Системы с четырьмя степенями свободы с диссипацией: анализ и интегрируемость

Обложка

Цитировать

Полный текст

Аннотация

Работа является обзором по вопросам интегрируемости систем с четырьмя степенями свободы, фазовые пространства которых — касательные расслоения четырехмерных гладких многообразия. Подробно изложена порождающая задача из динамики многомерного твердого тела, помещенного в неконсервативное поле сил; затем рассмотрены общие динамические системы на касательном расслоении к четырехмернойсфере; в заключение рассмотрены касательные расслоения к достаточно обширному классу гладких многообразий. Доказаны теоремы о достаточных условиях интегрируемости рассматриваемых динамических систем в классе трансцендентных функций.

Об авторах

Максим Владимирович Шамолин

Московский государственный университет имени М. В. Ломоносова

Автор, ответственный за переписку.
Email: shamolin.maxim@yandex.ru
Россия, Москва

Список литературы

  1. Айдагулов Р. Р., Шамолин М. В. Архимедовы равномерные структуры// Совр. мат. Фундам. напр. — 2007. — 23. — С. 46-51.
  2. Айдагулов Р. Р., Шамолин М. В. Многообразия непрерывных структур// Совр. мат. Фундам. напр. — 2007. — 23. — С. 71-86.
  3. Бендиксон И. О кривых, определяемых дифференциальными уравнениями// Усп. мат. наук. — 1941. — 9. — С. 119-211.
  4. Богоявленский О. И. Динамика твердого тела с n эллипсоидальными полостями, заполненными магнитной жидкостью// Докл. АН СССР. — 1983. — 272, № 6. — С. 1364-1367.
  5. Богоявленский О. И. Некоторые интегрируемые случаи уравнений Эйлера// Докл. АН СССР. — 1986. — 287, № 5. — С. 1105-1108.
  6. Бурбаки Н. Интегрирование. — М.: Наука, 1970.
  7. Веселов А. П. Об условиях интегрируемости уравнений Эйлера на so(4)// Докл. АН СССР. — 1983. — 270, № 6. — С. 1298-1300.
  8. Георгиевский Д. В., Шамолин М. В. Кинематика и геометрия масс твердого тела с неподвижной точкой в Rn// Докл. РАН. — 2001. — 380, № 1. — С. 47-50.
  9. Георгиевский Д. В., Шамолин М. В. Обобщенные динамические уравнения Эйлера для твердого тела с неподвижной точкой в Rn// Докл. РАН. — 2002. — 383, № 5. — С. 635-637.
  10. Георгиевский Д. В., Шамолин М. В. Первые интегралы уравнений движения обобщенного гироскопа в Rn// Вестн. Моск. ун-та. Сер. 1. Мат. Мех. — 2003. — 5. — С. 37-41.
  11. Георгиевский Д. В., Шамолин М. В. Символы Леви-Чивиты, обобщенные векторные произведения и новые случаи интегрируемости в механике многомерного тела// Совр. мат. прилож. — 2012. — 76.— С. 22-39.
  12. Голубев В. В. Лекции по интегрированию уравнений движения тяжелого твердого тела около неподвижной точки. — М.-Л.: Гостехиздат, 1953.
  13. Дубровин Б. А., Новиков С. П., Фоменко А. Т. Современная геометрия. — М.: Наука, 1979.
  14. Ерошин В. А., Самсонов В. А., Шамолин М. В. Модельная задача о торможении тела в сопротивляющейся среде при струйном обтекании// Извю РАН. Мех. жидк. газа. — 1995. — № 3. — С. 23-27.
  15. Иванова Т. А. Об уравнениях Эйлера в моделях теоретической физики// Мат. заметки. — 1992. — 52, № 2. — С. 43-51.
  16. Козлов В. В. Интегрируемость и неинтегрируемость в гамильтоновой механике// Усп. мат. наук. — 1983. — 38, № 1. — С. 3-67.
  17. Козлов В. В. Рациональные интегралы квазиоднородных динамических систем// Прикл. мат. мех. — 2015. — 79, № 3. — С. 307-316.
  18. Козлов В. В. Тензорные инварианты и интегрирование дифференциальных уравнений// Усп. мат. наук. — 2019. — 74, № 1 (445). — С. 117-148.
  19. Локшин Б. Я., Самсонов В. А., Шамолин М. В. Маятниковые системы с динамической симметрией// Совр. мат. прилож. — 2016. — 100. — С. 76-133.
  20. Манаков С. В. Замечание об интегрировании уравнений Эйлера динамики n-мерного твердого тела// Функц. анал. прилож. — 1976. — 10, № 4. — С. 93-94.
  21. Походня Н. В., Шамолин М. В. Новый случай интегрируемости в динамике многомерного тела// Вестн. СамГУ. Естественнонауч. сер. — 2012. — 9, № 100. — С. 136-150.
  22. Походня Н. В., Шамолин М. В. Некоторые условия интегрируемости динамических систем в трансцендентных функциях// Вестн. СамГУ. Естественнонауч. сер. — 2013. — 9/1, № 110. — С. 35-41.
