О построении решения неоднородного бигармонического уравнения в задачах механики тонких изотропных пластин

Обложка

Цитировать

Полный текст

Аннотация

Предложен метод для построения решения неоднородного бигармонического уравнения в приложении к задачам механики тонких изотропных пластин. Метод основан на полиномиальной аппроксимации Чебышева смешанной частной производной восьмого порядка искомой функции. В качестве базисных функций использованы многочлены Чебышева первого рода. Предложенный метод применен для моделирования изгиба упругой изотропной прямоугольной пластины, находящейся под действием поперечной нагрузки. Проведен анализ результатов, полученных методом коллокации с применением интегрального подхода и в его отсутствии при использовании нулей многочленов Чебышева первого рода в качестве точек коллокации.

Полный текст

1. Введение.

Многие практически значимые инженерные проблемы, связанные с деформацией тонкой пластины, приводят к необходимости решения неоднородного бигармонического уравнения (см. [1–5,8,10,13]). Построение его решения вызывает ряд трудностей, в частности, связанных с наличием в этом уравнении производных четвертого порядка, оказывающих существенное влияние на обусловленность исходных краевых задач (см. [5]). При этом достижение требуемой степени детализации области интегрирования предполагает решение систем линейных уравнений очень высокого порядка с неразреженной матрицей (см. [4]). Одним из перспективных подходов к решению проблемы является развитие методов полиномиальной аппроксимации.

Представленная работа посвящена построению решения неоднородного бигармонического уравнения с использованием системы ортогональных многочленов Чебышева первого рода. Выбор в качестве базисных функций многочленов Чебышева обусловлен тем, что такое приближение минимизирует количество членов усеченного ряда, необходимых для аппроксимации решения [6, 9]. В представленной работе предложено развитие метода полиномиальной аппроксимации Чебышева путем представления в виде усеченного ряда по полиномам Чебышева смешанной производной восьмого порядка искомой функции и использования в качестве точек коллокации нулей этих полиномов.

2. Постановка задачи.

Рассмотрим задачу моделирования прогиба упругой изотропной прямоугольной пластины, закрепленной на краях x=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGypaiaaicdaaaa@343F@ , x= d 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGypaiaadsgadaWgaaWcba GaaGymaaqabaaaaa@3555@ , y=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5bGaaGypaiaaicdaaaa@3440@  и y= d 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5bGaaGypaiaadsgadaWgaaWcba GaaGOmaaqabaaaaa@3557@  и находящейся под действием поперечной нагрузки q(x,y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGikaiaadIhacaaISaGaam yEaiaaiMcaaaa@36CD@ . Пластина предполагается тонкой. В этом случае прогиб срединной поверхности пластины ω(x,y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDcaaIOaGaamiEaiaaiYcaca WG5bGaaGykaaaa@37A4@  будем описывать на основе бигармонического уравнения Софи Жермен MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ Лагранжа, которое запишем в следующем виде (см. [12]):

4 ω x 4 +2 4 ω x 2 y 2 + 4 ω y 4 = q D , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2oaaCaaaleqaba GaaGinaaaakiabeM8a3bqaaiabgkGi2kaadIhadaahaaWcbeqaaiaa isdaaaaaaOGaey4kaSIaaGOmamaalaaabaGaeyOaIy7aaWbaaSqabe aacaaI0aaaaOGaeqyYdChabaGaeyOaIyRaamiEamaaCaaaleqabaGa aGOmaaaakiabgkGi2kaadMhadaahaaWcbeqaaiaaikdaaaaaaOGaey 4kaSYaaSaaaeaacqGHciITdaahaaWcbeqaaiaaisdaaaGccqaHjpWD aeaacqGHciITcaWG5bWaaWbaaSqabeaacaaI0aaaaaaakiaai2dada WcaaqaaiaadghaaeaacaWGebaaaiaaiYcaaaa@5193@                                                                         (1)

где D=E h 3 /(12(1 ν 2 )) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebGaaGypaiaadweacaWGObWaaW baaSqabeaacaaIZaaaaOGaaG4laiaaiIcacaaIXaGaaGOmaiaaiIca caaIXaGaeyOeI0IaeqyVd42aaWbaaSqabeaacaaIYaaaaOGaaGykai aaiMcaaaa@3F49@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  цилиндрическая жесткость пластины, h MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObaaaa@32AE@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  толщина пластины, E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbaaaa@328B@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  модуль Юнга, ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBaaa@3379@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  коэффициент Пуассона.

В качестве граничного условия используем защемление по каждому краю прямоугольной области (см. [12]):

ω=0, ω x =0,x=0, d 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDcaaI9aGaaGimaiaaiYcaca aMf8+aaSaaaeaacqGHciITcqaHjpWDaeaacqGHciITcaWG4baaaiaa i2dacaaIWaGaaGilaiaaywW7caWG4bGaaGypaiaaicdacaaISaGaaG jcVlaadsgadaWgaaWcbaGaaGymaaqabaGccaaISaaaaa@4813@                                                                                                 (2)

ω=0, ω y =0,y=0, d 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDcaaI9aGaaGimaiaaiYcaca aMf8+aaSaaaeaacqGHciITcqaHjpWDaeaacqGHciITcaWG5baaaiaa i2dacaaIWaGaaGilaiaaywW7caWG5bGaaGypaiaaicdacaaISaGaaG jcVlaadsgadaWgaaWcbaGaaGOmaaqabaGccaaIUaaaaa@4818@                                                                                                 (3)

3. Построение решения краевой задачи.

Представим смешанную производную восьмого порядка функции ω(x,y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDcaaIOaGaamiEaiaaiYcaca WG5bGaaGykaaaa@37A4@  в виде усеченного ряда по полиномам Чебышева первого рода { T j i ( x i )=cos( j i arccos x i ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI7bGaamivamaaBaaaleaacaWGQb WaaSbaaeaacaWGPbaabeaaaeqaaOGaaGikaiaadIhadaWgaaWcbaGa amyAaaqabaGccaaIPaGaaGypaiGacogacaGGVbGaai4CaiaaiIcaca WGQbWaaSbaaSqaaiaadMgaaeqaaOGaciyyaiaackhacaGGJbGaai4y aiaac+gacaGGZbGaamiEamaaBaaaleaacaWGPbaabeaakiaaiMcaaa a@4821@ , j i = 0, n i ¯ )} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbWaaSbaaSqaaiaadMgaaeqaaO GaaGypamaanaaabaGaaGimaiaaiYcacaWGUbWaaSbaaSqaaiaadMga aeqaaaaakiaaiMcacaaI9baaaa@39ED@  (см. [9]) по каждой введенной новой переменной x i [1,1] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaadMgaaeqaaO GaeyicI4SaaG4waiabgkHiTiaaigdacaaISaGaaGymaiaai2faaaa@3A4B@  ( n i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbWaaSbaaSqaaiaadMgaaeqaaO GaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaa cqWFveItaaa@4007@ , i=1,2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaigdacaaISaGaaG Omaaaa@35A3@  ):

x 1 = 2 d 1 x1, x 2 = 2 d 2 y1. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaO GaaGypamaalaaabaGaaGOmaaqaaiaadsgadaWgaaWcbaGaaGymaaqa baaaaOGaamiEaiabgkHiTiaaigdacaaISaGaaGzbVlaadIhadaWgaa WcbaGaaGOmaaqabaGccaaI9aWaaSaaaeaacaaIYaaabaGaamizamaa BaaaleaacaaIYaaabeaaaaGccaWG5bGaeyOeI0IaaGymaiaai6caaa a@44C0@                                                                                                 (4)

Тогда

8 w( x 1 , x 2 ) x 1 4 x 2 4 = j i =0 i=1,2 n i a j 1 j 2 T j 1 ( x 1 ) T j 2 ( x 2 )=( T 1 ( x 1 ) I s,1 )( T 2 ( x 2 ) I s,2 )A, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2oaaCaaaleqaba GaaGioaaaakiaadEhacaaIOaGaamiEamaaBaaaleaacaaIXaaabeaa kiaaiYcacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaGykaaqaaiabgk Gi2kaadIhadaWgaaWcbaGaaGymaaqabaGcdaahaaWcbeqaaiaaisda aaGccqGHciITcaWG4bWaaSbaaSqaaiaaikdaaeqaaOWaaWbaaSqabe aacaaI0aaaaaaakiaai2dadaaeWbqabSqaaqaaceqaaiaadQgadaWg aaqaaiaadMgaaeqaaiaai2dacaaIWaaabaGaamyAaiaai2dacaaIXa GaaGilaiaaikdaaaaabaGaamOBamaaBaaabaGaamyAaaqabaaaniab ggHiLdGccaWGHbWaaSbaaSqaaiaadQgadaWgaaqaaiaaigdaaeqaai aadQgadaWgaaqaaiaaikdaaeqaaaqabaGccaWGubWaaSbaaSqaaiaa dQgadaWgaaqaaiaaigdaaeqaaaqabaGccaaIOaGaamiEamaaBaaale aacaaIXaaabeaakiaaiMcacaWGubWaaSbaaSqaaiaadQgadaWgaaqa aiaaikdaaeqaaaqabaGccaaIOaGaamiEamaaBaaaleaacaaIYaaabe aakiaaiMcacaaI9aGaaGikaGqabiaa=rfadaWgaaWcbaGaaGymaaqa baGccaaIOaGaamiEamaaBaaaleaacaaIXaaabeaakiaaiMcacqWIyi YBcaWFjbWaaSbaaSqaaiaadohacaaISaGaaGymaaqabaGccaaIPaGa ey4LIqSaaGikaiaa=rfadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaam iEamaaBaaaleaacaaIYaaabeaakiaaiMcacqWIyiYBcaWFjbWaaSba aSqaaiaadohacaaISaGaaGOmaaqabaGccaaIPaGaa8xqaiaaiYcaaa a@7BDD@                                                (5)

где T i ( x i ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFubWaaSbaaSqaaiaadMgaae qaaOGaaGikaiaadIhadaWgaaWcbaGaamyAaaqabaGccaaIPaaaaa@374A@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  матрица-строка размером 1× n i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIXaGaey41aqRabmOBayaafaWaaS baaSqaaiaadMgaaeqaaaaa@36AC@  ( n i = n i +5 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGUbGbauaadaWgaaWcbaGaamyAaa qabaGccaaI9aGaamOBamaaBaaaleaacaWGPbaabeaakiabgUcaRiaa iwdaaaa@3863@  ):

T i ( x i )=( T 0 ( x i ) T 1 ( x i ) T n i 1 ( x i ) T n i ( x i ) T n i +1 ( x i ) T n i +2 ( x i ) T n i +3 ( x i ) T n i +4 ( x i )), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFubWaaSbaaSqaaiaadMgaae qaaOGaaGikaiaadIhadaWgaaWcbaGaamyAaaqabaGccaaIPaGaaGyp aiaaiIcacaWGubWaaSbaaSqaaiaaicdaaeqaaOGaaGikaiaadIhada WgaaWcbaGaamyAaaqabaGccaaIPaGaaGjcVlaadsfadaWgaaWcbaGa aGymaaqabaGccaaIOaGaamiEamaaBaaaleaacaWGPbaabeaakiaaiM cacqWIMaYscaWGubWaaSbaaSqaaiaad6gadaWgaaqaaiaadMgaaeqa aiabgkHiTiaaigdaaeqaaOGaaGikaiaadIhadaWgaaWcbaGaamyAaa qabaGccaaIPaGaaGjcVlaadsfadaWgaaWcbaGaamOBamaaBaaabaGa amyAaaqabaaabeaakiaaiIcacaWG4bWaaSbaaSqaaiaadMgaaeqaaO GaaGykaiaayIW7caWGubWaaSbaaSqaaiaad6gadaWgaaqaaiaadMga aeqaaiabgUcaRiaaigdaaeqaaOGaaGikaiaadIhadaWgaaWcbaGaam yAaaqabaGccaaIPaGaaGjcVlaadsfadaWgaaWcbaGaamOBamaaBaaa baGaamyAaaqabaGaey4kaSIaaGOmaaqabaGccaaIOaGaamiEamaaBa aaleaacaWGPbaabeaakiaaiMcacaaMi8UaamivamaaBaaaleaacaWG UbWaaSbaaeaacaWGPbaabeaacqGHRaWkcaaIZaaabeaakiaaiIcaca WG4bWaaSbaaSqaaiaadMgaaeqaaOGaaGykaiaayIW7caWGubWaaSba aSqaaiaad6gadaWgaaqaaiaadMgaaeqaaiabgUcaRiaaisdaaeqaaO GaaGikaiaadIhadaWgaaWcbaGaamyAaaqabaGccaaIPaGaaGykaiaa iYcaaaa@7EFF@

