О восстановлении решения задачи Коши для сингулярного уравнения теплопроводности

Обложка

Цитировать

Полный текст

Аннотация

Задача восстановления решения сингулярного уравнения теплопроводности по положительной части действительной прямой в данный момент времени решается на основе неточных измерений этого решения в другие предыдущие моменты времени. Получены явные выражения для оптимального метода восстановления и его ошибок.

Полный текст

1. Введение. Постановка проблемы.

Хорошо известно, что распределение температуры в N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaCaaaleqabaGaamOtaaaaaaa@3D78@  описывается уравнением

u t =Δu+f(x,t), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2kaadwhaaeaacq GHciITcaWG0baaaiaai2dacqqHuoarcaWG1bGaey4kaSIaamOzaiaa iIcacaWG4bGaaGilaiaadshacaaIPaGaaGilaaaa@404B@

где Δ= 2 / x 1 2 ++ 2 / x n 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoarcaaI9aGaeyOaIy7aaWbaaS qabeaacaaIYaaaaOGaaG4laiabgkGi2kaadIhadaqhaaWcbaGaaGym aaqaaiaaikdaaaGccqGHRaWkcqWIMaYscqGHRaWkcqGHciITdaahaa WcbeqaaiaaikdaaaGccaaIVaGaeyOaIyRaamiEamaaDaaaleaacaWG UbaabaGaaGOmaaaaaaa@4548@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  оператор Лапласа в N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaCaaaleqabaGaamOtaaaaaaa@3D78@ .

В [10] была поставлена следующая задача. Пусть известны температурные распределения u(, t 1 ),,u(, t p ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiabgwSixlaaiYcaca WG0bWaaSbaaSqaaiaaigdaaeqaaOGaaGykaiaaiYcacqWIMaYscaaI SaGaamyDaiaaiIcacqGHflY1caaISaGaamiDamaaBaaaleaacaWGWb aabeaakiaaiMcaaaa@431B@  в моменты времени 0 t 1 << t p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaeyizImQaamiDamaaBaaale aacaaIXaaabeaakiaaiYdacqWIMaYscaaI8aGaamiDamaaBaaaleaa caWGWbaabeaaaaa@3AE2@ , заданные приближенно. Точнее, известны такие функции y j () L 2 ( N ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5bWaaSbaaSqaaiaadQgaaeqaaO GaaGikaiabgwSixlaaiMcacqGHiiIZcaWGmbWaaSbaaSqaaiaaikda aeqaaOGaaGikamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVb aceaGae8xhHi1aaWbaaSqabeaacaWGobaaaOGaaGykaaaa@4800@ , что

u(, t j ) y j () L 2 ( N ) δ j , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWG1bGaaGikaiabgwSixlaaiYcacaWG0bWaaSbaaSqaaiaadQga aeqaaOGaaGykaiabgkHiTiaadMhadaWgaaWcbaGaamOAaaqabaGcca aIOaGaeyyXICTaaGykaiab=vIiqnaaBaaaleaacaWGmbWaaSbaaeaa caaIYaaabeaacaaIOaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDOb cv39gaiuaacqGFDeIudaahaaqabeaacaWGobaaaiaaiMcaaeqaaOGa eyizImQaeqiTdq2aaSbaaSqaaiaadQgaaeqaaOGaaGilaaaa@5AFA@

где δ j >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH0oazdaWgaaWcbaGaamOAaaqaba GccaaI+aGaaGimaaaa@360D@ , j=1,,p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbGaaGypaiaaigdacaaISaGaeS OjGSKaaGilaiaadchaaaa@37B5@ . Для каждого набора таких функций требуется найти функцию в L 2 ( N ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaaSbaaSqaaiaaikdaaeqaaO GaaGikamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbaceaGa e8xhHi1aaWbaaSqabeaacaWGobaaaOGaaGykaaaa@40AA@ , которая наилучшим образом аппроксимирует реальное распределение температуры в N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaCaaaleqabaGaamOtaaaaaaa@3D78@  в фиксированный момент времени τ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDaaa@3386@  в некотором смысле. В данной работе исследуется аналогичная задача для сингулярного уравнения теплового типа с оператором Бесселя (см. [2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ 9,13 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ 15]). Особенности вышеуказанного типа возникают в моделях математической физики в таких случаях, когда характеристики сред (например, характеристики диффузии или характеристики теплопроводности) имеют вырожденные степенные неоднородности. Кроме того, к таким уравнениям приводят ситуации, когда исследуются изотропные диффузионные процессы с осевой или сферической симметрией.

Мы далее сосредоточимся на уравнении с одной пространственной переменной. Однако изложенные ниже результаты без труда переносятся на многомерный случай.

Рассмотрим задачу Коши для уравнения

u t =Bu,x + ,t>0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2kaadwhaaeaacq GHciITcaWG0baaaiaai2dacaWGcbGaamyDaiaaiYcacaaMf8UaamiE aiabgIGioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacea Gae8xhHi1aaSbaaSqaaiabgUcaRaqabaGccaaISaGaaGzbVlaadsha caaI+aGaaGimaiaaiYcaaaa@4F21@

где B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGcbaaaa@3288@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  оператор Бесселя в + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaBaaaleaacqGHRaWkaeqaaaaa@3D86@ , определенный формулой

Bu= 2 u x 2 + γ x u x , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGcbGaamyDaiaai2dadaWcaaqaai abgkGi2oaaCaaaleqabaGaaGOmaaaakiaadwhaaeaacqGHciITcaWG 4bWaaWbaaSqabeaacaaIYaaaaaaakiabgUcaRmaalaaabaGaeq4SdC gabaGaamiEaaaadaWcaaqaaiabgkGi2kaadwhaaeaacqGHciITcaWG 4baaaiaaiYcaaaa@4421@

с начальным условием

u(x,0)= u 0 (x),x + . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaaG imaiaaiMcacaaI9aGaamyDamaaBaaaleaacaaIWaaabeaakiaaiIca caWG4bGaaGykaiaaiYcacaaMf8UaamiEaiabgIGioprr1ngBPrwtHr hAYaqeguuDJXwAKbstHrhAGq1DVbaceaGae8xhHi1aaSbaaSqaaiab gUcaRaqabaGccaaIUaaaaa@4CEC@

Предполагаем, что u 0 () L 2 γ ( + ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaaicdaaeqaaO GaaGikaiabgwSixlaaiMcacqGHiiIZcaWGmbWaa0baaSqaaiaaikda aeaacqaHZoWzaaGccaaIOaWefv3ySLgznfgDOjdaryqr1ngBPrginf gDObcv39gaiqaacqWFDeIudaWgaaWcbaGaey4kaScabeaakiaaiMca aaa@497D@ . Единственное решение этой задачи было получено в [2, 15]. Оно выражается следующей формулой, обобщающей хорошо известную формулу Пуассона:

u(x,t)= 1 2t x ν + η ν+1 u 0 (η) I ν ηx 2t exp η 2 + x 2 4t dη, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI9aWaaSaaaeaacaaIXaaabaGaaGOmaiaadshacaWG 4bWaaWbaaSqabeaacqaH9oGBaaaaaOWaa8quaeqaleaatuuDJXwAK1 uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGabaiab=1risjabgUcaRaqa b0Gaey4kIipakiabeE7aOnaaCaaaleqabaGaeqyVd4Maey4kaSIaaG ymaaaakiaayIW7caWG1bWaaSbaaSqaaiaaicdaaeqaaOGaaGikaiab eE7aOjaaiMcacaaMi8UaamysamaaBaaaleaacqaH9oGBaeqaaOWaae WaaeaadaWcaaqaaiabeE7aOjaadIhaaeaacaaIYaGaamiDaaaaaiaa wIcacaGLPaaaciGGLbGaaiiEaiaacchadaqadaqaaiabgkHiTmaala aabaGaeq4TdG2aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamiEamaa CaaaleqabaGaaGOmaaaaaOqaaiaaisdacaWG0baaaaGaayjkaiaawM caaiaayIW7caWGKbGaeq4TdGMaaGilaaaa@725A@                                                                        (1)

где

I ν z = m=1 z 2m+ν 2 2m+ν m!Γ(m+ν+1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGjbWaaSbaaSqaaiabe27aUbqaba GcdaqadaqaaiaadQhaaiaawIcacaGLPaaacaaI9aWaaabCaeqaleaa caWGTbGaaGypaiaaigdaaeaacqGHEisPa0GaeyyeIuoakmaalaaaba GaamOEamaaCaaaleqabaGaaGOmaiaad2gacqGHRaWkcqaH9oGBaaaa keaacaaIYaWaaWbaaSqabeaacaaIYaGaamyBaiabgUcaRiabe27aUb aakiaayIW7caWGTbGaaGyiaiaayIW7cqqHtoWrcaaIOaGaamyBaiab gUcaRiabe27aUjabgUcaRiaaigdacaaIPaaaaaaa@557C@

MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  модифицированная функция Бесселя первого рода порядка ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBaaa@3379@ , Γ() MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWrcaaIOaGaeyyXICTaaGykaa aa@36D8@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  гамма-функция Эйлера.

