l - Проблема моментов в задачах оптимального управления и оценивания состояния для многомерных линейных систем дробного порядка

Обложка

Цитировать

Полный текст

Аннотация

Рассматриваются многомерные динамические системы, состояние которых описывается системой линейных дифференциальных уравнений дробного порядка и при этом в каждом из уравнений системы порядок оператора дробного дифференцирования разный. Оператор дробного дифференцирования понимается в смысле Капуто или в смысле Римана—Лиувилля. Исследуются задачи оптимального управления и оптимального оценивания состояния для рассматриваемых систем. Показано, что при определённых условиях обе задачи сводятся к l -проблеме моментов. Для полученной проблемы проверены условия разрешимости и в ряде случаев построены точные решения.

Полный текст

1. Введение.

Как известно, метод моментов широко применяется для поиска управления, оптимального в смысле минимальности нормы управления или времени перехода в заданное состояние при явном ограничении на норму управления (см. [2, ч. 2]). С помощью этого метода возможно построить точное решение задач оптимального управления для линейных (по управлению) систем с сосредоточенными параметрами, а также приближённые решения для линейных (по управлению) систем с распределёнными параметрами (см. [1, гл. 3]). Данный метод применим и к исследованию задач оптимального управления системами, которые описываются дифференциальными уравнениями дробного порядка (см. [3]).

Н. Н. Красовским было рассмотрено иное применение метода моментов: задача «наблюдения в случайных обcтоятельствах» или оценивания состояния некоторой системы по результатам наблюдений в условиях действия внешних возмущений (см. [2, § 46]). Аналогичная задача была исследована и для одно- и двумерных линейных систем дробного порядка (см. [4]).

Ранее задачи оптимального управления и оценивания состояния системы были рассмотрены для линейных одномерных систем дробного порядка и для некоторых двумерных и многомерных систем частного вида (см. [3, 4] и ссылки в этих работах). В настоящей работе аналогичное исследование проводится для более общего случая линейных многомерных систем произвольной конечной размерности с коэффициентами, зависящими от времени, и различным порядком операторов дробного дифференцирования в каждом из уравнений, описывающих поведение системы.

2. Предварительные сведения.

Рассматриваются многомерные линейные динамические системы дробного порядка, поведение которых описывается уравнением следующего вида:

t 0 D t α i q i (t)= j=1 N a ij (t) q j (t)+ u i (t)+ f i (t),t( t 0 ,T],i=1,,N, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWgaaWcbaGaamiDamaaBaaabaGaaG imaaqabaaabeaakiaadseadaqhaaWcbaGaamiDaaqaaiabeg7aHnaa BaaabaGaamyAaaqabaaaaOGaamyCamaaBaaaleaacaWGPbaabeaaki aaiIcacaWG0bGaaGykaiaai2dadaaeWbqabSqaaiaadQgacaaI9aGa aGymaaqaaiaad6eaa0GaeyyeIuoakiaadggadaWgaaWcbaGaamyAai aadQgaaeqaaOGaaGikaiaadshacaaIPaGaamyCamaaBaaaleaacaWG QbaabeaakiaaiIcacaWG0bGaaGykaiabgUcaRiaadwhadaWgaaWcba GaamyAaaqabaGccaaIOaGaamiDaiaaiMcacqGHRaWkcaWGMbWaaSba aSqaaiaadMgaaeqaaOGaaGikaiaadshacaaIPaGaaGilaiaaywW7ca WG0bGaeyicI4SaaGikaiaadshadaWgaaWcbaGaaGimaaqabaGccaaI SaGaamivaiaai2facaaISaGaaGzbVlaadMgacaaI9aGaaGymaiaaiY cacqWIMaYscaaISaGaamOtaiaaiYcaaaa@6A5C@                                                     (1)

где t 0 D t α i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWgaaWcbaGaamiDamaaBaaabaGaaG imaaqabaaabeaakiaadseadaqhaaWcbaGaamiDaaqaaiabeg7aHnaa BaaabaGaamyAaaqabaaaaaaa@3868@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  оператор дробного дифференцирования порядка α i (0,1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHXoqydaWgaaWcbaGaamyAaaqaba GccqGHiiIZcaaIOaGaaGimaiaaiYcacaaIXaGaaGykaaaa@3998@ , q i (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbWaaSbaaSqaaiaadMgaaeqaaO GaaGikaiaadshacaaIPaaaaa@3639@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  компоненты вектора состояния системы, u i (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaadMgaaeqaaO GaaGikaiaadshacaaIPaaaaa@363D@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  компоненты вектора управления, f i (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbWaaSbaaSqaaiaadMgaaeqaaO GaaGikaiaadshacaaIPaaaaa@362E@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  компоненты вектора возмущения, a ij (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbWaaSbaaSqaaiaadMgacaWGQb aabeaakiaaiIcacaWG0bGaaGykaaaa@3718@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  коэффициенты, в общем случае зависящие от времени. Оператор дробного дифференцирования в формуле (1) понимается либо в смысле Римана MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ Лиувилля, либо в смысле Капуто (см. [6, Ch. 2]). Соответственно, начальные условия для системы (1) ставятся либо в нелокальном, либо в локальном виде:

2 lim t t 0 + t 0 I t 1 α i q i (t) = q i 0 ,i=1,,N, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIYaWaaybuaeqaleaacaWG0bGaey OKH4QaamiDamaaBaaabaGaaGimaaqabaGaey4kaScabeGcbaGaciiB aiaacMgacaGGTbaaamaadmaabaWaaSbaaSqaaiaadshadaWgaaqaai aaicdaaeqaaaqabaGccaWGjbWaa0baaSqaaiaadshaaeaacaaIXaGa eyOeI0IaeqySde2aaSbaaeaacaWGPbaabeaaaaGccaWGXbWaaSbaaS qaaiaadMgaaeqaaOGaaGikaiaadshacaaIPaaacaGLBbGaayzxaaGa aGypaiaadghadaqhaaWcbaGaamyAaaqaaiaaicdaaaGccaaISaGaaG zbVlaadMgacaaI9aGaaGymaiaaiYcacqWIMaYscaaISaGaamOtaiaa iYcaaaa@569C@                                                                                (2)

q i ( t 0 )= q i 0 ,i=1,,N, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbWaaSbaaSqaaiaadMgaaeqaaO GaaGikaiaadshadaWgaaWcbaGaaGimaaqabaGccaaIPaGaaGypaiaa dghadaqhaaWcbaGaamyAaaqaaiaaicdaaaGccaaISaGaaGzbVlaadM gacaaI9aGaaGymaiaaiYcacqWIMaYscaaISaGaamOtaiaaiYcaaaa@4390@                                                                                                        (3)

где t 0 I t 1 α i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWgaaWcbaGaamiDamaaBaaabaGaaG imaaqabaaabeaakiaadMeadaqhaaWcbaGaamiDaaqaaiaaigdacqGH sislcqaHXoqydaWgaaqaaiaadMgaaeqaaaaaaaa@3A15@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  оператор дробного интегрирования Римана MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ Лиувилля (см. [6, Ch. 2]).

В [5, Theorems 5, 6] получены аналитические решения уравнения (1) с начальными условиями (2) или (3), которые могут быть записаны в виде

q i (t)= j=1 N Z ˜ ij (t, t 0 ) q j 0 + t 0 t Z ij (t,τ) u j (τ)+ f j (τ) dτ ,i=1,,N, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbWaaSbaaSqaaiaadMgaaeqaaO GaaGikaiaadshacaaIPaGaaGypamaaqahabeWcbaGaamOAaiaai2da caaIXaaabaGaamOtaaqdcqGHris5aOWaaeWaaeaaceWGAbGbaGaada WgaaWcbaGaamyAaiaadQgaaeqaaOGaaGikaiaadshacaaISaGaamiD amaaBaaaleaacaaIWaaabeaakiaaiMcacaWGXbWaa0baaSqaaiaadQ gaaeaacaaIWaaaaOGaey4kaSYaa8qCaeqaleaacaWG0bWaaSbaaeaa caaIWaaabeaaaeaacaWG0baaniabgUIiYdGccaWGAbWaaSbaaSqaai aadMgacaWGQbaabeaakiaaiIcacaWG0bGaaGilaiabes8a0jaaiMca daWadaqaaiaadwhadaWgaaWcbaGaamOAaaqabaGccaaIOaGaeqiXdq NaaGykaiabgUcaRiaadAgadaWgaaWcbaGaamOAaaqabaGccaaIOaGa eqiXdqNaaGykaaGaay5waiaaw2faaiaadsgacqaHepaDaiaawIcaca GLPaaacaaISaGaaGzbVlaadMgacaaI9aGaaGymaiaaiYcacqWIMaYs caaISaGaamOtaiaaiYcaaaa@6FAC@                                                 (4)