I s,i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFjbWaaSbaaSqaaiaadohaca aISaGaamyAaaqabaaaaa@355D@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  матрица-строка размером 1× n i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIXaGaey41aqRabmOBayaafaWaaS baaSqaaiaadMgaaeqaaaaa@36AC@  с ненулевыми элементами I s,i,0, j i =1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGjbWaaSbaaSqaaiaadohacaaISa GaamyAaiaaiYcacaaIWaGaaGilaiaadQgadaWgaaqaaiaadMgaaeqa aaqabaGccaaI9aGaaGymaaaa@3B07@  ( j i = 0, n i ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbWaaSbaaSqaaiaadMgaaeqaaO GaaGypamaanaaabaGaaGimaiaaiYcacaWGUbWaaSbaaSqaaiaadMga aeqaaaaaaaa@3829@ , i=1,2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaigdacaaISaGaaG Omaaaa@35A3@  ), знаки MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqWIyiYBaaa@32FB@  и MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHxkcXaaa@33CA@  соответственно обозначают произведение Адамара и тензорное произведение Кронекера двух матриц (см. [7]). Нумерацию строк и столбцов каждой из введенных матриц осуществляем с нуля. Матрица-столбец A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFbbaaaa@328D@  имеет размер n 1 n 2 ×1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGUbGbauaadaWgaaWcbaGaaGymaa qabaGcceWGUbGbauaadaWgaaWcbaGaaGOmaaqabaGccqGHxdaTcaaI Xaaaaa@3874@  и содержит неизвестные коэффициенты

A=( a 00 a 01 a 0 n 2 a 0 n 2 +1 a 0 n 2 +2 a 0 n 2 +3 a 0 n 2 +4 a 10 a n 1 n 2 a n 1 n 2 +1 a n 1 +4 n 2 +4 ) T . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFbbGaaGypaiaaiIcacaWGHb WaaSbaaSqaaiaaicdacaaIWaaabeaakiaayIW7caWGHbWaaSbaaSqa aiaaicdacaaIXaaabeaakiablAciljaadggadaWgaaWcbaGaaGimai aad6gadaWgaaqaaiaaikdaaeqaaaqabaGccaaMi8UabmyyayaafaWa aSbaaSqaaiaaicdacaaMi8UaamOBamaaBaaabaGaaGOmaaqabaGaey 4kaSIaaGymaaqabaGccaaMi8UabmyyayaafaWaaSbaaSqaaiaaicda caaMi8UaamOBamaaBaaabaGaaGOmaaqabaGaey4kaSIaaGOmaaqaba GccaaMi8UabmyyayaafaWaaSbaaSqaaiaaicdacaaMi8UaamOBamaa BaaabaGaaGOmaaqabaGaey4kaSIaaG4maaqabaGccaaMi8Uabmyyay aafaWaaSbaaSqaaiaaicdacaaMi8UaamOBamaaBaaabaGaaGOmaaqa baGaey4kaSIaaGinaaqabaGccaaMi8UaamyyamaaBaaaleaacaaIXa GaaGimaaqabaGccaaMi8UaeSOjGSKaamyyamaaBaaaleaacaWGUbWa aSbaaeaacaaIXaaabeaacaWGUbWaaSbaaeaacaaIYaaabeaaaeqaaO GaaGjcVlqadggagaqbamaaBaaaleaacaWGUbWaaSbaaeaacaaIXaaa beaacaaMi8UaamOBamaaBaaabaGaaGOmaaqabaGaey4kaSIaaGymaa qabaGccqWIMaYsceWGHbGbauaadaWgaaWcbaGaamOBamaaBaaabaGa aGymaaqabaGaey4kaSIaaGinaiaayIW7caWGUbWaaSbaaeaacaaIYa aabeaacqGHRaWkcaaI0aaabeaakiaaiMcadaahaaWcbeqaaiaadsfa aaGccaaIUaaaaa@8395@

Интегрируя (5) по переменой x 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaaikdaaeqaaa aa@33A6@  и используя обозначения для интегралов из [11], получаем

7 w( x 1 , x 2 ) x 1 4 x 2 3 = j i =0 i=1,2 n i a j 1 j 2 T j 1 ( x 1 ) x 2 T j 2 ( s 2 )d s 2 + j 1 =0 n 1 a j 1 n 2 +1 T j 1 ( x 1 ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2oaaCaaaleqaba GaaG4naaaakiaadEhacaaIOaGaamiEamaaBaaaleaacaaIXaaabeaa kiaaiYcacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaGykaaqaaiabgk Gi2kaadIhadaWgaaWcbaGaaGymaaqabaGcdaahaaWcbeqaaiaaisda aaGccqGHciITcaWG4bWaaSbaaSqaaiaaikdaaeqaaOWaaWbaaSqabe aacaaIZaaaaaaakiaai2dadaaeWbqabSqaaqaaceqaaiaadQgadaWg aaqaaiaadMgaaeqaaiaai2dacaaIWaaabaGaamyAaiaai2dacaaIXa GaaGilaiaaikdaaaaabaGaamOBamaaBaaabaGaamyAaaqabaaaniab ggHiLdGccaWGHbWaaSbaaSqaaiaadQgadaWgaaqaaiaaigdaaeqaai aadQgadaWgaaqaaiaaikdaaeqaaaqabaGccaWGubWaaSbaaSqaaiaa dQgadaWgaaqaaiaaigdaaeqaaaqabaGccaaIOaGaamiEamaaBaaale aacaaIXaaabeaakiaaiMcadaWfGaqaamaapeaabeWcbeqab0Gaey4k IipaaSqabeaacaWG4bWaaSbaaWqaaiaaikdaaeqaaaaakiaadsfada WgaaWcbaGaamOAamaaBaaabaGaaGOmaaqabaaabeaakiaaiIcacaWG ZbWaaSbaaSqaaiaaikdaaeqaaOGaaGykaiaadsgacaWGZbWaaSbaaS qaaiaaikdaaeqaaOGaey4kaSYaaabCaeqaleaacaWGQbWaaSbaaeaa caaIXaaabeaacaaI9aGaaGimaaqaaiaad6gadaWgaaqaaiaaigdaae qaaaqdcqGHris5aOGabmyyayaafaWaaSbaaSqaaiaadQgadaWgaaqa aiaaigdaaeqaaiaayIW7caWGUbWaaSbaaeaacaaIYaaabeaacqGHRa WkcaaIXaaabeaakiaadsfadaWgaaWcbaGaamOAamaaBaaabaGaaGym aaqabaaabeaakiaaiIcacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaG ykaiaai6caaaa@7F67@                                                       (6)

Последовательно k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbaaaa@32B1@  раз интегрируя (6) по переменой x 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaaikdaaeqaaa aa@33A6@ , получаем

4 w( x 1 , x 2 ) x 1 4 x 2 3k = j i =0 i=1,2 n i a j 1 j 2 T j 1 ( x 1 ) x 2 k+1 T j 2 ( s 2 ) d k+1 s 2 + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2oaaCaaaleqaba GaaGinaaaakiaadEhacaaIOaGaamiEamaaBaaaleaacaaIXaaabeaa kiaaiYcacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaGykaaqaaiabgk Gi2kaadIhadaWgaaWcbaGaaGymaaqabaGcdaahaaWcbeqaaiaaisda aaGccqGHciITcaWG4bWaaSbaaSqaaiaaikdaaeqaaOWaaWbaaSqabe aacaaIZaGaeyOeI0Iaam4AaaaaaaGccaaI9aWaaabCaeqaleaaeaGa beaacaWGQbWaaSbaaeaacaWGPbaabeaacaaI9aGaaGimaaqaaiaadM gacaaI9aGaaGymaiaaiYcacaaIYaaaaaqaaiaad6gadaWgaaqaaiaa dMgaaeqaaaqdcqGHris5aOGaamyyamaaBaaaleaacaWGQbWaaSbaae aacaaIXaaabeaacaWGQbWaaSbaaeaacaaIYaaabeaaaeqaaOGaamiv amaaBaaaleaacaWGQbWaaSbaaeaacaaIXaaabeaaaeqaaOGaaGikai aadIhadaWgaaWcbaGaaGymaaqabaGccaaIPaWaaCbiaeaadaWdbaqa bSqabeqaniabgUIiYdaaleqabaGaamiEamaaDaaameaacaaIYaaaba Gaam4AaiabgUcaRiaaigdaaaaaaOGaamivamaaBaaaleaacaWGQbWa aSbaaeaacaaIYaaabeaaaeqaaOGaaGikaiaadohadaWgaaWcbaGaaG OmaaqabaGccaaIPaGaamizamaaCaaaleqabaGaam4AaiabgUcaRiaa igdaaaGccaWGZbWaaSbaaSqaaiaaikdaaeqaaOGaey4kaScaaa@7055@

+ j 1 =0 n 1 T j 1 ( x 1 ) a j 1 n 2 +k+1 + l=1 k a j 1 n 2 +l x 2 k+1l (k+1l)! ,k= 1,3 ¯ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaaeWbqabSqaaiaadQgada Wgaaqaaiaaigdaaeqaaiaai2dacaaIWaaabaGaamOBamaaBaaabaGa aGymaaqabaaaniabggHiLdGccaWGubWaaSbaaSqaaiaadQgadaWgaa qaaiaaigdaaeqaaaqabaGccaaIOaGaamiEamaaBaaaleaacaaIXaaa beaakiaaiMcadaqadaqaaiqadggagaqbamaaBaaaleaacaWGQbWaaS baaeaacaaIXaaabeaacaaMi8UaamOBamaaBaaabaGaaGOmaaqabaGa ey4kaSIaam4AaiabgUcaRiaaigdaaeqaaOGaey4kaSYaaabCaeqale aacaWGSbGaaGypaiaaigdaaeaacaWGRbaaniabggHiLdGcceWGHbGb auaadaWgaaWcbaGaamOAamaaBaaabaGaaGymaaqabaGaaGjcVlaad6 gadaWgaaqaaiaaikdaaeqaaiabgUcaRiaadYgaaeqaaOGaaGjcVpaa laaabaGaamiEamaaDaaaleaacaaIYaaabaGaam4AaiabgUcaRiaaig dacqGHsislcaWGSbaaaaGcbaGaaGikaiaadUgacqGHRaWkcaaIXaGa eyOeI0IaamiBaiaaiMcacaaIHaaaaaGaayjkaiaawMcaaiaaiYcaca aMf8Uaam4Aaiaai2dadaqdaaqaaiaaigdacaaISaGaaGjcVlaaioda aaGaaGOlaaaa@7137@                                                         (7)

Для нахождения интегралов от многочленов Чебышева первого рода в (6) и (7) учитывая, что T 0 ( x 2 )=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubWaaSbaaSqaaiaaicdaaeqaaO GaaGikaiaadIhadaWgaaWcbaGaaGOmaaqabaGccaaIPaGaaGypaiaa igdaaaa@3860@  и T 1 ( x 2 )= x 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadIhadaWgaaWcbaGaaGOmaaqabaGccaaIPaGaaGypaiaa dIhadaWgaaWcbaGaaGOmaaqabaaaaa@398B@  [9], имеем

x 2 T 0 ( s 2 )d s 2 = x 2 , x 2 T 1 ( s 2 )d s 2 = x 2 2 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWfGaqaamaapeaabeWcbeqab0Gaey 4kIipaaSqabeaacaWG4bWaaSbaaWqaaiaaikdaaeqaaaaakiaadsfa daWgaaWcbaGaaGimaaqabaGccaaIOaGaam4CamaaBaaaleaacaaIYa aabeaakiaaiMcacaWGKbGaam4CamaaBaaaleaacaaIYaaabeaakiaa i2dacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaGilaiaaywW7daWfGa qaamaapeaabeWcbeqab0Gaey4kIipaaSqabeaacaWG4bWaaSbaaWqa aiaaikdaaeqaaaaakiaadsfadaWgaaWcbaGaaGymaaqabaGccaaIOa Gaam4CamaaBaaaleaacaaIYaaabeaakiaaiMcacaWGKbGaam4Camaa BaaaleaacaaIYaaabeaakiaai2dadaWcaaqaaiaadIhadaqhaaWcba GaaGOmaaqaaiaaikdaaaaakeaacaaIYaaaaiaaiYcaaaa@53F1@                                                                                                 (8)

для четных j 2 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbWaaSbaaSqaaiaaikdaaeqaaO GaeyyzImRaaGOmaaaa@3624@  согласно [9] получаем