Поставим следующую задачу. Пусть функции y j () L 2 γ () MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5bWaaSbaaSqaaiaadQgaaeqaaO GaaGikaiabgwSixlaaiMcacqGHiiIZcaWGmbWaa0baaSqaaiaaikda aeaacqaHZoWzaaGccaaIOaWefv3ySLgznfgDOjdaryqr1ngBPrginf gDObcv39gaiqaacqWFDeIucaaIPaaaaa@489E@  известны в моменты 0 t 1 << t p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaeyizImQaamiDamaaBaaale aacaaIXaaabeaakiaaiYdacqWIMaYscaaI8aGaamiDamaaBaaaleaa caWGWbaabeaaaaa@3AE2@  и

u(, t j ) y j () L 2 γ ( + ) δ j ,j=1,,p, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWG1bGaaGikaiabgwSixlaaiYcacaWG0bWaaSbaaSqaaiaadQga aeqaaOGaaGykaiabgkHiTiaadMhadaWgaaWcbaGaamOAaaqabaGcca aIOaGaeyyXICTaaGykaiab=vIiqnaaBaaaleaacaWGmbWaa0baaeaa caaIYaaabaGaeq4SdCgaaiaaiIcatuuDJXwAK1uy0HMmaeHbfv3ySL gzG0uy0HgiuD3BaGqbaiab+1risnaaBaaabaGaey4kaScabeaacaaI PaaabeaakiabgsMiJkabes7aKnaaBaaaleaacaWGQbaabeaakiaaiY cacaaMf8UaamOAaiaai2dacaaIXaGaaGilaiablAciljaaiYcacaWG WbGaaGilaaaa@64E8@

где δ j >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH0oazdaWgaaWcbaGaamOAaaqaba GccaaI+aGaaGimaaaa@360D@ , j=1,,p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbGaaGypaiaaigdacaaISaGaeS OjGSKaaGilaiaadchaaaa@37B5@ . Требуется, каждому такому набору функций поставить в соответствие функцию из L 2 γ ( + ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaa0baaSqaaiaaikdaaeaacq aHZoWzaaGccaaIOaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv 39gaiqaacqWFDeIudaWgaaWcbaGaey4kaScabeaakiaaiMcaaaa@4260@ , которая в некотором смысле наилучшим образом аппроксимировала бы истинное распределение температуры в + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaBaaaleaacqGHRaWkaeqaaaaa@3D86@  в фиксированный момент времени τ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDaaa@3386@ . В связи с этим, следуя [10], любое отображение m: L 2 γ ( + )×× L 2 γ ( + ) L 2 γ ( + ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGTbGaaGOoaiaadYeadaqhaaWcba GaaGOmaaqaaiabeo7aNbaakiaaiIcatuuDJXwAK1uy0HMmaeHbfv3y SLgzG0uy0HgiuD3BaGabaiab=1risnaaBaaaleaacqGHRaWkaeqaaO GaaGykaiabgEna0kablAciljabgEna0kaadYeadaqhaaWcbaGaaGOm aaqaaiabeo7aNbaakiaaiIcacqWFDeIudaWgaaWcbaGaey4kaScabe aakiaaiMcacqGHsgIRcaWGmbWaa0baaSqaaiaaikdaaeaacqaHZoWz aaGccaaIOaGae8xhHi1aaSbaaSqaaiabgUcaRaqabaGccaaIPaaaaa@594D@  мы называем методом восстановления (температуры в + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaBaaaleaacqGHRaWkaeqaaaaa@3D86@  в момент τ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDaaa@3386@  согласно этой информации). Значение

e(τ, δ ¯ ,m)= sup U u(,τ)m( y j ())() L 2 γ ( + ) , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGLbGaaGikaiabes8a0jaaiYcada qdaaqaaiabes7aKbaacaaISaGaamyBaiaaiMcacaaI9aWaaybuaeqa leaacaWGvbaabeGcbaGaci4CaiaacwhacaGGWbaaaebbfv3ySLgzGu eE0jxyaGabaiab=vIiqjaadwhacaaIOaGaeyyXICTaaGilaiabes8a 0jaaiMcacqGHsislcaWGTbGaaGikaiaadMhadaWgaaWcbaGaamOAaa qabaGccaaIOaGaeyyXICTaaGykaiaaiMcacaaIOaGaeyyXICTaaGyk aiab=vIiqnaaBaaaleaacaWGmbWaa0baaeaacaaIYaaabaGaeq4SdC gaaiaaiIcatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqb aiab+1risnaaBaaabaGaey4kaScabeaacaaIPaaabeaakiaaiYcaaa a@6B11@

где y ¯ ()=( y 1 (),, y p ()) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqdaaqaaiaadMhaaaGaaGikaiabgw SixlaaiMcacaaI9aGaaGikaiaadMhadaWgaaWcbaGaaGymaaqabaGc caaIOaGaeyyXICTaaGykaiaaiYcacqWIMaYscaaISaGaamyEamaaBa aaleaacaWGWbaabeaakiaaiIcacqGHflY1caaIPaGaaGykaaaa@46AF@ , δ ¯ =( δ 1 (),, δ p ()) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqdaaqaaiabes7aKbaacaaI9aGaaG ikaiabes7aKnaaBaaaleaacaaIXaaabeaakiaaiIcacqGHflY1caaI PaGaaGilaiablAciljaaiYcacqaH0oazdaWgaaWcbaGaamiCaaqaba GccaaIOaGaeyyXICTaaGykaiaaiMcaaaa@44F5@ ,

U={( u 0 (), y ¯ ()) L 2 γ ( + ):u(, t j ) y j () L 2 γ ( + ) δ j ,j=1,,p}, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGvbGaaGypaiaaiUhacaaIOaGaam yDamaaBaaaleaacaaIWaaabeaakiaaiIcacqGHflY1caaIPaGaaGil amaanaaabaGaamyEaaaacaaIOaGaeyyXICTaaGykaiaaiMcacqGHii IZcaWGmbWaa0baaSqaaiaaikdaaeaacqaHZoWzaaGccaaIOaWefv3y SLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFDeIudaWgaa WcbaGaey4kaScabeaakiaaiMcacaaI6aGaaGjbVhbbfv3ySLgzGueE 0jxyaGqbaiab+vIiqjaadwhacaaIOaGaeyyXICTaaGilaiaadshada WgaaWcbaGaamOAaaqabaGccaaIPaGaeyOeI0IaamyEamaaBaaaleaa caWGQbaabeaakiaaiIcacqGHflY1caaIPaGae4xjIa1aaSbaaSqaai aadYeadaqhaaqaaiaaikdaaeaacqaHZoWzaaGaaGikaiab=1risnaa BaaabaGaey4kaScabeaacaaIPaaabeaakiabgsMiJkabes7aKnaaBa aaleaacaWGQbaabeaakiaaiYcacaaMe8UaamOAaiaai2dacaaIXaGa aGilaiablAciljaaiYcacaWGWbGaaGyFaiaaiYcaaaa@7FD7@

называется ошибкой этого метода. Значение

Eτ,δ¯einfmL2γpL2γ+τ,δ¯,m

называется ошибкой оптимального восстановления. Метод m ^ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiaad2gaaiaawkWaaaaa@3375@ , для которого

E(τ, δ ¯ )=e(τ, δ ¯ , m ^ ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGikaiabes8a0jaaiYcada qdaaqaaiabes7aKbaacaaIPaGaaGypaiaadwgacaaIOaGaeqiXdqNa aGilamaanaaabaGaeqiTdqgaaiaaiYcadaqiaaqaaiaad2gaaiaawk WaaiaaiMcacaaISaaaaa@4288@

называется оптимальным методом восстановления.