где Z ˜ ij (t, t 0 )= Z ij (t, t 0 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGAbGbaGaadaWgaaWcbaGaamyAai aadQgaaeqaaOGaaGikaiaadshacaaISaGaamiDamaaBaaaleaacaaI WaaabeaakiaaiMcacaaI9aGaamOwamaaBaaaleaacaWGPbGaamOAaa qabaGccaaIOaGaamiDaiaaiYcacaWG0bWaaSbaaSqaaiaaicdaaeqa aOGaaGykaaaa@4275@  в случае, когда оператор дробного дифференцирования в уравнении (1) понимается в смысле Римана MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ Лиувилля, и Z ˜ ij (t, t 0 )= C Z ij (t, t 0 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGAbGbaGaadaWgaaWcbaGaamyAai aadQgaaeqaaOGaaGikaiaadshacaaISaGaamiDamaaBaaaleaacaaI WaaabeaakiaaiMcacaaI9aWaaWbaaSqabeaacaWGdbaaaOGaamOwam aaBaaaleaacaWGPbGaamOAaaqabaGccaaIOaGaamiDaiaaiYcacaWG 0bWaaSbaaSqaaiaaicdaaeqaaOGaaGykaaaa@4374@  в случае, когда оператор дробного дифференцирования в уравнении (1) понимается в смысле Капуто. Функции Z ij (t, t 0 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGAbWaaSbaaSqaaiaadMgacaWGQb aabeaakiaaiIcacaWG0bGaaGilaiaadshadaWgaaWcbaGaaGimaaqa baGccaaIPaaaaa@39B0@  и C Z ij (t, t 0 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaadoeaaaGccaWGAb WaaSbaaSqaaiaadMgacaWGQbaabeaakiaaiIcacaWG0bGaaGilaiaa dshadaWgaaWcbaGaaGimaaqabaGccaaIPaaaaa@3AAF@  в общем случае вычисляются как решение однородного уравнения (1) с оператором дробного дифференцирования Римана MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ Лиувилля и Капуто соответственно (см. [5, Sec. 4]). Для функций Z ij (t,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGAbWaaSbaaSqaaiaadMgacaWGQb aabeaakiaaiIcacaWG0bGaaGilaiabes8a0jaaiMcaaaa@398C@  справедлива следующая оценка (см. [5, Lemma 5]):

Z ij (t,τ) const (tτ) 1 α i . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaabdaqaaiaadQfadaWgaaWcbaGaam yAaiaadQgaaeqaaOGaaGikaiaadshacaaISaGaeqiXdqNaaGykaaGa ay5bSlaawIa7aiabgsMiJoaalaaabaGaam4yaiaad+gacaWGUbGaam 4CaiaadshaaeaacaaIOaGaamiDaiabgkHiTiabes8a0jaaiMcadaah aaWcbeqaaiaaigdacqGHsislcqaHXoqydaWgaaqaaiaadMgaaeqaaa aaaaGccaaIUaaaaa@4D88@                                                                                                 (5)

Сформулируем l MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGSbaaaa@32B2@  -проблему моментов, к которой далее будут сведены задачи оптимального управления и оценивания состояния.

l MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGSbaaaa@32B2@  -Проблема моментов.

Пусть дана система функций g n (t) L p ( t 0 ,T] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiaadshacaaIPaGaeyicI4SaamitamaaBaaaleaaceWGWbGb auaaaeqaaOGaaGikaiaadshadaWgaaWcbaGaaGimaaqabaGccaaISa Gaamivaiaai2faaaa@3ED1@ , p 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGWbGbauaacqGHLjYScaaIXaaaaa@3543@ , и набор чисел c n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGJbWaaSbaaSqaaiaad6gaaeqaaa aa@33C8@ , n=1,,N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaaGypaiaaigdacaaISaGaeS OjGSKaaGilaiaad6eaaaa@3797@  (называемых моментами), хотя бы одно из которых отлично от нуля. Необходимо построить такую функцию u(t) L p ( t 0 ,T] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadshacaaIPaGaey icI4SaamitamaaBaaaleaacaWGWbaabeaakiaaiIcacaWG0bWaaSba aSqaaiaaicdaaeqaaOGaaGilaiaadsfacaaIDbaaaa@3DAA@ , p>1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbGaaGOpaiaaigdaaaa@3439@ , 1/p+1/ p =1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIXaGaaG4laiaadchacqGHRaWkca aIXaGaaG4laiqadchagaqbaiaai2dacaaIXaaaaa@3903@ , что выполняются соотношения:

t 0 T g n (T,τ)u(τ)dτ= c n (T), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiaadshadaWgaaqaai aaicdaaeqaaaqaaiaadsfaa0Gaey4kIipakiaadEgadaWgaaWcbaGa amOBaaqabaGccaaIOaGaamivaiaaiYcacqaHepaDcaaIPaGaamyDai aaiIcacqaHepaDcaaIPaGaamizaiabes8a0jaai2dacaWGJbWaaSba aSqaaiaad6gaaeqaaOGaaGikaiaadsfacaaIPaGaaGilaaaa@4A4E@                                                                                                 (6)

u L p ( t 0 ,T] l. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWG1bGae8xjIa1aaSbaaSqaaiaadYeadaWgaaqaaiaadchaaeqa aiaaiIcacaWG0bWaaSbaaeaacaaIWaaabeaacaaISaGaamivaiaai2 faaeqaaOGaeyizImQaamiBaiaai6caaaa@4405@                                                                                                     (7)

Следует отметить, что функции g n (T,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiaadsfacaaISaGaamiDaiaaiMcaaaa@37C3@  и u(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadshacaaIPaaaaa@3519@  могут быть и вектор-функциями: g n (T,t)= g n 1 (T,t),, g n N (T,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiaadsfacaaISaGaamiDaiaaiMcacaaI9aWaaeWaaeaacaWG NbWaa0baaSqaaiaad6gaaeaacaaIXaaaaOGaaGikaiaadsfacaaISa GaamiDaiaaiMcacaaISaGaeSOjGSKaaGilaiaadEgadaqhaaWcbaGa amOBaaqaaiaad6eaaaGccaaIOaGaamivaiaaiYcacaWG0bGaaGykaa GaayjkaiaawMcaaaaa@4A35@ , u(t)= u 1 (t),, u N (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadshacaaIPaGaaG ypamaabmaabaGaamyDamaaCaaaleqabaGaaGymaaaakiaaiIcacaWG 0bGaaGykaiaaiYcacqWIMaYscaaISaGaamyDamaaCaaaleqabaGaam OtaaaakiaaiIcacaWG0bGaaGykaaGaayjkaiaawMcaaaaa@42A3@ .

Проблема моментов вида (6) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (7) разрешима, если выполнено одно из эквивалентных условий (см. [1, 2]):

(i)  функции g n (τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiabes8a0jaaiMcaaaa@3700@  линейно независимы или среди них можно выделить подсистему линейно независимых функций;

(ii)  выполняется неравенство Λ N >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHBoatdaWgaaWcbaGaamOtaaqaba GccaaI+aGaaGimaaaa@35C1@ , где число Λ N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHBoatdaWgaaWcbaGaamOtaaqaba aaaa@3435@  определяет минимальное значение нормы (7) и находится из условия

minξ1,,ξN0TkNiNξigiktp'dtp'1ΛN,                                                                        (8)

где ξ i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEdaWgaaWcbaGaamyAaaqaba aaaa@349E@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  такие числа, что

i=1 N ξ i c i =1. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaadMgacaaI9aGaaG ymaaqaaiaad6eaa0GaeyyeIuoakiabe67a4naaBaaaleaacaWGPbaa beaakiaadogadaWgaaWcbaGaamyAaaqabaGccaaI9aGaaGymaiaai6 caaaa@3E7E@                                                                                                                  (9)

Решением l MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGSbaaaa@32B2@  -проблемы моментов, обладающим минимальной нормой, является вектор-функция, компоненты которой имеют следующий вид:

u k (t)= Λ N p i=1 N ξ i * g i k (t) p 1 sign i=1 N ξ i * g i k (t) ,t( t 0 ,T],k=1,,N, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaWbaaSqabeaacaWGRbaaaO GaaGikaiaadshacaaIPaGaaGypaiabfU5amnaaDaaaleaacaWGobaa baGabmiCayaafaaaaOWaaqWaaeaadaaeWbqabSqaaiaadMgacaaI9a GaaGymaaqaaiaad6eaa0GaeyyeIuoakiabe67a4naaDaaaleaacaWG PbaabaGaaGOkaaaakiaadEgadaqhaaWcbaGaamyAaaqaaiaadUgaaa GccaaIOaGaamiDaiaaiMcaaiaawEa7caGLiWoadaahaaWcbeqaaiqa dchagaqbaiabgkHiTiaaigdaaaGccaWGZbGaamyAaiaadEgacaWGUb WaaeWaaeaadaaeWbqabSqaaiaadMgacaaI9aGaaGymaaqaaiaad6ea a0GaeyyeIuoakiabe67a4naaDaaaleaacaWGPbaabaGaaGOkaaaaki aadEgadaqhaaWcbaGaamyAaaqaaiaadUgaaaGccaaIOaGaamiDaiaa iMcaaiaawIcacaGLPaaacaaISaGaaGzbVlaadshacqGHiiIZcaaIOa GaamiDamaaBaaaleaacaaIWaaabeaakiaaiYcacaWGubGaaGyxaiaa iYcacaaMf8Uaam4Aaiaai2dacaaIXaGaaGilaiablAciljaaiYcaca WGobGaaGilaaaa@758C@                                          (10)

где ξ i * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEdaqhaaWcbaGaamyAaaqaai aaiQcaaaaaaa@3553@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  числа, доставляющие минимум в задаче (8)-(9).