2 x 2 T j 2 ( s 2 )d s 2 = T j 2 +1 ( x 2 ) j 2 +1 T j 2 1 ( x 2 ) j 2 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIYaWaaCbiaeaadaWdbaqabSqabe qaniabgUIiYdaaleqabaGaamiEamaaBaaameaacaaIYaaabeaaaaGc caWGubWaaSbaaSqaaiaadQgadaWgaaqaaiaaikdaaeqaaaqabaGcca aIOaGaam4CamaaBaaaleaacaaIYaaabeaakiaaiMcacaWGKbGaam4C amaaBaaaleaacaaIYaaabeaakiaai2dadaWcaaqaaiaadsfadaWgaa WcbaGaamOAamaaBaaabaGaaGOmaaqabaGaey4kaSIaaGymaaqabaGc caaIOaGaamiEamaaBaaaleaacaaIYaaabeaakiaaiMcaaeaacaWGQb WaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaaGymaaaacqGHsisldaWc aaqaaiaadsfadaWgaaWcbaGaamOAamaaBaaabaGaaGOmaaqabaGaey OeI0IaaGymaaqabaGccaaIOaGaamiEamaaBaaaleaacaaIYaaabeaa kiaaiMcaaeaacaWGQbWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaaG ymaaaacaaISaaaaa@58E3@                                                                                                (9)

для нечетных j 2 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbWaaSbaaSqaaiaaikdaaeqaaO GaeyyzImRaaG4maaaa@3625@ :

2 x 2 T j 2 ( s 2 )d s 2 = T j 2 +1 ( x 2 ) j 2 +1 T j 2 1 ( x 2 ) j 2 1 2 j 2 (1) ( j 2 +1)/2 j 2 2 1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIYaWaaCbiaeaadaWdbaqabSqabe qaniabgUIiYdaaleqabaGaamiEamaaBaaameaacaaIYaaabeaaaaGc caWGubWaaSbaaSqaaiaadQgadaWgaaqaaiaaikdaaeqaaaqabaGcca aIOaGaam4CamaaBaaaleaacaaIYaaabeaakiaaiMcacaWGKbGaam4C amaaBaaaleaacaaIYaaabeaakiaai2dadaWcaaqaaiaadsfadaWgaa WcbaGaamOAamaaBaaabaGaaGOmaaqabaGaey4kaSIaaGymaaqabaGc caaIOaGaamiEamaaBaaaleaacaaIYaaabeaakiaaiMcaaeaacaWGQb WaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaaGymaaaacqGHsisldaWc aaqaaiaadsfadaWgaaWcbaGaamOAamaaBaaabaGaaGOmaaqabaGaey OeI0IaaGymaaqabaGccaaIOaGaamiEamaaBaaaleaacaaIYaaabeaa kiaaiMcaaeaacaWGQbWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaaG ymaaaacqGHsisldaWcaaqaaiaaikdacaWGQbWaaSbaaSqaaiaaikda aeqaaOGaaGikaiabgkHiTiaaigdacaaIPaWaaWbaaSqabeaacaaIOa GaamOAamaaBaaabaGaaGOmaaqabaGaey4kaSIaaGymaiaaiMcacaaI VaGaaGOmaaaaaOqaaiaadQgadaqhaaWcbaGaaGOmaaqaaiaaikdaaa GccqGHsislcaaIXaaaaiaai6caaaa@6A4C@                                                                                    (10)

Постоянная в (10) получена с использованием следующего представления (см. [9]):

T j 2 ( x 2 )= k=0 [ j 2 /2] χ k x 2 j 2 2k , χ k = (1) k 2 j 2 2k1 j 2 ( j 2 k1)! ( j 2 2k)!k! . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubWaaSbaaSqaaiaadQgadaWgaa qaaiaaikdaaeqaaaqabaGccaaIOaGaamiEamaaBaaaleaacaaIYaaa beaakiaaiMcacaaI9aWaaabCaeqaleaacaWGRbGaaGypaiaaicdaae aacaaIBbGaamOAamaaBaaabaGaaGOmaaqabaGaaG4laiaaikdacaaI DbaaniabggHiLdGccqaHhpWydaWgaaWcbaGaam4AaaqabaGccaWG4b Waa0baaSqaaiaaikdaaeaacaWGQbWaaSbaaeaacaaIYaaabeaacqGH sislcaaIYaGaam4AaaaakiaaiYcacaaMf8Uaeq4Xdm2aaSbaaSqaai aadUgaaeqaaOGaaGypamaalaaabaGaaGikaiabgkHiTiaaigdacaaI PaWaaWbaaSqabeaacaWGRbaaaOGaaGOmamaaCaaaleqabaGaamOAam aaBaaabaGaaGOmaaqabaGaeyOeI0IaaGOmaiaadUgacqGHsislcaaI XaaaaOGaamOAamaaBaaaleaacaaIYaaabeaakiaaiIcacaWGQbWaaS baaSqaaiaaikdaaeqaaOGaeyOeI0Iaam4AaiabgkHiTiaaigdacaaI PaGaaGyiaaqaaiaaiIcacaWGQbWaaSbaaSqaaiaaikdaaeqaaOGaey OeI0IaaGOmaiaadUgacaaIPaGaaGyiaiaadUgacaaIHaaaaiaai6ca aaa@6F14@                                                                                  (11)

Здесь [ j 2 /2] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaamOAamaaBaaaleaacaaIYa aabeaakiaai+cacaaIYaGaaGyxaaaa@36E3@  обозначает целую часть числа j 2 /2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbWaaSbaaSqaaiaaikdaaeqaaO GaaG4laiaaikdaaaa@3517@ .

Для нечетных j 2 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbWaaSbaaSqaaiaaikdaaeqaaO GaeyyzImRaaG4maaaa@3625@  из (11) получаем

χ ( j 2 +1)/2 j 2 +1 χ ( j 2 1)/2 j 2 1 = (1) ( j 2 +1)/2 j 2 +1 (1) ( j 2 1)/2 j 2 1 = 2 j 2 (1) ( j 2 +1)/2 j 2 2 1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabeE8aJnaaBaaaleaaca aIOaGaamOAamaaBaaabaGaaGOmaaqabaGaey4kaSIaaGymaiaaiMca caaIVaGaaGOmaaqabaaakeaacaWGQbWaaSbaaSqaaiaaikdaaeqaaO Gaey4kaSIaaGymaaaacqGHsisldaWcaaqaaiabeE8aJnaaBaaaleaa caaIOaGaamOAamaaBaaabaGaaGOmaaqabaGaeyOeI0IaaGymaiaaiM cacaaIVaGaaGOmaaqabaaakeaacaWGQbWaaSbaaSqaaiaaikdaaeqa aOGaeyOeI0IaaGymaaaacaaI9aWaaSaaaeaacaaIOaGaeyOeI0IaaG ymaiaaiMcadaahaaWcbeqaaiaaiIcacaWGQbWaaSbaaeaacaaIYaaa beaacqGHRaWkcaaIXaGaaGykaiaai+cacaaIYaaaaaGcbaGaamOAam aaBaaaleaacaaIYaaabeaakiabgUcaRiaaigdaaaGaeyOeI0YaaSaa aeaacaaIOaGaeyOeI0IaaGymaiaaiMcadaahaaWcbeqaaiaaiIcaca WGQbWaaSbaaeaacaaIYaaabeaacqGHsislcaaIXaGaaGykaiaai+ca caaIYaaaaaGcbaGaamOAamaaBaaaleaacaaIYaaabeaakiabgkHiTi aaigdaaaGaaGypamaalaaabaGaaGOmaiaadQgadaWgaaWcbaGaaGOm aaqabaGccaaIOaGaeyOeI0IaaGymaiaaiMcadaahaaWcbeqaaiaaiI cacaWGQbWaaSbaaeaacaaIYaaabeaacqGHRaWkcaaIXaGaaGykaiaa i+cacaaIYaaaaaGcbaGaamOAamaaDaaaleaacaaIYaaabaGaaGOmaa aakiabgkHiTiaaigdaaaGaaGOlaaaa@782D@                                                                                      (12)

Далее, подставляя (8) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (12) в (6) иЁ(7), имеем

8k w( x 1 , x 2 ) x 1 4 x 2 4k =( T 1 ( x 1 ) I s,1 ) ( T 2 ( x 2 ) G 2 k ) I s,2 + P k,2 ( x 2 ) A,k= 1,4 ¯ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2oaaCaaaleqaba GaaGioaiabgkHiTiaadUgaaaGccaWG3bGaaGikaiaadIhadaWgaaWc baGaaGymaaqabaGccaaISaGaamiEamaaBaaaleaacaaIYaaabeaaki aaiMcaaeaacqGHciITcaWG4bWaaSbaaSqaaiaaigdaaeqaaOWaaWba aSqabeaacaaI0aaaaOGaeyOaIyRaamiEamaaBaaaleaacaaIYaaabe aakmaaCaaaleqabaGaaGinaiabgkHiTiaadUgaaaaaaOGaaGypaiaa iIcaieqacaWFubWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadIhada WgaaWcbaGaaGymaaqabaGccaaIPaGaeSigI8Maa8xsamaaBaaaleaa caWGZbGaaGilaiaaigdaaeqaaOGaaGykaiabgEPiepaabmaabaGaaG ikaiaa=rfadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiEamaaBaaa leaacaaIYaaabeaakiaaiMcacaWFhbWaaSbaaSqaaiaaikdaaeqaaO WaaWbaaSqabeaacaWGRbaaaOGaaGykaiablIHiVjaa=LeadaWgaaWc baGaam4CaiaaiYcacaaIYaaabeaakiabgUcaRiaa=bfadaWgaaWcba Gaam4AaiaaiYcacaaIYaaabeaakiaaiIcacaWG4bWaaSbaaSqaaiaa ikdaaeqaaOGaaGykaaGaayjkaiaawMcaaiaa=feacaaISaGaaGzbVl aadUgacaaI9aWaa0aaaeaacaaIXaGaaGilaiaaisdaaaGaaGilaaaa @744C@                                              (13)

где G 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFhbWaaSbaaSqaaiaaikdaae qaaaaa@337B@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  квадратная матрица размером n 2 × n 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGUbGbauaadaWgaaWcbaGaaGOmaa qabaGccqGHxdaTceWGUbGbauaadaWgaaWcbaGaaGOmaaqabaaaaa@37B0@ , в которой последний столбец нулевой, ненулевые элементы первой строки:

G 2,01 = 1 4 , G 2,02 j 2 +1 =( 1) [( j 2 +1)/2] 2 j 2 +1 (2 j 2 +1) 2 1 , j 2 = 1,[ n 2 /2]1 ¯ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiaaikdacaaISa GaaGimaiaayIW7caaIXaaabeaakiaai2dadaWcaaqaaiaaigdaaeaa caaI0aaaaiaaiYcacaaMf8Uaam4ramaaBaaaleaacaaIYaGaaGilai aaicdacaaMi8UaaGOmaiaadQgadaWgaaqaaiaaikdaaeqaaiabgUca RiaaigdaaeqaaOGaaGypaiaaiIcacqGHsislcaaIXaGaaGykamaaCa aaleqabaGaaG4waiaaiIcacaWGQbWaaSbaaeaacaaIYaaabeaacqGH RaWkcaaIXaGaaGykaiaai+cacaaIYaGaaGyxaaaakmaalaaabaGaaG OmaiaadQgadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaaIXaaabaGa aGikaiaaikdacaWGQbWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaaG ymaiaaiMcadaahaaWcbeqaaiaaikdaaaGccqGHsislcaaIXaaaaiaa iYcacaaMf8UaamOAamaaBaaaleaacaaIYaaabeaakiaai2dadaqdaa qaaiaaigdacaaISaGaaG4waiqad6gagaqbamaaBaaaleaacaaIYaaa beaakiaai+cacaaIYaGaaGyxaiabgkHiTiaaigdaaaGaaGilaaaa@6B4F@

ненулевые элементы второй строки: G 2,10 =1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiaaikdacaaISa GaaGymaiaayIW7caaIWaaabeaakiaai2dacaaIXaaaaa@38BD@ , G 2,12 =1/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiaaikdacaaISa GaaGymaiaayIW7caaIYaaabeaakiaai2dacqGHsislcaaIXaGaaG4l aiaaikdaaaa@3B21@ , одиночные ненулевые элементы предпоследней и последней строк: G 2, n 2 2 n 2 3 =1/(2 n 2 4) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiaaikdacaaISa GabmOBayaafaWaaSbaaeaacaaIYaaabeaacqGHsislcaaIYaGaaGjc Vlqad6gagaqbamaaBaaabaGaaGOmaaqabaGaeyOeI0IaaG4maaqaba GccaaI9aGaaGymaiaai+cacaaIOaGaaGOmaiqad6gagaqbamaaBaaa leaacaaIYaaabeaakiabgkHiTiaaisdacaaIPaaaaa@44C9@ , G 2, n 2 1 n 2 2 =1/(2 n 2 2) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiaaikdacaaISa GabmOBayaafaWaaSbaaeaacaaIYaaabeaacqGHsislcaaIXaGaaGjc Vlqad6gagaqbamaaBaaabaGaaGOmaaqabaGaeyOeI0IaaGOmaaqaba GccaaI9aGaaGymaiaai+cacaaIOaGaaGOmaiqad6gagaqbamaaBaaa leaacaaIYaaabeaakiabgkHiTiaaikdacaaIPaaaaa@44C5@ , парные ненулевые элементы остальных строк:

