l - Problem of moments in problems of optimal control and state estimation for multidimensional fractional linear systems

Cover Page

Cite item

Full Text

Abstract

In this paper, we consider multidimensional dynamical systems whose states are described by systems of linear fractional differential equations of different order. We examine problems of optimal control and optimal state estimation for systems with the Caputo and Riemann–Liouville fractional differentiation operators. We prove that under certain conditions both problems can be reduced to the l -problem of moments. For the resulting problem, the solvability conditions are verified and, in a number of cases, exact solutions are constructed.

Full Text

1. Введение.

Как известно, метод моментов широко применяется для поиска управления, оптимального в смысле минимальности нормы управления или времени перехода в заданное состояние при явном ограничении на норму управления (см. [2, ч. 2]). С помощью этого метода возможно построить точное решение задач оптимального управления для линейных (по управлению) систем с сосредоточенными параметрами, а также приближённые решения для линейных (по управлению) систем с распределёнными параметрами (см. [1, гл. 3]). Данный метод применим и к исследованию задач оптимального управления системами, которые описываются дифференциальными уравнениями дробного порядка (см. [3]).

Н. Н. Красовским было рассмотрено иное применение метода моментов: задача «наблюдения в случайных обcтоятельствах» или оценивания состояния некоторой системы по результатам наблюдений в условиях действия внешних возмущений (см. [2, § 46]). Аналогичная задача была исследована и для одно- и двумерных линейных систем дробного порядка (см. [4]).

Ранее задачи оптимального управления и оценивания состояния системы были рассмотрены для линейных одномерных систем дробного порядка и для некоторых двумерных и многомерных систем частного вида (см. [3, 4] и ссылки в этих работах). В настоящей работе аналогичное исследование проводится для более общего случая линейных многомерных систем произвольной конечной размерности с коэффициентами, зависящими от времени, и различным порядком операторов дробного дифференцирования в каждом из уравнений, описывающих поведение системы.

2. Предварительные сведения.

Рассматриваются многомерные линейные динамические системы дробного порядка, поведение которых описывается уравнением следующего вида:

t 0 D t α i q i (t)= j=1 N a ij (t) q j (t)+ u i (t)+ f i (t),t( t 0 ,T],i=1,,N, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWgaaWcbaGaamiDamaaBaaabaGaaG imaaqabaaabeaakiaadseadaqhaaWcbaGaamiDaaqaaiabeg7aHnaa BaaabaGaamyAaaqabaaaaOGaamyCamaaBaaaleaacaWGPbaabeaaki aaiIcacaWG0bGaaGykaiaai2dadaaeWbqabSqaaiaadQgacaaI9aGa aGymaaqaaiaad6eaa0GaeyyeIuoakiaadggadaWgaaWcbaGaamyAai aadQgaaeqaaOGaaGikaiaadshacaaIPaGaamyCamaaBaaaleaacaWG QbaabeaakiaaiIcacaWG0bGaaGykaiabgUcaRiaadwhadaWgaaWcba GaamyAaaqabaGccaaIOaGaamiDaiaaiMcacqGHRaWkcaWGMbWaaSba aSqaaiaadMgaaeqaaOGaaGikaiaadshacaaIPaGaaGilaiaaywW7ca WG0bGaeyicI4SaaGikaiaadshadaWgaaWcbaGaaGimaaqabaGccaaI SaGaamivaiaai2facaaISaGaaGzbVlaadMgacaaI9aGaaGymaiaaiY cacqWIMaYscaaISaGaamOtaiaaiYcaaaa@6A5C@                                                     (1)

где t 0 D t α i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWgaaWcbaGaamiDamaaBaaabaGaaG imaaqabaaabeaakiaadseadaqhaaWcbaGaamiDaaqaaiabeg7aHnaa BaaabaGaamyAaaqabaaaaaaa@3868@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  оператор дробного дифференцирования порядка α i (0,1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHXoqydaWgaaWcbaGaamyAaaqaba GccqGHiiIZcaaIOaGaaGimaiaaiYcacaaIXaGaaGykaaaa@3998@ , q i (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbWaaSbaaSqaaiaadMgaaeqaaO GaaGikaiaadshacaaIPaaaaa@3639@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  компоненты вектора состояния системы, u i (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaadMgaaeqaaO GaaGikaiaadshacaaIPaaaaa@363D@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  компоненты вектора управления, f i (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbWaaSbaaSqaaiaadMgaaeqaaO GaaGikaiaadshacaaIPaaaaa@362E@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  компоненты вектора возмущения, a ij (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbWaaSbaaSqaaiaadMgacaWGQb aabeaakiaaiIcacaWG0bGaaGykaaaa@3718@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  коэффициенты, в общем случае зависящие от времени. Оператор дробного дифференцирования в формуле (1) понимается либо в смысле Римана MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ Лиувилля, либо в смысле Капуто (см. [6, Ch. 2]). Соответственно, начальные условия для системы (1) ставятся либо в нелокальном, либо в локальном виде:

2 lim t t 0 + t 0 I t 1 α i q i (t) = q i 0 ,i=1,,N, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIYaWaaybuaeqaleaacaWG0bGaey OKH4QaamiDamaaBaaabaGaaGimaaqabaGaey4kaScabeGcbaGaciiB aiaacMgacaGGTbaaamaadmaabaWaaSbaaSqaaiaadshadaWgaaqaai aaicdaaeqaaaqabaGccaWGjbWaa0baaSqaaiaadshaaeaacaaIXaGa eyOeI0IaeqySde2aaSbaaeaacaWGPbaabeaaaaGccaWGXbWaaSbaaS qaaiaadMgaaeqaaOGaaGikaiaadshacaaIPaaacaGLBbGaayzxaaGa aGypaiaadghadaqhaaWcbaGaamyAaaqaaiaaicdaaaGccaaISaGaaG zbVlaadMgacaaI9aGaaGymaiaaiYcacqWIMaYscaaISaGaamOtaiaa iYcaaaa@569C@                                                                                (2)

q i ( t 0 )= q i 0 ,i=1,,N, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbWaaSbaaSqaaiaadMgaaeqaaO GaaGikaiaadshadaWgaaWcbaGaaGimaaqabaGccaaIPaGaaGypaiaa dghadaqhaaWcbaGaamyAaaqaaiaaicdaaaGccaaISaGaaGzbVlaadM gacaaI9aGaaGymaiaaiYcacqWIMaYscaaISaGaamOtaiaaiYcaaaa@4390@                                                                                                        (3)

где t 0 I t 1 α i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWgaaWcbaGaamiDamaaBaaabaGaaG imaaqabaaabeaakiaadMeadaqhaaWcbaGaamiDaaqaaiaaigdacqGH sislcqaHXoqydaWgaaqaaiaadMgaaeqaaaaaaaa@3A15@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  оператор дробного интегрирования Римана MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ Лиувилля (см. [6, Ch. 2]).

В [5, Theorems 5, 6] получены аналитические решения уравнения (1) с начальными условиями (2) или (3), которые могут быть записаны в виде

q i (t)= j=1 N Z ˜ ij (t, t 0 ) q j 0 + t 0 t Z ij (t,τ) u j (τ)+ f j (τ) dτ ,i=1,,N, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbWaaSbaaSqaaiaadMgaaeqaaO GaaGikaiaadshacaaIPaGaaGypamaaqahabeWcbaGaamOAaiaai2da caaIXaaabaGaamOtaaqdcqGHris5aOWaaeWaaeaaceWGAbGbaGaada WgaaWcbaGaamyAaiaadQgaaeqaaOGaaGikaiaadshacaaISaGaamiD amaaBaaaleaacaaIWaaabeaakiaaiMcacaWGXbWaa0baaSqaaiaadQ gaaeaacaaIWaaaaOGaey4kaSYaa8qCaeqaleaacaWG0bWaaSbaaeaa caaIWaaabeaaaeaacaWG0baaniabgUIiYdGccaWGAbWaaSbaaSqaai aadMgacaWGQbaabeaakiaaiIcacaWG0bGaaGilaiabes8a0jaaiMca daWadaqaaiaadwhadaWgaaWcbaGaamOAaaqabaGccaaIOaGaeqiXdq NaaGykaiabgUcaRiaadAgadaWgaaWcbaGaamOAaaqabaGccaaIOaGa eqiXdqNaaGykaaGaay5waiaaw2faaiaadsgacqaHepaDaiaawIcaca GLPaaacaaISaGaaGzbVlaadMgacaaI9aGaaGymaiaaiYcacqWIMaYs caaISaGaamOtaiaaiYcaaaa@6FAC@                                                 (4)