2. Необходимые сведения.

Введем следующие обозначения:

R N + ={x=( x , x ), x =( x 1 ,, x n ), x =( x n+1 ,, x N ), x 1 >0,, x n >0}, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGsbWaa0baaSqaaiaad6eaaeaacq GHRaWkaaGccaaI9aGaaG4EaiaadIhacaaI9aGaaGikaiqadIhagaqb aiaaiYcaceWG4bGbauGbauaacaaIPaGaaGilaiaaysW7ceWG4bGbau aacaaI9aGaaGikaiaadIhadaWgaaWcbaGaaGymaaqabaGccaaISaGa eSOjGSKaaGilaiaadIhadaWgaaWcbaGaamOBaaqabaGccaaIPaGaaG ilaiaaysW7ceWG4bGbauGbauaacaaI9aGaaGikaiaadIhadaWgaaWc baGaamOBaiabgUcaRiaaigdaaeqaaOGaaGilaiablAciljaaiYcaca WG4bWaaSbaaSqaaiaad6eaaeqaaOGaaGykaiaaiYcacaaMe8UaamiE amaaBaaaleaacaaIXaaabeaakiaai6dacaaIWaGaaGilaiablAcilj aaiYcacaWG4bWaaSbaaSqaaiaad6gaaeqaaOGaaGOpaiaaicdacaaI 9bGaaGilaaaa@63E6@

γ=( γ 1 ,, γ n ), ( x ) γ = i=1 n x i γ i , γ i >0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHZoWzcaaI9aGaaGikaiabeo7aNn aaBaaaleaacaaIXaaabeaakiaaiYcacqWIMaYscaaISaGaeq4SdC2a aSbaaSqaaiaad6gaaeqaaOGaaGykaiaaiYcacaaMf8UaaGikaiqadI hagaqbaiaaiMcadaahaaWcbeqaaiabeo7aNbaakiaai2dadaqeWbqa bSqaaiaadMgacaaI9aGaaGymaaqaaiaad6gaa0Gaey4dIunakiaadI hadaqhaaWcbaGaamyAaaqaaiabeo7aNnaaBaaabaGaamyAaaqabaaa aOGaaGilaiaaywW7cqaHZoWzdaWgaaWcbaGaamyAaaqabaGccaaI+a GaaGimaiaai6caaaa@56A1@

Через Ω + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaahaaWcbeqaaiabgUcaRa aaaaa@345E@  будем обозначать область, прилегающую к гиперплоскостям x 1 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaaicdaaaa@3530@ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqWIMaYsaaa@32E3@ , x n =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaad6gaaeqaaO GaaGypaiaaicdaaaa@3568@ . Граница области Ω + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaahaaWcbeqaaiabgUcaRa aaaaa@345E@  состоит из двух частей: Γ + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWrdaahaaWcbeqaaiabgUcaRa aaaaa@3438@ , расположенной в части пространства R N + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGsbWaa0baaSqaaiaad6eaaeaacq GHRaWkaaaaaa@347A@ , и Γ 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWrdaWgaaWcbaGaaGimaaqaba aaaa@340F@ , принадлежащей гиперплоскостям x 1 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaaicdaaaa@3530@ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqWIMaYsaaa@32E3@ , x n =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaad6gaaeqaaO GaaGypaiaaicdaaaa@3568@ .

Через L p γ ( Ω + ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaa0baaSqaaiaadchaaeaacq aHZoWzaaGccaaIOaGaeuyQdC1aaWbaaSqabeaacqGHRaWkaaGccaaI Paaaaa@3971@  будем обозначать линейное пространство функций, для которых

f L p γ ( Ω + ) = Ω + |f(x )| p ( x ) γ dx 1/p <+. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWGMbGae8xjIa1aaSbaaSqaaiaadYeadaqhaaqaaiaadchaaeaa cqaHZoWzaaGaaGikaiabfM6axnaaCaaabeqaaiabgUcaRaaacaaIPa aabeaakiaai2dadaqadaqaaiaaysW7daWdrbqabSqaaiabfM6axnaa CaaabeqaaiabgUcaRaaaaeqaniabgUIiYdGccaaI8bGaamOzaiaaiI cacaWG4bGaaGykaiaaiYhadaahaaWcbeqaaiaadchaaaGccaaMi8Ua aGikaiqadIhagaqbaiaaiMcadaahaaWcbeqaaiabeo7aNbaakiaayI W7caWGKbGaamiEaaGaayjkaiaawMcaamaaCaaaleqabaGaaGymaiaa i+cacaWGWbaaaOGaaGipaiabgUcaRiabg6HiLkaai6caaaa@6049@

Пусть Ω N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvcqGHckcZtuuDJXwAK1uy0H MmaeHbfv3ySLgzG0uy0HgiuD3BaGabaiab=1risnaaCaaaleqabaGa amOtaaaaaaa@4102@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  объединение множества Ω + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaahaaWcbeqaaiabgUcaRa aaaaa@345E@  и множества Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaahaaWcbeqaaiabgkHiTa aaaaa@3469@ , полученного из Ω + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaahaaWcbeqaaiabgUcaRa aaaaa@345E@  симметрией относительно пространства x =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbauaacaaI9aGaaGimaaaa@344B@ .

Смешанный обобщенный сдвиг определим формулой

f( T y f)(x)= i=1 n T x i y i f( x , x y ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaeyOKH4QaaGikaiaadsfada ahaaWcbeqaaiaadMhaaaGccaWGMbGaaGykaiaaiIcacaWG4bGaaGyk aiaai2dadaqeWbqabSqaaiaadMgacaaI9aGaaGymaaqaaiaad6gaa0 Gaey4dIunakiaadsfadaqhaaWcbaGaamiEamaaBaaabaGaamyAaaqa baaabaGaamyEamaaBaaabaGaamyAaaqabaaaaOGaamOzaiaaiIcace WG4bGbauaacaaISaGabmiEayaafyaafaGaeyOeI0IabmyEayaafyaa faGaaGykaiaaiYcaaaa@4EC3@                    (2)

где каждый из обобщенных сдвигов T x i y i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubWaa0baaSqaaiaadIhadaWgaa qaaiaadMgaaeqaaaqaaiaadMhadaWgaaqaaiaadMgaaeqaaaaaaaa@36E0@  определен по формуле (см.[8])

TxiyifxΓγi+12πΓγi20πfx1,,xi1,xi2+yi22xiyicosα,xi+1,,xNsinγi1αdα,                    (3)

i=1,,n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaigdacaaISaGaeS OjGSKaaGilaiaad6gaaaa@37B2@ , а произведение k=1 n T x k y k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqeWbqabSqaaiaadUgacaaI9aGaaG ymaaqaaiaad6gaa0Gaey4dIunakiaadsfadaqhaaWcbaGaamiEamaa BaaabaGaam4AaaqabaaabaGaamyEamaaBaaabaGaam4Aaaqabaaaaa aa@3C85@  понимается как произведение (суперпозиция) операторов.