G 2, j 2 j 2 + (1) i = (1) i+1 j 2 2 ,i=1,2, j 2 = 2, n 2 3 ¯ ; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiaaikdacaaISa GaamOAamaaBaaabaGaaGOmaaqabaGaaGjcVlaadQgadaWgaaqaaiaa ikdaaeqaaiabgUcaRiaaiIcacqGHsislcaaIXaGaaGykamaaCaaabe qaaiaadMgaaaaabeaakiaai2dadaWcaaqaaiaaiIcacqGHsislcaaI XaGaaGykamaaCaaaleqabaGaamyAaiabgUcaRiaaigdaaaaakeaaca WGQbWaa0baaSqaaiaaikdaaeaacaaIYaaaaaaakiaaiYcacaaMf8Ua amyAaiaai2dacaaIXaGaaGilaiaaikdacaaISaGaaGzbVlaadQgada WgaaWcbaGaaGOmaaqabaGccaaI9aWaa0aaaeaacaaIYaGaaGilaiqa d6gagaqbamaaBaaaleaacaaIYaaabeaakiabgkHiTiaaiodaaaGaaG 4oaaaa@5896@

P k,2 ( x 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFqbWaaSbaaSqaaiaadUgaca aISaGaaGOmaaqabaGccaaIOaGaamiEamaaBaaaleaacaaIYaaabeaa kiaaiMcaaaa@3888@  ( k= 1,4 ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaaGypamaanaaabaGaaGymai aaiYcacaaI0aaaaaaa@35B8@  ) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  матрицы-строки размером 1× n 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIXaGaey41aqRabmOBayaafaWaaS baaSqaaiaaikdaaeqaaaaa@367A@  каждая, в P 1,2 ( x 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFqbWaaSbaaSqaaiaaigdaca aISaGaaGOmaaqabaGccaaIOaGaamiEamaaBaaaleaacaaIYaaabeaa kiaaiMcaaaa@3853@  один ненулевой элемент P 1,2,0 n 2 +1 ( x 2 )=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGqbWaaSbaaSqaaiaaigdacaaISa GaaGOmaiaaiYcacaaIWaGaaGjcVlaad6gadaWgaaqaaiaaikdaaeqa aiabgUcaRiaaigdaaeqaaOGaaGikaiaadIhadaWgaaWcbaGaaGOmaa qabaGccaaIPaGaaGypaiaaigdaaaa@403D@ , в остальных матрицах P k,2 ( x 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFqbWaaSbaaSqaaiaadUgaca aISaGaaGOmaaqabaGccaaIOaGaamiEamaaBaaaleaacaaIYaaabeaa kiaaiMcaaaa@3888@  ненулевые элементы

P k,2,0 n 2 +k ( x 2 )=1, P k,2,0n+j ( x 2 )= x 2 kj (kj)! ,j= 1,k1 ¯ ,k= 2,4 ¯ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGqbWaaSbaaSqaaiaadUgacaaISa GaaGOmaiaaiYcacaaIWaGaaGjcVlaad6gadaWgaaqaaiaaikdaaeqa aiabgUcaRiaadUgaaeqaaOGaaGikaiaadIhadaWgaaWcbaGaaGOmaa qabaGccaaIPaGaaGypaiaaigdacaaISaGaaGzbVlaadcfadaWgaaWc baGaam4AaiaaiYcacaaIYaGaaGilaiaaicdacaaMi8UaamOBaiabgU caRiaadQgaaeqaaOGaaGikaiaadIhadaWgaaWcbaGaaGOmaaqabaGc caaIPaGaaGypamaalaaabaGaamiEamaaDaaaleaacaaIYaaabaGaam 4AaiabgkHiTiaadQgaaaaakeaacaaIOaGaam4AaiabgkHiTiaadQga caaIPaGaaGyiaaaacaaISaGaaGzbVlaadQgacaaI9aWaa0aaaeaaca aIXaGaaGilaiaadUgacqGHsislcaaIXaaaaiaaiYcacaaMf8Uaam4A aiaai2dadaqdaaqaaiaaikdacaaISaGaaGinaaaacaaIUaaaaa@68E8@

При n 2 =4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbWaaSbaaSqaaiaaikdaaeqaaO GaaGypaiaaisdaaaa@352B@  приведем развернутую форму матрицы G 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFhbWaaSbaaSqaaiaaikdaae qaaaaa@337B@ :

G 2 = 0 1 4 0 3 8 0 5 24 0 7 48 0 1 0 1 2 0 0 0 0 0 0 0 1 4 0 1 4 0 0 0 0 0 0 0 1 6 0 1 6 0 0 0 0 0 0 0 1 8 0 1 8 0 0 0 0 0 0 0 1 10 0 1 10 0 0 0 0 0 0 0 1 12 0 1 12 0 0 0 0 0 0 0 1 14 0 0 0 0 0 0 0 0 0 1 16 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFhbWaaSbaaSqaaiaaikdaae qaaOGaaGypamaabmaabaqbaeqabOqcaaaaaaaabaGaaGimaaqaamaa laaabaGaaGymaaqaaiaaisdaaaaabaGaaGimaaqaaiabgkHiTmaala aabaGaaG4maaqaaiaaiIdaaaaabaGaaGimaaqaamaalaaabaGaaGyn aaqaaiaaikdacaaI0aaaaaqaaiaaicdaaeaacqGHsisldaWcaaqaai aaiEdaaeaacaaI0aGaaGioaaaaaeaacaaIWaaabaGaaGymaaqaaiaa icdaaeaacqGHsisldaWcaaqaaiaaigdaaeaacaaIYaaaaaqaaiaaic daaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGim aaqaaiaaicdaaeaadaWcaaqaaiaaigdaaeaacaaI0aaaaaqaaiaaic daaeaacqGHsisldaWcaaqaaiaaigdaaeaacaaI0aaaaaqaaiaaicda aeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaa qaaiaaicdaaeaadaWcaaqaaiaaigdaaeaacaaI2aaaaaqaaiaaicda aeaacqGHsisldaWcaaqaaiaaigdaaeaacaaI2aaaaaqaaiaaicdaae aacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqa aiaaicdaaeaadaWcaaqaaiaaigdaaeaacaaI4aaaaaqaaiaaicdaae aacqGHsisldaWcaaqaaiaaigdaaeaacaaI4aaaaaqaaiaaicdaaeaa caaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaai aaicdaaeaadaWcaaqaaiaaigdaaeaacaaIXaGaaGimaaaaaeaacaaI WaaabaGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGymaiaaicdaaaaaba GaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaa caaIWaaabaGaaGimaaqaamaalaaabaGaaGymaaqaaiaaigdacaaIYa aaaaqaaiaaicdaaeaacqGHsisldaWcaaqaaiaaigdaaeaacaaIXaGa aGOmaaaaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaaba GaaGimaaqaaiaaicdaaeaacaaIWaaabaWaaSaaaeaacaaIXaaabaGa aGymaiaaisdaaaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaG imaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaI WaaabaWaaSaaaeaacaaIXaaabaGaaGymaiaaiAdaaaaabaGaaGimaa qaaaqaaaqaaaqaaaqaaaqaaaqaaaqaaaqaaaaaaiaawIcacaGLPaaa aaa@8C3C@

Аналогично, последовательно интегрируя (13) по переменой x 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaa aa@33A5@ , получаем

8 k 1 k 2 w( x 1 , x 2 ) x 1 4 k 1 x 2 4 k 2 = Q k 1 1,i ( x 1 ) Q k 2 1,i ( x 2 )A, k i = 0,4 ¯ ,i=1,2, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2oaaCaaaleqaba GaaGioaiabgkHiTiaadUgadaWgaaqaaiaaigdaaeqaaiabgkHiTiaa dUgadaWgaaqaaiaaikdaaeqaaaaakiaadEhacaaIOaGaamiEamaaBa aaleaacaaIXaaabeaakiaaiYcacaWG4bWaaSbaaSqaaiaaikdaaeqa aOGaaGykaaqaaiabgkGi2kaadIhadaWgaaWcbaGaaGymaaqabaGcda ahaaWcbeqaaiaaisdacqGHsislcaWGRbWaaSbaaeaacaaIXaaabeaa aaGccqGHciITcaWG4bWaaSbaaSqaaiaaikdaaeqaaOWaaWbaaSqabe aacaaI0aGaeyOeI0Iaam4AamaaBaaabaGaaGOmaaqabaaaaaaakiaa i2daieqacaWFrbWaaSbaaSqaaiaadUgadaWgaaqaaiaaigdaaeqaai abgkHiTiaaigdacaaISaGaamyAaaqabaGccaaIOaGaamiEamaaBaaa leaacaaIXaaabeaakiaaiMcacqGHxkcXcaWFrbWaaSbaaSqaaiaadU gadaWgaaqaaiaaikdaaeqaaiabgkHiTiaaigdacaaISaGaamyAaaqa baGccaaIOaGaamiEamaaBaaaleaacaaIYaaabeaakiaaiMcacaWFbb GaaGilaiaaywW7caWGRbWaaSbaaSqaaiaadMgaaeqaaOGaaGypamaa naaabaGaaGimaiaaiYcacaaI0aaaaiaaiYcacaaMf8UaamyAaiaai2 dacaaIXaGaaGilaiaaikdacaaISaaaaa@735B@                                                   (14)

Q 0,i ( x i )= T i ( x i ) I s,i ,i=1,2, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFrbWaaSbaaSqaaiaaicdaca aISaGaamyAaaqabaGccaaIOaGaamiEamaaBaaaleaacaWGPbaabeaa kiaaiMcacaaI9aGaa8hvamaaBaaaleaacaWGPbaabeaakiaaiIcaca WG4bWaaSbaaSqaaiaadMgaaeqaaOGaaGykaiablIHiVjaa=LeadaWg aaWcbaGaam4CaiaaiYcacaWGPbaabeaakiaaiYcacaaMf8UaamyAai aai2dacaaIXaGaaGilaiaaikdacaaISaaaaa@4AAF@                                                                                                                   (15)

Q k i ,i ( x i )=( T i ( x i ) G i k i ) I s,i + P k i ,i ( x i ), k i = 1,4 ¯ ,i=1,2, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFrbWaaSbaaSqaaiaadUgada WgaaqaaiaadMgaaeqaaiaaiYcacaWGPbaabeaakiaaiIcacaWG4bWa aSbaaSqaaiaadMgaaeqaaOGaaGykaiaai2dacaaIOaGaa8hvamaaBa aaleaacaWGPbaabeaakiaaiIcacaWG4bWaaSbaaSqaaiaadMgaaeqa aOGaaGykaiaa=DeadaWgaaWcbaGaamyAaaqabaGcdaahaaWcbeqaai aadUgadaWgaaqaaiaadMgaaeqaaaaakiaaiMcacqWIyiYBcaWFjbWa aSbaaSqaaiaadohacaaISaGaamyAaaqabaGccqGHRaWkcaWFqbWaaS baaSqaaiaadUgadaWgaaqaaiaadMgaaeqaaiaaiYcacaWGPbaabeaa kiaaiIcacaWG4bWaaSbaaSqaaiaadMgaaeqaaOGaaGykaiaaiYcaca aMf8Uaam4AamaaBaaaleaacaWGPbaabeaakiaai2dadaqdaaqaaiaa igdacaaISaGaaGinaaaacaaISaGaaGzbVlaadMgacaaI9aGaaGymai aaiYcacaaIYaGaaGilaaaa@61EC@                                                                             (16)

где матрицы G 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFhbWaaSbaaSqaaiaaigdaae qaaaaa@337A@  и P k 1 ,1 ( x 1 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFqbWaaSbaaSqaaiaadUgada WgaaqaaiaaigdaaeqaaiaaiYcacaaIXaaabeaakiaaiIcacaWG4bWa aSbaaSqaaiaaigdaaeqaaOGaaGykaaaa@3962@  определяются аналогичным образом, что и матрицы G 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFhbWaaSbaaSqaaiaaikdaae qaaaaa@337B@  и P k 2 ,2 ( x 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFqbWaaSbaaSqaaiaadUgada WgaaqaaiaaikdaaeqaaiaaiYcacaaIYaaabeaakiaaiIcacaWG4bWa aSbaaSqaaiaaikdaaeqaaOGaaGykaaaa@3965@ .