где Z ˜ ij (t, t 0 )= Z ij (t, t 0 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGAbGbaGaadaWgaaWcbaGaamyAai aadQgaaeqaaOGaaGikaiaadshacaaISaGaamiDamaaBaaaleaacaaI WaaabeaakiaaiMcacaaI9aGaamOwamaaBaaaleaacaWGPbGaamOAaa qabaGccaaIOaGaamiDaiaaiYcacaWG0bWaaSbaaSqaaiaaicdaaeqa aOGaaGykaaaa@4275@  в случае, когда оператор дробного дифференцирования в уравнении (1) понимается в смысле Римана MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ Лиувилля, и Z ˜ ij (t, t 0 )= C Z ij (t, t 0 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGAbGbaGaadaWgaaWcbaGaamyAai aadQgaaeqaaOGaaGikaiaadshacaaISaGaamiDamaaBaaaleaacaaI WaaabeaakiaaiMcacaaI9aWaaWbaaSqabeaacaWGdbaaaOGaamOwam aaBaaaleaacaWGPbGaamOAaaqabaGccaaIOaGaamiDaiaaiYcacaWG 0bWaaSbaaSqaaiaaicdaaeqaaOGaaGykaaaa@4374@  в случае, когда оператор дробного дифференцирования в уравнении (1) понимается в смысле Капуто. Функции Z ij (t, t 0 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGAbWaaSbaaSqaaiaadMgacaWGQb aabeaakiaaiIcacaWG0bGaaGilaiaadshadaWgaaWcbaGaaGimaaqa baGccaaIPaaaaa@39B0@  и C Z ij (t, t 0 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaadoeaaaGccaWGAb WaaSbaaSqaaiaadMgacaWGQbaabeaakiaaiIcacaWG0bGaaGilaiaa dshadaWgaaWcbaGaaGimaaqabaGccaaIPaaaaa@3AAF@  в общем случае вычисляются как решение однородного уравнения (1) с оператором дробного дифференцирования Римана MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ Лиувилля и Капуто соответственно (см. [5, Sec. 4]). Для функций Z ij (t,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGAbWaaSbaaSqaaiaadMgacaWGQb aabeaakiaaiIcacaWG0bGaaGilaiabes8a0jaaiMcaaaa@398C@  справедлива следующая оценка (см. [5, Lemma 5]):

Z ij (t,τ) const (tτ) 1 α i . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaabdaqaaiaadQfadaWgaaWcbaGaam yAaiaadQgaaeqaaOGaaGikaiaadshacaaISaGaeqiXdqNaaGykaaGa ay5bSlaawIa7aiabgsMiJoaalaaabaGaam4yaiaad+gacaWGUbGaam 4CaiaadshaaeaacaaIOaGaamiDaiabgkHiTiabes8a0jaaiMcadaah aaWcbeqaaiaaigdacqGHsislcqaHXoqydaWgaaqaaiaadMgaaeqaaa aaaaGccaaIUaaaaa@4D88@                                                                                                 (5)

Сформулируем l MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGSbaaaa@32B2@  -проблему моментов, к которой далее будут сведены задачи оптимального управления и оценивания состояния.

l MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGSbaaaa@32B2@  -Проблема моментов.

Пусть дана система функций g n (t) L p ( t 0 ,T] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiaadshacaaIPaGaeyicI4SaamitamaaBaaaleaaceWGWbGb auaaaeqaaOGaaGikaiaadshadaWgaaWcbaGaaGimaaqabaGccaaISa Gaamivaiaai2faaaa@3ED1@ , p 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGWbGbauaacqGHLjYScaaIXaaaaa@3543@ , и набор чисел c n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGJbWaaSbaaSqaaiaad6gaaeqaaa aa@33C8@ , n=1,,N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaaGypaiaaigdacaaISaGaeS OjGSKaaGilaiaad6eaaaa@3797@  (называемых моментами), хотя бы одно из которых отлично от нуля. Необходимо построить такую функцию u(t) L p ( t 0 ,T] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadshacaaIPaGaey icI4SaamitamaaBaaaleaacaWGWbaabeaakiaaiIcacaWG0bWaaSba aSqaaiaaicdaaeqaaOGaaGilaiaadsfacaaIDbaaaa@3DAA@ , p>1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbGaaGOpaiaaigdaaaa@3439@ , 1/p+1/ p =1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIXaGaaG4laiaadchacqGHRaWkca aIXaGaaG4laiqadchagaqbaiaai2dacaaIXaaaaa@3903@ , что выполняются соотношения:

t 0 T g n (T,τ)u(τ)dτ= c n (T), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiaadshadaWgaaqaai aaicdaaeqaaaqaaiaadsfaa0Gaey4kIipakiaadEgadaWgaaWcbaGa amOBaaqabaGccaaIOaGaamivaiaaiYcacqaHepaDcaaIPaGaamyDai aaiIcacqaHepaDcaaIPaGaamizaiabes8a0jaai2dacaWGJbWaaSba aSqaaiaad6gaaeqaaOGaaGikaiaadsfacaaIPaGaaGilaaaa@4A4E@                                                                                                 (6)

u L p ( t 0 ,T] l. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWG1bGae8xjIa1aaSbaaSqaaiaadYeadaWgaaqaaiaadchaaeqa aiaaiIcacaWG0bWaaSbaaeaacaaIWaaabeaacaaISaGaamivaiaai2 faaeqaaOGaeyizImQaamiBaiaai6caaaa@4405@                                                                                                     (7)

Следует отметить, что функции g n (T,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiaadsfacaaISaGaamiDaiaaiMcaaaa@37C3@  и u(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadshacaaIPaaaaa@3519@  могут быть и вектор-функциями: g n (T,t)= g n 1 (T,t),, g n N (T,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiaadsfacaaISaGaamiDaiaaiMcacaaI9aWaaeWaaeaacaWG NbWaa0baaSqaaiaad6gaaeaacaaIXaaaaOGaaGikaiaadsfacaaISa GaamiDaiaaiMcacaaISaGaeSOjGSKaaGilaiaadEgadaqhaaWcbaGa amOBaaqaaiaad6eaaaGccaaIOaGaamivaiaaiYcacaWG0bGaaGykaa GaayjkaiaawMcaaaaa@4A35@ , u(t)= u 1 (t),, u N (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadshacaaIPaGaaG ypamaabmaabaGaamyDamaaCaaaleqabaGaaGymaaaakiaaiIcacaWG 0bGaaGykaiaaiYcacqWIMaYscaaISaGaamyDamaaCaaaleqabaGaam OtaaaakiaaiIcacaWG0bGaaGykaaGaayjkaiaawMcaaaaa@42A3@ .

Проблема моментов вида (6) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (7) разрешима, если выполнено одно из эквивалентных условий (см. [1, 2]):

(i)  функции g n (τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiabes8a0jaaiMcaaaa@3700@  линейно независимы или среди них можно выделить подсистему линейно независимых функций;

(ii)  выполняется неравенство Λ N >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHBoatdaWgaaWcbaGaamOtaaqaba GccaaI+aGaaGimaaaa@35C1@ , где число Λ N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHBoatdaWgaaWcbaGaamOtaaqaba aaaa@3435@  определяет минимальное значение нормы (7) и находится из условия

minξ1,,ξN0TkNiNξigiktp'dtp'1ΛN,                                                                        (8)

где ξ i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEdaWgaaWcbaGaamyAaaqaba aaaa@349E@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  такие числа, что

i=1 N ξ i c i =1. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaadMgacaaI9aGaaG ymaaqaaiaad6eaa0GaeyyeIuoakiabe67a4naaBaaaleaacaWGPbaa beaakiaadogadaWgaaWcbaGaamyAaaqabaGccaaI9aGaaGymaiaai6 caaaa@3E7E@                                                                                                                  (9)

Решением l MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGSbaaaa@32B2@  -проблемы моментов, обладающим минимальной нормой, является вектор-функция, компоненты которой имеют следующий вид:

u k (t)= Λ N p i=1 N ξ i * g i k (t) p 1 sign i=1 N ξ i * g i k (t) ,t( t 0 ,T],k=1,,N, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaWbaaSqabeaacaWGRbaaaO GaaGikaiaadshacaaIPaGaaGypaiabfU5amnaaDaaaleaacaWGobaa baGabmiCayaafaaaaOWaaqWaaeaadaaeWbqabSqaaiaadMgacaaI9a GaaGymaaqaaiaad6eaa0GaeyyeIuoakiabe67a4naaDaaaleaacaWG PbaabaGaaGOkaaaakiaadEgadaqhaaWcbaGaamyAaaqaaiaadUgaaa GccaaIOaGaamiDaiaaiMcaaiaawEa7caGLiWoadaahaaWcbeqaaiqa dchagaqbaiabgkHiTiaaigdaaaGccaWGZbGaamyAaiaadEgacaWGUb WaaeWaaeaadaaeWbqabSqaaiaadMgacaaI9aGaaGymaaqaaiaad6ea a0GaeyyeIuoakiabe67a4naaDaaaleaacaWGPbaabaGaaGOkaaaaki aadEgadaqhaaWcbaGaamyAaaqaaiaadUgaaaGccaaIOaGaamiDaiaa iMcaaiaawIcacaGLPaaacaaISaGaaGzbVlaadshacqGHiiIZcaaIOa GaamiDamaaBaaaleaacaaIWaaabeaakiaaiYcacaWGubGaaGyxaiaa iYcacaaMf8Uaam4Aaiaai2dacaaIXaGaaGilaiablAciljaaiYcaca WGobGaaGilaaaa@758C@                                          (10)

где ξ i * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEdaqhaaWcbaGaamyAaaqaai aaiQcaaaaaaa@3553@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  числа, доставляющие минимум в задаче (8)-(9).

