Classical scattering matrix for hard and soft excitations in a plasma with non-abelian interaction
- Authors: Markov Y.A.1, Markova M.A.1, Markov N.Y.1
-
Affiliations:
- Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of Russian Academy of Sciences
- Issue: Vol 240 (2025)
- Pages: 29-38
- Section: Articles
- URL: https://ogarev-online.ru/2782-4438/article/view/312554
- DOI: https://doi.org/10.36535/2782-4438-2025-240-29-38
- ID: 312554
Cite item
Full Text
Abstract
Within the framework of the Zakharov–Shulman approach, we determine the classical scattering matrix for the simplest process of interaction between hard and soft excitations in a quark-gluon plasma. Calculations are performed in close analogy with the methods of quantum field theory, with the replacement of the quantum commutator of quantum field operators by the so-called Lie–Poisson bracket of classical variables. The classical $\mathcal{S}$-matrix is determined in the form of the most general integro-power series in asymptotic values of the normal bosonic variables $c^{a}_{\boldsymbol{k}}(t)$ and $c^{\ast a}_{\boldsymbol{k}}(t)$ describing the soft gluon excitations of the system and the color charge $\mathcal{Q}^{a}(t)$ of the hard particle at $t\rightarrow\infty$. The first nontrivial contribution to the given $\mathcal{S}$-matrix is obtained.
About the authors
Yuri Adolfovich Markov
Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of Russian Academy of Sciences
Email: markov@icc.ru
Doctor of physico-mathematical sciences, Senior Researcher
Margarita Anatol'evna Markova
Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of Russian Academy of Sciences
Email: markov@icc.ru
Nikita Yurievich Markov
Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of Russian Academy of Sciences
Author for correspondence.
Email: markov@icc.ru
References
- Боголюбов Н. Н., Логунов А. А., Тодоров И. Т., Основы аксиоматического подхода в квантовой теории поля, Наука, М., 1969
- Боголюбов Н. Н., Логунов А. А., Оксак А. И., Тодоров И. Т., Общие принципы квантовой теории поля, Наука, М., 1987
- Владимиров В. С., Уравнения математической физики, Наука, М., 1981
- Захаров В. Е., “Гамильтонов формализм для гидродинамических моделей плазмы”, ЖЭТФ., 60 (1971), 1714–1726
- Захаров В. Е., “Гамильтонов формализм для волн в нелинейных средах с дисперсией”, Изв. вузов. Радиофизика., 17 (1974), 431–453
- Захаров В. Е., Кузнецов Е. А., “Гамильтонов формализм для нелинейных волн”, Усп. физ. наук., 167 (1997), 1137–1167
- Захаров В. Е., Шульман Е. И., “О матрице рассеяния и интегрируемости волновых систем, обладающих дополнительным интегралом движения”, Докл. АН СССР., 283:6 (1985), 1325–1328
- Красицкий В. П., “О каноническом преобразовании в теории слабонелинейных волн с нераспадным законом дисперсии”, ЖЭТФ., 98 (1990), 1644–341
- Марков Ю. А., Маркова М. А., Марков Н. Ю., Гитман Д. М., “Гамильтонов формализм для бозе-возбуждений в плазме с неабелевым типом взаимодействия”, ЖЭТФ., 157 (2020), 327–341
- Медведев Б. В., Начала теоретической физики, Наука, М., 1977
- Швебер С., Введение в релятивистскую квантовую теорию поля, ИЛ, М., 1963
- Markov Yu. A., Markova M. A., Markov N. Yu., “Hamiltonian formalism for Bose excitations in a plasma with a non-Abelian interaction, I: Plasmon – hard particle scattering”, Nucl. Phys. A., 1048 (2024), 122903
- Markov Yu. A., Markova M. A., Markov N. Yu., “Hamiltonian formalism for Fermi excitations in a plasma with a non-Abelian interaction”, Int. J. Mod. Phys. A., 38 (2023), 2350015
- Lehmann H., Symanzik K., Zimmermann W., “On the formulation of quantized field theories, II”, Nuovo Cim., 6 (1957), 319–333
- Sudarshan E. C. G., Mukunda N., Classical Dynamics: A Modern Perspective, Wiley, New York, 1974
- Zakharov V. E., “Integrable systems in multidimensional spaces”, Lect. Notes Phys., 153 (1983), 190–216
- Zakharov V. E., Schulman E. I., “On additional motion invariants of classical Hamiltonian wave systems”, Phys. D., 29 (1988), 283–320
- Zakharov V. E., L'vov V. S., Falkovich G., Kolmogorov Spectra of Turbulence, I. Wave Turbulence, Springer–Verlag, 1992
Supplementary files