В качестве точек коллокации в (13) для переменных x 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaa aa@33A5@  и x 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaaikdaaeqaaa aa@33A6@  будем использовать нули многочлена T n i +1 ( x i ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubWaaSbaaSqaaiaad6gadaWgaa qaaiaadMgaaeqaaiabgUcaRiaaigdaaeqaaOGaaGikaiaadIhadaWg aaWcbaGaamyAaaqabaGccaaIPaaaaa@39F5@  (см. [9]):

x i, j i =cos π(2 n i 2 j i +1) 2( n i +1) , j i = 0, n i ¯ ,i=1,2. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaadMgacaaISa GaamOAamaaBaaabaGaamyAaaqabaaabeaakiaai2daciGGJbGaai4B aiaacohadaqadaqaamaalaaabaGaeqiWdaNaaGikaiaaikdacaWGUb WaaSbaaSqaaiaadMgaaeqaaOGaeyOeI0IaaGOmaiaadQgadaWgaaWc baGaamyAaaqabaGccqGHRaWkcaaIXaGaaGykaaqaaiaaikdacaaIOa GaamOBamaaBaaaleaacaWGPbaabeaakiabgUcaRiaaigdacaaIPaaa aaGaayjkaiaawMcaaiaaiYcacaaMf8UaamOAamaaBaaaleaacaWGPb aabeaakiaai2dadaqdaaqaaiaaicdacaaISaGaamOBamaaBaaaleaa caWGPbaabeaaaaGccaaISaGaaGzbVlaadMgacaaI9aGaaGymaiaaiY cacaaIYaGaaGOlaaaa@5C80@ (17)

Значения полиномов Чебышева в точках (13) находим, используя геометрическое представление T q i ( x i )=cos( q i arccos x i ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubWaaSbaaSqaaiaadghadaWgaa qaaiaadMgaaeqaaaqabaGccaaIOaGaamiEamaaBaaaleaacaWGPbaa beaakiaaiMcacaaI9aGaci4yaiaac+gacaGGZbGaaGikaiaadghada WgaaWcbaGaamyAaaqabaGcciGGHbGaaiOCaiaacogacaGGJbGaai4B aiaacohacaWG4bWaaSbaaSqaaiaadMgaaeqaaOGaaGykaaaa@472A@ :

T q i ( x i, j i )=cos π q i (2 n i 2 j i +1) 2( n i +1) , j i , q i = 0, n i ¯ ,i=1,2. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubWaaSbaaSqaaiaadghadaWgaa qaaiaadMgaaeqaaaqabaGccaaIOaGaamiEamaaBaaaleaacaWGPbGa aGilaiaadQgadaWgaaqaaiaadMgaaeqaaaqabaGccaaIPaGaaGypai GacogacaGGVbGaai4CamaabmaabaWaaSaaaeaacqaHapaCcaWGXbWa aSbaaSqaaiaadMgaaeqaaOGaaGikaiaaikdacaWGUbWaaSbaaSqaai aadMgaaeqaaOGaeyOeI0IaaGOmaiaadQgadaWgaaWcbaGaamyAaaqa baGccqGHRaWkcaaIXaGaaGykaaqaaiaaikdacaaIOaGaamOBamaaBa aaleaacaWGPbaabeaakiabgUcaRiaaigdacaaIPaaaaaGaayjkaiaa wMcaaiaaiYcacaaMf8UaamOAamaaBaaaleaacaWGPbaabeaakiaaiY cacaaMi8UaamyCamaaBaaaleaacaWGPbaabeaakiaai2dadaqdaaqa aiaaicdacaaISaGaamOBamaaBaaaleaacaWGPbaabeaaaaGccaaISa GaaGzbVlaadMgacaaI9aGaaGymaiaaiYcacaaIYaGaaGOlaaaa@6774@

Подставляя (4) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (17) в (1) и используя (2) и (3), приходим к системе линейных n 1 n 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGUbGbauaadaWgaaWcbaGaaGymaa qabaGcceWGUbGbauaadaWgaaWcbaGaaGOmaaqabaaaaa@3598@  -уравнений в матричной форме:

BA=F,B= i=1 5 B i , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFcbGaa8xqaiaai2dacaWFgb GaaGilaiaaywW7caWFcbGaaGypamaaqahabeWcbaGaamyAaiaai2da caaIXaaabaGaaGynaaqdcqGHris5aOGaa8NqamaaBaaaleaacaWGPb aabeaakiaaiYcaaaa@40C5@                                                                                                                           (18)

где B i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFcbWaaSbaaSqaaiaadMgaae qaaaaa@33A8@  ( i= 1,5 ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypamaanaaabaGaaGymai aaiYcacaaI1aaaaaaa@35B7@  ) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  квадратные матрицы размером n 1 n 2 × n 1 n 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGUbGbauaadaWgaaWcbaGaaGymaa qabaGcceWGUbGbauaadaWgaaWcbaGaaGOmaaqabaGccqGHxdaTceWG UbGbauaadaWgaaWcbaGaaGymaaqabaGcceWGUbGbauaadaWgaaWcba GaaGOmaaqabaaaaa@3B90@ , F=( F 01 F 02 , F n 1 n 2 ) T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFgbGaaGypaiaaiIcacaWGgb WaaSbaaSqaaiaaicdacaaIXaaabeaakiaayIW7caWGgbWaaSbaaSqa aiaaicdacaaIYaaabeaakiaaiYcacqWIMaYscaaMi8UaamOramaaBa aaleaaceWGUbGbauaadaWgaaqaaiaaigdaaeqaaiaayIW7ceWGUbGb auaadaWgaaqaaiaaikdaaeqaaaqabaGccaaIPaWaaWbaaSqabeaaca WGubaaaaaa@45F4@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  матрица-столбец размером n 1 n 2 ×1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGUbGbauaadaWgaaWcbaGaaGymaa qabaGcceWGUbGbauaadaWgaaWcbaGaaGOmaaqabaGccqGHxdaTcaaI Xaaaaa@3874@  с элементами F k 1 k 2 =q( d 1 ( x 1, k 1 +1)/2, d 2 ( x 2, k 2 +1)/2)/D MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiaadUgadaWgaa qaaiaaigdaaeqaaiaayIW7caWGRbWaaSbaaeaacaaIYaaabeaaaeqa aOGaaGypaiaadghacaaIOaGaamizamaaBaaaleaacaaIXaaabeaaki aaiIcacaWG4bWaaSbaaSqaaiaaigdacaaISaGaam4AamaaBaaabaGa aGymaaqabaaabeaakiabgUcaRiaaigdacaaIPaGaaG4laiaaikdaca aISaGaamizamaaBaaaleaacaaIYaaabeaakiaaiIcacaWG4bWaaSba aSqaaiaaikdacaaISaGaam4AamaaBaaabaGaaGOmaaqabaaabeaaki abgUcaRiaaigdacaaIPaGaaG4laiaaikdacaaIPaGaaG4laiaadsea aaa@52CB@  за исключением нулевых элементов при k 1 = n 1 +1, n 1 +4 ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbWaaSbaaSqaaiaaigdaaeqaaO GaaGypamaanaaabaGaamOBamaaBaaaleaacaaIXaaabeaakiabgUca RiaaigdacaaISaGaaGjcVlaad6gadaWgaaWcbaGaaGymaaqabaGccq GHRaWkcaaI0aaaaaaa@3DC6@  или k 2 = n 2 +1, n 2 +4 ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbWaaSbaaSqaaiaaikdaaeqaaO GaaGypamaanaaabaGaamOBamaaBaaaleaacaaIYaaabeaakiabgUca RiaaigdacaaISaGaaGjcVlaad6gadaWgaaWcbaGaaGOmaaqabaGccq GHRaWkcaaI0aaaaaaa@3DC9@ , которые соответствуют граничным условиям (2) и (3). Ненулевые строки B i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFcbWaaSbaaSqaaiaadMgaae qaaaaa@33A8@  ( i= 1,3 ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypamaanaaabaGaaGymai aaiYcacaaIZaaaaaaa@35B5@  ) получены из уравнения (1) в узлах (17) с использованием (14) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (16):

B 1 = κ 1 Q 0,1 ( x 1,0 ) Q 0,1 ( x 1,1 ) Q 0,1 ( x 1, n 1 ) 0 0 0 0 Q 4,2 ( x 2,0 ) Q 4,2 ( x 2,1 ) Q 4,2 ( x 2, n 2 ) 0 0 0 0 , B 2 = κ 2 Q 4,1 ( x 1,0 ) Q 4,1 ( x 1,1 ) Q 4,1 ( x 1, n 1 ) 0 0 0 0 Q 0,2 ( x 2,0 ) Q 0,2 ( x 2,1 ) Q 0,2 ( x 2, n 2 ) 0 0 0 0 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFcbWaaSbaaSqaaiaaigdaae qaaOGaaGypaiabeQ7aRnaaBaaaleaacaaIXaaabeaakmaadmaaeaqa beaacaWFrbWaaSbaaSqaaiaaicdacaaISaGaaGymaaqabaGccaaIOa GaamiEamaaBaaaleaacaaIXaGaaGilaiaaicdaaeqaaOGaaGykaaqa aiaa=ffadaWgaaWcbaGaaGimaiaaiYcacaaIXaaabeaakiaaiIcaca WG4bWaaSbaaSqaaiaaigdacaaISaGaaGymaaqabaGccaaIPaaabaGa aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cq WIMaYsaeaacaWFrbWaaSbaaSqaaiaaicdacaaISaGaaGymaaqabaGc caaIOaGaamiEamaaBaaaleaacaaIXaGaaGilaiaad6gadaWgaaqaai aaigdaaeqaaaqabaGccaaIPaaabaGaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGimaaqaaiaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa icdaaeaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaIWaaabaGaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGimaaaacaGLBbGaayzxaa Gaey4LIq8aamWaaqaabeqaaiaa=ffadaWgaaWcbaGaaGinaiaaiYca caaIYaaabeaakiaaiIcacaWG4bWaaSbaaSqaaiaaikdacaaISaGaaG imaaqabaGccaaIPaaabaGaa8xuamaaBaaaleaacaaI0aGaaGilaiaa ikdaaeqaaOGaaGikaiaadIhadaWgaaWcbaGaaGOmaiaaiYcacaaIXa aabeaakiaaiMcaaeaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlablAcilbqaaiaa=ffadaWgaaWcbaGaaGinai aaiYcacaaIYaaabeaakiaaiIcacaWG4bWaaSbaaSqaaiaaikdacaaI SaGaamOBamaaBaaabaGaaGOmaaqabaaabeaakiaaiMcaaeaacaaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaIWaaabaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGimaaqaaiaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaicdaaeaacaaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaI WaaaaiaawUfacaGLDbaacaaISaGaaGzbVlaa=jeadaWgaaWcbaGaaG OmaaqabaGccaaI9aGaeqOUdS2aaSbaaSqaaiaaikdaaeqaaOWaamWa aqaabeqaaiaa=ffadaWgaaWcbaGaaGinaiaaiYcacaaIXaaabeaaki aaiIcacaWG4bWaaSbaaSqaaiaaigdacaaISaGaaGimaaqabaGccaaI PaaabaGaa8xuamaaBaaaleaacaaI0aGaaGilaiaaigdaaeqaaOGaaG ikaiaadIhadaWgaaWcbaGaaGymaiaaiYcacaaIXaaabeaakiaaiMca aeaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlablAcilbqaaiaa=ffadaWgaaWcbaGaaGinaiaaiYcacaaIXaaa beaakiaaiIcacaWG4bWaaSbaaSqaaiaaigdacaaISaGaamOBamaaBa aabaGaaGymaaqabaaabeaakiaaiMcaaeaacaaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaIWaaabaGaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGimaaqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaicdaaeaacaaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaIWaaaaiaawUfaca GLDbaacqGHxkcXdaWadaabaeqabaGaa8xuamaaBaaaleaacaaIWaGa aGilaiaaikdaaeqaaOGaaGikaiaadIhadaWgaaWcbaGaaGOmaiaaiY cacaaIWaaabeaakiaaiMcaaeaacaWFrbWaaSbaaSqaaiaaicdacaaI SaGaaGOmaaqabaGccaaIOaGaamiEamaaBaaaleaacaaIYaGaaGilai aaigdaaeqaaOGaaGykaaqaaiaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaeSOjGSeabaGaa8xuamaaBaaaleaaca aIWaGaaGilaiaaikdaaeqaaOGaaGikaiaadIhadaWgaaWcbaGaaGOm aiaaiYcacaWGUbWaaSbaaeaacaaIYaaabeaaaeqaaOGaaGykaaqaai aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaicdaaeaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaIWaaabaGaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGimaaqaaiaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaicdaaaGaay5waiaaw2faaiaacYcaaaa@CEC9@