Решением l MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGSbaaaa@32B2@  -проблемы моментов, обладающим минимальным носителем, является вектор-функция, компоненты которой имеют следующий вид:

u k (t)= l p i=1 N ξ i * g i k (t) p 1 sign i=1 N ξ i * g i k (t) ,t( t 0 , T * ],k=1,,N, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaWbaaSqabeaacaWGRbaaaO GaaGikaiaadshacaaIPaGaaGypaiaadYgadaahaaWcbeqaaiqadcha gaqbaaaakmaaemaabaWaaabCaeqaleaacaWGPbGaaGypaiaaigdaae aacaWGobaaniabggHiLdGccqaH+oaEdaqhaaWcbaGaamyAaaqaaiaa iQcaaaGccaWGNbWaa0baaSqaaiaadMgaaeaacaWGRbaaaOGaaGikai aadshacaaIPaaacaGLhWUaayjcSdWaaWbaaSqabeaaceWGWbGbauaa cqGHsislcaaIXaaaaOGaam4CaiaadMgacaWGNbGaamOBamaabmaaba WaaabCaeqaleaacaWGPbGaaGypaiaaigdaaeaacaWGobaaniabggHi LdGccqaH+oaEdaqhaaWcbaGaamyAaaqaaiaaiQcaaaGccaWGNbWaa0 baaSqaaiaadMgaaeaacaWGRbaaaOGaaGikaiaadshacaaIPaaacaGL OaGaayzkaaGaaGilaiaaywW7caWG0bGaeyicI4SaaGikaiaadshada WgaaWcbaGaaGimaaqabaGccaaISaGaamivamaaCaaaleqabaGaaGOk aaaakiaai2facaaISaGaaGzbVlaadUgacaaI9aGaaGymaiaaiYcacq WIMaYscaaISaGaamOtaiaaiYcaaaa@7520@                                          (11)

где T * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubWaaWbaaSqabeaacaaIQaaaaa aa@337B@  определяется как минимальное вещественное положительное значение T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubaaaa@329A@ , для которого выполнено неравенство Λ N l MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHBoatdaWgaaWcbaGaamOtaaqaba GccqGHKjYOcaWGSbaaaa@36E5@ .

Следует отметить, что моменты c n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGJbWaaSbaaSqaaiaad6gaaeqaaa aa@33C8@ , вообще говоря, параметрически зависят от T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubaaaa@329A@ , что определяет (в соответствии с (9)) и зависимость от данного параметра чисел ξ i * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEdaqhaaWcbaGaamyAaaqaai aaiQcaaaaaaa@3553@ .

3. Задача оптимального управления.

Будем рассматривать следующую формулировку задачи оптимального управления. Найти управление u(t) L p ( t 0 ,T] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadshacaaIPaGaey icI4SaamitamaaBaaaleaacaWGWbaabeaakiaaiIcacaWG0bWaaSba aSqaaiaaicdaaeqaaOGaaGilaiaadsfacaaIDbaaaa@3DAA@ , чтобы система (1) перешла из начального состояния, определяемого условиями (2) или (3), в конечное состояние, определяемое условием

q(T)= q T , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGikaiaadsfacaaIPaGaaG ypaiaadghadaahaaWcbeqaaiaadsfaaaGccaaISaaaaa@3878@                                                                                                                              (12)

и при этом было выполнено одно из следующих требований:

(i)   норма управления u(t) L p ( t 0 ,T] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWG1bGaaGikaiaadshacaaIPaGae8xjIa1aaSbaaSqaaiaadYea daWgaaqaaiaadchaaeqaaiaaiIcacaWG0bWaaSbaaeaacaaIWaaabe aacaaISaGaamivaiaai2faaeqaaaaa@42FB@  была минимальной (среди всех допустимых управлений) при заданном времени T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubaaaa@329A@ ;

(ii)  время T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubaaaa@329A@  было минимальным при заданном ограничении (7) на норму управления.

Теорема 1. Пусть справедливы следующие выражения:

c n (T)= q n (T) k=1 N Z ˜ nk (T, t 0 ) q k 0 t 0 T Z nk (T,τ) f k (τ)dτ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGJbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiaadsfacaaIPaGaaGypaiaadghadaWgaaWcbaGaamOBaaqa baGccaaIOaGaamivaiaaiMcacqGHsisldaaeWbqabSqaaiaadUgaca aI9aGaaGymaaqaaiaad6eaa0GaeyyeIuoakmaabmaabaGabmOwayaa iaWaaSbaaSqaaiaad6gacaWGRbaabeaakiaaiIcacaWGubGaaGilai aadshadaWgaaWcbaGaaGimaaqabaGccaaIPaGaamyCamaaDaaaleaa caWGRbaabaGaaGimaaaakiabgkHiTmaapehabeWcbaGaamiDamaaBa aabaGaaGimaaqabaaabaGaamivaaqdcqGHRiI8aOGaamOwamaaBaaa leaacaWGUbGaam4AaaqabaGccaaIOaGaamivaiaaiYcacqaHepaDca aIPaGaamOzamaaBaaaleaacaWGRbaabeaakiaaiIcacqaHepaDcaaI PaGaamizaiabes8a0bGaayjkaiaawMcaaiaaiYcaaaa@6455@                                                                   (13)

g n k (T,τ)= Z nk (T,τ),n=1,,N. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaa0baaSqaaiaad6gaaeaaca WGRbaaaOGaaGikaiaadsfacaaISaGaeqiXdqNaaGykaiaai2dacaWG AbWaaSbaaSqaaiaad6gacaWGRbaabeaakiaaiIcacaWGubGaaGilai abes8a0jaaiMcacaaISaGaaGzbVlaad6gacaaI9aGaaGymaiaaiYca cqWIMaYscaaISaGaamOtaiaai6caaaa@4ACA@                                                                                                        (14)

Поставленная выше задача оптимального управления сводится к проблеме моментов (6) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (7), где моменты c n (T) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGJbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiaadsfacaaIPaaaaa@3610@  и функции g n (T,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiaadsfacaaISaGaeqiXdqNaaGykaaaa@388F@  определяются выражениями (13) и (14) соответственно, при выполнении следующих условий:

α n > 1 p ,n=1,,N. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHXoqydaWgaaWcbaGaamOBaaqaba GccaaI+aWaaSaaaeaacaaIXaaabaGaamiCaaaacaaISaGaaGzbVlaa d6gacaaI9aGaaGymaiaaiYcacqWIMaYscaaISaGaamOtaiaai6caaa a@3FE3@                                                                                                            (15)

Доказательство. Воспользуемся формулами (4) и запишем решение системы (1) в момент времени t=T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaaGypaiaadsfaaaa@345A@ :

q n (T)= k=1 N Z ˜ nk (T, t 0 ) q k 0 + t 0 T Z nk (T,τ) u k (τ)+ f k (τ) dτ ,n=1,,N. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiaadsfacaaIPaGaaGypamaaqahabeWcbaGaam4Aaiaai2da caaIXaaabaGaamOtaaqdcqGHris5aOWaaeWaaeaaceWGAbGbaGaada WgaaWcbaGaamOBaiaadUgaaeqaaOGaaGikaiaadsfacaaISaGaamiD amaaBaaaleaacaaIWaaabeaakiaaiMcacaWGXbWaa0baaSqaaiaadU gaaeaacaaIWaaaaOGaey4kaSYaa8qCaeqaleaacaWG0bWaaSbaaeaa caaIWaaabeaaaeaacaWGubaaniabgUIiYdGccaWGAbWaaSbaaSqaai aad6gacaWGRbaabeaakiaaiIcacaWGubGaaGilaiabes8a0jaaiMca daWadaqaaiaadwhadaWgaaWcbaGaam4AaaqabaGccaaIOaGaeqiXdq NaaGykaiabgUcaRiaadAgadaWgaaWcbaGaam4AaaqabaGccaaIOaGa eqiXdqNaaGykaaGaay5waiaaw2faaiaadsgacqaHepaDaiaawIcaca GLPaaacaaISaGaaGzbVlaad6gacaaI9aGaaGymaiaaiYcacqWIMaYs caaISaGaamOtaiaai6caaaa@6F48@