Решением l MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGSbaaaa@32B2@  -проблемы моментов, обладающим минимальным носителем, является вектор-функция, компоненты которой имеют следующий вид:

u k (t)= l p i=1 N ξ i * g i k (t) p 1 sign i=1 N ξ i * g i k (t) ,t( t 0 , T * ],k=1,,N, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaWbaaSqabeaacaWGRbaaaO GaaGikaiaadshacaaIPaGaaGypaiaadYgadaahaaWcbeqaaiqadcha gaqbaaaakmaaemaabaWaaabCaeqaleaacaWGPbGaaGypaiaaigdaae aacaWGobaaniabggHiLdGccqaH+oaEdaqhaaWcbaGaamyAaaqaaiaa iQcaaaGccaWGNbWaa0baaSqaaiaadMgaaeaacaWGRbaaaOGaaGikai aadshacaaIPaaacaGLhWUaayjcSdWaaWbaaSqabeaaceWGWbGbauaa cqGHsislcaaIXaaaaOGaam4CaiaadMgacaWGNbGaamOBamaabmaaba WaaabCaeqaleaacaWGPbGaaGypaiaaigdaaeaacaWGobaaniabggHi LdGccqaH+oaEdaqhaaWcbaGaamyAaaqaaiaaiQcaaaGccaWGNbWaa0 baaSqaaiaadMgaaeaacaWGRbaaaOGaaGikaiaadshacaaIPaaacaGL OaGaayzkaaGaaGilaiaaywW7caWG0bGaeyicI4SaaGikaiaadshada WgaaWcbaGaaGimaaqabaGccaaISaGaamivamaaCaaaleqabaGaaGOk aaaakiaai2facaaISaGaaGzbVlaadUgacaaI9aGaaGymaiaaiYcacq WIMaYscaaISaGaamOtaiaaiYcaaaa@7520@                                          (11)

где T * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubWaaWbaaSqabeaacaaIQaaaaa aa@337B@  определяется как минимальное вещественное положительное значение T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubaaaa@329A@ , для которого выполнено неравенство Λ N l MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHBoatdaWgaaWcbaGaamOtaaqaba GccqGHKjYOcaWGSbaaaa@36E5@ .

Следует отметить, что моменты c n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGJbWaaSbaaSqaaiaad6gaaeqaaa aa@33C8@ , вообще говоря, параметрически зависят от T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubaaaa@329A@ , что определяет (в соответствии с (9)) и зависимость от данного параметра чисел ξ i * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEdaqhaaWcbaGaamyAaaqaai aaiQcaaaaaaa@3553@ .

3. Задача оптимального управления.

Будем рассматривать следующую формулировку задачи оптимального управления. Найти управление u(t) L p ( t 0 ,T] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadshacaaIPaGaey icI4SaamitamaaBaaaleaacaWGWbaabeaakiaaiIcacaWG0bWaaSba aSqaaiaaicdaaeqaaOGaaGilaiaadsfacaaIDbaaaa@3DAA@ , чтобы система (1) перешла из начального состояния, определяемого условиями (2) или (3), в конечное состояние, определяемое условием

q(T)= q T , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGikaiaadsfacaaIPaGaaG ypaiaadghadaahaaWcbeqaaiaadsfaaaGccaaISaaaaa@3878@                                                                                                                              (12)

и при этом было выполнено одно из следующих требований:

(i)   норма управления u(t) L p ( t 0 ,T] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWG1bGaaGikaiaadshacaaIPaGae8xjIa1aaSbaaSqaaiaadYea daWgaaqaaiaadchaaeqaaiaaiIcacaWG0bWaaSbaaeaacaaIWaaabe aacaaISaGaamivaiaai2faaeqaaaaa@42FB@  была минимальной (среди всех допустимых управлений) при заданном времени T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubaaaa@329A@ ;

(ii)  время T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubaaaa@329A@  было минимальным при заданном ограничении (7) на норму управления.

Теорема 1. Пусть справедливы следующие выражения:

c n (T)= q n (T) k=1 N Z ˜ nk (T, t 0 ) q k 0 t 0 T Z nk (T,τ) f k (τ)dτ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGJbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiaadsfacaaIPaGaaGypaiaadghadaWgaaWcbaGaamOBaaqa baGccaaIOaGaamivaiaaiMcacqGHsisldaaeWbqabSqaaiaadUgaca aI9aGaaGymaaqaaiaad6eaa0GaeyyeIuoakmaabmaabaGabmOwayaa iaWaaSbaaSqaaiaad6gacaWGRbaabeaakiaaiIcacaWGubGaaGilai aadshadaWgaaWcbaGaaGimaaqabaGccaaIPaGaamyCamaaDaaaleaa caWGRbaabaGaaGimaaaakiabgkHiTmaapehabeWcbaGaamiDamaaBa aabaGaaGimaaqabaaabaGaamivaaqdcqGHRiI8aOGaamOwamaaBaaa leaacaWGUbGaam4AaaqabaGccaaIOaGaamivaiaaiYcacqaHepaDca aIPaGaamOzamaaBaaaleaacaWGRbaabeaakiaaiIcacqaHepaDcaaI PaGaamizaiabes8a0bGaayjkaiaawMcaaiaaiYcaaaa@6455@                                                                   (13)

g n k (T,τ)= Z nk (T,τ),n=1,,N. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaa0baaSqaaiaad6gaaeaaca WGRbaaaOGaaGikaiaadsfacaaISaGaeqiXdqNaaGykaiaai2dacaWG AbWaaSbaaSqaaiaad6gacaWGRbaabeaakiaaiIcacaWGubGaaGilai abes8a0jaaiMcacaaISaGaaGzbVlaad6gacaaI9aGaaGymaiaaiYca cqWIMaYscaaISaGaamOtaiaai6caaaa@4ACA@                                                                                                        (14)

Поставленная выше задача оптимального управления сводится к проблеме моментов (6) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (7), где моменты c n (T) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGJbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiaadsfacaaIPaaaaa@3610@  и функции g n (T,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiaadsfacaaISaGaeqiXdqNaaGykaaaa@388F@  определяются выражениями (13) и (14) соответственно, при выполнении следующих условий:

α n > 1 p ,n=1,,N. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHXoqydaWgaaWcbaGaamOBaaqaba GccaaI+aWaaSaaaeaacaaIXaaabaGaamiCaaaacaaISaGaaGzbVlaa d6gacaaI9aGaaGymaiaaiYcacqWIMaYscaaISaGaamOtaiaai6caaa a@3FE3@                                                                                                            (15)

Доказательство. Воспользуемся формулами (4) и запишем решение системы (1) в момент времени t=T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaaGypaiaadsfaaaa@345A@ :

q n (T)= k=1 N Z ˜ nk (T, t 0 ) q k 0 + t 0 T Z nk (T,τ) u k (τ)+ f k (τ) dτ ,n=1,,N. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiaadsfacaaIPaGaaGypamaaqahabeWcbaGaam4Aaiaai2da caaIXaaabaGaamOtaaqdcqGHris5aOWaaeWaaeaaceWGAbGbaGaada WgaaWcbaGaamOBaiaadUgaaeqaaOGaaGikaiaadsfacaaISaGaamiD amaaBaaaleaacaaIWaaabeaakiaaiMcacaWGXbWaa0baaSqaaiaadU gaaeaacaaIWaaaaOGaey4kaSYaa8qCaeqaleaacaWG0bWaaSbaaeaa caaIWaaabeaaaeaacaWGubaaniabgUIiYdGccaWGAbWaaSbaaSqaai aad6gacaWGRbaabeaakiaaiIcacaWGubGaaGilaiabes8a0jaaiMca daWadaqaaiaadwhadaWgaaWcbaGaam4AaaqabaGccaaIOaGaeqiXdq NaaGykaiabgUcaRiaadAgadaWgaaWcbaGaam4AaaqabaGccaaIOaGa eqiXdqNaaGykaaGaay5waiaaw2faaiaadsgacqaHepaDaiaawIcaca GLPaaacaaISaGaaGzbVlaad6gacaaI9aGaaGymaiaaiYcacqWIMaYs caaISaGaamOtaiaai6caaaa@6F48@

