb 2.
  84. doi: 10.1093/ofid/ofae034
  85. Narendran G, Andrade BB, Porter BO, et al. Paradoxical tuberculosis immune reconstitution inflammatory syndrome (TB-IRIS) in HIV patients with culture confirmed pulmonary tuberculosis in India and the potential role of IL-6 in prediction.
  86. PLoS One. 2013;8(5):e63541. Published 2013 May 17.
  87. doi: 10.1371/journal.pone.0063541
  88. Singh UB, Singh M, Rodrigues C, et al. Multi-centric evaluation of Truenat MTB and MTB-RIF Dx assays for diagnosis of extrapulmonary tuberculosis. Sci Rep. 2024;14(1):15680. Published 2024 Jul 8.
  89. doi: 10.1038/s41598-024-64688-z
  90. Purohit MR, Purohit R, Mustafa T. Patient Health Seeking and Diagnostic Delay in Extrapulmonary Tuberculosis: A Hospital Based Study from Central India. Tuberc Res Treat. 2019;2019:4840561. Published 2019 Feb 3.
  91. doi: 10.1155/2019/4840561
  92. Rasouli MR, Mirkoohi M, Vaccaro AR, et al. Spinal tuberculosis: diagnosis and man-
  93. agement. Asian Spine J. 2012;6(4):294-308.
  94. doi: 10.4184/asj.2012.6.4.294
  95. Paradkar MS, Devaleenal D B, Mvalo T, et al. Randomized Clinical Trial of High-Dose
  96. Rifampicin With or Without Levofloxacin Versus Standard of Care for Pediatric Tuberculous Meningitis: The TBM-KIDS Trial. Clin Infect Dis. 2022;75(9):1594-1601.
  97. doi: 10.1093/cid/ciac208
  98. Hissar S, Velayutham B, Tamizhselvan M, et al. Efficacy and Tolerability of a 4-month
  99. Ofloxacin-Containing Regimen Compared to a 6-month Regimen in The Treatment of Patients With Superficial Lymph Node Tuberculosis: a Randomized Trial. BMC Infect Dis. 2024,729 (2024).
  100. https://doi.org/10.1186/s12879-024-09511-w
  101. Thomas TA. Tuberculosis in Children. Pediatr Clin North Am. 2017;64(4):893-909.
  102. doi: 10.1016/j.pcl.2017.03.010
  103. Seddon JA, Shingadia D. Epidemiology and disease burden of tuberculosis in chil-
  104. dren: a global perspective. Infect Drug Resist. 2014;7:153-165. Published 2014 Jun 18.
  105. doi: 10.2147/IDR.S45090
  106. Siamisang K, Rankgoane-Pono G, Madisa TM, et al. Pediatric tuberculosis out-
  107. comes and factors associated with unfavorable treatment outcomes in Botswana,
  108. -2019: a retrospective analysis. BMC Public Health. 2022;22(1):2020. Published 2022 Nov 4.
  109. doi: 10.1186/s12889-022-14477-y
  110. Berti E, Galli L, Venturini E, de Martini M, et al. Tuberculosis in childhood: a system-
  111. atic review of national and international guidelines. BMC Infect Dis. 2014;14 Suppl 1(Suppl 1):S3.
  112. doi: 10.1186/1471-2334-14-S1-S3
  113. Martinez L, Cords O, Horsburgh CR, Andrews JR; Pediatric TB Contact Studies
  114. Consortium. The risk of tuberculosis in children after close exposure: a systematic
  115. review and individual-participant meta-analysis. Lancet. 2020;395(10228):973-984.
  116. doi: 10.1016/S0140-6736(20)30166-5
  117. Chabala C, Turkova A, Thomason MJ, et al. Shorter treatment for minimal tuberculosis (TB) in children (SHINE): a study protocol for a randomised controlled trial. Trials.
  118. ;19(1):237. Published 2018 Apr 19.
  119. doi: 10.1186/s13063-018-2608-5
  120. Turkova A, Wills GH, Wobudeya E, et al. Shorter Treatment for Nonsevere Tuberculosis in African and Indian Children. N Engl J Med. 2022;386(10):911-922.
  121. doi: 10.1056/NEJMoa2104535
  122. Basu Roy R, Whittaker E, Kampmann B. Current understanding of the immune response to tuberculosis in children. Curr Opin Infect Dis. 2012;25(3):250-257.