Обобщенная свертка функций f,g L p γ ( R N + ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGilaiaaysW7caWGNbGaey icI4SaamitamaaDaaaleaacaWGWbaabaGaeq4SdCgaaOGaaGikaiaa dkfadaqhaaWcbaGaamOtaaqaaiabgUcaRaaakiaaiMcaaaa@3F2B@  определяется формулой

(fg) γ (x)= R N + f(y) T x y g(x)( y ) γ dy. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamOzaiabgEHiQiaadEgaca aIPaWaaSbaaSqaaiabeo7aNbqabaGccaaIOaGaamiEaiaaiMcacaaI 9aWaa8quaeqaleaacaWGsbWaa0baaeaacaWGobaabaGaey4kaScaaa qab0Gaey4kIipakiaadAgacaaIOaGaamyEaiaaiMcacaWGubWaa0ba aSqaaiaadIhaaeaacaWG5baaaOGaam4zaiaaiIcacaWG4bGaaGykai aaiIcaceWG5bGbauaacaaIPaWaaWbaaSqabeaacqaHZoWzaaGccaWG KbGaamyEaiaai6caaaa@5088@                      (4)

Прямое и обратное смешанные преобразования Фурье MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ Бесселя определяются соответственно формулами

F B,γ [φ( x , x )](ξ)= R N + φ(x) k=1 n j ν k ( ξ k x k ) e i x ξ ( x ) γ dx= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiaadkeacaaISa Gaeq4SdCgabeaakiaaiUfacqaHgpGAcaaIOaGabmiEayaafaGaaGil aiqadIhagaqbgaqbaiaaiMcacaaIDbGaaGikaiabe67a4jaaiMcaca aI9aWaa8quaeqaleaacaWGsbWaa0baaeaacaWGobaabaGaey4kaSca aaqab0Gaey4kIipakiabeA8aQjaaiIcacaWG4bGaaGykamaarahabe WcbaGaam4Aaiaai2dacaaIXaaabaGaamOBaaqdcqGHpis1aOGaamOA amaaBaaaleaacqaH9oGBdaWgaaqaaiaadUgaaeqaaaqabaGccaaIOa GaeqOVdG3aaSbaaSqaaiaadUgaaeqaaOGaamiEamaaBaaaleaacaWG RbaabeaakiaaiMcacaWGLbWaaWbaaSqabeaacqGHsislcaWGPbGabm iEayaafyaafaGaeyyXICTafqOVdGNbauGbauaaaaGccaaIOaGabmiE ayaafaGaaGykamaaCaaaleqabaGaeq4SdCgaaOGaaGjcVlaadsgaca WG4bGaaGypaaaa@6B76@

=(2π ) Nn 2 2|ν| k=1 n Γ 2 ( ν k +1) F B,γ 1 [ψ( x , x )](ξ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaaGikaiaaikdacqaHapaCca aIPaWaaWbaaSqabeaacaWGobGaeyOeI0IaamOBaaaakiaayIW7caaI YaWaaWbaaSqabeaacaaIYaGaaGiFaiabe27aUjaaiYhaaaGcdaqeWb qabSqaaiaadUgacaaI9aGaaGymaaqaaiaad6gaa0Gaey4dIunakiab fo5ahnaaCaaaleqabaGaaGOmaaaakiaaiIcacqaH9oGBdaWgaaWcba Gaam4AaaqabaGccqGHRaWkcaaIXaGaaGykaiaadAeadaqhaaWcbaGa amOqaiaaiYcacqaHZoWzaeaacqGHsislcaaIXaaaaOGaaG4waiabeI 8a5jaaiIcaceWG4bGbauaacaaISaGaeyOeI0IabmiEayaafyaafaGa aGykaiaai2facaaIOaGaeqOVdGNaaGykaiaaiYcaaaa@609B@      (5)

где

x ξ = x 1 ξ 1 ++ x n ξ n , x ξ = x n+1 ξ n+1 ++ x N ξ N ,|ν|= ν 1 ++ ν n , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbauaacqGHflY1cuaH+oaEga qbaiaai2dacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaeqOVdG3aaSba aSqaaiaaigdaaeqaaOGaey4kaSIaeSOjGSKaey4kaSIaamiEamaaBa aaleaacaWGUbaabeaakiabe67a4naaBaaaleaacaWGUbaabeaakiaa iYcacaaMf8UabmiEayaafyaafaGaeyyXICTafqOVdGNbauGbauaaca aI9aGaamiEamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaGccqaH +oaEdaWgaaWcbaGaamOBaiabgUcaRiaaigdaaeqaaOGaey4kaSIaeS OjGSKaey4kaSIaamiEamaaBaaaleaacaWGobaabeaakiabe67a4naa BaaaleaacaWGobaabeaakiaaiYcacaaMf8UaaGiFaiabe27aUjaaiY hacaaI9aGaeqyVd42aaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeSOj GSKaey4kaSIaeqyVd42aaSbaaSqaaiaad6gaaeqaaOGaaGilaaaa@6C80@

j ν k ( z k )= 2 ν k Γ( ν k +1) z k ν k J ν k ( z k )=Γ( ν k +1) m=1 (1) m z k 2m 2 2m m!Γ(m+ ν k +1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbWaaSbaaSqaaiabe27aUnaaBa aabaGaam4AaaqabaaabeaakiaaiIcacaWG6bWaaSbaaSqaaiaadUga aeqaaOGaaGykaiaai2dadaWcaaqaaiaaikdadaahaaWcbeqaaiabe2 7aUnaaBaaabaGaam4AaaqabaaaaOGaeu4KdCKaaGikaiabe27aUnaa BaaaleaacaWGRbaabeaakiabgUcaRiaaigdacaaIPaaabaGaamOEam aaDaaaleaacaWGRbaabaGaeqyVd42aaSbaaeaacaWGRbaabeaaaaaa aOGaamOsamaaBaaaleaacqaH9oGBdaWgaaqaaiaadUgaaeqaaaqaba GccaaIOaGaamOEamaaBaaaleaacaWGRbaabeaakiaaiMcacaaI9aGa eu4KdCKaaGikaiabe27aUnaaBaaaleaacaWGRbaabeaakiabgUcaRi aaigdacaaIPaWaaabCaeqaleaacaWGTbGaaGypaiaaigdaaeaacqGH EisPa0GaeyyeIuoakmaalaaabaGaaGikaiabgkHiTiaaigdacaaIPa WaaWbaaSqabeaacaWGTbaaaOGaamOEamaaDaaaleaacaWGRbaabaGa aGOmaiaad2gaaaaakeaacaaIYaWaaWbaaSqabeaacaaIYaGaamyBaa aakiaad2gacaaIHaGaeu4KdCKaaGikaiaad2gacqGHRaWkcqaH9oGB daWgaaWcbaGaam4AaaqabaGccqGHRaWkcaaIXaGaaGykaaaaaaa@7510@

MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  нормированная функция Бесселя первого рода порядка ν k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBdaWgaaWcbaGaam4Aaaqaba aaaa@3495@ , Γ() MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWrcaaIOaGaeyyXICTaaGykaa aa@36D8@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  гамма-функция Эйлера, J ν k () MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGkbWaaSbaaSqaaiabe27aUnaaBa aabaGaam4AaaqabaaabeaakiaaiIcacqGHflY1caaIPaaaaa@393E@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  функция Бесселя первого рода порядка ν k =( γ k 1)/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBdaWgaaWcbaGaam4Aaaqaba GccaaI9aGaaGikaiabeo7aNnaaBaaaleaacaWGRbaabeaakiabgkHi TiaaigdacaaIPaGaaG4laiaaikdaaaa@3CB5@ , k=1,,n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaaGypaiaaigdacaaISaGaeS OjGSKaaGilaiaad6gaaaa@37B4@ .

3. Нижняя граница оптимального метода.

Пусть P t : L 2 γ () L 2 γ ( + ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGqbWaaSbaaSqaaiaadshaaeqaaO GaaGOoaiaadYeadaqhaaWcbaGaaGOmaaqaaiabeo7aNbaakiaaiIca tuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGabaiab=1risj aaiMcacqGHsgIRcaWGmbWaa0baaSqaaiaaikdaaeaacqaHZoWzaaGc caaIOaGae8xhHi1aaSbaaSqaaiabgUcaRaqabaGccaaIPaaaaa@4CFA@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  оператор, определенный формулой (1):

u 0 (η) I ν ηx 2t exp η 2 + x 2 4t dη, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaaicdaaeqaaO GaaGikaiabeE7aOjaaiMcacaaMi8UaamysamaaBaaaleaacqaH9oGB aeqaaOWaaeWaaeaadaWcaaqaaiabeE7aOjaadIhaaeaacaaIYaGaam iDaaaaaiaawIcacaGLPaaaciGGLbGaaiiEaiaacchadaqadaqaaiab gkHiTmaalaaabaGaeq4TdG2aaWbaaSqabeaacaaIYaaaaOGaey4kaS IaamiEamaaCaaaleqabaGaaGOmaaaaaOqaaiaaisdacaWG0baaaaGa ayjkaiaawMcaaiaayIW7caWGKbGaeq4TdGMaaGilaaaa@5265@

t>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaaGOpaiaaicdaaaa@343C@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  фиксированное значение, P 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGqbWaaSbaaSqaaiaaicdaaeqaaa aa@337C@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  тождественный оператор.