Данное выражение с учётом обозначений (13) и (14) может быть переписано в виде проблемы моментов (6). Теперь необходимо убедиться, что функции, определяемые выражением (14), являются элементами пространства L p ( t 0 ,T] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaaSbaaSqaaiqadchagaqbaa qabaGccaaIOaGaamiDamaaBaaaleaacaaIWaaabeaakiaaiYcacaWG ubGaaGyxaaaa@38DA@ , p >1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGWbGbauaacaaI+aGaaGymaaaa@3445@ . Оценим норму этих функций в пространстве L p ( t 0 ,T] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaaSbaaSqaaiqadchagaqbaa qabaGccaaIOaGaamiDamaaBaaaleaacaaIWaaabeaakiaaiYcacaWG ubGaaGyxaaaa@38DA@ , воспользовавшись неравенством (5):

t 0 T k=1 N Z nk (T,τ) p dτ 1/ p N t 0 T const (Tτ) 1 α n p dτ 1/ p . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqadaqaamaapehabeWcbaGaamiDam aaBaaabaGaaGimaaqabaaabaGaamivaaqdcqGHRiI8aOWaaqWaaeaa daaeWbqabSqaaiaadUgacaaI9aGaaGymaaqaaiaad6eaa0GaeyyeIu oakiaadQfadaWgaaWcbaGaamOBaiaadUgaaeqaaOGaaGikaiaadsfa caaISaGaeqiXdqNaaGykaaGaay5bSlaawIa7amaaCaaaleqabaGabm iCayaafaaaaOGaamizaiabes8a0bGaayjkaiaawMcaamaaCaaaleqa baGaaGymaiaai+caceWGWbGbauaaaaGccqGHKjYOcaWGobWaaeWaae aadaWdXbqabSqaaiaadshadaWgaaqaaiaaicdaaeqaaaqaaiaadsfa a0Gaey4kIipakmaaemaabaWaaSaaaeaacaWGJbGaam4Baiaad6gaca WGZbGaamiDaaqaaiaaiIcacaWGubGaeyOeI0IaeqiXdqNaaGykamaa CaaaleqabaGaaGymaiabgkHiTiabeg7aHnaaBaaabaGaamOBaaqaba aaaaaaaOGaay5bSlaawIa7amaaCaaaleqabaGabmiCayaafaaaaOGa amizaiabes8a0bGaayjkaiaawMcaamaaCaaaleqabaGaaGymaiaai+ caceWGWbGbauaaaaGccaaIUaaaaa@7152@

Выражение в правой части будет ограничено при выполнении условий (15). Теорема доказана.

Замечание 1. Условия (15) обобщают условия, полученные в [3, 4] при рассмотрении частных случаев системы (1).

Следствие 1. Пусть матрица Z(T,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGAbGaaGikaiaadsfacaaISaGaeq iXdqNaaGykaaaa@3759@  имеет хотя бы один ненулевой элемент (и, следовательно, в системе функций g n (T,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiaadsfacaaISaGaeqiXdqNaaGykaaaa@388F@  можно выделить подсистему линейно независимых функций) и условия (15) выполнены. Тогда проблема моментов (6) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A96@ (7), где моменты c n (T) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGJbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiaadsfacaaIPaaaaa@3610@  и функции g n (T,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiaadsfacaaISaGaeqiXdqNaaGykaaaa@388F@  определяются выражениями (13) и (14) соответственно, является разрешимой, и её решение определяется формулами (10) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A96@ (11).

Следствие 2. Пусть матрица A= a nk 1 N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbGaaGypaebbfv3ySLgzGueE0j xyaGabaiab=vIiqjaadggadaWgaaWcbaGaamOBaiaadUgaaeqaaOGa e8xjIa1aa0baaSqaaiaaigdaaeaacaWGobaaaaaa@3EDB@  не зависит от времени. В этом случае элементы матрицы Z(T,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGAbGaaGikaiaadsfacaaISaGaeq iXdqNaaGykaaaa@3759@  выражаются формулой

Z nk (T,τ)= E α n , α n a nk (Tτ) α n (Tτ) α n . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGAbWaaSbaaSqaaiaad6gacaWGRb aabeaakiaaiIcacaWGubGaaGilaiabes8a0jaaiMcacaaI9aWaaSaa aeaacaWGfbWaaSbaaSqaaiabeg7aHnaaBaaabaGaamOBaaqabaGaaG ilaiabeg7aHnaaBaaabaGaamOBaaqabaaabeaakmaadmaabaGaamyy amaaBaaaleaacaWGUbGaam4AaaqabaGccaaIOaGaamivaiabgkHiTi abes8a0jaaiMcadaahaaWcbeqaaiabeg7aHnaaBaaabaGaamOBaaqa baaaaaGccaGLBbGaayzxaaaabaGaaGikaiaadsfacqGHsislcqaHep aDcaaIPaWaaWbaaSqabeaacqaHXoqydaWgaaqaaiaad6gaaeqaaaaa aaGccaaIUaaaaa@56C2@

(см. [5]). Если выполнены условия (15), то проблема моментов (6) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (7), где моменты c n (T) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGJbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiaadsfacaaIPaaaaa@3610@  и функции g n (T,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiaadsfacaaISaGaeqiXdqNaaGykaaaa@388F@  определяются выражениями (13) и (14) соответственно, будет разрешимой даже в случаях, когда матрица A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbaaaa@3287@  является нулевой или вырожденной.

4. Задача оценивания состояния системы.

Рассмотрим теперь ситуацию, когда динамика некоторой системы описывается системой уравнений (1) при u(t)=f(t)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadshacaaIPaGaaG ypaiaadAgacaaIOaGaamiDaiaaiMcacaaI9aGaaGimaaaa@3AAA@ , но состояние q(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGikaiaadshacaaIPaaaaa@3515@  недоступно для непосредственного измерения, а может быть восстановлено с определённой погрешностью по результатам измерения состояния z(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGikaiaadshacaaIPaaaaa@351E@  другой системы, динамика которой подчиняется одномерному уравнению:

t 0 D t β z(t)=F(t)z(t)+ n=1 N G n (t) q n (t)+Δ(t),t t 0 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWgaaWcbaGaamiDamaaBaaabaGaaG imaaqabaaabeaakiaadseadaqhaaWcbaGaamiDaaqaaiabek7aIbaa kiaadQhacaaIOaGaamiDaiaaiMcacaaI9aGaamOraiaaiIcacaWG0b GaaGykaiaadQhacaaIOaGaamiDaiaaiMcacqGHRaWkdaaeWbqabSqa aiaad6gacaaI9aGaaGymaaqaaiaad6eaa0GaeyyeIuoakiaadEeada WgaaWcbaGaamOBaaqabaGccaaIOaGaamiDaiaaiMcacaWGXbWaaSba aSqaaiaad6gaaeqaaOGaaGikaiaadshacaaIPaGaey4kaSIaeuiLdq KaaGikaiaadshacaaIPaGaaGilaiaaywW7caWG0bGaeyyzImRaamiD amaaBaaaleaacaaIWaaabeaakiaaiYcaaaa@5D9E@                                                                   (16)

где t 0 D t β MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWgaaWcbaGaamiDamaaBaaabaGaaG imaaqabaaabeaakiaadseadaqhaaWcbaGaamiDaaqaaiabek7aIbaa aaa@375B@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  оператор дробного дифференцирования порядка β(0,1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGycqGHiiIZcaaIOaGaaGimai aaiYcacaaIXaGaaGykaaaa@3876@ , понимаемый, как и выше, в смысле либо Капуто, либо Римана MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ Лиувилля; Δ(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoarcaaIOaGaamiDaiaaiMcaaa a@3585@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  внешнее возмущение; F(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbGaaGikaiaadshacaaIPaaaaa@34EA@  и G n (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiaadshacaaIPaaaaa@3614@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  зависящие от времени коэффициенты, n=1,,N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaaGypaiaaigdacaaISaGaeS OjGSKaaGilaiaad6eaaaa@3797@ . Будем далее называть функцию z(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGikaiaadshacaaIPaaaaa@351E@  наблюдением.