Данное выражение с учётом обозначений (13) и (14) может быть переписано в виде проблемы моментов (6). Теперь необходимо убедиться, что функции, определяемые выражением (14), являются элементами пространства L p ( t 0 ,T] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaaSbaaSqaaiqadchagaqbaa qabaGccaaIOaGaamiDamaaBaaaleaacaaIWaaabeaakiaaiYcacaWG ubGaaGyxaaaa@38DA@ , p >1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGWbGbauaacaaI+aGaaGymaaaa@3445@ . Оценим норму этих функций в пространстве L p ( t 0 ,T] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaaSbaaSqaaiqadchagaqbaa qabaGccaaIOaGaamiDamaaBaaaleaacaaIWaaabeaakiaaiYcacaWG ubGaaGyxaaaa@38DA@ , воспользовавшись неравенством (5):

t 0 T k=1 N Z nk (T,τ) p dτ 1/ p N t 0 T const (Tτ) 1 α n p dτ 1/ p . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqadaqaamaapehabeWcbaGaamiDam aaBaaabaGaaGimaaqabaaabaGaamivaaqdcqGHRiI8aOWaaqWaaeaa daaeWbqabSqaaiaadUgacaaI9aGaaGymaaqaaiaad6eaa0GaeyyeIu oakiaadQfadaWgaaWcbaGaamOBaiaadUgaaeqaaOGaaGikaiaadsfa caaISaGaeqiXdqNaaGykaaGaay5bSlaawIa7amaaCaaaleqabaGabm iCayaafaaaaOGaamizaiabes8a0bGaayjkaiaawMcaamaaCaaaleqa baGaaGymaiaai+caceWGWbGbauaaaaGccqGHKjYOcaWGobWaaeWaae aadaWdXbqabSqaaiaadshadaWgaaqaaiaaicdaaeqaaaqaaiaadsfa a0Gaey4kIipakmaaemaabaWaaSaaaeaacaWGJbGaam4Baiaad6gaca WGZbGaamiDaaqaaiaaiIcacaWGubGaeyOeI0IaeqiXdqNaaGykamaa CaaaleqabaGaaGymaiabgkHiTiabeg7aHnaaBaaabaGaamOBaaqaba aaaaaaaOGaay5bSlaawIa7amaaCaaaleqabaGabmiCayaafaaaaOGa amizaiabes8a0bGaayjkaiaawMcaamaaCaaaleqabaGaaGymaiaai+ caceWGWbGbauaaaaGccaaIUaaaaa@7152@

Выражение в правой части будет ограничено при выполнении условий (15). Теорема доказана.

Замечание 1. Условия (15) обобщают условия, полученные в [3, 4] при рассмотрении частных случаев системы (1).

Следствие 1. Пусть матрица Z(T,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGAbGaaGikaiaadsfacaaISaGaeq iXdqNaaGykaaaa@3759@  имеет хотя бы один ненулевой элемент (и, следовательно, в системе функций g n (T,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiaadsfacaaISaGaeqiXdqNaaGykaaaa@388F@  можно выделить подсистему линейно независимых функций) и условия (15) выполнены. Тогда проблема моментов (6) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A96@ (7), где моменты c n (T) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGJbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiaadsfacaaIPaaaaa@3610@  и функции g n (T,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiaadsfacaaISaGaeqiXdqNaaGykaaaa@388F@  определяются выражениями (13) и (14) соответственно, является разрешимой, и её решение определяется формулами (10) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A96@ (11).

Следствие 2. Пусть матрица A= a nk 1 N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbGaaGypaebbfv3ySLgzGueE0j xyaGabaiab=vIiqjaadggadaWgaaWcbaGaamOBaiaadUgaaeqaaOGa e8xjIa1aa0baaSqaaiaaigdaaeaacaWGobaaaaaa@3EDB@  не зависит от времени. В этом случае элементы матрицы Z(T,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGAbGaaGikaiaadsfacaaISaGaeq iXdqNaaGykaaaa@3759@  выражаются формулой

Z nk (T,τ)= E α n , α n a nk (Tτ) α n (Tτ) α n . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGAbWaaSbaaSqaaiaad6gacaWGRb aabeaakiaaiIcacaWGubGaaGilaiabes8a0jaaiMcacaaI9aWaaSaa aeaacaWGfbWaaSbaaSqaaiabeg7aHnaaBaaabaGaamOBaaqabaGaaG ilaiabeg7aHnaaBaaabaGaamOBaaqabaaabeaakmaadmaabaGaamyy amaaBaaaleaacaWGUbGaam4AaaqabaGccaaIOaGaamivaiabgkHiTi abes8a0jaaiMcadaahaaWcbeqaaiabeg7aHnaaBaaabaGaamOBaaqa baaaaaGccaGLBbGaayzxaaaabaGaaGikaiaadsfacqGHsislcqaHep aDcaaIPaWaaWbaaSqabeaacqaHXoqydaWgaaqaaiaad6gaaeqaaaaa aaGccaaIUaaaaa@56C2@

(см. [5]). Если выполнены условия (15), то проблема моментов (6) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (7), где моменты c n (T) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGJbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiaadsfacaaIPaaaaa@3610@  и функции g n (T,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiaadsfacaaISaGaeqiXdqNaaGykaaaa@388F@  определяются выражениями (13) и (14) соответственно, будет разрешимой даже в случаях, когда матрица A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbaaaa@3287@  является нулевой или вырожденной.

4. Задача оценивания состояния системы.

Рассмотрим теперь ситуацию, когда динамика некоторой системы описывается системой уравнений (1) при u(t)=f(t)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadshacaaIPaGaaG ypaiaadAgacaaIOaGaamiDaiaaiMcacaaI9aGaaGimaaaa@3AAA@ , но состояние q(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGikaiaadshacaaIPaaaaa@3515@  недоступно для непосредственного измерения, а может быть восстановлено с определённой погрешностью по результатам измерения состояния z(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGikaiaadshacaaIPaaaaa@351E@  другой системы, динамика которой подчиняется одномерному уравнению:

t 0 D t β z(t)=F(t)z(t)+ n=1 N G n (t) q n (t)+Δ(t),t t 0 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWgaaWcbaGaamiDamaaBaaabaGaaG imaaqabaaabeaakiaadseadaqhaaWcbaGaamiDaaqaaiabek7aIbaa kiaadQhacaaIOaGaamiDaiaaiMcacaaI9aGaamOraiaaiIcacaWG0b GaaGykaiaadQhacaaIOaGaamiDaiaaiMcacqGHRaWkdaaeWbqabSqa aiaad6gacaaI9aGaaGymaaqaaiaad6eaa0GaeyyeIuoakiaadEeada WgaaWcbaGaamOBaaqabaGccaaIOaGaamiDaiaaiMcacaWGXbWaaSba aSqaaiaad6gaaeqaaOGaaGikaiaadshacaaIPaGaey4kaSIaeuiLdq KaaGikaiaadshacaaIPaGaaGilaiaaywW7caWG0bGaeyyzImRaamiD amaaBaaaleaacaaIWaaabeaakiaaiYcaaaa@5D9E@                                                                   (16)

где t 0 D t β MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWgaaWcbaGaamiDamaaBaaabaGaaG imaaqabaaabeaakiaadseadaqhaaWcbaGaamiDaaqaaiabek7aIbaa aaa@375B@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  оператор дробного дифференцирования порядка β(0,1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGycqGHiiIZcaaIOaGaaGimai aaiYcacaaIXaGaaGykaaaa@3876@ , понимаемый, как и выше, в смысле либо Капуто, либо Римана MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ Лиувилля; Δ(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoarcaaIOaGaamiDaiaaiMcaaa a@3585@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  внешнее возмущение; F(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbGaaGikaiaadshacaaIPaaaaa@34EA@  и G n (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiaadshacaaIPaaaaa@3614@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  зависящие от времени коэффициенты, n=1,,N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaaGypaiaaigdacaaISaGaeS OjGSKaaGilaiaad6eaaaa@3797@ . Будем далее называть функцию z(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGikaiaadshacaaIPaaaaa@351E@  наблюдением.