  23. Походня Н. В., Шамолин М. В. Интегрируемые системы на касательном расслоении к многомерной сфере// Вестн. СамГУ. Естественнонауч. сер. — 2014. — 7, № 118. — С. 60-69.
  24. Самсонов В. А., Шамолин М. В. К задаче о движении тела в сопротивляющейся среде// Вестн. Моск. ун-та. Сер. 1. Мат. мех. — 1989. — № 3. — С. 51-54.
  25. Тихонов А. А. Метод управления для угловой стабилизации электродинамической тросовой системы// Автомат. телемех. — 2020. — № 2. — С. 91-114.
  26. Трофимов В. В. Уравнения Эйлера на конечномерных разрешимых группах Ли// Изв. АН СССР. Сер. мат. — 1980. — 44, № 5. — С. 1191-1199.
  27. Трофимов В. В., Фоменко А. Т. Методика построения гамильтоновых потоков на симметрических пространствах и интегрируемость некоторых гидродинамических систем// Докл. АН СССР. — 1980. — 254, № 6. — С. 1349-1353.
  28. Трофимов В. В., Шамолин М. В. Геометрические и динамические инварианты интегрируемых гамильтоновых и диссипативных систем// Фундам. прикл. мат. — 2010. — 16, № 4. — С. 3-229.
  29. Чаплыгин С. А. О движении тяжелых тел в несжимаемой жидкости// в кн.: Полн. собр. соч.. — Л.: Изд-во АН СССР, 1933. — С. 133-135.
  30. Шабат Б. В. Введение в комплексный анализ. — М.: Наука, 1987.
  31. Шамолин М. В. К задаче о движении тела в среде с сопротивлением// Вестн. Моск. ун-та. Сер. 1. Мат. Мех. — 1992. — 1. — С. 52-58.
  32. Шамолин М. В. Классификация фазовых портретов в задаче о движении тела в сопротивляющейся среде при наличии линейного демпфирующего момента// Прикл. мат. мех. — 1993. — 57,№4.— С. 40-49.
  33. Шамолин М. В. Введение в задачу о торможении тела в сопротивляющейся среде и новое двухпараметрическое семейство фазовых портретов// Вестн. Моск. ун-та. Сер. 1. Мат. Мех. — 1996. — 4.— С. 57-69.
  34. Шамолин М. В. Об интегрируемости в трансцендентных функциях// Усп. мат. наук. — 1998. — 53, № 3. — С. 209-210.
  35. Шамолин М. В. Новые интегрируемые по Якоби случаи в динамике твердого тела, взаимодействующего со средой// Докл. РАН. — 1999. — 364, № 5. — С. 627-629.
  36. Шамолин М. В. Интегрируемость по Якоби в задаче о движении четырехмерного твердого тела в сопротивляющейся среде// Докл. РАН. — 2000. — 375, № 3. — С. 343-346.
  37. Шамолин М. В. Об интегрировании некоторых классов неконсервативных систем// Усп. мат. наук. — 2002. — 57, № 1. — С. 169-170.
  38. Шамолин М. В. Об одном интегрируемом случае уравнений динамики на so(4) х R4// Усп. мат. наук. — 2005. — 60, № 6. — С. 233-234.
  39. Шамолин М. В. Сопоставление интегрируемых по Якоби случаев плоского и пространственного движения тела в среде при струйном обтекании// Прикл. мат. мех. — 2005. — 69, № 6. — С. 1003-1010.
  40. Шамолин М. В. Случай полной интегрируемости в динамике на касательном расслоении двумерной сферы// Усп. мат. наук. — 2007. — 62, № 5. — С. 169-170.
  41. Шамолин М. В. Динамические системы с переменной диссипацией: подходы, методы, приложения// Фундам. прикл. мат. — 2008. — 14, № 3. — С. 3-237.
  42. Шамолин М. В. Новые случаи полной интегрируемости в динамике динамически симметричного четырехмерного твердого тела в неконсервативном поле// Докл. РАН. — 2009. — 425, № 3. — С. 338-342.
  43. Шамолин М. В. Случай полной интегрируемости в динамике четырехмерного твердого тела в неконсервативном поле// Усп. мат. наук. — 2010. — 65, № 1. — С. 189-190.
  44. Шамолин М. В. Новый случай интегрируемости в динамике четырехмерного твердого тела в неконсервативном поле// Докл. РАН. — 2011. — 437, № 2. — С. 190-193.
  45. Шамолин М. В. Полный список первых интегралов в задаче о движении четырехмерного твердого тела в неконсервативном поле при наличии линейного демпфирования// Докл. РАН. — 2011. — 440, № 2. — С. 187-190.
  46. Шамолин М. В. Новый случай интегрируемости в динамике четырехмерного твердого тела в неконсервативном поле при наличии линейного демпфирования// Докл. РАН. — 2012. — 444, № 5. — С. 506-509.
  47. Шамолин М. В. Новый случай интегрируемости в динамике многомерного твердого тела в неконсервативном поле// Докл. РАН. — 2013. — 453, № 1. — С. 46-49.