  123. doi: 10.1097/QCO.0b013e3283529af9
  124. Bhargava A, Bhargava M, Meher A, et al. Nutritional support for adult patients with
  125. microbiologically confirmed pulmonary tuberculosis: outcomes in a programmatic
  126. cohort nested within the RATIONS trial in Jharkhand, India. Lancet Glob Health.
  127. ;11(9):e1402-e1411.
  128. doi: 10.1016/S2214-109X(23)00324-8
  129. Rouf A, Masoodi MA, Dar MM, et al. Depression among Tuberculosis patients and
  130. its association with treatment outcomes in district Srinagar. J Clin Tuberc Other My-
  131. cobact Dis. 2021;25:100281. Published 2021 Nov 15.
  132. doi: 10.1016/j.jctube.2021.100281
  133. Suryavanshi N, Sane M, Gaikwad S, et al. Assessment of persistent depression among
  134. TB patients. Int J Tuberc Lung Dis. 2020;24(11):1208-1211.
  135. doi: 10.5588/ijtld.20.0231
  136. Ruiz-Grosso P, Cachay R, de la Flor A, et al. Association between tuberculosis and
  137. depression on negative outcomes of tuberculosis treatment: A systematic review
  138. and meta-analysis. PLoS One. 2020;15(1):e0227472. Published 2020 Jan 10.
  139. doi: 10.1371/journal.pone.0227472
  140. Rouf A, Masoodi MA, Dar MM, et al. Depression among Tuberculosis patients and
  141. its association with treatment outcomes in district Srinagar. J Clin Tuberc Other My-
  142. cobact Dis. 2021;25:100281. Published 2021 Nov 15.
  143. doi: 10.1016/j.jctube.2021.100281
  144. Panati D, Chittooru CS, Madarapu YR, Gorantla AK. Effect of depression on treat-
  145. ment adherence among elderly tuberculosis patients: A prospective interventional
  146. study. Clin Epidemiol Glob Health. 2023;22:101338.
  147. doi: 10.1016/j.cegh.2023.101338
  148. Maroof M, Pamei G, Bhatt M, et al. Drug adherence to anti-tubercular treatment dur-
  149. ing COVID-19 lockdown in Haldwani block of Nainital district. Indian J Community
  150. Health. 2022;34:535–541.
  151. Ragan EJ, Kleinman MB, Sweigart B, et al. The impact of alcohol use on tuberculosis
  152. treatment outcomes: a systematic review and meta-analysis. Int J Tuberc Lung Dis.
  153. ;24(1):73-82.
  154. doi: 10.5588/ijtld.19.0080
  155. Cox SR, Gupte AN, Thomas B, et al. Unhealthy alcohol use independently associ-
  156. ated with unfavorable TB treatment outcomes among Indian men. Int J Tuberc Lung
  157. Dis. 2021;25(3):182-190.
  158. doi: 10.5588/ijtld.20.0778
  159. Thomas B, Watson B, Senthil EK, et al. Alcohol intervention strategy among tubercu-
  160. losis patients: a pilot study from South India. Int J Tuberc Lung Dis. 2017;21(8):947-
  161. doi: 10.5588/ijtld.16.0693
  162. Suhadev M, Thomas BE, Raja Sakthivel M, et al. Alcohol use disorders (AUD) among
  163. tuberculosis patients: a study from Chennai, South India. PLoS One.
  164. ;6(5):e19485.
  165. doi: 10.1371/journal.pone.0019485
  166. Kan CK, Ragan EJ, Sarkar S, et al. Alcohol use and tuberculosis clinical presentation
  167. at the time of diagnosis in Puducherry and Tamil Nadu, India. PLoS One.
  168. ;15(12):e0240595. Published 2020 Dec 17.
  169. doi: 10.1371/journal.pone.0240595
  170. Thapa P, Kamath R, Shetty BK, et al. Prevalence and Associated Factors of Alcoholism among Tuberculosis Patients in Udupi Taluk, Karnataka, India: A Cross Sectional Study. J Nepal Health Res Counc. 2014;12(28):177-181.
  171. Thummar PD, Rupani MP. Prevalence and predictors of hazardous alcohol use
  172. among tuberculosis patients: The need for a policy on joint tuberculosis-alcohol
  173. collaborative activities in India. Alcohol. 2020;86:113-119.
  174. doi: 10.1016/j.alcohol.2020.03.006
  175. Wyszewianski L. Financially catastrophic and high-cost cases: definitions, distinc-
  176. tions, and their implications for policy formulation. Inquiry. 1986;23(4):382-394.