B 3 = κ 3 Q 2,1 ( x 1,0 ) Q 2,1 ( x 1,1 ) Q 2,1 ( x 1, n 1 ) 0 0 0 0 Q 2,2 ( x 2,0 ) Q 2,2 ( x 2,1 ) Q 2,2 ( x 2, n 2 ) 0 0 0 0 , κ i = 16 d i 4 ,i=1,2, κ 3 = 32 d 1 2 d 2 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFcbWaaSbaaSqaaiaaiodaae qaaOGaaGypaiabeQ7aRnaaBaaaleaacaaIZaaabeaakmaadmaaeaqa beaacaWFrbWaaSbaaSqaaiaaikdacaaISaGaaGymaaqabaGccaaIOa GaamiEamaaBaaaleaacaaIXaGaaGilaiaaicdaaeqaaOGaaGykaaqa aiaa=ffadaWgaaWcbaGaaGOmaiaaiYcacaaIXaaabeaakiaaiIcaca WG4bWaaSbaaSqaaiaaigdacaaISaGaaGymaaqabaGccaaIPaaabaGa aGzaVlaaygW7caaMb8UaaGzaVlaaygW7caaMb8UaaGzaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqWIMaYsaeaacaWF rbWaaSbaaSqaaiaaikdacaaISaGaaGymaaqabaGccaaIOaGaamiEam aaBaaaleaacaaIXaGaaGilaiaad6gadaWgaaqaaiaaigdaaeqaaaqa baGccaaIPaaabaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGimaaqaaiaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaicdaaeaacaaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaIWaaabaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGimaiaaykW7aaGaay5waiaaw2faaiabgEPi epaadmaaeaqabeaacaWFrbWaaSbaaSqaaiaaikdacaaISaGaaGOmaa qabaGccaaIOaGaamiEamaaBaaaleaacaaIYaGaaGilaiaaicdaaeqa aOGaaGykaaqaaiaa=ffadaWgaaWcbaGaaGOmaiaaiYcacaaIYaaabe aakiaaiIcacaWG4bWaaSbaaSqaaiaaikdacaaISaGaaGymaaqabaGc caaIPaaabaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlablAcilbqaaiaa=ffadaWgaaWcbaGaaGOmaiaaiYcacaaIYaaa beaakiaaiIcacaWG4bWaaSbaaSqaaiaaikdacaaISaGaamOBamaaBa aabaGaaGOmaaqabaaabeaakiaaiMcaaeaacaaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaicdaaeaacaaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaicdaaeaa caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaicdaaeaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaicdaaaGaay5waiaaw2faaiaaiYcacaaMf8UaeqOUdS 2aaSbaaSqaaiaadMgaaeqaaOGaaGypamaalaaabaGaaGymaiaaiAda aeaacaWGKbWaa0baaSqaaiaadMgaaeaacaaI0aaaaaaakiaaiYcaca aMf8UaamyAaiaai2dacaaIXaGaaGilaiaaikdacaaISaGaaGzbVlab eQ7aRnaaBaaaleaacaaIZaaabeaakiaai2dadaWcaaqaaiaaiodaca aIYaaabaGaamizamaaDaaaleaacaaIXaaabaGaaGOmaaaakiaadsga daqhaaWcbaGaaGOmaaqaaiaaikdaaaaaaOGaaGOlaaaa@1F60@

Ненулевые строки матриц B 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFcbWaaSbaaSqaaiaaisdaae qaaaaa@3378@  и B 5 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFcbWaaSbaaSqaaiaaiwdaae qaaaaa@3379@  соответствуют граничным условиям (2) и (3):

B 4 = 0 0 ... 0 κ 4 Q 3,1 (1) κ 4 Q 3,1 (1) Q 4,1 (1) Q 4,1 (1) Q 4,2 ( x 2,0 ) Q 4,2 ( x 2,1 ) ... Q 4,2 ( x 2, n 2 ) κ 5 Q 3,2 (1) κ 5 Q 3,2 (1) Q 4,2 (1) Q 4,2 (1) , B 5 = Q 4,1 ( x 1,0 ) Q 4,1 ( x 1,1 ) ... Q 4,1 ( x 1, n 1 ) 0 0 0 0 0 0 ... 0 κ 5 Q 2,2 (1) κ 5 Q 2,2 (1) Q 4,2 (1) Q 4,2 (1) , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFcbWaaSbaaSqaaiaaisdaae qaaOGaaGypamaadmaaeaqabeaacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGimaaqaaiaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaIWaaabaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaiOlaiaac6cacaGGUaaabaGaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaicdaaeaacqaH6oWAdaWgaaWcbaGaaGinaaqabaGccaWF rbWaaSbaaSqaaiaaiodacaaISaGaaGymaaqabaGccaaIOaGaeyOeI0 IaaGymaiaaiMcaaeaacqaH6oWAdaWgaaWcbaGaaGinaaqabaGccaWF rbWaaSbaaSqaaiaaiodacaaISaGaaGymaaqabaGccaaIOaGaaGymai aaiMcaaeaacaWFrbWaaSbaaSqaaiaaisdacaaISaGaaGymaaqabaGc caaIOaGaeyOeI0IaaGymaiaaiMcaaeaacaWFrbWaaSbaaSqaaiaais dacaaISaGaaGymaaqabaGccaaIOaGaaGymaiaaiMcaaaGaay5waiaa w2faaiabgEPiepaadmaaeaqabeaacaWFrbWaaSbaaSqaaiaaisdaca aISaGaaGOmaaqabaGccaaIOaGaamiEamaaBaaaleaacaaIYaGaaGil aiaaicdaaeqaaOGaaGykaaqaaiaa=ffadaWgaaWcbaGaaGinaiaaiY cacaaIYaaabeaakiaaiIcacaWG4bWaaSbaaSqaaiaaikdacaaISaGa aGymaaqabaGccaaIPaaabaGaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaiOlaiaac6cacaGGUaaabaGa a8xuamaaBaaaleaacaaI0aGaaGilaiaaikdaaeqaaOGaaGikaiaadI hadaWgaaWcbaGaaGOmaiaaiYcacaWGUbWaaSbaaeaacaaIYaaabeaa aeqaaOGaaGykaaqaaiabeQ7aRnaaBaaaleaacaaI1aaabeaakiaa=f fadaWgaaWcbaGaaG4maiaaiYcacaaIYaaabeaakiaaiIcacqGHsisl caaIXaGaaGykaaqaaiabeQ7aRnaaBaaaleaacaaI1aaabeaakiaa=f fadaWgaaWcbaGaaG4maiaaiYcacaaIYaaabeaakiaaiIcacaaIXaGa aGykaaqaaiaa=ffadaWgaaWcbaGaaGinaiaaiYcacaaIYaaabeaaki aaiIcacqGHsislcaaIXaGaaGykaaqaaiaa=ffadaWgaaWcbaGaaGin aiaaiYcacaaIYaaabeaakiaaiIcacaaIXaGaaGykaaaacaGLBbGaay zxaaGaaGilaiaaywW7caWFcbWaaSbaaSqaaiaaiwdaaeqaaOGaaGyp amaadmaaeaqabeaacaWFrbWaaSbaaSqaaiaaisdacaaISaGaaGymaa qabaGccaaIOaGaamiEamaaBaaaleaacaaIXaGaaGilaiaaicdaaeqa aOGaaGykaaqaaiaa=ffadaWgaaWcbaGaaGinaiaaiYcacaaIXaaabe aakiaaiIcacaWG4bWaaSbaaSqaaiaaigdacaaISaGaaGymaaqabaGc caaIPaaabaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaiOlaiaac6cacaGGUaaabaGaa8xuamaaBaaa leaacaaI0aGaaGilaiaaigdaaeqaaOGaaGikaiaadIhadaWgaaWcba GaaGymaiaaiYcacaWGUbWaaSbaaeaacaaIXaaabeaaaeqaaOGaaGyk aaqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaIWaaabaGaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaicdaaeaaca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGimaaqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaIWaaaaiaawUfacaGL DbaacqGHxkcXdaWadaabaeqabaGaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaicdaaeaacaaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGimaaqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaac6cacaGGUaGaaiOlaaqaaiaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaIWaaabaGaeqOUdS2aaSbaaSqaaiaaiwdaaeqaaOGaa8 xuamaaBaaaleaacaaIYaGaaGilaiaaikdaaeqaaOGaaGikaiabgkHi TiaaigdacaaIPaaabaGaeqOUdS2aaSbaaSqaaiaaiwdaaeqaaOGaa8 xuamaaBaaaleaacaaIYaGaaGilaiaaikdaaeqaaOGaaGikaiaaigda caaIPaaabaGaa8xuamaaBaaaleaacaaI0aGaaGilaiaaikdaaeqaaO GaaGikaiabgkHiTiaaigdacaaIPaaabaGaa8xuamaaBaaaleaacaaI 0aGaaGilaiaaikdaaeqaaOGaaGikaiaaigdacaaIPaaaaiaawUfaca GLDbaacaGGSaaaaa@AED7@

где κ 4 =2/ d 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH6oWAdaWgaaWcbaGaaGinaaqaba GccaaI9aGaaGOmaiaai+cacaWGKbWaaSbaaSqaaiaaigdaaeqaaaaa @3873@ , κ 5 =2/ d 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH6oWAdaWgaaWcbaGaaGynaaqaba GccaaI9aGaaGOmaiaai+cacaWGKbWaaSbaaSqaaiaaikdaaeqaaaaa @3875@ .

Для приведения матрицы B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFcbaaaa@328E@  в (18) к разреженной и уменьшения числа вычислений при ее заполнении используем свойство конечных сумм многочленов Чебышева в точках (17) (см. [9]):

j i =0 n i T l i ( x i, j i ) T q i ( x i, j i )= γ l i δ l i , q i ,i=1,2, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaadQgadaWgaaqaai aadMgaaeqaaiaai2dacaaIWaaabaGaamOBamaaBaaabaGaamyAaaqa baaaniabggHiLdGccaWGubWaaSbaaSqaaiaadYgadaWgaaqaaiaadM gaaeqaaaqabaGccaaIOaGaamiEamaaBaaaleaacaWGPbGaaGilaiaa dQgadaWgaaqaaiaadMgaaeqaaaqabaGccaaIPaGaamivamaaBaaale aacaWGXbWaaSbaaeaacaWGPbaabeaaaeqaaOGaaGikaiaadIhadaWg aaWcbaGaamyAaiaaiYcacaWGQbWaaSbaaeaacaWGPbaabeaaaeqaaO GaaGykaiaai2dacqaHZoWzdaWgaaWcbaGaamiBamaaBaaabaGaamyA aaqabaaabeaakiabes7aKnaaBaaaleaacaWGSbWaaSbaaeaacaWGPb aabeaacaaISaGaamyCamaaBaaabaGaamyAaaqabaaabeaakiaaiYca caaMf8UaamyAaiaai2dacaaIXaGaaGilaiaaikdacaaISaaaaa@5E3C@

где δ l i , q i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH0oazdaWgaaWcbaGaamiBamaaBa aabaGaamyAaaqabaGaaGilaiaadghadaWgaaqaaiaadMgaaeqaaaqa baaaaa@384D@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  символ Кронекера, коэффициент γ l i =1/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHZoWzdaWgaaWcbaGaamiBamaaBa aabaGaamyAaaqabaaabeaakiaai2dacaaIXaGaaG4laiaaikdaaaa@3895@ , если l i =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGSbWaaSbaaSqaaiaadMgaaeqaaO GaaGypaiaaicdaaaa@3557@ , иначе γ l i =1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHZoWzdaWgaaWcbaGaamiBamaaBa aabaGaamyAaaqabaaabeaakiaai2dacaaIXaaaaa@3720@ . В этом случае левые и правые части уравнения (18) умножаем на матрицу S= S 1 S 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFtbGaaGypaiaa=nfadaWgaa WcbaGaaGymaaqabaGccqGHxkcXcaWFtbWaaSbaaSqaaiaaikdaaeqa aaaa@38F0@ , где отличные от нуля элементы квадратных матриц S 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFtbWaaSbaaSqaaiaaigdaae qaaaaa@3386@  и S 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFtbWaaSbaaSqaaiaaikdaae qaaaaa@3387@ , имеющих размер соответственно n i × n i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGUbGbauaadaWgaaWcbaGaamyAaa qabaGccqGHxdaTceWGUbGbauaadaWgaaWcbaGaamyAaaqabaaaaa@3814@ , определяются как S i,0, j i =1/( n i +1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGtbWaaSbaaSqaaiaadMgacaaISa GaaGimaiaaiYcacaWGQbWaaSbaaeaacaWGPbaabeaaaeqaaOGaaGyp aiaaigdacaaIVaGaaGikaiaad6gadaWgaaWcbaGaamyAaaqabaGccq GHRaWkcaaIXaGaaGykaaaa@3F35@ , S i, q i , j i =2 T q i ( x i, j i )/( n i +1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGtbWaaSbaaSqaaiaadMgacaaISa GaamyCamaaBaaabaGaamyAaaqabaGaaGilaiaadQgadaWgaaqaaiaa dMgaaeqaaaqabaGccaaI9aGaaGOmaiaadsfadaWgaaWcbaGaamyCam aaBaaabaGaamyAaaqabaaabeaakiaaiIcacaWG4bWaaSbaaSqaaiaa dMgacaaISaGaamOAamaaBaaabaGaamyAaaqabaaabeaakiaaiMcaca aIVaGaaGikaiaad6gadaWgaaWcbaGaamyAaaqabaGccqGHRaWkcaaI XaGaaGykaaaa@49CF@ , ( j i = 0, n i ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbWaaSbaaSqaaiaadMgaaeqaaO GaaGypamaanaaabaGaaGimaiaaiYcacaWGUbWaaSbaaSqaaiaadMga aeqaaaaaaaa@3829@ , j i = 1, n i ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbWaaSbaaSqaaiaadMgaaeqaaO GaaGypamaanaaabaGaaGymaiaaiYcacaWGUbWaaSbaaSqaaiaadMga aeqaaaaaaaa@382A@  ), S n i + k i , n i + k i =1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGtbWaaSbaaSqaaiaad6gadaWgaa qaaiaadMgaaeqaaiabgUcaRiaadUgadaWgaaqaaiaadMgaaeqaaiaa iYcacaWGUbWaaSbaaeaacaWGPbaabeaacqGHRaWkcaWGRbWaaSbaae aacaWGPbaabeaaaeqaaOGaaGypaiaaigdaaaa@3ECD@ , ( k i = 1,4 ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbWaaSbaaSqaaiaadMgaaeqaaO GaaGypamaanaaabaGaaGymaiaaiYcacaaI0aaaaaaa@36DC@ , i=1,2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaigdacaaISaGaaG Omaaaa@35A3@  ). В результате получаем