Пусть τ0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDcqGHLjYScaaIWaaaaa@3606@ . Рассмотрим следующую задачу:

P τ u 0 () L 2 γ ( + ) max, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWGqbWaaSbaaSqaaiabes8a0bqabaGccaWG1bWaaSbaaSqaaiaa icdaaeqaaOGaaGikaiabgwSixlaaiMcacqWFLicudaWgaaWcbaGaam itamaaDaaabaGaaGOmaaqaaiabeo7aNbaacaaIOaWefv3ySLgznfgD Ojdaryqr1ngBPrginfgDObcv39gaiuaacqGFDeIudaWgaaqaaiabgU caRaqabaGaaGykaaqabaGccqGHsgIRciGGTbGaaiyyaiaacIhacaaI Saaaaa@571F@                                           (6)

P t j u 0 () L 2 γ ( + ) δ j ,j=1,,p, u 0 () L 2 γ ( + ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWGqbWaaSbaaSqaaiaadshadaWgaaqaaiaadQgaaeqaaaqabaGc caWG1bWaaSbaaSqaaiaaicdaaeqaaOGaaGikaiabgwSixlaaiMcacq WFLicudaWgaaWcbaGaamitamaaDaaabaGaaGOmaaqaaiabeo7aNbaa caaIOaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacq GFDeIudaWgaaqaaiabgUcaRaqabaGaaGykaaqabaGccqGHKjYOcqaH 0oazdaWgaaWcbaGaamOAaaqabaGccaaISaGaaGzbVlaadQgacaaI9a GaaGymaiaaiYcacqWIMaYscaaISaGaamiCaiaaiYcacaaMf8UaamyD amaaBaaaleaacaaIWaaabeaakiaaiIcacqGHflY1caaIPaGaeyicI4 SaamitamaaDaaaleaacaaIYaaabaGaeq4SdCgaaOGaaGikaiab+1ri snaaBaaaleaacqGHRaWkaeqaaOGaaGykaiaai6caaaa@6FB8@                                                                           (7)

Функция, удовлетворяющая условию(7) называется допустимой функцией задачи (6) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (7).

Пусть S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGtbaaaa@3299@  означает верхнюю границу P τ u 0 () L 2 γ ( + ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWGqbWaaSbaaSqaaiabes8a0bqabaGccaWG1bWaaSbaaSqaaiaa icdaaeqaaOGaaGikaiabgwSixlaaiMcacqWFLicudaWgaaWcbaGaam itamaaDaaabaGaaGOmaaqaaiabeo7aNbaacaaIOaWefv3ySLgznfgD Ojdaryqr1ngBPrginfgDObcv39gaiuaacqGFDeIudaWgaaqaaiabgU caRaqabaGaaGykaaqabaaaaa@519E@  с условиями (7).

Лемма 1. Имеет место неравенство E(τ, δ ¯ )S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGikaiabes8a0jaaiYcada qdaaqaaiabes7aKbaacaaIPaGaeyyzImRaam4uaaaa@3ABF@ .

Доказательство. Пусть u ¯ 0 () MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqdaaqaaiaadwhaaaWaaSbaaSqaai aaicdaaeqaaOGaaGikaiabgwSixlaaiMcaaaa@376B@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  допустимая функция задачи (6) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (7). Тогда u ¯ 0 () MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaqdaaqaaiaadwhaaaWaaS baaSqaaiaaicdaaeqaaOGaaGikaiabgwSixlaaiMcaaaa@3858@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  допустимая функция задачи (6) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (7). Для всякого метода m:( L 2 γ ( + )) p L 2 γ ( + ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGTbGaaGOoaiaaiIcacaWGmbWaa0 baaSqaaiaaikdaaeaacqaHZoWzaaGccaaIOaWefv3ySLgznfgDOjda ryqr1ngBPrginfgDObcv39gaiqaacqWFDeIudaWgaaWcbaGaey4kaS cabeaakiaaiMcacaaIPaWaaWbaaSqabeaacaWGWbaaaOGaeyOKH4Qa amitamaaDaaaleaacaaIYaaabaGaeq4SdCgaaOGaaGikaiab=1risn aaBaaaleaacqGHRaWkaeqaaOGaaGykaaaa@4F91@ , имеем:

2 P τ u ¯ 0 () L 2 γ ( + ) = P τ u ¯ 0 ()m(0)()+m(0)() P τ ( u ¯ 0 ()) L 2 γ ( + ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIYaqeeuuDJXwAKbsr4rNCHbacea Gae8xjIaLaamiuamaaBaaaleaacqaHepaDaeqaaOWaa0aaaeaacaWG 1baaamaaBaaaleaacaaIWaaabeaakiaaiIcacqGHflY1caaIPaGae8 xjIa1aaSbaaSqaaiaadYeadaqhaaqaaiaaikdaaeaacqaHZoWzaaGa aGikamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae4 xhHi1aaSbaaeaacqGHRaWkaeqaaiaaiMcaaeqaaOGaaGypaiab=vIi qjaadcfadaWgaaWcbaGaeqiXdqhabeaakmaanaaabaGaamyDaaaada WgaaWcbaGaaGimaaqabaGccaaIOaGaeyyXICTaaGykaiabgkHiTiaa d2gacaaIOaGaaGimaiaaiMcacaaIOaGaeyyXICTaaGykaiabgUcaRi aad2gacaaIOaGaaGimaiaaiMcacaaIOaGaeyyXICTaaGykaiabgkHi TiaadcfadaWgaaWcbaGaeqiXdqhabeaakiaaiIcacqGHsisldaqdaa qaaiaadwhaaaWaaSbaaSqaaiaaicdaaeqaaOGaaGikaiabgwSixlaa iMcacaaIPaGae8xjIa1aaSbaaSqaaiaadYeadaqhaaqaaiaaikdaae aacqaHZoWzaaGaaGikaiab+1risnaaBaaabaGaey4kaScabeaacaaI PaaabeaakiabgsMiJcaa@81B3@

P τ u ¯ 0 ()m(0)() L 2 γ ( + ) +m(0)() P τ ( u ¯ 0 ()) L 2 γ ( + ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHKjYOrqqr1ngBPrgifHhDYfgaiq aacqWFLicucaWGqbWaaSbaaSqaaiabes8a0bqabaGcdaqdaaqaaiaa dwhaaaWaaSbaaSqaaiaaicdaaeqaaOGaaGikaiabgwSixlaaiMcacq GHsislcaWGTbGaaGikaiaaicdacaaIPaGaaGikaiabgwSixlaaiMca cqWFLicudaWgaaWcbaGaamitamaaDaaabaGaaGOmaaqaaiabeo7aNb aacaaIOaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaa cqGFDeIudaWgaaqaaiabgUcaRaqabaGaaGykaaqabaGccqGHRaWkcq WFLicucaWGTbGaaGikaiaaicdacaaIPaGaaGikaiabgwSixlaaiMca cqGHsislcaWGqbWaaSbaaSqaaiabes8a0bqabaGccaaIOaGaeyOeI0 Yaa0aaaeaacaWG1baaamaaBaaaleaacaaIWaaabeaakiaaiIcacqGH flY1caaIPaGaaGykaiab=vIiqnaaBaaaleaacaWGmbWaa0baaeaaca aIYaaabaGaeq4SdCgaaiaaiIcacqGFDeIudaWgaaqaaiabgUcaRaqa baGaaGykaaqabaGccqGHKjYOaaa@796B@

2supu0L2γ+Ptju0L2γδj,j,pPτu0mL2γ+

2 supUPτu0my¯L2γ+.

В левой части полученного неравенства мы переходим к верхней границе допустимых функций, а в правой MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  к нижней границе всех методов. Этот шаг завершает доказательство леммы.