Примем, что возмущение Δ(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoarcaaIOaGaamiDaiaaiMcaaa a@3585@  представляет собой последовательность δ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH0oazaaa@3366@  -импульсов, моменты появления которых t i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaadMgaaeqaaa aa@33D4@  подчиняются распределению Пуассона с математическим ожиданием λ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH7oaBaaa@3375@  (как и в [2, § 46]):

Δ(t)= i=0 η i δ(t t i ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoarcaaIOaGaamiDaiaaiMcaca aI9aWaaabCaeqaleaacaWGPbGaaGypaiaaicdaaeaacqGHEisPa0Ga eyyeIuoakiabeE7aOnaaBaaaleaacaWGPbaabeaakiabes7aKjaaiI cacaWG0bGaeyOeI0IaamiDamaaBaaaleaacaWGPbaabeaakiaaiMca caaISaaaaa@470C@                                                                                                                (17)

η i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH3oaAdaWgaaWcbaGaamyAaaqaba aaaa@3487@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  случайные величины, принимающие с одинаковой вероятностью значения ±ε MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHXcqScqaH1oqzaaa@3556@ , ε>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzcaaI+aGaaGimaaaa@34EA@ .

Начальные условия для наблюдения поставим, как и выше, в локальном или нелокальном виде для случаев, когда оператор t 0 D t β MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWgaaWcbaGaamiDamaaBaaabaGaaG imaaqabaaabeaakiaadseadaqhaaWcbaGaamiDaaqaaiabek7aIbaa aaa@375B@  понимается в смысле Капуто или Римана MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ Лиувилля соответственно:

limtt0+t0RLIt1βztz0,                                                                                                    (18)

z( t 0 )= z 0 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGikaiaadshadaWgaaWcba GaaGimaaqabaGccaaIPaGaaGypaiaadQhadaahaaWcbeqaaiaaicda aaGccaaIUaaaaa@397D@                                                                                                                             (19)

Поставим следующую задачу оценивания состояния системы, аналогичную рассмотренной Н. Н. Красовским задаче о «наблюдении в случайных обстоятельствах» для систем целого порядка (см. [2, § 46]): найти оптимальную операцию φ t,z(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAdaWadaqaaiaadshacaaISa GaamOEaiaaiIcacaWG0bGaaGykaaGaay5waiaaw2faaaaa@3A7C@ , восстанавливающую компоненту состояния системы q i (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbWaaSbaaSqaaiaadMgaaeqaaO GaaGikaiaadshacaaIPaaaaa@3639@  по наблюдению z(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGikaiaadshacaaIPaaaaa@351E@  с наименьшей возможной погрешностью w MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3baaaa@32BD@ ,

q i (t)=φ t,z(t) +w, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbWaaSbaaSqaaiaadMgaaeqaaO GaaGikaiaadshacaaIPaGaaGypaiabeA8aQnaadmaabaGaamiDaiaa iYcacaWG6bGaaGikaiaadshacaaIPaaacaGLBbGaayzxaaGaey4kaS Iaam4DaiaaiYcaaaa@424F@                                                                                                              (20)

M{ w 2 }min, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbGaaG4EaiaadEhadaahaaWcbe qaaiaaikdaaaGccaaI9bGaeyOKH4QaciyBaiaacMgacaGGUbGaaGil aaaa@3C03@                                                                                                                  (21)

где M{ w 2 } MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbGaaG4EaiaadEhadaahaaWcbe qaaiaaikdaaaGccaaI9baaaa@368E@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  математическое ожидание погрешности w MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3baaaa@32BD@ . При этом должно выполняться условие w=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3bGaaGypaiaaicdaaaa@343E@  при Δ(t)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoarcaaIOaGaamiDaiaaiMcaca aI9aGaaGimaaaa@3706@ .

Замечание 2. Можно пополнить вектор q(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGikaiaadshacaaIPaaaaa@3515@  компонентой z(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGikaiaadshacaaIPaaaaa@351E@  и в этом случае рассматривать поставленную задачу оценивания состояния системы как задачу восстановления одной из координат нового (пополненного) вектора по набору других.

Используя формулу (4) в одномерном случае и заменяя функции q i (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbWaaSbaaSqaaiaadMgaaeqaaO GaaGikaiaadshacaaIPaaaaa@3639@  и Z ij (t,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGAbWaaSbaaSqaaiaadMgacaWGQb aabeaakiaaiIcacaWG0bGaaGilaiabes8a0jaaiMcaaaa@398C@  на функции z(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGikaiaadshacaaIPaaaaa@351E@  и Q(t,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbGaaGikaiaadshacaaISaGaeq iXdqNaaGykaaaa@3770@ , а неоднородность u i (t)+ f i (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaadMgaaeqaaO GaaGikaiaadshacaaIPaGaey4kaSIaamOzamaaBaaaleaacaWGPbaa beaakiaaiIcacaWG0bGaaGykaaaa@3B8C@  на неоднородность n=1 N G n (t) q n (t)+Δ(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaad6gacaaI9aGaaG ymaaqaaiaad6eaa0GaeyyeIuoakiaadEeadaWgaaWcbaGaamOBaaqa baGccaaIOaGaamiDaiaaiMcacaWGXbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiaadshacaaIPaGaey4kaSIaeuiLdqKaaGikaiaadshacaaI Paaaaa@44CC@ , запишем решение уравнения (16):

z(t)= Q ˜ (t, t 0 ) z 0 + t 0 t Q(t,τ) n=1 N G n (τ) q n (τ)+Δ(τ) dτ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGikaiaadshacaaIPaGaaG ypaiqadgfagaacaiaaiIcacaWG0bGaaGilaiaadshadaWgaaWcbaGa aGimaaqabaGccaaIPaGaamOEamaaCaaaleqabaGaaGimaaaakiabgU caRmaapehabeWcbaGaamiDamaaBaaabaGaaGimaaqabaaabaGaamiD aaqdcqGHRiI8aOGaamyuaiaaiIcacaWG0bGaaGilaiabes8a0jaaiM cadaWadaqaamaaqahabeWcbaGaamOBaiaai2dacaaIXaaabaGaamOt aaqdcqGHris5aOGaam4ramaaBaaaleaacaWGUbaabeaakiaaiIcacq aHepaDcaaIPaGaamyCamaaBaaaleaacaWGUbaabeaakiaaiIcacqaH epaDcaaIPaGaey4kaSIaeuiLdqKaaGikaiabes8a0jaaiMcaaiaawU facaGLDbaacaWGKbGaeqiXdqNaaGilaaaa@644E@                                                                      (22)

где Q ˜ (t, t 0 )=Q(t, t 0 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGrbGbaGaacaaIOaGaamiDaiaaiY cacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGykaiaai2dacaWGrbGa aGikaiaadshacaaISaGaamiDamaaBaaaleaacaaIWaaabeaakiaaiM caaaa@3E3D@  в случае, когда оператор дробного дифференцирования в уравнении (16) понимается в смысле Римана MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ Лиувилля, и Q ˜ (t, t 0 )= C Q(t, t 0 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGrbGbaGaacaaIOaGaamiDaiaaiY cacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGykaiaai2dadaahaaWc beqaaiaadoeaaaGccaWGrbGaaGikaiaadshacaaISaGaamiDamaaBa aaleaacaaIWaaabeaakiaaiMcaaaa@3F3C@  в случае, когда оператор дробного дифференцирования в уравнении (16) понимается в смысле Капуто. Функции Q(t, t 0 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbGaaGikaiaadshacaaISaGaam iDamaaBaaaleaacaaIWaaabeaakiaaiMcaaaa@3794@  и C Q(t, t 0 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaadoeaaaGccaWGrb GaaGikaiaadshacaaISaGaamiDamaaBaaaleaacaaIWaaabeaakiaa iMcaaaa@3893@  в общем случае вычисляются как решение однородного уравнения (16) с оператором дробного дифференцирования Римана MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ Лиувилля и Капуто соответственно (см. [5, Sec. 4]). Для функций Q(t,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbGaaGikaiaadshacaaISaGaeq iXdqNaaGykaaaa@3770@  справедлива оценка вида (5).