Примем, что возмущение Δ(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoarcaaIOaGaamiDaiaaiMcaaa a@3585@  представляет собой последовательность δ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH0oazaaa@3366@  -импульсов, моменты появления которых t i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaadMgaaeqaaa aa@33D4@  подчиняются распределению Пуассона с математическим ожиданием λ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH7oaBaaa@3375@  (как и в [2, § 46]):

Δ(t)= i=0 η i δ(t t i ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoarcaaIOaGaamiDaiaaiMcaca aI9aWaaabCaeqaleaacaWGPbGaaGypaiaaicdaaeaacqGHEisPa0Ga eyyeIuoakiabeE7aOnaaBaaaleaacaWGPbaabeaakiabes7aKjaaiI cacaWG0bGaeyOeI0IaamiDamaaBaaaleaacaWGPbaabeaakiaaiMca caaISaaaaa@470C@                                                                                                                (17)

η i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH3oaAdaWgaaWcbaGaamyAaaqaba aaaa@3487@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  случайные величины, принимающие с одинаковой вероятностью значения ±ε MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHXcqScqaH1oqzaaa@3556@ , ε>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzcaaI+aGaaGimaaaa@34EA@ .

Начальные условия для наблюдения поставим, как и выше, в локальном или нелокальном виде для случаев, когда оператор t 0 D t β MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWgaaWcbaGaamiDamaaBaaabaGaaG imaaqabaaabeaakiaadseadaqhaaWcbaGaamiDaaqaaiabek7aIbaa aaa@375B@  понимается в смысле Капуто или Римана MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ Лиувилля соответственно:

limtt0+t0RLIt1βztz0,                                                                                                    (18)

z( t 0 )= z 0 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGikaiaadshadaWgaaWcba GaaGimaaqabaGccaaIPaGaaGypaiaadQhadaahaaWcbeqaaiaaicda aaGccaaIUaaaaa@397D@                                                                                                                             (19)

Поставим следующую задачу оценивания состояния системы, аналогичную рассмотренной Н. Н. Красовским задаче о «наблюдении в случайных обстоятельствах» для систем целого порядка (см. [2, § 46]): найти оптимальную операцию φ t,z(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAdaWadaqaaiaadshacaaISa GaamOEaiaaiIcacaWG0bGaaGykaaGaay5waiaaw2faaaaa@3A7C@ , восстанавливающую компоненту состояния системы q i (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbWaaSbaaSqaaiaadMgaaeqaaO GaaGikaiaadshacaaIPaaaaa@3639@  по наблюдению z(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGikaiaadshacaaIPaaaaa@351E@  с наименьшей возможной погрешностью w MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3baaaa@32BD@ ,

q i (t)=φ t,z(t) +w, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbWaaSbaaSqaaiaadMgaaeqaaO GaaGikaiaadshacaaIPaGaaGypaiabeA8aQnaadmaabaGaamiDaiaa iYcacaWG6bGaaGikaiaadshacaaIPaaacaGLBbGaayzxaaGaey4kaS Iaam4DaiaaiYcaaaa@424F@                                                                                                              (20)

M{ w 2 }min, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbGaaG4EaiaadEhadaahaaWcbe qaaiaaikdaaaGccaaI9bGaeyOKH4QaciyBaiaacMgacaGGUbGaaGil aaaa@3C03@                                                                                                                  (21)

где M{ w 2 } MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbGaaG4EaiaadEhadaahaaWcbe qaaiaaikdaaaGccaaI9baaaa@368E@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  математическое ожидание погрешности w MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3baaaa@32BD@ . При этом должно выполняться условие w=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3bGaaGypaiaaicdaaaa@343E@  при Δ(t)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoarcaaIOaGaamiDaiaaiMcaca aI9aGaaGimaaaa@3706@ .

Замечание 2. Можно пополнить вектор q(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGikaiaadshacaaIPaaaaa@3515@  компонентой z(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGikaiaadshacaaIPaaaaa@351E@  и в этом случае рассматривать поставленную задачу оценивания состояния системы как задачу восстановления одной из координат нового (пополненного) вектора по набору других.

Используя формулу (4) в одномерном случае и заменяя функции q i (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbWaaSbaaSqaaiaadMgaaeqaaO GaaGikaiaadshacaaIPaaaaa@3639@  и Z ij (t,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGAbWaaSbaaSqaaiaadMgacaWGQb aabeaakiaaiIcacaWG0bGaaGilaiabes8a0jaaiMcaaaa@398C@  на функции z(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGikaiaadshacaaIPaaaaa@351E@  и Q(t,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbGaaGikaiaadshacaaISaGaeq iXdqNaaGykaaaa@3770@ , а неоднородность u i (t)+ f i (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaadMgaaeqaaO GaaGikaiaadshacaaIPaGaey4kaSIaamOzamaaBaaaleaacaWGPbaa beaakiaaiIcacaWG0bGaaGykaaaa@3B8C@  на неоднородность n=1 N G n (t) q n (t)+Δ(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaad6gacaaI9aGaaG ymaaqaaiaad6eaa0GaeyyeIuoakiaadEeadaWgaaWcbaGaamOBaaqa baGccaaIOaGaamiDaiaaiMcacaWGXbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiaadshacaaIPaGaey4kaSIaeuiLdqKaaGikaiaadshacaaI Paaaaa@44CC@ , запишем решение уравнения (16):

z(t)= Q ˜ (t, t 0 ) z 0 + t 0 t Q(t,τ) n=1 N G n (τ) q n (τ)+Δ(τ) dτ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGikaiaadshacaaIPaGaaG ypaiqadgfagaacaiaaiIcacaWG0bGaaGilaiaadshadaWgaaWcbaGa aGimaaqabaGccaaIPaGaamOEamaaCaaaleqabaGaaGimaaaakiabgU caRmaapehabeWcbaGaamiDamaaBaaabaGaaGimaaqabaaabaGaamiD aaqdcqGHRiI8aOGaamyuaiaaiIcacaWG0bGaaGilaiabes8a0jaaiM cadaWadaqaamaaqahabeWcbaGaamOBaiaai2dacaaIXaaabaGaamOt aaqdcqGHris5aOGaam4ramaaBaaaleaacaWGUbaabeaakiaaiIcacq aHepaDcaaIPaGaamyCamaaBaaaleaacaWGUbaabeaakiaaiIcacqaH epaDcaaIPaGaey4kaSIaeuiLdqKaaGikaiabes8a0jaaiMcaaiaawU facaGLDbaacaWGKbGaeqiXdqNaaGilaaaa@644E@                                                                      (22)

где Q ˜ (t, t 0 )=Q(t, t 0 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGrbGbaGaacaaIOaGaamiDaiaaiY cacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGykaiaai2dacaWGrbGa aGikaiaadshacaaISaGaamiDamaaBaaaleaacaaIWaaabeaakiaaiM caaaa@3E3D@  в случае, когда оператор дробного дифференцирования в уравнении (16) понимается в смысле Римана MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ Лиувилля, и Q ˜ (t, t 0 )= C Q(t, t 0 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGrbGbaGaacaaIOaGaamiDaiaaiY cacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGykaiaai2dadaahaaWc beqaaiaadoeaaaGccaWGrbGaaGikaiaadshacaaISaGaamiDamaaBa aaleaacaaIWaaabeaakiaaiMcaaaa@3F3C@  в случае, когда оператор дробного дифференцирования в уравнении (16) понимается в смысле Капуто. Функции Q(t, t 0 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbGaaGikaiaadshacaaISaGaam iDamaaBaaaleaacaaIWaaabeaakiaaiMcaaaa@3794@  и C Q(t, t 0 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaadoeaaaGccaWGrb GaaGikaiaadshacaaISaGaamiDamaaBaaaleaacaaIWaaabeaakiaa iMcaaaa@3893@  в общем случае вычисляются как решение однородного уравнения (16) с оператором дробного дифференцирования Римана MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ Лиувилля и Капуто соответственно (см. [5, Sec. 4]). Для функций Q(t,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbGaaGikaiaadshacaaISaGaeq iXdqNaaGykaaaa@3770@  справедлива оценка вида (5).

