On the limits of Kahler-Ricci flow on Fano group compactifications

Cover Page

Cite item

Full Text

Abstract

Let G be a connected, complex reductive group. In this paper, we review the results on semistable limit of Q-Fano compactifications and the characterization of minimizers of Futaki invariants. Using the algebraic uniqueness, we construct the limiting space of the Kahler-Ricci flow on Fano group compactifications of rank 2.

About the authors

Yan Li

School of Mathematics and Statistics, Beijing Institute of Technology

Author for correspondence.
Email: liyan.kitai@yandex.ru
China, Beijing

Zhen Ye Li

College of Mathematics and Physics, Beijing University of Chemical Technology

Email: lizhenye@pku.edu.cn
Russian Federation, Beijing

References

  1. Окуньков А. Ю. Замечание о полиноме Гильберта сферического многообразия// Функц. анал. при- лож. — 1997. — 31, № 2. — С. 82-85.
  2. Попов В. Л. Стягивание действий редуктивных алгебраических групп// Мат. сб. — 1986. — 130 (172), № 3 (7). — С. 310-334.
  3. Тимашев Д. А. Эквивариантные компактификации редуктивных групп// Мат. сб. — 2003. — 194, № 4. — С. 119-146.
  4. Alexeev V. A., Brion M. Stable reductive varieties, II: Pro jective case// Adv. Math. — 2004. — 184. — P. 382-408.
  5. Alexeev V. A., Katzarkov L. V. On K-stability of reductive varieties// Geom. Funct. Anal. — 2005. — 15. — P. 297-310.
  6. Bamler R. Convergence of Ricci flows with bounded scalar curvature// Ann. Math. — 2018. — 188. — P. 753-831.
  7. Berman R., Boucksom S., Eyssidieux P., Guedj V., and Zeriahi A. Kahler-Einstein metrics and the Kahler- Ricci flow on log Fano varieties// J. Reine Angew. Math. — 2019. — 751. — P. 27-89.
  8. Berman R., Witt-Nystrom D. Complex optimal transport and the pluripotential theory of Kahler-Ricci solitons/ arXiv: 1401.8264 [math DG].
  9. Blum H., Liu Y.-Ch., Xu Ch.-Y., Zhuang Z.-Q. The existence of the Kahler-Ricci soliton degeneration/ arXiv: 2103.15278 [math AG].
  10. Boucksom S., Hisamoto T., Jonsson M. Uniform K-stability, Duistermaat-Heckman measures and singularities of pairs// Ann. Inst. Fourier. — 2017. — 67. — P. 743-841.
  11. Cao H. Deformation of Kahler metrics to Kahler-Einstein metrics on compact Kahler manifolds// Invent. Math. — 1985. — 81. — P. 359-372.
  12. Chen X.-X., Donaldson S., Sun S. Kahler-Einstein metrics on Fano manifolds, I-III// J. Am. Math. Soc. — 2015. — 28. — P. 183-278.
  13. Chen X.-X., Wang B. Space of Ricci flows. Part B: Weak compactness of the flows// J. Differ. Geom. — 2020. — 116. — P. 1-123.
  14. Chen X.-X., Sun S’., Wang B. Kahler-Ricci flow, Kahler-Einstein metric, and K-stability// Geom. Topol. — 2018. — 22. — P. 3145-3173.
  15. Datar V., Szekelyhidi G. Kahler-Einstein metrics along the smooth continuity method// Geom. Funct. Anal. — 2016. — 26. — P. 975-1010.
  16. Delcroix T. K-Stability of Fano spherical varieties// Ann. Sci. Ec. Norm. Super. (4). — 2020. — 53. — P. 615-662.
  17. Donaldson S. Scalar curvature and stability of toric varieties// J. Differ. Geom. — 2002. — 62. — P. 289348.
  18. Han J., Li Ch. On the Yau-Tian-Donaldson conjecture for generalized Kahler-Ricci soliton equations/ arXiv: 2006.00903 [math.DG].
  19. Han J.-Y., Li Ch. Algebraic uniqueness of Kahler-Ricci flow limits and optimal degenerations of Fano varieties/// arXiv: 2009.01010 [math.DG].
  20. Li Ch. G-uniform stability and Kahler-Einstein metrics on Fano varieties// Invent. Math. — 2022. — 227. — P. 661-744.
  21. Li Ch., Wang X.-W., Xu Ch.-Y. Algebracity of metric tangent cones and equivariant K-stability// J. Am. Math. Soc. — 2021. — 34. — P. 1175-1214.
  22. Li Y., Li Zh.-Y. Equivariant R-test configurations and semistable limits of Q-Fano group compactifications/ arXiv: 2103.06439 [math.DG].
  23. Li Y., Zhou B. K-stability and polystable degenerations of polarized spherical varieties/ arXiv: 2111.04269 [math.DG].
  24. Tian G. Kahler-Einstein metrics with positive scalar curvature// Invent. Math. — 1997. — 130. — P. 1-37.
  25. Tian G. K-stability and Kahler-Einstein metrics// Commun. Pure Appl. Math. — 2015. — 68. — P. 10851156.
  26. Tian G., Zhang Sh.-J., Zhang Zh.-L., Zhu X.-H. Perelman’s entropy and Kahler-Ricci flow an a Fano Manifold// Trans. Am. Math. Soc. — 2013. — 365. — P. 6669-6695.
  27. Tian G., Zhang Zh.-L. Regularity of Kahler-Ricci flows on Fano manifolds// Acta Math. — 2016. — 216. — P. 127-176.
  28. Tian G., Zhu X.-H. Uniqueness of Kahler-Ricci solitons// Acta Math. — 2000. — 184. — P. 271-305.
  29. Tian G., Zhu X.-H. Convergence of the Kahler-Ricci flow// J. Am. Math. Sci. — 2006. — 17. — P. 675-699.
  30. Tian G., Zhu X.-H. Convergence of the Kahler-Ricci flow on Fano manifolds// J. Reine Angew Math. — 2013. — 678. — P. 223-245.
  31. Timashev D. A. Homogenous Spaces and Equivariant Embeddings. — Berlin-Heidelberg: Springer-Verlag, 2011.
  32. Wang F., Zhou B., Zhu X.-H. Modified Futaki invariant and equivariant Riemann-Roch formula// Adv. Math. — 2016. — 286. — P. 1205-1235.
  33. Yao Y. Mabuchi solitons and relative Ding stability of toric Fano varieties/ arXiv: 1701.04016 [math.DG].

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Ли Я., Ли Ч.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).