B S A= F S , B S = i=1 5 B S,i , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFcbWaaSbaaSqaaiaadofaae qaaOGaa8xqaiaai2dacaWFgbWaaSbaaSqaaiaadofaaeqaaOGaaGil aiaaywW7caWFcbWaaSbaaSqaaiaadofaaeqaaOGaaGypamaaqahabe WcbaGaamyAaiaai2dacaaIXaaabaGaaGynaaqdcqGHris5aOGaa8Nq amaaBaaaleaacaWGtbGaaGilaiaadMgaaeqaaOGaaGilaaaa@457D@                                                                                                                    (19)

где B S,i =S B i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFcbWaaSbaaSqaaiaadofaca aISaGaamyAaaqabaGccaaI9aGaam4uaiaa=jeadaWgaaWcbaGaamyA aaqabaaaaa@38BC@  ( i= 1,5 ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypamaanaaabaGaaGymai aaiYcacaaI1aaaaaaa@35B7@  ), F S =SF MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFgbWaaSbaaSqaaiaadofaae qaaOGaaGypaiaa=nfacaWFgbaaaa@3602@ . Решение уравнения (19) находим LU MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbGaamyvaaaa@336C@  -методом. Зная элементы матрицы A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFbbaaaa@328D@ , функцию w(x,y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3bGaaGikaiaadIhacaaISaGaam yEaiaaiMcaaaa@36D3@  получаем, используя (14).

4. Представление и анализ результатов.

Рассмотрим изгиб пластины, на которую действует распределенная нагрузка:

q(x,y)= q 0 cos π(2x d 1 ) d 1 cos π(2y d 2 ) d 2 + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGikaiaadIhacaaISaGaam yEaiaaiMcacaaI9aGaamyCamaaBaaaleaacaaIWaaabeaakmaabeaa baGaci4yaiaac+gacaGGZbWaaeWaaeaadaWcaaqaaiabec8aWjaaiI cacaaIYaGaamiEaiabgkHiTiaadsgadaWgaaWcbaGaaGymaaqabaGc caaIPaaabaGaamizamaaBaaaleaacaaIXaaabeaaaaaakiaawIcaca GLPaaaciGGJbGaai4BaiaacohadaqadaqaamaalaaabaGaeqiWdaNa aGikaiaaikdacaWG5bGaeyOeI0IaamizamaaBaaaleaacaaIYaaabe aakiaaiMcaaeaacaWGKbWaaSbaaSqaaiaaikdaaeqaaaaaaOGaayjk aiaawMcaaiabgUcaRaGaayjkaaaaaa@56F5@

+ d 1 4 d 2 4 π 4 D ( d 1 2 + d 2 2 ) 2 1 d 1 2 cos π(2x d 1 ) d 1 + 1 d 2 2 cos π(2y d 2 ) d 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqacaqaaiabgUcaRmaalaaabaGaam izamaaDaaaleaacaaIXaaabaGaaGinaaaakiaadsgadaqhaaWcbaGa aGOmaaqaaiaaisdaaaaakeaacqaHapaCdaahaaWcbeqaaiaaisdaaa GccaWGebGaaGikaiaadsgadaqhaaWcbaGaaGymaaqaaiaaikdaaaGc cqGHRaWkcaWGKbWaa0baaSqaaiaaikdaaeaacaaIYaaaaOGaaGykam aaCaaaleqabaGaaGOmaaaaaaGcdaqadaqaamaalaaabaGaaGymaaqa aiaadsgadaqhaaWcbaGaaGymaaqaaiaaikdaaaaaaOGaci4yaiaac+ gacaGGZbWaaeWaaeaadaWcaaqaaiabec8aWjaaiIcacaaIYaGaamiE aiabgkHiTiaadsgadaWgaaWcbaGaaGymaaqabaGccaaIPaaabaGaam izamaaBaaaleaacaaIXaaabeaaaaaakiaawIcacaGLPaaacqGHRaWk daWcaaqaaiaaigdaaeaacaWGKbWaa0baaSqaaiaaikdaaeaacaaIYa aaaaaakiGacogacaGGVbGaai4CamaabmaabaWaaSaaaeaacqaHapaC caaIOaGaaGOmaiaadMhacqGHsislcaWGKbWaaSbaaSqaaiaaikdaae qaaOGaaGykaaqaaiaadsgadaWgaaWcbaGaaGOmaaqabaaaaaGccaGL OaGaayzkaaaacaGLOaGaayzkaaaacaGLPaaacaaISaaaaa@6A4B@

где q 0 =10 5 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbWaaSbaaSqaaiaaicdaaeqaaO GaaGypaiaaigdacaaIWaWaaWbaaSqabeaacaaI1aaaaaaa@36CF@  Па. В этом случае аналитическое решение задачи (1) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (3) имеет вид

ω(x,y)= q 0 d 1 4 d 2 4 π 4 D ( d 1 2 + d 2 2 ) 2 1+cos π(2x d 1 ) d 1 1+cos π(2y d 2 ) d 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDcaaIOaGaamiEaiaaiYcaca WG5bGaaGykaiaai2dadaWcaaqaaiaadghadaWgaaWcbaGaaGimaaqa baGccaWGKbWaa0baaSqaaiaaigdaaeaacaaI0aaaaOGaamizamaaDa aaleaacaaIYaaabaGaaGinaaaaaOqaaiabec8aWnaaCaaaleqabaGa aGinaaaakiaadseacaaIOaGaamizamaaDaaaleaacaaIXaaabaGaaG OmaaaakiabgUcaRiaadsgadaqhaaWcbaGaaGOmaaqaaiaaikdaaaGc caaIPaWaaWbaaSqabeaacaaIYaaaaaaakmaabmaabaGaaGymaiabgU caRiGacogacaGGVbGaai4CamaabmaabaWaaSaaaeaacqaHapaCcaaI OaGaaGOmaiaadIhacqGHsislcaWGKbWaaSbaaSqaaiaaigdaaeqaaO GaaGykaaqaaiaadsgadaWgaaWcbaGaaGymaaqabaaaaaGccaGLOaGa ayzkaaaacaGLOaGaayzkaaWaaeWaaeaacaaIXaGaey4kaSIaci4yai aac+gacaGGZbWaaeWaaeaadaWcaaqaaiabec8aWjaaiIcacaaIYaGa amyEaiabgkHiTiaadsgadaWgaaWcbaGaaGOmaaqabaGccaaIPaaaba GaamizamaaBaaaleaacaaIYaaabeaaaaaakiaawIcacaGLPaaaaiaa wIcacaGLPaaacaaIUaaaaa@6E4F@                                                     (20)

При проведении вычислений предложенным методом (ChPIn) использованы значения физических параметров из [1, 2]: d 1 = d 2 =10 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGKbWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaadsgadaWgaaWcbaGaaGOmaaqabaGccaaI9aGaaGymaiaa icdaaaa@3879@  м, h=0,1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObGaaGypaiaaicdacaaISaGaaG ymaaaa@35A0@  м, E=200 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGypaiaaikdacaaIWaGaaG imaaaa@3582@  ГПа, ν=0,28 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBcaaI9aGaaGimaiaaiYcaca aIYaGaaGioaaaa@372E@ , n 1,2 =n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbWaaSbaaSqaaiaaigdacaaISa GaaGOmaaqabaGccaaI9aGaamOBaaaa@36D1@ . В таблице 1 представлены результаты вычислений, где для расчета погрешности построенного решения применены 100 равномерно распределенных контрольных точек ( x i , y j ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamiEamaaBaaaleaacaWGPb aabeaakiaaiYcacaWG5bWaaSbaaSqaaiaadQgaaeqaaOGaaGykaaaa @3820@  (см. [1]):

E n = max i,j |ω( x i , y j )w( x i , y j )| max i,j |ω( x i , y j )| . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWGfbWaaSbaaSqaaiaad6gaaeqaaOGae8xjIa1aaSbaaSqaaiab g6HiLcqabaGccaaI9aWaaSaaaeaadaGfqbqabSqaaiaadMgacaaISa GaamOAaaqabOqaaiGac2gacaGGHbGaaiiEaaaacaaI8bGaeqyYdCNa aGikaiaadIhadaWgaaWcbaGaamyAaaqabaGccaaISaGaamyEamaaBa aaleaacaWGQbaabeaakiaaiMcacqGHsislcaWG3bGaaGikaiaadIha daWgaaWcbaGaamyAaaqabaGccaaISaGaamyEamaaBaaaleaacaWGQb aabeaakiaaiMcacaaI8baabaWaaybuaeqaleaacaWGPbGaaGilaiaa dQgaaeqakeaaciGGTbGaaiyyaiaacIhaaaGaaGiFaiabeM8a3jaaiI cacaWG4bWaaSbaaSqaaiaadMgaaeqaaOGaaGilaiaadMhadaWgaaWc baGaamOAaaqabaGccaaIPaGaaGiFaaaacaaIUaaaaa@664B@

В таблице приведены также значения погрешности численного решения краевой задачи (1) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (3), полученного на основе представления в виде усеченного ряда по многочленам Чебышева первого рода самой искомой функции. Результаты вычислений в этом случае без использования интегрального подхода в таблице имеют аббревиатуру ChP. Здесь приходим к системе линейных ( n 1 +1)( n 2 +1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamOBamaaBaaaleaacaaIXa aabeaakiabgUcaRiaaigdacaaIPaGaaGikaiaad6gadaWgaaWcbaGa aGOmaaqabaGccqGHRaWkcaaIXaGaaGykaaaa@3B8E@  уравнений, полученных при использовании точек (17), и осуществляем замену уравнений согласно граничным условиям (2) и (3) в точках, для которых x 1 = x 1,0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaadIhadaWgaaWcbaGaaGymaiaaiYcacaaIWaaabeaaaaa@37CA@ , x 1, n 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaaigdacaaISa GaamOBamaaBaaabaGaaGymaaqabaaabeaaaaa@362A@  или x 2 = x 2,0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaaikdaaeqaaO GaaGypaiaadIhadaWgaaWcbaGaaGOmaiaaiYcacaaIWaaabeaaaaa@37CC@ , x 2, n 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaaikdacaaISa GaamOBamaaBaaabaGaaGOmaaqabaaabeaaaaa@362C@ , соответственно на уравнения

w=0, w x 1 =0, x 1 =1,1, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3bGaaGypaiaaicdacaaISaGaaG zbVpaalaaabaGaeyOaIyRaam4DaaqaaiabgkGi2kaadIhadaWgaaWc baGaaGymaaqabaaaaOGaaGypaiaaicdacaaISaGaaGzbVlaadIhada WgaaWcbaGaaGymaaqabaGccaaI9aGaeyOeI0IaaGymaiaaiYcacaaM i8UaaGymaiaaiYcaaaa@4822@

w=0, w x 2 =0, x 2 =1,1. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3bGaaGypaiaaicdacaaISaGaaG zbVpaalaaabaGaeyOaIyRaam4DaaqaaiabgkGi2kaadIhadaWgaaWc baGaaGOmaaqabaaaaOGaaGypaiaaicdacaaISaGaaGzbVlaadIhada WgaaWcbaGaaGOmaaqabaGccaaI9aGaeyOeI0IaaGymaiaaiYcacaaM i8UaaGymaiaai6caaaa@4826@