С помощью [1, формула 6.633(4)] легко убещиться в справедливости равенства

F γ [ P t u 0 ()](ξ)=exp(|ξ | 2 t) F γ u 0 (ξ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiabeo7aNbqaba GccaaIBbGaamiuamaaBaaaleaacaWG0baabeaakiaadwhadaWgaaWc baGaaGimaaqabaGccaaIOaGaeyyXICTaaGykaiaai2facaaIOaGaeq OVdGNaaGykaiaai2daciGGLbGaaiiEaiaacchacaaIOaGaeyOeI0Ia aGiFaiabe67a4jaaiYhadaahaaWcbeqaaiaaikdaaaGccaWG0bGaaG ykaiaadAeadaWgaaWcbaGaeq4SdCgabeaakiaadwhadaWgaaWcbaGa aGimaaqabaGccaaIOaGaeqOVdGNaaGykaiaai6caaaa@551B@

Следовательно, по теореме Парсеваля MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ Планшереля для преобразования Фурье MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ Бесселя квадрат значения задачи (6) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (7) равен значению следующей задачи:

1 2 2ν Γ 2 (ν+1) + ξ 2ν+1 e 2|ξ | 2 τ | F γ u 0 (ξ )| 2 dξmax, u 0 () L 2 γ ( + ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaaigdaaeaacaaIYaWaaW baaSqabeaacaaIYaGaeqyVd4gaaOGaeu4KdC0aaWbaaSqabeaacaaI YaaaaOGaaGikaiabe27aUjabgUcaRiaaigdacaaIPaaaamaapefabe WcbaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWF DeIudaWgaaqaaiabgUcaRaqabaaabeqdcqGHRiI8aOGaeqOVdG3aaW baaSqabeaacaaIYaGaeqyVd4Maey4kaSIaaGymaaaakiaadwgadaah aaWcbeqaaiabgkHiTiaaikdacaaI8bGaeqOVdGNaaGiFamaaCaaabe qaaiaaikdaaaGaeqiXdqhaaOGaaGiFaiaadAeadaWgaaWcbaGaeq4S dCgabeaakiaadwhadaWgaaWcbaGaaGimaaqabaGccaaIOaGaeqOVdG NaaGykaiaaiYhadaahaaWcbeqaaiaaikdaaaGccaaMi8Uaamizaiab e67a4jabgkziUkGac2gacaGGHbGaaiiEaiaaiYcacaaMf8UaamyDam aaBaaaleaacaaIWaaabeaakiaaiIcacqGHflY1caaIPaGaeyicI4Sa amitamaaDaaaleaacaaIYaaabaGaeq4SdCgaaOGaaGikaiab=1risn aaBaaaleaacqGHRaWkaeqaaOGaaGykaiaaiYcaaaa@7F29@                                                   (8)

1 2 2ν Γ 2 (ν+1) + ξ 2ν+1 e 2|ξ | 2 t j | F γ u 0 (ξ )| 2 dξ δ j 2 ,j=1,,p. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaaigdaaeaacaaIYaWaaW baaSqabeaacaaIYaGaeqyVd4gaaOGaeu4KdC0aaWbaaSqabeaacaaI YaaaaOGaaGikaiabe27aUjabgUcaRiaaigdacaaIPaaaamaapefabe WcbaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWF DeIudaWgaaqaaiabgUcaRaqabaaabeqdcqGHRiI8aOGaeqOVdG3aaW baaSqabeaacaaIYaGaeqyVd4Maey4kaSIaaGymaaaakiaadwgadaah aaWcbeqaaiabgkHiTiaaikdacaaI8bGaeqOVdGNaaGiFamaaCaaabe qaaiaaikdaaaGaamiDamaaBaaabaGaamOAaaqabaaaaOGaaGiFaiaa dAeadaWgaaWcbaGaeq4SdCgabeaakiaadwhadaWgaaWcbaGaaGimaa qabaGccaaIOaGaeqOVdGNaaGykaiaaiYhadaahaaWcbeqaaiaaikda aaGccaaMi8Uaamizaiabe67a4jabgsMiJkabes7aKnaaDaaaleaaca WGQbaabaGaaGOmaaaakiaaiYcacaaMf8UaamOAaiaai2dacaaIXaGa aGilaiablAciljaaiYcacaWGWbGaaGOlaaaa@77C4@                                                             (9)

Перейдем от задачи (8) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (9) к расширенной задаче (согласно терминологии [10]). Для этого заменим 1 2 2ν Γ 2 (ν+1) | F γ u 0 (ξ )| 2 ξ 2ν+1 dξ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaaigdaaeaacaaIYaWaaW baaSqabeaacaaIYaGaeqyVd4gaaOGaeu4KdC0aaWbaaSqabeaacaaI YaaaaOGaaGikaiabe27aUjabgUcaRiaaigdacaaIPaaaaiaayIW7ca aI8bGaamOramaaBaaaleaacqaHZoWzaeqaaOGaamyDamaaBaaaleaa caaIWaaabeaakiaaiIcacqaH+oaEcaaIPaGaaGiFamaaCaaaleqaba GaaGOmaaaakiabe67a4naaCaaaleqabaGaaGOmaiabe27aUjabgUca RiaaigdaaaGccaaMi8Uaamizaiabe67a4baa@539A@  на положительную меру dμ(ξ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGKbGaeqiVd0MaaGikaiabe67a4j aaiMcaaaa@3788@ :

+ e 2|ξ | 2 τ dμ(ξ)max, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdrbqabSqaamrr1ngBPrwtHrhAYa qeguuDJXwAKbstHrhAGq1DVbaceaGae8xhHi1aaSbaaeaacqGHRaWk aeqaaaqab0Gaey4kIipakiaadwgadaahaaWcbeqaaiabgkHiTiaaik dacaaI8bGaeqOVdGNaaGiFamaaCaaabeqaaiaaikdaaaGaeqiXdqha aOGaaGjcVlaadsgacqaH8oqBcaaIOaGaeqOVdGNaaGykaiabgkziUk Gac2gacaGGHbGaaiiEaiaaiYcaaaa@55DB@                                                                                                     (10)

+ e 2|ξ | 2 t j dμ(ξ) δ j 2 ,j=1,,p. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdrbqabSqaamrr1ngBPrwtHrhAYa qeguuDJXwAKbstHrhAGq1DVbaceaGae8xhHi1aaSbaaeaacqGHRaWk aeqaaaqab0Gaey4kIipakiaadwgadaahaaWcbeqaaiabgkHiTiaaik dacaaI8bGaeqOVdGNaaGiFamaaCaaabeqaaiaaikdaaaGaamiDamaa BaaabaGaamOAaaqabaaaaOGaamizaiabeY7aTjaaiIcacqaH+oaEca aIPaGaeyizImQaeqiTdq2aa0baaSqaaiaadQgaaeaacaaIYaaaaOGa aGilaiaaywW7caWGQbGaaGypaiaaigdacaaISaGaeSOjGSKaaGilai aadchacaaIUaaaaa@5D43@                                                                                                 (11)

Функция Лагранжа для этой задачи имеет вид

L(dμ(),λ)= λ 0 + e 2|ξ | 2 τ dμ(ξ)+ j=1 p λ j + e 2|ξ | 2 t j dμ(ξ) δ j 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=jrimjaaiIcacaWGKbGaeqiVd0MaaGikaiab gwSixlaaiMcacaaISaGaeq4UdWMaaGykaiaai2dacqaH7oaBdaWgaa WcbaGaaGimaaqabaGcdaWdrbqabSqaamrr1ngBPrwtHrhAYaqehuuD JXwAKbstHrhAGq1DVbacfaGae4xhHi1aaSbaaeaacqGHRaWkaeqaaa qab0Gaey4kIipakiaadwgadaahaaWcbeqaaiabgkHiTiaaikdacaaI 8bGaeqOVdGNaaGiFamaaCaaabeqaaiaaikdaaaGaeqiXdqhaaOGaaG jcVlaadsgacqaH8oqBcaaIOaGaeqOVdGNaaGykaiabgUcaRmaaqaha beWcbaGaamOAaiaai2dacaaIXaaabaGaamiCaaqdcqGHris5aOGaeq 4UdW2aaSbaaSqaaiaadQgaaeqaaOWaaeWaaeaadaWdrbqabSqaaiab +1risnaaBaaabaGaey4kaScabeaaaeqaniabgUIiYdGccaWGLbWaaW baaSqabeaacqGHsislcaaIYaGaaGiFaiabe67a4jaaiYhadaahaaqa beaacaaIYaaaaiaadshadaWgaaqaaiaadQgaaeqaaaaakiaadsgacq aH8oqBcaaIOaGaeqOVdGNaaGykaiabgkHiTiabes7aKnaaDaaaleaa caWGQbaabaGaaGOmaaaaaOGaayjkaiaawMcaaiaaiYcaaaa@8C4E@