Первое слагаемое в формуле (22) не зависит ни от состояния q(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGikaiaadshacaaIPaaaaa@3515@ , ни от возмущения Δ(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoarcaaIOaGaamiDaiaaiMcaaa a@3585@ , поэтому можно рассматривать задачу оценивания для функции

Ξ(t)=z(t) Q ˜ (t, t 0 ) z 0 = t 0 t Q(t,τ) n=1 N G n (τ) q n (τ)+Δ(τ) dτ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHEoawcaaIOaGaamiDaiaaiMcaca aI9aGaamOEaiaaiIcacaWG0bGaaGykaiabgkHiTiqadgfagaacaiaa iIcacaWG0bGaaGilaiaadshadaWgaaWcbaGaaGimaaqabaGccaaIPa GaamOEamaaCaaaleqabaGaaGimaaaakiaai2dadaWdXbqabSqaaiaa dshadaWgaaqaaiaaicdaaeqaaaqaaiaadshaa0Gaey4kIipakiaadg facaaIOaGaamiDaiaaiYcacqaHepaDcaaIPaWaamWaaeaadaaeWbqa bSqaaiaad6gacaaI9aGaaGymaaqaaiaad6eaa0GaeyyeIuoakiaadE eadaWgaaWcbaGaamOBaaqabaGccaaIOaGaeqiXdqNaaGykaiaadgha daWgaaWcbaGaamOBaaqabaGccaaIOaGaeqiXdqNaaGykaiabgUcaRi abfs5aejaaiIcacqaHepaDcaaIPaaacaGLBbGaayzxaaGaamizaiab es8a0jaai6caaaa@6904@                                                            (23)

Соответственно, поставленная выше задача оптимального оценивания состояния может быть переформулирована: найти оптимальную операцию φ Ξ(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAdaWadaqaaiabf65ayjaaiI cacaWG0bGaaGykaaGaay5waiaaw2faaaaa@3952@ , такую что

φ t 0 t Q(t,τ) n=1 N G n (τ) q n (τ)dτ = q i (t), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAdaWadaqaamaapehabeWcba GaamiDamaaBaaabaGaaGimaaqabaaabaGaamiDaaqdcqGHRiI8aOGa amyuaiaaiIcacaWG0bGaaGilaiabes8a0jaaiMcadaaeWbqabSqaai aad6gacaaI9aGaaGymaaqaaiaad6eaa0GaeyyeIuoakiaadEeadaWg aaWcbaGaamOBaaqabaGccaaIOaGaeqiXdqNaaGykaiaadghadaWgaa WcbaGaamOBaaqabaGccaaIOaGaeqiXdqNaaGykaiaadsgacqaHepaD aiaawUfacaGLDbaacaaI9aGaamyCamaaBaaaleaacaWGPbaabeaaki aaiIcacaWG0bGaaGykaiaaiYcaaaa@5900@                                                                                      (24)

M φ t 0 t Q(t,τ)Δ(τ)dτ 2 min. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaiWaaeaadaWadaqaaiabeA 8aQnaadmaabaWaa8qCaeqaleaacaWG0bWaaSbaaeaacaaIWaaabeaa aeaacaWG0baaniabgUIiYdGccaWGrbGaaGikaiaadshacaaISaGaeq iXdqNaaGykaiabfs5aejaaiIcacqaHepaDcaaIPaGaamizaiabes8a 0bGaay5waiaaw2faaaGaay5waiaaw2faamaaCaaaleqabaGaaGOmaa aaaOGaay5Eaiaaw2haaiabgkziUkGac2gacaGGPbGaaiOBaiaai6ca aaa@52FD@                                                                                   (25)

Будем искать оптимальную операцию φ t,z(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAdaWadaqaaiaadshacaaISa GaamOEaiaaiIcacaWG0bGaaGykaaGaay5waiaaw2faaaaa@3A7C@  в виде

φ t,z(t) =φ Ξ(t) = t 0 t Ξ(τ)dV(τ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAdaWadaqaaiaadshacaaISa GaamOEaiaaiIcacaWG0bGaaGykaaGaay5waiaaw2faaiaai2dacqaH gpGAdaWadaqaaiabf65ayjaaiIcacaWG0bGaaGykaaGaay5waiaaw2 faaiaai2dadaWdXbqabSqaaiaadshadaWgaaqaaiaaicdaaeqaaaqa aiaadshaa0Gaey4kIipakiabf65ayjaaiIcacqaHepaDcaaIPaGaam izaiaadAfacaaIOaGaeqiXdqNaaGykaiaaiYcaaaa@532E@                                                                                        (26)

где V(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbGaaGikaiaadshacaaIPaaaaa@34FA@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  некоторая функция с ограниченным изменением.

Теорема 2. Пусть G n (τ) C γ n 1 ={f(t)=(t t 0 ) γ n f ˜ (t), f ˜ C 1 ( t 0 ,)} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiabes8a0jaaiMcacqGHiiIZcaWGdbWaa0baaSqaaiabeo7a NnaaBaaabaGaamOBaaqabaaabaGaaGymaaaakiaai2dacaaI7bGaam OzaiaaiIcacaWG0bGaaGykaiaai2dacaaIOaGaamiDaiabgkHiTiaa dshadaWgaaWcbaGaaGimaaqabaGccaaIPaWaaWbaaSqabeaacqaHZo WzdaWgaaqaaiaad6gaaeqaaaaakiqadAgagaacaiaaiIcacaWG0bGa aGykaiaaiYcaceWGMbGbaGaacqGHiiIZcaWGdbWaaWbaaSqabeaaca aIXaaaaOGaaGikaiaadshadaWgaaWcbaGaaGimaaqabaGccaaISaGa eyOhIuQaaGykaiaai2haaaa@599D@ , G n (τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiabes8a0jaaiMcaaaa@36E0@  отлична от константы 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaaaaa@327B@  на интервале ( t 0 ,t] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamiDamaaBaaaleaacaaIWa aabeaakiaaiYcacaWG0bGaaGyxaaaa@36F2@ , j=1 N Z ˜ ij (t, t 0 ) q j 0 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaadQgacaaI9aGaaG ymaaqaaiaad6eaa0GaeyyeIuoakiqadQfagaacamaaBaaaleaacaWG PbGaamOAaaqabaGccaaIOaGaamiDaiaaiYcacaWG0bWaaSbaaSqaai aaicdaaeqaaOGaaGykaiaadghadaqhaaWcbaGaamOAaaqaaiaaicda aaGccqGHGjsUcaaIWaaaaa@44A7@  и выполнены следующие условия:

γ n + α n > 1 2 ,n=1,,N. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHZoWzdaWgaaWcbaGaamOBaaqaba GccqGHRaWkcqaHXoqydaWgaaWcbaGaamOBaaqabaGccaaI+aWaaSaa aeaacaaIXaaabaGaaGOmaaaacaaISaGaaGzbVlaad6gacaaI9aGaaG ymaiaaiYcacqWIMaYscaaISaGaamOtaiaai6caaaa@435C@                                                                                                 (27)

Тогда поставленная задача оценивания (24) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (25) при фиксированном t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32BA@  эквивалентна следующей проблеме моментов: найти такую функцию U(t,ζ) L 2 (0,t] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGvbGaaGikaiaadshacaaISaGaeq OTdONaaGykaiabgIGiolaadYeadaWgaaWcbaGaaGOmaaqabaGccaaI OaGaaGimaiaaiYcacaWG0bGaaGyxaaaa@3EB5@  с минимальной нормой, что

t 0 t g(ζ)U(t,ζ)dζ= j=1 N Z ˜ ij (t, t 0 ) q j 0 ,ζ( t 0 ,t], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiaadshadaWgaaqaai aaicdaaeqaaaqaaiaadshaa0Gaey4kIipakiaadEgacaaIOaGaeqOT dONaaGykaiaadwfacaaIOaGaamiDaiaaiYcacqaH2oGEcaaIPaGaam izaiabeA7a6jaai2dadaaeWbqabSqaaiaadQgacaaI9aGaaGymaaqa aiaad6eaa0GaeyyeIuoakiqadQfagaacamaaBaaaleaacaWGPbGaam OAaaqabaGccaaIOaGaamiDaiaaiYcacaWG0bWaaSbaaSqaaiaaicda aeqaaOGaaGykaiaadghadaqhaaWcbaGaamOAaaqaaiaaicdaaaGcca aISaGaaGzbVlabeA7a6jabgIGiolaaiIcacaWG0bWaaSbaaSqaaiaa icdaaeqaaOGaaGilaiaadshacaaIDbGaaGilaaaa@5FF9@                                                                           (28)

g(ζ)= n=1 N G n (ζ) k=1 N Z ˜ nk (ζ, t 0 ) q k 0 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbGaaGikaiabeA7a6jaaiMcaca aI9aWaaabCaeqaleaacaWGUbGaaGypaiaaigdaaeaacaWGobaaniab ggHiLdGccaWGhbWaaSbaaSqaaiaad6gaaeqaaOGaaGikaiabeA7a6j aaiMcadaaeWbqabSqaaiaadUgacaaI9aGaaGymaaqaaiaad6eaa0Ga eyyeIuoakiqadQfagaacamaaBaaaleaacaWGUbGaam4AaaqabaGcca aIOaGaeqOTdONaaGilaiaadshadaWgaaWcbaGaaGimaaqabaGccaaI PaGaamyCamaaDaaaleaacaWGRbaabaGaaGimaaaakiaaiYcaaaa@5329@                                                                                             (29)