  48. Шамолин М. В. Новый случай интегрируемости уравнений динамики на касательном расслоении к трехмерной сфере// Усп. мат. наук. — 2013. — 68, № 5 (413). — С. 185-186.
  49. Шамолин М. В. Полный список первых интегралов динамических уравнений движения четырехмерного твердого тела в неконсервативном поле при наличии линейного демпфирования// Докл. РАН. — 2013. — 449, № 4. — С. 416-419.
  50. Шамолин М. В. Новый случай интегрируемости в динамике многомерного твердого тела в неконсервативном поле при учете линейного демпфирования// Докл. РАН. — 2014. — 457, № 5. — С. 542-545.
  51. Шамолин М. В. Интегрируемые системы с переменной диссипацией на касательном расслоении к многомерной сфере и приложения// Фундам. прикл. мат. — 2015. — 20, № 4. — С. 3-231.
  52. Шамолин М. В. Полный список первых интегралов динамических уравнений движения многомерного твердого тела в неконсервативном поле// Докл. РАН. — 2015. — 461, № 5. — С. 533-536.
  53. Шамолин М. В. Полный список первых интегралов уравнений движения многомерного твердого тела в неконсервативном поле при наличии линейного демпфирования// Докл. РАН. — 2015. — 464, № 6. — С. 688-692.
  54. Шамолин М. В. Интегрируемые неконсервативные динамические системы на касательном расслоении к многомерной сфере// Диффер. уравн. — 2016. — 52, № 6. — С. 743-759.
  55. Шамолин М. В. Новые случаи интегрируемых систем с диссипацией на касательном расслоении двумерного многообразия// Докл. РАН. — 2017. — 475, № 5. — С. 519-523.
  56. Шамолин М. В. Новые случаи интегрируемых систем с диссипацией на касательном расслоении к многомерной сфере// Докл. РАН. — 2017. — 474, № 2. — С. 177-181.
  57. Шамолин М. В. Новые случаи интегрируемых систем с диссипацией на касательном расслоении трехмерного многообразия// Докл. РАН. — 2017. — 477, № 2. — С. 168-172.
  58. Шамолин М. В. Интегрируемые динамические системы с конечным числом степеней свободы с диссипацией// Пробл. мат. анал. — 2018. — № 95. — С. 79-101.
  59. Шамолин М. В. Новые случаи интегрируемых систем с диссипацией на касательном расслоении многомерного многообразия// Докл. РАН. — 2018. — 482, № 5. — С. 527-533.
  60. Шамолин М. В. Новые случаи интегрируемых систем с диссипацией на касательном расслоении четырехмерного многообразия// Докл. РАН. — 2018. — 479, № 3. — С. 270-276.
  61. Шамолин М. В. Новые случаи интегрируемых систем девятого порядка с диссипацией// Докл. РАН. — 2019. — 489, № 6. — С. 592-598.
  62. Шамолин М. В. Новые случаи интегрируемых систем пятого порядка с диссипацией// Докл. РАН. — 2019. — 485, № 5. — С. 583-587.
  63. Шамолин М. В. Новые случаи интегрируемых систем седьмого порядка с диссипацией// Докл. РАН. — 2019. — 487, № 4. — С. 381-386.
  64. Шамолин М. В. Новые случаи интегрируемых систем нечетного порядка с диссипацией// Докл. РАН. Мат. информ. процессы управл. — 2020. — 491, № 1. — С. 95-101.
  65. Шамолин М. В. Новые случаи однородных интегрируемых систем с диссипацией на касательном расслоении двумерного многообразия// Докл. РАН. Мат. информ. процессы управл. — 2020. — 494, № 1. — С. 105-111.
  66. Шамолин М. В. Новые случаи однородных интегрируемых систем с диссипацией на касательном расслоении трехмерного многообразия// Докл. РАН. Мат. информ. процессы управл. — 2020. — 495, № 1. — С. 84-90.
  67. Шамолин М. В. Интегрируемые динамические системы с диссипацией. Кн. 1. Твердое тело в неконсервативном поле. — М.: ЛЕНАНД, 2019.
  68. Шамолин М. В. Интегрируемые динамические системы с диссипацией. Кн. 2: Закрепленные маятники разной размерности. — М.: ЛЕНАНД, 2021.
  69. Aleksandrov A. Y., Aleksandrova E. B., Tikhonov A. A. On the monoaxial stabilization of a rigid body under vanishing restoring torque// AIP Conf. Proc. — 2018. — 1959. — 080001.
  70. Tikhonov A. A., Yakovlev A. B. On dependence of equilibrium characteristics of the space tethered system on environmental parameters// Int. J. Plasma Env. Sci. Techn.. — 13, № 1. — С. 49-52.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Шамолин М.В., 2022

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).