где λ=( λ 0 , λ 1 ,, λ p ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH7oaBcaaI9aGaaGikaiabeU7aSn aaBaaaleaacaaIWaaabeaakiaaiYcacqaH7oaBdaWgaaWcbaGaaGym aaqabaGccaaISaGaeSOjGSKaaGilaiabeU7aSnaaBaaaleaacaWGWb aabeaakiaaiMcaaaa@410D@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  набор множителей Лагранжа. Расширенная проблема (10) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (11) была решена в [10]. Для полноты повествования нам нужно будет переписать это решение, слегка изменив конкретные значения в соответствии с нашими потребностями. На двумерной плоскости (t,y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamiDaiaaiYcacaWG5bGaaG ykaaaa@35D3@  построим множество

M=co t j ,ln 1 δ j ,j=1,,p + (t,0):t0 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbGaaGypaiaadogacaWGVbWaai WaaeaadaqadaqaaiaadshadaWgaaWcbaGaamOAaaqabaGccaaISaGa ciiBaiaac6gadaqadaqaamaalaaabaGaaGymaaqaaiabes7aKnaaBa aaleaacaWGQbaabeaaaaaakiaawIcacaGLPaaaaiaawIcacaGLPaaa caaISaGaamOAaiaai2dacaaIXaGaaGilaiablAciljaaiYcacaWGWb aacaGL7bGaayzFaaGaey4kaSYaaiWaaeaacaaIOaGaamiDaiaaiYca caaIWaGaaGykaiaaiQdacaWG0bGaeyyzImRaaGimaaGaay5Eaiaaw2 haaiaaiYcaaaa@5544@

где coA MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGJbGaam4Baiaadgeaaaa@3463@  означает выпуклую оболочку множества A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbaaaa@3287@ . Введем функцию θ(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH4oqCcaaIOaGaamiDaiaaiMcaaa a@35D5@  на луче [0,+) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaaGimaiaaiYcacqGHRaWkcq GHEisPcaaIPaaaaa@371C@  с помощью формулы

θ(t)=max{y:(t,y)M}, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH4oqCcaaIOaGaamiDaiaaiMcaca aI9aGaciyBaiaacggacaGG4bGaaG4EaiaadMhacaaI6aGaaGikaiaa dshacaaISaGaamyEaiaaiMcacqGHiiIZcaWGnbGaaGyFaiaaiYcaaa a@445C@

предполагая, что θ(t)= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH4oqCcaaIOaGaamiDaiaaiMcaca aI9aGaeyOeI0IaeyOhIukaaa@38FA@ , если (t,y)M MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamiDaiaaiYcacaWG5bGaaG ykaiabgMGiplaad2eaaaa@382B@  при всех y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5baaaa@32BF@ . На луче [ t 1 ,+) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaamiDamaaBaaaleaacaaIXa aabeaakiaaiYcacqGHRaWkcqGHEisPcaaIPaaaaa@384C@  график функции θ(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH4oqCcaaIOaGaamiDaiaaiMcaaa a@35D5@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  направленная вверх выпуклая (вогнутая) ломаная линия. Пусть t 1 = t s 1 < t s 2 << t s ϱ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaadshadaWgaaWcbaGaam4CamaaBaaabaGaaGymaaqabaaa beaakiaaiYdacaWG0bWaaSbaaSqaaiaadohadaWgaaqaaiaaikdaae qaaaqabaGccaaI8aGaeSOjGSKaaGipaiaadshadaWgaaWcbaGaam4C amaaBaaabaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiq GacqWFXpq8aeqaaaqabaaaaa@4C20@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  точки ее изломов. Очевидно,

{ t s 1 < t s 2 << t s ϱ }{ t 1 < t 2 << t p }. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI7bGaamiDamaaBaaaleaacaWGZb WaaSbaaeaacaaIXaaabeaaaeqaaOGaaGipaiaadshadaWgaaWcbaGa am4CamaaBaaabaGaaGOmaaqabaaabeaakiaaiYdacqWIMaYscaaI8a GaamiDamaaBaaaleaacaWGZbWaaSbaaeaatuuDJXwAK1uy0HwmaeHb fv3ySLgzG0uy0Hgip5wzaGabciab=f=aXdqabaaabeaakiaai2hacq GHgksZcaaI7bGaamiDamaaBaaaleaacaaIXaaabeaakiaaiYdacaWG 0bWaaSbaaSqaaiaaikdaaeqaaOGaaGipaiablAciljaaiYdacaWG0b WaaSbaaSqaaiaadchaaeqaaOGaaGyFaiaai6caaaa@59B7@

Рассмотрим три случая.

(a) Пусть τ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDcqGHLjYScaWG0bWaaSbaaS qaaiaaigdaaeqaaaaa@372C@ , в то время как справа от τ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDaaa@3386@  имеется точка излома функции θ(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH4oqCcaaIOaGaamiDaiaaiMcaaa a@35D5@ . Предположим, что τ[ t s j , t s j+1 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDcqGHiiIZcaaIBbGaamiDam aaBaaaleaacaWGZbWaaSbaaeaacaWGQbaabeaaaeqaaOGaaGilaiaa dshadaWgaaWcbaGaam4CamaaBaaabaGaamOAaiabgUcaRiaaigdaae qaaaqabaGccaaIPaaaaa@3F63@ . Пусть d μ ^ (ξ)= x γ T ξ ξ 0 δ γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGKbWaaecaaeaacqaH8oqBaiaawk WaaiaaiIcacqaH+oaEcaaIPaGaaGypaiaadIhadaahaaWcbeqaaiab eo7aNbaakiaadsfadaqhaaWcbaGaeqOVdGhabaGaeqOVdG3aaSbaae aacaaIWaaabeaaaaGccqaH0oazdaWgaaWcbaGaeq4SdCgabeaaaaa@44D5@ , где параметры A 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbWaaSbaaSqaaiaaicdaaeqaaa aa@336D@  и ξ 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEdaWgaaWcbaGaaGimaaqaba aaaa@346A@  определяются из условий

+ e 2|ξ | 2 τ d μ ^ (ξ)=A e 2| ξ 0 | 2 t k = δ k 2 ,k= s j , s j+1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdrbqabSqaamrr1ngBPrwtHrhAYa qeguuDJXwAKbstHrhAGq1DVbaceaGae8xhHi1aaSbaaeaacqGHRaWk aeqaaaqab0Gaey4kIipakiaadwgadaahaaWcbeqaaiabgkHiTiaaik dacaaI8bGaeqOVdGNaaGiFamaaCaaabeqaaiaaikdaaaGaeqiXdqha aOGaaGjcVlaadsgadaqiaaqaaiabeY7aTbGaayPadaGaaGikaiabe6 7a4jaaiMcacaaI9aGaamyqaiaadwgadaahaaWcbeqaaiabgkHiTiaa ikdacaaI8bGaeqOVdG3aaSbaaeaacaaIWaaabeaacaaI8bWaaWbaae qabaGaaGOmaaaacaWG0bWaaSbaaeaacaWGRbaabeaaaaGccaaI9aGa eqiTdq2aa0baaSqaaiaadUgaaeaacaaIYaaaaOGaaGilaiaaywW7ca WGRbGaaGypaiaadohadaWgaaWcbaGaamOAaaqabaGccaaISaGaam4C amaaBaaaleaacaWGQbGaey4kaSIaaGymaaqabaGccaaIUaaaaa@6C9E@                                                                                            (12)