U(t,ζ)= ζ t Q(τ,ζ)dV(τ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGvbGaaGikaiaadshacaaISaGaeq OTdONaaGykaiaai2dadaWdXbqabSqaaiabeA7a6bqaaiaadshaa0Ga ey4kIipakiaadgfacaaIOaGaeqiXdqNaaGilaiabeA7a6jaaiMcaca WGKbGaamOvaiaaiIcacqaHepaDcaaIPaGaaGOlaaaa@4976@                                                                                                        (30)

Доказательство. Перепишем формулу (24) с учётом (26) и поменяем в полученном выражении порядок интегрирования:

t 0 t t 0 τ Q(τ,ζ) n=1 N G n (ζ) q n (ζ)dζ dV(τ)= t 0 t n=1 N G n (ζ) q n (ζ)dζ ζ t Q(τ,ζ)dV(τ) = q i (t). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiaadshadaWgaaqaai aaicdaaeqaaaqaaiaadshaa0Gaey4kIipakmaadmaabaWaa8qCaeqa leaacaWG0bWaaSbaaeaacaaIWaaabeaaaeaacqaHepaDa0Gaey4kIi pakiaadgfacaaIOaGaeqiXdqNaaGilaiabeA7a6jaaiMcadaaeWbqa bSqaaiaad6gacaaI9aGaaGymaaqaaiaad6eaa0GaeyyeIuoakiaadE eadaWgaaWcbaGaamOBaaqabaGccaaIOaGaeqOTdONaaGykaiaadgha daWgaaWcbaGaamOBaaqabaGccaaIOaGaeqOTdONaaGykaiaadsgacq aH2oGEaiaawUfacaGLDbaacaWGKbGaamOvaiaaiIcacqaHepaDcaaI PaGaaGypamaapehabeWcbaGaamiDamaaBaaabaGaaGimaaqabaaaba GaamiDaaqdcqGHRiI8aOWaaabCaeqaleaacaWGUbGaaGypaiaaigda aeaacaWGobaaniabggHiLdGccaWGhbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiabeA7a6jaaiMcacaWGXbWaaSbaaSqaaiaad6gaaeqaaOGa aGikaiabeA7a6jaaiMcacaWGKbGaeqOTdO3aamWaaeaadaWdXbqabS qaaiabeA7a6bqaaiaadshaa0Gaey4kIipakiaadgfacaaIOaGaeqiX dqNaaGilaiabeA7a6jaaiMcacaWGKbGaamOvaiaaiIcacqaHepaDca aIPaaacaGLBbGaayzxaaGaaGypaiaadghadaWgaaWcbaGaamyAaaqa baGccaaIOaGaamiDaiaaiMcacaaIUaaaaa@8E04@                                    (31)

Внутренний интеграл в полученном выражении представляет собой функцию U(t,ζ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGvbGaaGikaiaadshacaaISaGaeq OTdONaaGykaaaa@376C@  (см. (30)). Тогда будем иметь

t 0 t U(t,ζ) n=1 N G n (ζ) q n (ζ)dζ= q i (t). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiaadshadaWgaaqaai aaicdaaeqaaaqaaiaadshaa0Gaey4kIipakiaadwfacaaIOaGaamiD aiaaiYcacqaH2oGEcaaIPaWaaabCaeqaleaacaWGUbGaaGypaiaaig daaeaacaWGobaaniabggHiLdGccaWGhbWaaSbaaSqaaiaad6gaaeqa aOGaaGikaiabeA7a6jaaiMcacaWGXbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiabeA7a6jaaiMcacaWGKbGaeqOTdONaaGypaiaadghadaWg aaWcbaGaamyAaaqabaGccaaIOaGaamiDaiaaiMcacaaIUaaaaa@5537@                                                                                                (32)

Функция q i (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbWaaSbaaSqaaiaadMgaaeqaaO GaaGikaiaadshacaaIPaaaaa@3639@  является решением уравнения (1) при u i (t)= f i (t)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaadMgaaeqaaO GaaGikaiaadshacaaIPaGaaGypaiaadAgadaWgaaWcbaGaamyAaaqa baGccaaIOaGaamiDaiaaiMcacaaI9aGaaGimaaaa@3CF2@  с начальным условием (2) или (3) и может быть записана в явном виде с помощью формулы (4). Подставив получившееся выражение в уравнение (32) и выражение в правой части отличным от нуля, получим выражение (28), где функция g(ζ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbGaaGikaiabeA7a6jaaiMcaaa a@35CF@  определяется формулой (29).

Рассмотрим теперь величину в фигурных скобках в выражении (25). Используя выражение (26), можно, по аналогии с выражением (31), поменять порядок интегрирования и получить формулу:

φ t 0 t Q(t,τ)Δ(τ)dτ 2 = t 0 t Δ(ζ)U(t,ζ)dζ 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWadaqaaiabeA8aQnaadmaabaWaa8 qCaeqaleaacaWG0bWaaSbaaeaacaaIWaaabeaaaeaacaWG0baaniab gUIiYdGccaWGrbGaaGikaiaadshacaaISaGaeqiXdqNaaGykaiabfs 5aejaaiIcacqaHepaDcaaIPaGaamizaiabes8a0bGaay5waiaaw2fa aaGaay5waiaaw2faamaaCaaaleqabaGaaGOmaaaakiaai2dadaWada qaamaapehabeWcbaGaamiDamaaBaaabaGaaGimaaqabaaabaGaamiD aaqdcqGHRiI8aOGaeuiLdqKaaGikaiabeA7a6jaaiMcacaWGvbGaaG ikaiaadshacaaISaGaeqOTdONaaGykaiaadsgacqaH2oGEaiaawUfa caGLDbaadaahaaWcbeqaaiaaikdaaaGccaaIUaaaaa@6101@

Возмущение (17), как указывалось выше, представляет собой последовательность δ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH0oazaaa@3366@  -импульсов, моменты появления которых подчиняются распределению Пуассона, а амплитуды с одинаковой вероятностью принимают значение ±ε MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHXcqScqaH1oqzaaa@3556@ . В [2, § 46] было показано, что для такой модели возмущения справедливо соотношение

M t 0 t Δ(ζ)U(t,ζ)dζ 2 = ε 2 λ t 0 t U 2 (t,ζ)dζ= ε 2 λU L 2 ( t 0 ,t] 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaiWaaeaadaWadaqaamaape habeWcbaGaamiDamaaBaaabaGaaGimaaqabaaabaGaamiDaaqdcqGH RiI8aOGaeuiLdqKaaGikaiabeA7a6jaaiMcacaWGvbGaaGikaiaads hacaaISaGaeqOTdONaaGykaiaadsgacqaH2oGEaiaawUfacaGLDbaa daahaaWcbeqaaiaaikdaaaaakiaawUhacaGL9baacaaI9aGaeqyTdu 2aaWbaaSqabeaacaaIYaaaaOGaeq4UdW2aa8qCaeqaleaacaWG0bWa aSbaaeaacaaIWaaabeaaaeaacaWG0baaniabgUIiYdGccaWGvbWaaW baaSqabeaacaaIYaaaaOGaaGikaiaadshacaaISaGaeqOTdONaaGyk aiaadsgacqaH2oGEcaaI9aGaeqyTdu2aaWbaaSqabeaacaaIYaaaaO Gaeq4UdWweeuuDJXwAKbsr4rNCHbaceaGae8xjIaLaamyvaiab=vIi qnaaDaaaleaacaWGmbWaaSbaaeaacaaIYaaabeaacaaIOaGaamiDam aaBaaabaGaaGimaaqabaGaaGilaiaadshacaaIDbaabaGaaGOmaaaa kiaai6caaaa@7294@                                                      (33)

Таким образом, требование минимизации погрешности (25) в данном случае эквивалентно требованию минимизации нормы функции U(t,ζ) L 2 ( t 0 ,t] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGvbGaaGikaiaadshacaaISaGaeq OTdONaaGykaiabgIGiolaadYeadaWgaaWcbaGaaGOmaaqabaGccaaI OaGaamiDamaaBaaaleaacaaIWaaabeaakiaaiYcacaWG0bGaaGyxaa aa@3FE4@ .