  177. Puteh SEW, Almualm Y. Catastrophic health expenditure among developing coun-
  178. tries. Health Syst Policy Res. 2017;4:1.
  179. Rajeswari R, Balasubramanian R, Muniyandi M, et al. Socio-economic impact of tu-
  180. berculosis on patients and family in India. Int J Tuberc Lung Dis. 1999;3(10):869-877.
  181. Muniyandi M, Ramachandran R, Balasubramanian R, Narayanan PR. Socio-eco-
  182. nomic dimensions of tuberculosis control: review of studies over two decades from
  183. Tuberculosis Research Center. J Commun Dis. 2006;38(3):204-215.
  184. Muniyandi M, Thomas BE, Karikalan N, et al. Catastrophic costs due to tuberculosis
  185. in South India: comparison between active and passive case finding. Trans R Soc
  186. Trop Med Hyg. 2020;114(3):185-192.
  187. doi: 10.1093/trstmh/trz127
  188. Rucsineanu O, Agbassi P, Herrera R, et al. Shorter TB treatment regimens should be
  189. safer as well. Public Health Action. 2023;13(3):104-106.
  190. doi: 10.5588/pha.23.0026
  191. Padmapriyadarsini C, Vohra V, Bhatnagar A, et al. Bedaquiline, Delamanid, Linezolid
  192. and Clofazimine for Treatment of Pre-extensively Drug-Resistant Tuberculosis. Clin
  193. Infect Dis. Published online June 29, 2022.
  194. doi: 10.1093/cid/ciac528
  195. Putra ON, Yulistiani Y, Soedarsono S, Subay S. Favorable outcome of individual regi-
  196. mens containing bedaquiline and delamanid in drug-resistant tuberculosis: A sys-
  197. tematic review. Int J Mycobacteriol. 2023;12(1):1-9.
  198. doi: 10.4103/ijmy.ijmy_217_22
  199. Ryckman TS, Schumacher SG, Lienhardt C, et al. Economic implications of novel regi-
  200. mens for tuberculosis treatment in three high-burden countries: a modelling analysis.
  201. Lancet Glob Health. 2024;12(6):e995-e1004.
  202. doi: 10.1016/S2214-109X(24)00088-3
  203. Muniyandi M, Karikalan N, Velayutham B, et al. Cost Effectiveness of a Shorter Moxi-
  204. floxacin Based Regimen for Treating Drug Sensitive Tuberculosis in India. Trop Med
  205. Infect Dis. 2022;7(10):288. Published 2022 Oct 8.
  206. doi: 10.3390/tropicalmed7100288
  207. Rosu L, Madan JJ, Tomeny EM, et al. Economic evaluation of shortened, be-
  208. daquiline-containing treatment regimens for rifampicin-resistant tuberculosis
  209. (STREAM stage 2): a within-trial analysis of a randomised controlled trial [published
  210. correction appears in Lancet Glob Health. 2023 Feb;11(2):e196.
  211. doi: 10.1016/S2214-109X(23)00009-8].
  212. Lancet Glob Health. 2023;11(2):e265-e277.
  213. doi: 10.1016/S2214-109X(22)00498-3
  214. Muniyandi M, Ramesh PM, Wells WA, et al. The Cost-Effectiveness of the BEAT-TB
  215. Regimen for Pre-Extensively Drug-Resistant TB. Trop Med Infect Dis. 2023;8(8):411.
  216. Published 2023 Aug 11.
  217. doi: 10.3390/tropicalmed8080411
  218. Allwood BW, van der Zalm MM, Amaral AFS, et al. Post-tuberculosis lung health: per-
  219. spectives from the First International Symposium. Int J Tuberc Lung Dis.
  220. ;24(8):820-828.
  221. doi: 10.5588/ijtld.20.0067
  222. Fox GJ, Nguyen VN, Dinh NS, et al. Post-treatment Mortality Among Patients With
  223. Tuberculosis: A Prospective Cohort Study of 10 964 Patients in Vietnam. Clin Infect
  224. Dis. 2019;68(8):1359-1366.
  225. doi: 10.1093/cid/ciy665
  226. Kumar AKH, Kadam A, Karunaianantham R, et al. Effect of Metformin on Plasma Ex-
  227. posure of Rifampicin, Isoniazid, and Pyrazinamide in Patients on Treatment for Pul-
  228. monary Tuberculosis. Ther Drug Monit. 2024;46(3):370-375.