Первое слагаемое в формуле (22) не зависит ни от состояния q(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGikaiaadshacaaIPaaaaa@3515@ , ни от возмущения Δ(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoarcaaIOaGaamiDaiaaiMcaaa a@3585@ , поэтому можно рассматривать задачу оценивания для функции

Ξ(t)=z(t) Q ˜ (t, t 0 ) z 0 = t 0 t Q(t,τ) n=1 N G n (τ) q n (τ)+Δ(τ) dτ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHEoawcaaIOaGaamiDaiaaiMcaca aI9aGaamOEaiaaiIcacaWG0bGaaGykaiabgkHiTiqadgfagaacaiaa iIcacaWG0bGaaGilaiaadshadaWgaaWcbaGaaGimaaqabaGccaaIPa GaamOEamaaCaaaleqabaGaaGimaaaakiaai2dadaWdXbqabSqaaiaa dshadaWgaaqaaiaaicdaaeqaaaqaaiaadshaa0Gaey4kIipakiaadg facaaIOaGaamiDaiaaiYcacqaHepaDcaaIPaWaamWaaeaadaaeWbqa bSqaaiaad6gacaaI9aGaaGymaaqaaiaad6eaa0GaeyyeIuoakiaadE eadaWgaaWcbaGaamOBaaqabaGccaaIOaGaeqiXdqNaaGykaiaadgha daWgaaWcbaGaamOBaaqabaGccaaIOaGaeqiXdqNaaGykaiabgUcaRi abfs5aejaaiIcacqaHepaDcaaIPaaacaGLBbGaayzxaaGaamizaiab es8a0jaai6caaaa@6904@                                                            (23)

Соответственно, поставленная выше задача оптимального оценивания состояния может быть переформулирована: найти оптимальную операцию φ Ξ(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAdaWadaqaaiabf65ayjaaiI cacaWG0bGaaGykaaGaay5waiaaw2faaaaa@3952@ , такую что

φ t 0 t Q(t,τ) n=1 N G n (τ) q n (τ)dτ = q i (t), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAdaWadaqaamaapehabeWcba GaamiDamaaBaaabaGaaGimaaqabaaabaGaamiDaaqdcqGHRiI8aOGa amyuaiaaiIcacaWG0bGaaGilaiabes8a0jaaiMcadaaeWbqabSqaai aad6gacaaI9aGaaGymaaqaaiaad6eaa0GaeyyeIuoakiaadEeadaWg aaWcbaGaamOBaaqabaGccaaIOaGaeqiXdqNaaGykaiaadghadaWgaa WcbaGaamOBaaqabaGccaaIOaGaeqiXdqNaaGykaiaadsgacqaHepaD aiaawUfacaGLDbaacaaI9aGaamyCamaaBaaaleaacaWGPbaabeaaki aaiIcacaWG0bGaaGykaiaaiYcaaaa@5900@                                                                                      (24)

M φ t 0 t Q(t,τ)Δ(τ)dτ 2 min. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaiWaaeaadaWadaqaaiabeA 8aQnaadmaabaWaa8qCaeqaleaacaWG0bWaaSbaaeaacaaIWaaabeaa aeaacaWG0baaniabgUIiYdGccaWGrbGaaGikaiaadshacaaISaGaeq iXdqNaaGykaiabfs5aejaaiIcacqaHepaDcaaIPaGaamizaiabes8a 0bGaay5waiaaw2faaaGaay5waiaaw2faamaaCaaaleqabaGaaGOmaa aaaOGaay5Eaiaaw2haaiabgkziUkGac2gacaGGPbGaaiOBaiaai6ca aaa@52FD@                                                                                   (25)

Будем искать оптимальную операцию φ t,z(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAdaWadaqaaiaadshacaaISa GaamOEaiaaiIcacaWG0bGaaGykaaGaay5waiaaw2faaaaa@3A7C@  в виде

φ t,z(t) =φ Ξ(t) = t 0 t Ξ(τ)dV(τ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAdaWadaqaaiaadshacaaISa GaamOEaiaaiIcacaWG0bGaaGykaaGaay5waiaaw2faaiaai2dacqaH gpGAdaWadaqaaiabf65ayjaaiIcacaWG0bGaaGykaaGaay5waiaaw2 faaiaai2dadaWdXbqabSqaaiaadshadaWgaaqaaiaaicdaaeqaaaqa aiaadshaa0Gaey4kIipakiabf65ayjaaiIcacqaHepaDcaaIPaGaam izaiaadAfacaaIOaGaeqiXdqNaaGykaiaaiYcaaaa@532E@                                                                                        (26)

где V(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbGaaGikaiaadshacaaIPaaaaa@34FA@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  некоторая функция с ограниченным изменением.

Теорема 2. Пусть G n (τ) C γ n 1 ={f(t)=(t t 0 ) γ n f ˜ (t), f ˜ C 1 ( t 0 ,)} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiabes8a0jaaiMcacqGHiiIZcaWGdbWaa0baaSqaaiabeo7a NnaaBaaabaGaamOBaaqabaaabaGaaGymaaaakiaai2dacaaI7bGaam OzaiaaiIcacaWG0bGaaGykaiaai2dacaaIOaGaamiDaiabgkHiTiaa dshadaWgaaWcbaGaaGimaaqabaGccaaIPaWaaWbaaSqabeaacqaHZo WzdaWgaaqaaiaad6gaaeqaaaaakiqadAgagaacaiaaiIcacaWG0bGa aGykaiaaiYcaceWGMbGbaGaacqGHiiIZcaWGdbWaaWbaaSqabeaaca aIXaaaaOGaaGikaiaadshadaWgaaWcbaGaaGimaaqabaGccaaISaGa eyOhIuQaaGykaiaai2haaaa@599D@ , G n (τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiabes8a0jaaiMcaaaa@36E0@  отлична от константы 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaaaaa@327B@  на интервале ( t 0 ,t] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamiDamaaBaaaleaacaaIWa aabeaakiaaiYcacaWG0bGaaGyxaaaa@36F2@ , j=1 N Z ˜ ij (t, t 0 ) q j 0 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaadQgacaaI9aGaaG ymaaqaaiaad6eaa0GaeyyeIuoakiqadQfagaacamaaBaaaleaacaWG PbGaamOAaaqabaGccaaIOaGaamiDaiaaiYcacaWG0bWaaSbaaSqaai aaicdaaeqaaOGaaGykaiaadghadaqhaaWcbaGaamOAaaqaaiaaicda aaGccqGHGjsUcaaIWaaaaa@44A7@  и выполнены следующие условия:

γ n + α n > 1 2 ,n=1,,N. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHZoWzdaWgaaWcbaGaamOBaaqaba GccqGHRaWkcqaHXoqydaWgaaWcbaGaamOBaaqabaGccaaI+aWaaSaa aeaacaaIXaaabaGaaGOmaaaacaaISaGaaGzbVlaad6gacaaI9aGaaG ymaiaaiYcacqWIMaYscaaISaGaamOtaiaai6caaaa@435C@                                                                                                 (27)

Тогда поставленная задача оценивания (24) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (25) при фиксированном t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32BA@  эквивалентна следующей проблеме моментов: найти такую функцию U(t,ζ) L 2 (0,t] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGvbGaaGikaiaadshacaaISaGaeq OTdONaaGykaiabgIGiolaadYeadaWgaaWcbaGaaGOmaaqabaGccaaI OaGaaGimaiaaiYcacaWG0bGaaGyxaaaa@3EB5@  с минимальной нормой, что

t 0 t g(ζ)U(t,ζ)dζ= j=1 N Z ˜ ij (t, t 0 ) q j 0 ,ζ( t 0 ,t], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiaadshadaWgaaqaai aaicdaaeqaaaqaaiaadshaa0Gaey4kIipakiaadEgacaaIOaGaeqOT dONaaGykaiaadwfacaaIOaGaamiDaiaaiYcacqaH2oGEcaaIPaGaam izaiabeA7a6jaai2dadaaeWbqabSqaaiaadQgacaaI9aGaaGymaaqa aiaad6eaa0GaeyyeIuoakiqadQfagaacamaaBaaaleaacaWGPbGaam OAaaqabaGccaaIOaGaamiDaiaaiYcacaWG0bWaaSbaaSqaaiaaicda aeqaaOGaaGykaiaadghadaqhaaWcbaGaamOAaaqaaiaaicdaaaGcca aISaGaaGzbVlabeA7a6jabgIGiolaaiIcacaWG0bWaaSbaaSqaaiaa icdaaeqaaOGaaGilaiaadshacaaIDbGaaGilaaaa@5FF9@                                                                           (28)

g(ζ)= n=1 N G n (ζ) k=1 N Z ˜ nk (ζ, t 0 ) q k 0 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbGaaGikaiabeA7a6jaaiMcaca aI9aWaaabCaeqaleaacaWGUbGaaGypaiaaigdaaeaacaWGobaaniab ggHiLdGccaWGhbWaaSbaaSqaaiaad6gaaeqaaOGaaGikaiabeA7a6j aaiMcadaaeWbqabSqaaiaadUgacaaI9aGaaGymaaqaaiaad6eaa0Ga eyyeIuoakiqadQfagaacamaaBaaaleaacaWGUbGaam4AaaqabaGcca aIOaGaeqOTdONaaGilaiaadshadaWgaaWcbaGaaGimaaqabaGccaaI PaGaamyCamaaDaaaleaacaWGRbaabaGaaGimaaaakiaaiYcaaaa@5329@                                                                                             (29)

