Investigation of the weak solvability of the initial-boundary-value problem for the Navier–Stokes system based on the method of parabolic regularization
- Authors: Chirova M.V.1
-
Affiliations:
- Federal State Enterprise "Scientific and Production Center "Delta',' Voronezh branch
- Issue: Vol 242 (2025)
- Pages: 92-104
- Section: Articles
- URL: https://ogarev-online.ru/2782-4438/article/view/312575
- DOI: https://doi.org/10.36535/2782-4438-2025-242-92-104
- ID: 312575
Cite item
Full Text
Abstract
A proof of the existence of weak solutions for a system of equations describing the motion of a viscous fluid is given. A number of a priori estimates for the family of solutions are derived. Based on the topological theory of the degree of completely continuous vector fields, the existence of weak solutions of the approximation problem is established. The convergence of solutions of approximation problems to the solution of the original boundary-value problem is proved.
Keywords
About the authors
Margarita Vitalievna Chirova
Federal State Enterprise "Scientific and Production Center "Delta',' Voronezh branch
References
- Звягин В. Г., “Аппроксимационно-топологический подход к исследованию математических задач гидродинамики”, Совр. мат. Фундам. напр., 46 (2012), 92–119
- Звягин В. Г., “On some method of investigation of weak solutions for equations of viscous-elastic fluids”, Тез. докл. Междунар. конф., посв. 75-летию чл.-корр. РАН проф. Л. Д. Кудрявцева «Функциональные пространства. Дифференциальные операторы. Проблемы математического образования» (Москва, 1–5 марта 1998 г.), Москва, 1998, 197
- Звягин В. Г., Звягин А. В., Турбин М. В., “Об одном варианте аппроксимационно-топологического метода исследования слабой разрешимости системы Навье"– Стокса”, Вестн. ВГУ. Сер. Физ. Мат., 3 (2017), 104–124
- Звягин В. Г., Звягин А. В., Турбин М. В., “Вариант аппроксимационно-топологического метода исследования слабой разрешимости системы Навье"– Стокса на основе параболической регуляризации”, Вестн. ВГУ. Сер. Физ. Мат., 3 (2017), 125–142
- Simon J., “Compact sets in the space ”, Ann. Mat. Pura Appl., 146 (1987), 65–96
- Zvyagin V. G., “Topological approximation approach to study of mathematical problems of hydrodynamics”, J. Math. Sci., 201:6 (2014), 830–858
- Zvyagin V., Vorotnikov D., Topological Approximation Methods for Evolutionary Problems of Nonlinear Hydrodynamics, de Gruyter, Berlin–New York, 2008
Supplementary files