  229. doi: 10.1097/FTD.0000000000001149
  230. Swaminathan S, Menon PA, Gopalan N, et al. Efficacy of a six-month versus a 36-
  231. month regimen for prevention of tuberculosis in HIV-infected persons in India: a
  232. randomized clinical trial. PLoS One. 2012;7(12):e47400.
  233. doi: 10.1371/journal.pone.0047400
  234. Moonan PK, Nair SA, Agarwal R, et al. Tuberculosis preventive treatment: the next
  235. chapter of tuberculosis elimination in India. BMJ Glob Health. 2018;3:e001135.
  236. doi:10.1136/ bmjgh-2018-001135
  237. Anurag Bhargava. The 3 HP regimen for tuberculosis preventive treatment: safety,
  238. dosage and related concerns during its large-scale implementation in countries like
  239. India. The Lancet Regional Health – Southeast Asia. Published 2024 May 12.
  240. doi: 10.1016/j.lansea.2024.100422
  241. Selvaraju S, Velayutham B, Rao R, et al. Prevalence and factors associated with tuberculosis infection in India. J Infect Public Health. 2023;16(12):2058-2065.
  242. doi: 10.1016/j.jiph.2023.10.009
  243. Prasad R, Singh A, Gupta N. Adverse drug reactions in tuberculosis and management. Indian J Tuberc. 2019;66(4):520-532.
  244. doi: 10.1016/j.ijtb.2019.11.005
  245. Mukherjee A, Gowtham L, Kabra SK, et al. Pharmacokinetic-Pharmacodynamic (PK-
  246. PD) Analysis of Second-Line Anti-Tubercular Drugs in Indian Children with Multi-
  247. Drug Resistance. Indian J Pediatr. Published online May 28, 2024.
  248. doi: 10.1007/s12098-024-05135-9
  249. Jeyakumar SM, Bhui NK, Singla N, et al. Long-Term Intake of Linezolid Elevates
  250. Drug Exposure and Reduces Drug Clearance and Elimination in Adults With Drug-
  251. Resistant Pulmonary Tuberculosis. Ther Drug Monit. 2023;45(6):754-759.
  252. doi: 10.1097/FTD.0000000000001111
  253. Hemanth Kumar AK, Narendran G, Kumar RS, et al. RMP exposure is lower in HIV-
  254. infected TB patients receiving intermittent than daily anti-tuberculosis treatment.
  255. Int J Tuberc Lung Dis. 2015;19(7):805-807.
  256. doi: 10.5588/ijtld.14.0702
  257. Moore DA. Future prospects for the MODS assay in multidrug-resistant tuberculo-
  258. sis diagnosis. Future Microbiol. 2007;2(2):97-101.
  259. doi: 10.2217/17460913.2.2.97
  260. Bwanga F, Hoffner S, Haile M, Joloba ML. Direct susceptibility testing for multi drug
  261. resistant tuberculosis: a meta-analysis. BMC Infect Dis. 2009;9:67. Published 2009
  262. May 20.
  263. doi: 10.1186/1471-2334-9-67
  264. Vukugah TA, Ntoh VN, Akoku DA, et al. Research Questions and Priorities for Pedi-
  265. atric Tuberculosis: A Survey of Published Systematic Reviews and Meta-Analyses.
  266. Tuberc Res Treat. 2022;2022:1686047. Published 2022 Feb 7.
  267. doi: 10.1155/2022/1686047
  268. McKenna L, Sari AH, Mane S, et al. Pediatric Tuberculosis Research and Develop-
  269. ment: Progress, Priorities and Funding Opportunities. Pathogens. 2022;11(2):128.
  270. Published 2022 Jan 21.
  271. doi: 10.3390/pathogens11020128
  272. Krishnan R, Thiruvengadam K, Jayabal L, et al. An influence of dew point tempera-
  273. ture on the occurrence of Mycobacterium tuberculosis disease in Chennai, India.
  274. Sci Rep. 2022 Apr 12;12(1):6147.
  275. doi: 10.1038/s41598-022-10111-4.
  276. Shewade HD, Frederick A, Kiruthika G, et al. The First Differentiated TB Care Model
  277. From India: Delays and Predictors of Losses in the Care Cascade. Glob Health Sci
  278. Pract. 2023;11(2):e2200505. Published 2023 Apr 28.
  279. doi: 10.9745/GHSP-D-22-00505Apr 28;11(2):e2200505.

补充文件

附件文件
动作
1. JATS XML