U(t,ζ)= ζ t Q(τ,ζ)dV(τ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGvbGaaGikaiaadshacaaISaGaeq OTdONaaGykaiaai2dadaWdXbqabSqaaiabeA7a6bqaaiaadshaa0Ga ey4kIipakiaadgfacaaIOaGaeqiXdqNaaGilaiabeA7a6jaaiMcaca WGKbGaamOvaiaaiIcacqaHepaDcaaIPaGaaGOlaaaa@4976@                                                                                                        (30)

Доказательство. Перепишем формулу (24) с учётом (26) и поменяем в полученном выражении порядок интегрирования:

t 0 t t 0 τ Q(τ,ζ) n=1 N G n (ζ) q n (ζ)dζ dV(τ)= t 0 t n=1 N G n (ζ) q n (ζ)dζ ζ t Q(τ,ζ)dV(τ) = q i (t). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiaadshadaWgaaqaai aaicdaaeqaaaqaaiaadshaa0Gaey4kIipakmaadmaabaWaa8qCaeqa leaacaWG0bWaaSbaaeaacaaIWaaabeaaaeaacqaHepaDa0Gaey4kIi pakiaadgfacaaIOaGaeqiXdqNaaGilaiabeA7a6jaaiMcadaaeWbqa bSqaaiaad6gacaaI9aGaaGymaaqaaiaad6eaa0GaeyyeIuoakiaadE eadaWgaaWcbaGaamOBaaqabaGccaaIOaGaeqOTdONaaGykaiaadgha daWgaaWcbaGaamOBaaqabaGccaaIOaGaeqOTdONaaGykaiaadsgacq aH2oGEaiaawUfacaGLDbaacaWGKbGaamOvaiaaiIcacqaHepaDcaaI PaGaaGypamaapehabeWcbaGaamiDamaaBaaabaGaaGimaaqabaaaba GaamiDaaqdcqGHRiI8aOWaaabCaeqaleaacaWGUbGaaGypaiaaigda aeaacaWGobaaniabggHiLdGccaWGhbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiabeA7a6jaaiMcacaWGXbWaaSbaaSqaaiaad6gaaeqaaOGa aGikaiabeA7a6jaaiMcacaWGKbGaeqOTdO3aamWaaeaadaWdXbqabS qaaiabeA7a6bqaaiaadshaa0Gaey4kIipakiaadgfacaaIOaGaeqiX dqNaaGilaiabeA7a6jaaiMcacaWGKbGaamOvaiaaiIcacqaHepaDca aIPaaacaGLBbGaayzxaaGaaGypaiaadghadaWgaaWcbaGaamyAaaqa baGccaaIOaGaamiDaiaaiMcacaaIUaaaaa@8E04@                                    (31)

Внутренний интеграл в полученном выражении представляет собой функцию U(t,ζ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGvbGaaGikaiaadshacaaISaGaeq OTdONaaGykaaaa@376C@  (см. (30)). Тогда будем иметь

t 0 t U(t,ζ) n=1 N G n (ζ) q n (ζ)dζ= q i (t). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiaadshadaWgaaqaai aaicdaaeqaaaqaaiaadshaa0Gaey4kIipakiaadwfacaaIOaGaamiD aiaaiYcacqaH2oGEcaaIPaWaaabCaeqaleaacaWGUbGaaGypaiaaig daaeaacaWGobaaniabggHiLdGccaWGhbWaaSbaaSqaaiaad6gaaeqa aOGaaGikaiabeA7a6jaaiMcacaWGXbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiabeA7a6jaaiMcacaWGKbGaeqOTdONaaGypaiaadghadaWg aaWcbaGaamyAaaqabaGccaaIOaGaamiDaiaaiMcacaaIUaaaaa@5537@                                                                                                (32)

Функция q i (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbWaaSbaaSqaaiaadMgaaeqaaO GaaGikaiaadshacaaIPaaaaa@3639@  является решением уравнения (1) при u i (t)= f i (t)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaadMgaaeqaaO GaaGikaiaadshacaaIPaGaaGypaiaadAgadaWgaaWcbaGaamyAaaqa baGccaaIOaGaamiDaiaaiMcacaaI9aGaaGimaaaa@3CF2@  с начальным условием (2) или (3) и может быть записана в явном виде с помощью формулы (4). Подставив получившееся выражение в уравнение (32) и выражение в правой части отличным от нуля, получим выражение (28), где функция g(ζ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbGaaGikaiabeA7a6jaaiMcaaa a@35CF@  определяется формулой (29).

Рассмотрим теперь величину в фигурных скобках в выражении (25). Используя выражение (26), можно, по аналогии с выражением (31), поменять порядок интегрирования и получить формулу:

φ t 0 t Q(t,τ)Δ(τ)dτ 2 = t 0 t Δ(ζ)U(t,ζ)dζ 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWadaqaaiabeA8aQnaadmaabaWaa8 qCaeqaleaacaWG0bWaaSbaaeaacaaIWaaabeaaaeaacaWG0baaniab gUIiYdGccaWGrbGaaGikaiaadshacaaISaGaeqiXdqNaaGykaiabfs 5aejaaiIcacqaHepaDcaaIPaGaamizaiabes8a0bGaay5waiaaw2fa aaGaay5waiaaw2faamaaCaaaleqabaGaaGOmaaaakiaai2dadaWada qaamaapehabeWcbaGaamiDamaaBaaabaGaaGimaaqabaaabaGaamiD aaqdcqGHRiI8aOGaeuiLdqKaaGikaiabeA7a6jaaiMcacaWGvbGaaG ikaiaadshacaaISaGaeqOTdONaaGykaiaadsgacqaH2oGEaiaawUfa caGLDbaadaahaaWcbeqaaiaaikdaaaGccaaIUaaaaa@6101@

Возмущение (17), как указывалось выше, представляет собой последовательность δ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH0oazaaa@3366@  -импульсов, моменты появления которых подчиняются распределению Пуассона, а амплитуды с одинаковой вероятностью принимают значение ±ε MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHXcqScqaH1oqzaaa@3556@ . В [2, § 46] было показано, что для такой модели возмущения справедливо соотношение

M t 0 t Δ(ζ)U(t,ζ)dζ 2 = ε 2 λ t 0 t U 2 (t,ζ)dζ= ε 2 λU L 2 ( t 0 ,t] 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaiWaaeaadaWadaqaamaape habeWcbaGaamiDamaaBaaabaGaaGimaaqabaaabaGaamiDaaqdcqGH RiI8aOGaeuiLdqKaaGikaiabeA7a6jaaiMcacaWGvbGaaGikaiaads hacaaISaGaeqOTdONaaGykaiaadsgacqaH2oGEaiaawUfacaGLDbaa daahaaWcbeqaaiaaikdaaaaakiaawUhacaGL9baacaaI9aGaeqyTdu 2aaWbaaSqabeaacaaIYaaaaOGaeq4UdW2aa8qCaeqaleaacaWG0bWa aSbaaeaacaaIWaaabeaaaeaacaWG0baaniabgUIiYdGccaWGvbWaaW baaSqabeaacaaIYaaaaOGaaGikaiaadshacaaISaGaeqOTdONaaGyk aiaadsgacqaH2oGEcaaI9aGaeqyTdu2aaWbaaSqabeaacaaIYaaaaO Gaeq4UdWweeuuDJXwAKbsr4rNCHbaceaGae8xjIaLaamyvaiab=vIi qnaaDaaaleaacaWGmbWaaSbaaeaacaaIYaaabeaacaaIOaGaamiDam aaBaaabaGaaGimaaqabaGaaGilaiaadshacaaIDbaabaGaaGOmaaaa kiaai6caaaa@7294@                                                      (33)

Таким образом, требование минимизации погрешности (25) в данном случае эквивалентно требованию минимизации нормы функции U(t,ζ) L 2 ( t 0 ,t] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGvbGaaGikaiaadshacaaISaGaeq OTdONaaGykaiabgIGiolaadYeadaWgaaWcbaGaaGOmaaqabaGccaaI OaGaamiDamaaBaaaleaacaaIWaaabeaakiaaiYcacaWG0bGaaGyxaa aa@3FE4@ .