Итак, показано, что исходная задача (24) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (25) при фиксированном t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32BA@  эквивалентна одномерной проблеме моментов вида (28) для функции U(t,ζ) L 2 ( t 0 ,t] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGvbGaaGikaiaadshacaaISaGaeq OTdONaaGykaiabgIGiolaadYeadaWgaaWcbaGaaGOmaaqabaGccaaI OaGaamiDamaaBaaaleaacaaIWaaabeaakiaaiYcacaWG0bGaaGyxaa aa@3FE4@ , определяемой формулой (30), относительно известной функции g(ζ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbGaaGikaiabeA7a6jaaiMcaaa a@35CF@ , определяемой формулой (29), и момента c= j=1 N Z ˜ ij (t, t 0 ) q j 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGJbGaaGypamaaqahabeWcbaGaam OAaiaai2dacaaIXaaabaGaamOtaaqdcqGHris5aOGabmOwayaaiaWa aSbaaSqaaiaadMgacaWGQbaabeaakiaaiIcacaWG0bGaaGilaiaads hadaWgaaWcbaGaaGimaaqabaGccaaIPaGaamyCamaaDaaaleaacaWG QbaabaGaaGimaaaaaaa@43CB@ , который по условию теоремы отличен от нуля.

Поскольку j=1 N Z ˜ ij (t, t 0 ) q j 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaadQgacaaI9aGaaG ymaaqaaiaad6eaa0GaeyyeIuoakiqadQfagaacamaaBaaaleaacaWG PbGaamOAaaqabaGccaaIOaGaamiDaiaaiYcacaWG0bWaaSbaaSqaai aaicdaaeqaaOGaaGykaiaadghadaqhaaWcbaGaamOAaaqaaiaaicda aaaaaa@421C@  и G n (τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiabes8a0jaaiMcaaaa@36E0@  отлична от константы 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaaaaa@327B@ , то функция g(ζ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbGaaGikaiabeA7a6jaaiMcaaa a@35CF@  на полуинтервале ( t 0 ,t] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamiDamaaBaaaleaacaaIWa aabeaakiaaiYcacaWG0bGaaGyxaaaa@36F2@  отлична от нуля. Для нормы функции g(ζ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbGaaGikaiabeA7a6jaaiMcaaa a@35CF@  в пространстве L 2 ( t 0 ,t] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiaadshadaWgaaWcbaGaaGimaaqabaGccaaISaGaamiDaiaa i2faaaa@38B5@  справедливо неравенство

g L 2 ( t 0 ,t] n,k=1 N q j 0 G n (ζ) Z ˜ nk (ζ, t 0 ) L 2 ( t 0 ,t] . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWGNbGae8xjIa1aaSbaaSqaaiaadYeadaWgaaqaaiaaikdaaeqa aiaaiIcacaWG0bWaaSbaaeaacaaIWaaabeaacaaISaGaamiDaiaai2 faaeqaaOGaeyizIm6aaabCaeqaleaacaWGUbGaaGilaiaadUgacaaI 9aGaaGymaaqaaiaad6eaa0GaeyyeIuoakmaaemaabaGaamyCamaaDa aaleaacaWGQbaabaGaaGimaaaaaOGaay5bSlaawIa7aiab=vIiqjaa dEeadaWgaaWcbaGaamOBaaqabaGccaaIOaGaeqOTdONaaGykaiqadQ fagaacamaaBaaaleaacaWGUbGaam4AaaqabaGccaaIOaGaeqOTdONa aGilaiaadshadaWgaaWcbaGaaGimaaqabaGccaaIPaGae8xjIa1aaS baaSqaaiaadYeadaWgaaqaaiaaikdaaeqaaiaaiIcacaWG0bWaaSba aeaacaaIWaaabeaacaaISaGaamiDaiaai2faaeqaaOGaaGOlaaaa@6737@                                                                   (34)

По условию теоремы G n (τ) C γ n 1 ={f(t)=(t t 0 ) γ n f ˜ (t), f ˜ C 1 ( t 0 ,)} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiabes8a0jaaiMcacqGHiiIZcaWGdbWaa0baaSqaaiabeo7a NnaaBaaabaGaamOBaaqabaaabaGaaGymaaaakiaai2dacaaI7bGaam OzaiaaiIcacaWG0bGaaGykaiaai2dacaaIOaGaamiDaiabgkHiTiaa dshadaWgaaWcbaGaaGimaaqabaGccaaIPaWaaWbaaSqabeaacqaHZo WzdaWgaaqaaiaad6gaaeqaaaaakiqadAgagaacaiaaiIcacaWG0bGa aGykaiaaiYcaceWGMbGbaGaacqGHiiIZcaWGdbWaaWbaaSqabeaaca aIXaaaaOGaaGikaiaadshadaWgaaWcbaGaaGimaaqabaGccaaISaGa eyOhIuQaaGykaiaai2haaaa@599D@ , также справедлива оценка (5); следовательно, при выполнении условий (27) выражение в правой части неравенства (34) будет ограничено. Следовательно, норма функции g(ζ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbGaaGikaiabeA7a6jaaiMcaaa a@35CF@  в пространстве L 2 ( t 0 ,t] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiaadshadaWgaaWcbaGaaGimaaqabaGccaaISaGaamiDaiaa i2faaaa@38B5@  будет определена. Теорема доказана.

Следствие 3. Можно непосредственно убедиться, что в одномерном случае задача условной оптимизации (8) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A96@ (9) имеет единственное решение:

Λ= |c| g L 2 ( t 0 ,t] . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHBoatcaaI9aWaaSaaaeaacaaI8b Gaam4yaiaaiYhaaeaarqqr1ngBPrgifHhDYfgaiqaacqWFLicucaWG NbGae8xjIafaamaaBaaaleaacaWGmbWaaSbaaeaacaaIYaaabeaaca aIOaGaamiDamaaBaaabaGaaGimaaqabaGaaGilaiaadshacaaIDbaa beaakiaai6caaaa@4678@

Если теорема 2 справедлива и норма g L 2 ( t 0 ,t] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWGNbGae8xjIa1aaSbaaSqaaiaadYeadaWgaaqaaiaaikdaaeqa aiaaiIcacaWG0bWaaSbaaeaacaaIWaaabeaacaaISaGaamiDaiaai2 faaeqaaaaa@4076@  определена, то Λ>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHBoatcaaI+aGaaGimaaaa@34B8@ , и проблема моментов (28) разрешима.

Замечание 3. Если рассматривать более общий случай U L p ( t 0 ,t] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGvbGaeyicI4SaamitamaaBaaale aacaWGWbaabeaakiaaiIcacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGa aGilaiaadshacaaIDbaaaa@3B4C@ , p>1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbGaaGOpaiaaigdaaaa@3439@ , g L p ( t 0 ,t] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbGaeyicI4SaamitamaaBaaale aaceWGWbGbauaaaeqaaOGaaGikaiaadshadaWgaaWcbaGaaGimaaqa baGccaaISaGaamiDaiaai2faaaa@3B6A@ , p 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGWbGbauaacqGHLjYScaaIXaaaaa@3543@ , 1/p+1/ p =1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIXaGaaG4laiaadchacqGHRaWkca aIXaGaaG4laiqadchagaqbaiaai2dacaaIXaaaaa@3903@ , то условия (27) запишутся в виде

γ n + α n > 1 p ,n=1,,N. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHZoWzdaWgaaWcbaGaamOBaaqaba GccqGHRaWkcqaHXoqydaWgaaWcbaGaamOBaaqabaGccaaI+aWaaSaa aeaacaaIXaaabaGaamiCaaaacaaISaGaaGzbVlaad6gacaaI9aGaaG ymaiaaiYcacqWIMaYscaaISaGaamOtaiaai6caaaa@4395@

×

Об авторах

Сергей Сергеевич Постнов

Институт проблем управления им. В. А. Трапезникова

Автор, ответственный за переписку.
Email: postnov.sergey@inbox.ru
Россия, Москва

Список литературы

  1. Бутковский А. Г. Теория оптимального управления системами с распределенными параметрами. — М.: Наука, 1965.
  2. Красовский Н. Н. Теория управления движением. — М.: Наука, 1968. 114
  3. Кубышкин В. А., Постнов С. С. Задача оптимального управления линейной стационарной системой дробного порядка в форме проблемы моментов: постановка и исследование// Автомат. телемех. — 2014. — № 5. — С. 3–17.
  4. Постнов С. С. Об использовании метода моментов для оптимального оценивания состояния систем дробного порядка с возмущением импульсного типа// Пробл. мат. анал. — 2023. — № 121. — С. 93–102.
  5. Bourdin L. Cauchy–Lipschitz theory for fractional multi-order dynamics: State-transition matrices, Duhamel formulas and duality theorems// Differ. Integral Equations. — 2018. — 31, № 7–8. — P. 559–594.
  6. Kilbas A. A., Srivastava H. M., Trujillo J. J. Theory and Applications of Fractional Differential Equations. — Amsterdam: Elsevier, 2006.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Постнов С.С., 2024

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).