В последнем столбце таблицы представлены результаты полиномиальной интерполяции (ChPS) аналитического решения (20), коэффициенты в разложении которого определяются с использованием значений ω( d 1 ( x 1 +1)/2, d 2 ( x 2 +1)/2) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDcaaIOaGaamizamaaBaaale aacaaIXaaabeaakiaaiIcacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGa ey4kaSIaaGymaiaaiMcacaaIVaGaaGOmaiaaiYcacaWGKbWaaSbaaS qaaiaaikdaaeqaaOGaaGikaiaadIhadaWgaaWcbaGaaGOmaaqabaGc cqGHRaWkcaaIXaGaaGykaiaai+cacaaIYaGaaGykaaaa@4629@ , вычисленных в узлах (17):

A=S ' 1 1 S ' 2 1 W, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFbbGaaGypaiaa=nfacaaINa WaaSbaaSqaaiaaigdaaeqaaOWaaWbaaSqabeaacqGHsislcaaIXaaa aOGaey4LIqSaa83uaiaaiEcadaWgaaWcbaGaaGOmaaqabaGcdaahaa WcbeqaaiabgkHiTiaaigdaaaGccaWFxbGaaGilaaaa@3F96@

где элементы квадратных матриц S ' 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFtbGaaG4jamaaBaaaleaaca aIXaaabeaaaaa@3437@  и S ' 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFtbGaaG4jamaaBaaaleaaca aIYaaabeaaaaa@3438@ , имеющих размер ( n i +1)×( n i +1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamOBamaaBaaaleaacaWGPb aabeaakiabgUcaRiaaigdacaaIPaGaey41aqRaaGikaiaad6gadaWg aaWcbaGaamyAaaqabaGccqGHRaWkcaaIXaGaaGykaaaa@3E0A@ , равны соответствующим элементам матриц S 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFtbWaaSbaaSqaaiaaigdaae qaaaaa@3386@  и S 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFtbWaaSbaaSqaaiaaikdaae qaaaaa@3387@ :

S i,0, j i = S i,0, j i , S i, q i , j i = S i, q i , j i , j i = 0, n i ¯ , j i = 1, n i ¯ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGtbGbauaadaWgaaWcbaGaamyAai aaiYcacaaIWaGaaGilaiaadQgadaWgaaqaaiaadMgaaeqaaaqabaGc caaI9aGaam4uamaaBaaaleaacaWGPbGaaGilaiaaicdacaaISaGaam OAamaaBaaabaGaamyAaaqabaaabeaakiaaiYcacaaMf8Uabm4uayaa faWaaSbaaSqaaiaadMgacaaISaGaamyCamaaBaaabaGaamyAaaqaba GaaGilaiaadQgadaWgaaqaaiaadMgaaeqaaaqabaGccaaI9aGaam4u amaaBaaaleaacaWGPbGaaGilaiaadghadaWgaaqaaiaadMgaaeqaai aaiYcacaWGQbWaaSbaaeaacaWGPbaabeaaaeqaaOGaaGilaiaaywW7 caWGQbWaaSbaaSqaaiaadMgaaeqaaOGaaGypamaanaaabaGaaGimai aaiYcacaWGUbWaaSbaaSqaaiaadMgaaeqaaaaakiaaiYcacaaMf8Ua amOAamaaBaaaleaacaWGPbaabeaakiaai2dadaqdaaqaaiaaigdaca aISaGaamOBamaaBaaaleaacaWGPbaabeaaaaGccaaISaaaaa@62E4@

W=( w 00 w 01 w n 1 n 2 1 w n 1 n 2 ) T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGxbGaaGypaiaaiIcacaWG3bWaaS baaSqaaiaaicdacaaIWaaabeaakiaaysW7caWG3bWaaSbaaSqaaiaa icdacaaIXaaabeaakiaaysW7cqWIMaYscaaMe8Uaam4DamaaBaaale aacaWGUbWaaSbaaeaacaaIXaaabeaacaaMi8UaamOBamaaBaaabaGa aGOmaaqabaGaeyOeI0IaaGymaaqabaGccaaMe8Uaam4DamaaBaaale aacaWGUbWaaSbaaeaacaaIXaaabeaacaaMi8UaamOBamaaBaaabaGa aGOmaaqabaaabeaakiaaiMcadaahaaWcbeqaaiaadsfaaaaaaa@50DE@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  матрица-столбец размера n 1 n 2 ×1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGUbGbauaadaWgaaWcbaGaaGymaa qabaGcceWGUbGbauaadaWgaaWcbaGaaGOmaaqabaGccqGHxdaTcaaI Xaaaaa@3874@ , элементы которой равны w k 1 k 2 =ω( d 1 ( x 1, k 1 +1)/2, d 2 ( x 2, k 2 +1)/2) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3bWaaSbaaSqaaiaadUgadaWgaa qaaiaaigdaaeqaaiaayIW7caWGRbWaaSbaaeaacaaIYaaabeaaaeqa aOGaaGypaiabeM8a3jaaiIcacaWGKbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadIhadaWgaaWcbaGaaGymaiaaiYcacaWGRbWaaSbaaeaa caaIXaaabeaaaeqaaOGaey4kaSIaaGymaiaaiMcacaaIVaGaaGOmai aaiYcacaWGKbWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadIhadaWg aaWcbaGaaGOmaiaaiYcacaWGRbWaaSbaaeaacaaIYaaabeaaaeqaaO Gaey4kaSIaaGymaiaaiMcacaaIVaGaaGOmaiaaiMcaaaa@5251@ , ( k i =0, n i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbWaaSbaaSqaaiaadMgaaeqaaO GaaGypaiaaicdacaaISaGaamOBamaaBaaaleaacaWGPbaabeaaaaa@3819@ , i=1,2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaigdacaaISaGaaG Omaaaa@35A3@  ).

n 3|c| E n 24 ChPIn ChP ChPS 6 1,3 10 4 7,1 10 2 1,4 10 3 9 5,1 10 7 1,8 10 3 4,2 10 5 12 2,7 10 11 2,7 10 6 1,2 10 8 18 1,2 10 12 3,5 10 12 9,8 10 15 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqabeWbeaaaaaqaaiaad6gaaeaaca aIZaGaaGiFaiaadogacaaI8bqeeuuDJXwAKbsr4rNCHbaceaGae8xj IaLaamyramaaBaaaleaacaWGUbaabeaakiab=vIiqnaaBaaaleaacq GHEisPaeqaaaGcbaaabaaabaGaaGOmaiabgkHiTiaaisdaaeaacaqG dbGaaeiAaiaabcfacaqGjbGaaeOBaaqaaiaaboeacaqGObGaaeiuaa qaaiaaboeacaqGObGaaeiuaiaabofaaeaacaaI2aaabaGaaGymaiaa iYcacaaIZaGaeyyXICTaaGymaiaaicdadaahaaWcbeqaaiabgkHiTi aaisdaaaaakeaacaaI3aGaaGilaiaaigdacqGHflY1caaIXaGaaGim amaaCaaaleqabaGaeyOeI0IaaGOmaaaaaOqaaiaaigdacaaISaGaaG inaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacqGHsislcaaIZaaa aaGcbaGaaGyoaaqaaiaaiwdacaaISaGaaGymaiabgwSixlaaigdaca aIWaWaaWbaaSqabeaacqGHsislcaaI3aaaaaGcbaGaaGymaiaaiYca caaI4aGaeyyXICTaaGymaiaaicdadaahaaWcbeqaaiabgkHiTiaaio daaaaakeaacaaI0aGaaGilaiaaikdacqGHflY1caaIXaGaaGimamaa CaaaleqabaGaeyOeI0IaaGynaaaaaOqaaiaaigdacaaIYaaabaGaaG OmaiaaiYcacaaI3aGaeyyXICTaaGymaiaaicdadaahaaWcbeqaaiab gkHiTiaaigdacaaIXaaaaaGcbaGaaGOmaiaaiYcacaaI3aGaeyyXIC TaaGymaiaaicdadaahaaWcbeqaaiabgkHiTiaaiAdaaaaakeaacaaI XaGaaGilaiaaikdacqGHflY1caaIXaGaaGimamaaCaaaleqabaGaey OeI0IaaGioaaaaaOqaaiaaigdacaaI4aaabaGaaGymaiaaiYcacaaI YaGaeyyXICTaaGymaiaaicdadaahaaWcbeqaaiabgkHiTiaaigdaca aIYaaaaaGcbaGaaG4maiaaiYcacaaI1aGaeyyXICTaaGymaiaaicda daahaaWcbeqaaiabgkHiTiaaigdacaaIYaaaaaGcbaGaaGyoaiaaiY cacaaI4aGaeyyXICTaaGymaiaaicdadaahaaWcbeqaaiabgkHiTiaa igdacaaI1aaaaaGcbaaabaaabaaabaaaaaaa@B2C5@

Таблица 1. Значения погрешности полученного решения

 

Из таблицы видно, что высокая точность полученного решения с использованием нулей многочленов Чебышева первого рода достигается при сравнительно малых значениях n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B4@ .

5. Заключение.

В работе методом полиномиальной аппроксимации с использованием интегрального подхода построено решение задачи расчета напряженно-деформированного состояния прямоугольной изотропной пластины под действием заданной поперечной нагрузки для случая граничного условия защемленого края. Показано, что построенное решение с высокой точностью приближает аналитическое решение.

×

Об авторах

Василий Николаевич Попов

Северный (Арктический) федеральный университет им. М. В. Ломоносова

Автор, ответственный за переписку.
Email: v.popov@narfu.ru
Россия, Архангельск

Оксана Владимировна Гермидер

Северный (Арктический) федеральный университет им. М. В. Ломоносова

Email: o.germider@narfu.ru
Россия, Архангельск

Список литературы

  1. Беляев В. А., Брындин Л. С., Голушко С. К., Семисалов Б. В., Шапеев В. П. H-, P- и HР-варианты метода коллокации и наименьших квадратов для решения краевых задач для бигармонического уравнения в нерегулярных областях и их приложения// Ж. вычисл. мат. мат. физ. — 2022. — 62, № 4. — С. 531–552.
  2. Голушко С. К., Идимешев С. В., Шапеев В. П. Метод коллокаций и наименьших невязок в приложении к задачам механики изотропных пластин// Вычисл. технол. — 2013. — 18, №6. — С. 31–43.
  3. Карчевский А. Л. Вычисление напряжений в угольном пласте с учетом диффузии газа// Сиб. ж. индустр. мат. — 2016. — 19, №4. — С. 31–43.
  4. Ряжских В. И., Слюсарев М. И., Попов М. И.Численное интегрирование бигармонического уравнения в квадратной области// Вестн. С.-Петерб. ун-та. Сер. 10. Прикл. мат. Информ. Процессы управл. — 2013. — 1. — С. 52–62.
  5. Шапеев В. П., Брындин Л. С., Беляев В. А. HP-Вариант метода коллокации и наименьших квадратов с интегральными коллокациями решения бигармонического уравнения// Вестн. Самар. гос. техн. ун-та. Сер. Физ.-мат. науки. — 2022. — 26, №3. — С. 556–572.
  6. Baseri A., Abbasbandy S., Babolian E. A collocation method for fractional diffusion equation in a long time with Chebyshev functions// Appl. Math. Comput. — 2018. — 322. — P. 55–65.
  7. Liu S., Trenkler G. Hadamard, Khatri-Rao, Kronecker and other matrix products// Int. J. Inform. Syst. Sci. — 2008. — 4, № 1. — P. 160–177.
  8. Mai-Duy N., Strunin D., Karunasena W. A new high-order nine-point stencil, based on integrated-RBF approximations, for the first biharmonic equation// Eng. Anal. Bound. Elements. — 2022. — 143. — P. 687–699.
  9. Mason J., Handscomb D. Chebyshev Polynomials. — Florida: CRC Press, 2003.
  10. Shao W., Wu X. An effective Chebyshev tau meshless domain decomposition method based on the integration-differentiation for solving fourth order equations// Appl. Math. Model. — 2015. — 39, № 9. — P. 2554–2569.
  11. Shao W., Wu X., Wang C. Numerical study of an adaptive domain decompositionalgorithm based on Chebyshev tau method forsolving singular perturbed problems// Appl. Num. Math. — 2017. — 118. — P. 19–32.
  12. Timoshenko S., Woinowsky–Krieger S. Theory of Plates and Shells. — New York: McGraw-Hill, 1959.
  13. Ye X., Zhang Sh. A family of H-div-div mixed triangular finite elements for the biharmonic equation// Res. Appl. Math. — 2022. — 15. — P. 100318.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Попов В.Н., Гермидер О.В., 2024

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).