Итак, показано, что исходная задача (24) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (25) при фиксированном t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32BA@  эквивалентна одномерной проблеме моментов вида (28) для функции U(t,ζ) L 2 ( t 0 ,t] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGvbGaaGikaiaadshacaaISaGaeq OTdONaaGykaiabgIGiolaadYeadaWgaaWcbaGaaGOmaaqabaGccaaI OaGaamiDamaaBaaaleaacaaIWaaabeaakiaaiYcacaWG0bGaaGyxaa aa@3FE4@ , определяемой формулой (30), относительно известной функции g(ζ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbGaaGikaiabeA7a6jaaiMcaaa a@35CF@ , определяемой формулой (29), и момента c= j=1 N Z ˜ ij (t, t 0 ) q j 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGJbGaaGypamaaqahabeWcbaGaam OAaiaai2dacaaIXaaabaGaamOtaaqdcqGHris5aOGabmOwayaaiaWa aSbaaSqaaiaadMgacaWGQbaabeaakiaaiIcacaWG0bGaaGilaiaads hadaWgaaWcbaGaaGimaaqabaGccaaIPaGaamyCamaaDaaaleaacaWG QbaabaGaaGimaaaaaaa@43CB@ , который по условию теоремы отличен от нуля.

Поскольку j=1 N Z ˜ ij (t, t 0 ) q j 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaadQgacaaI9aGaaG ymaaqaaiaad6eaa0GaeyyeIuoakiqadQfagaacamaaBaaaleaacaWG PbGaamOAaaqabaGccaaIOaGaamiDaiaaiYcacaWG0bWaaSbaaSqaai aaicdaaeqaaOGaaGykaiaadghadaqhaaWcbaGaamOAaaqaaiaaicda aaaaaa@421C@  и G n (τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiabes8a0jaaiMcaaaa@36E0@  отлична от константы 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaaaaa@327B@ , то функция g(ζ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbGaaGikaiabeA7a6jaaiMcaaa a@35CF@  на полуинтервале ( t 0 ,t] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamiDamaaBaaaleaacaaIWa aabeaakiaaiYcacaWG0bGaaGyxaaaa@36F2@  отлична от нуля. Для нормы функции g(ζ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbGaaGikaiabeA7a6jaaiMcaaa a@35CF@  в пространстве L 2 ( t 0 ,t] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiaadshadaWgaaWcbaGaaGimaaqabaGccaaISaGaamiDaiaa i2faaaa@38B5@  справедливо неравенство

g L 2 ( t 0 ,t] n,k=1 N q j 0 G n (ζ) Z ˜ nk (ζ, t 0 ) L 2 ( t 0 ,t] . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWGNbGae8xjIa1aaSbaaSqaaiaadYeadaWgaaqaaiaaikdaaeqa aiaaiIcacaWG0bWaaSbaaeaacaaIWaaabeaacaaISaGaamiDaiaai2 faaeqaaOGaeyizIm6aaabCaeqaleaacaWGUbGaaGilaiaadUgacaaI 9aGaaGymaaqaaiaad6eaa0GaeyyeIuoakmaaemaabaGaamyCamaaDa aaleaacaWGQbaabaGaaGimaaaaaOGaay5bSlaawIa7aiab=vIiqjaa dEeadaWgaaWcbaGaamOBaaqabaGccaaIOaGaeqOTdONaaGykaiqadQ fagaacamaaBaaaleaacaWGUbGaam4AaaqabaGccaaIOaGaeqOTdONa aGilaiaadshadaWgaaWcbaGaaGimaaqabaGccaaIPaGae8xjIa1aaS baaSqaaiaadYeadaWgaaqaaiaaikdaaeqaaiaaiIcacaWG0bWaaSba aeaacaaIWaaabeaacaaISaGaamiDaiaai2faaeqaaOGaaGOlaaaa@6737@                                                                   (34)

По условию теоремы G n (τ) C γ n 1 ={f(t)=(t t 0 ) γ n f ˜ (t), f ˜ C 1 ( t 0 ,)} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiabes8a0jaaiMcacqGHiiIZcaWGdbWaa0baaSqaaiabeo7a NnaaBaaabaGaamOBaaqabaaabaGaaGymaaaakiaai2dacaaI7bGaam OzaiaaiIcacaWG0bGaaGykaiaai2dacaaIOaGaamiDaiabgkHiTiaa dshadaWgaaWcbaGaaGimaaqabaGccaaIPaWaaWbaaSqabeaacqaHZo WzdaWgaaqaaiaad6gaaeqaaaaakiqadAgagaacaiaaiIcacaWG0bGa aGykaiaaiYcaceWGMbGbaGaacqGHiiIZcaWGdbWaaWbaaSqabeaaca aIXaaaaOGaaGikaiaadshadaWgaaWcbaGaaGimaaqabaGccaaISaGa eyOhIuQaaGykaiaai2haaaa@599D@ , также справедлива оценка (5); следовательно, при выполнении условий (27) выражение в правой части неравенства (34) будет ограничено. Следовательно, норма функции g(ζ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbGaaGikaiabeA7a6jaaiMcaaa a@35CF@  в пространстве L 2 ( t 0 ,t] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiaadshadaWgaaWcbaGaaGimaaqabaGccaaISaGaamiDaiaa i2faaaa@38B5@  будет определена. Теорема доказана.

Следствие 3. Можно непосредственно убедиться, что в одномерном случае задача условной оптимизации (8) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A96@ (9) имеет единственное решение:

Λ= |c| g L 2 ( t 0 ,t] . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHBoatcaaI9aWaaSaaaeaacaaI8b Gaam4yaiaaiYhaaeaarqqr1ngBPrgifHhDYfgaiqaacqWFLicucaWG NbGae8xjIafaamaaBaaaleaacaWGmbWaaSbaaeaacaaIYaaabeaaca aIOaGaamiDamaaBaaabaGaaGimaaqabaGaaGilaiaadshacaaIDbaa beaakiaai6caaaa@4678@

Если теорема 2 справедлива и норма g L 2 ( t 0 ,t] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWGNbGae8xjIa1aaSbaaSqaaiaadYeadaWgaaqaaiaaikdaaeqa aiaaiIcacaWG0bWaaSbaaeaacaaIWaaabeaacaaISaGaamiDaiaai2 faaeqaaaaa@4076@  определена, то Λ>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHBoatcaaI+aGaaGimaaaa@34B8@ , и проблема моментов (28) разрешима.

Замечание 3. Если рассматривать более общий случай U L p ( t 0 ,t] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGvbGaeyicI4SaamitamaaBaaale aacaWGWbaabeaakiaaiIcacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGa aGilaiaadshacaaIDbaaaa@3B4C@ , p>1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbGaaGOpaiaaigdaaaa@3439@ , g L p ( t 0 ,t] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbGaeyicI4SaamitamaaBaaale aaceWGWbGbauaaaeqaaOGaaGikaiaadshadaWgaaWcbaGaaGimaaqa baGccaaISaGaamiDaiaai2faaaa@3B6A@ , p 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGWbGbauaacqGHLjYScaaIXaaaaa@3543@ , 1/p+1/ p =1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIXaGaaG4laiaadchacqGHRaWkca aIXaGaaG4laiqadchagaqbaiaai2dacaaIXaaaaa@3903@ , то условия (27) запишутся в виде

γ n + α n > 1 p ,n=1,,N. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHZoWzdaWgaaWcbaGaamOBaaqaba GccqGHRaWkcqaHXoqydaWgaaWcbaGaamOBaaqabaGccaaI+aWaaSaa aeaacaaIXaaabaGaamiCaaaacaaISaGaaGzbVlaad6gacaaI9aGaaG ymaiaaiYcacqWIMaYscaaISaGaamOtaiaai6caaaa@4395@

×

About the authors

Sergey S. Postnov

Институт проблем управления им. В. А. Трапезникова

Author for correspondence.
Email: postnov.sergey@inbox.ru
Russian Federation, Москва

References

  1. Бутковский А. Г. Теория оптимального управления системами с распределенными параметрами. — М.: Наука, 1965.
  2. Красовский Н. Н. Теория управления движением. — М.: Наука, 1968. 114
  3. Кубышкин В. А., Постнов С. С. Задача оптимального управления линейной стационарной системой дробного порядка в форме проблемы моментов: постановка и исследование// Автомат. телемех. — 2014. — № 5. — С. 3–17.
  4. Постнов С. С. Об использовании метода моментов для оптимального оценивания состояния систем дробного порядка с возмущением импульсного типа// Пробл. мат. анал. — 2023. — № 121. — С. 93–102.
  5. Bourdin L. Cauchy–Lipschitz theory for fractional multi-order dynamics: State-transition matrices, Duhamel formulas and duality theorems// Differ. Integral Equations. — 2018. — 31, № 7–8. — P. 559–594.
  6. Kilbas A. A., Srivastava H. M., Trujillo J. J. Theory and Applications of Fractional Differential Equations. — Amsterdam: Elsevier, 2006.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Постнов С.S.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».