Из условия (12) получим

A= δ s j 2 t s j+1 /( t s j+1 t s j ) δ s j+1 2 t s j /( t s j+1 t s j ) , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbGaaGypaiabes7aKnaaDaaale aacaWGZbWaaSbaaeaacaWGQbaabeaaaeaacaaIYaGaamiDamaaBaaa baGaam4CamaaBaaabaGaamOAaiabgUcaRiaaigdaaeqaaaqabaGaaG 4laiaaiIcacaWG0bWaaSbaaeaacaWGZbWaaSbaaeaacaWGQbGaey4k aSIaaGymaaqabaaabeaacqGHsislcaWG0bWaaSbaaeaacaWGZbWaaS baaeaacaWGQbaabeaaaeqaaiaaiMcaaaGccaaMi8UaeqiTdq2aa0ba aSqaaiaadohadaWgaaqaaiaadQgacqGHRaWkcaaIXaaabeaaaeaacq GHsislcaaIYaGaamiDamaaBaaabaGaam4CamaaBaaabaGaamOAaaqa baaabeaacaaIVaGaaGikaiaadshadaWgaaqaaiaadohadaWgaaqaai aadQgacqGHRaWkcaaIXaaabeaaaeqaaiabgkHiTiaadshadaWgaaqa aiaadohadaWgaaqaaiaadQgaaeqaaaqabaGaaGykaaaakiaaiYcaaa a@5F18@

| ξ 0 | 2 = ln δ s j / δ s j+1 t s j+1 t s j = ln(1/ δ s j+1 )ln(1/ δ s j ) t s j+1 t s j . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI8bGaeqOVdG3aaSbaaSqaaiaaic daaeqaaOGaaGiFamaaCaaaleqabaGaaGOmaaaakiaai2dadaWcaaqa aiGacYgacaGGUbGaeqiTdq2aaSbaaSqaaiaadohadaWgaaqaaiaadQ gaaeqaaaqabaGccaaIVaGaeqiTdq2aaSbaaSqaaiaadohadaWgaaqa aiaadQgacqGHRaWkcaaIXaaabeaaaeqaaaGcbaGaamiDamaaBaaale aacaWGZbWaaSbaaeaacaWGQbGaey4kaSIaaGymaaqabaaabeaakiab gkHiTiaadshadaWgaaWcbaGaam4CamaaBaaabaGaamOAaaqabaaabe aaaaGccaaI9aWaaSaaaeaaciGGSbGaaiOBaiaaiIcacaaIXaGaaG4l aiabes7aKnaaBaaaleaacaWGZbWaaSbaaeaacaWGQbGaey4kaSIaaG ymaaqabaaabeaakiaaiMcacqGHsislciGGSbGaaiOBaiaaiIcacaaI XaGaaG4laiabes7aKnaaBaaaleaacaWGZbWaaSbaaeaacaWGQbaabe aaaeqaaOGaaGykaaqaaiaadshadaWgaaWcbaGaam4CamaaBaaabaGa amOAaiabgUcaRiaaigdaaeqaaaqabaGccqGHsislcaWG0bWaaSbaaS qaaiaadohadaWgaaqaaiaadQgaaeqaaaqabaaaaOGaaGOlaaaa@6B93@

Пусть λ ^ 0 =1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiabeU7aSbGaayPadaWaaS baaSqaaiaaicdaaeqaaOGaaGypaiabgkHiTiaaigdaaaa@3796@ , λ ^ k =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiabeU7aSbGaayPadaWaaS baaSqaaiaadUgaaeqaaOGaaGypaiaaicdaaaa@36DE@ , k s j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaeyiyIKRaam4CamaaBaaale aacaWGQbaabeaaaaa@368B@ , s j+1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbWaaSbaaSqaaiaadQgacqGHRa WkcaaIXaaabeaaaaa@3571@ . Для того, чтобы найти числа λ s j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH7oaBdaWgaaWcbaGaam4CamaaBa aabaGaamOAaaqabaaabeaaaaa@35A9@ , λ s j+1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH7oaBdaWgaaWcbaGaam4CamaaBa aabaGaamOAaiabgUcaRiaaigdaaeqaaaqabaaaaa@3746@ , сделаем некоторые приготовления. Пусть

f(v)= λ 0 + j=1 p λ j e 2v( t j τ) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaadAhacaaIPaGaaG ypaiabeU7aSnaaBaaaleaacaaIWaaabeaakiabgUcaRmaaqahabeWc baGaamOAaiaai2dacaaIXaaabaGaamiCaaqdcqGHris5aOGaeq4UdW 2aaSbaaSqaaiaadQgaaeqaaOGaamyzamaaCaaaleqabaGaeyOeI0Ia aGOmaiaadAhacaaIOaGaamiDamaaBaaabaGaamOAaaqabaGaeyOeI0 IaeqiXdqNaaGykaaaakiaai6caaaa@4C82@

Потребуем, чтобы f(| ξ 0 | 2 )= f (| ξ 0 | 2 )=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaaiYhacqaH+oaEda WgaaWcbaGaaGimaaqabaGccaaI8bWaaWbaaSqabeaacaaIYaaaaOGa aGykaiaai2daceWGMbGbauaacaaIOaGaaGiFaiabe67a4naaBaaale aacaaIWaaabeaakiaaiYhadaahaaWcbeqaaiaaikdaaaGccaaIPaGa aGypaiaaicdaaaa@4419@ . Отсюда получаем систему линейных уравнений относительно λ s j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH7oaBdaWgaaWcbaGaam4CamaaBa aabaGaamOAaaqabaaabeaaaaa@35A9@ , λ s j+1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH7oaBdaWgaaWcbaGaam4CamaaBa aabaGaamOAaiabgUcaRiaaigdaaeqaaaqabaaaaa@3746@ :

λ s j e 2| ξ 0 | 2 ( t s j τ) + λ s j+1 e 2| ξ 0 | 2 ( t s j+1 τ) =1, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH7oaBdaWgaaWcbaGaam4CamaaBa aabaGaamOAaaqabaaabeaakiaadwgadaahaaWcbeqaaiabgkHiTiaa ikdacaaI8bGaeqOVdG3aaSbaaeaacaaIWaaabeaacaaI8bWaaWbaae qabaGaaGOmaaaacaaIOaGaamiDamaaBaaabaGaam4CamaaBaaabaGa amOAaaqabaaabeaacqGHsislcqaHepaDcaaIPaaaaOGaey4kaSIaeq 4UdW2aaSbaaSqaaiaadohadaWgaaqaaiaadQgacqGHRaWkcaaIXaaa beaaaeqaaOGaamyzamaaCaaaleqabaGaeyOeI0IaaGOmaiaaiYhacq aH+oaEdaWgaaqaaiaaicdaaeqaaiaaiYhadaahaaqabeaacaaIYaaa aiaaiIcacaWG0bWaaSbaaeaacaWGZbWaaSbaaeaacaWGQbGaey4kaS IaaGymaaqabaaabeaacqGHsislcqaHepaDcaaIPaaaaOGaaGypaiaa igdacaaISaaaaa@5F0F@

λ s j ( t s j τ) e 2| ξ 0 | 2 ( t s j τ) + λ s j+1 ( t s j+1 τ) e 2| ξ 0 | 2 ( t s j+1 τ) =0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH7oaBdaWgaaWcbaGaam4CamaaBa aabaGaamOAaaqabaaabeaakiaaiIcacaWG0bWaaSbaaSqaaiaadoha daWgaaqaaiaadQgaaeqaaaqabaGccqGHsislcqaHepaDcaaIPaGaam yzamaaCaaaleqabaGaeyOeI0IaaGOmaiaaiYhacqaH+oaEdaWgaaqa aiaaicdaaeqaaiaaiYhadaahaaqabeaacaaIYaaaaiaaiIcacaWG0b WaaSbaaeaacaWGZbWaaSbaaeaacaWGQbaabeaaaeqaaiabgkHiTiab es8a0jaaiMcaaaGccqGHRaWkcqaH7oaBdaWgaaWcbaGaam4CamaaBa aabaGaamOAaiabgUcaRiaaigdaaeqaaaqabaGccaaIOaGaamiDamaa BaaaleaacaWGZbWaaSbaaeaacaWGQbGaey4kaSIaaGymaaqabaaabe aakiabgkHiTiabes8a0jaaiMcacaWGLbWaaWbaaSqabeaacqGHsisl caaIYaGaaGiFaiabe67a4naaBaaabaGaaGimaaqabaGaaGiFamaaCa aabeqaaiaaikdaaaGaaGikaiaadshadaWgaaqaaiaadohadaWgaaqa aiaadQgacqGHRaWkcaaIXaaabeaaaeqaaiabgkHiTiabes8a0jaaiM caaaGccaaI9aGaaGimaiaai6caaaa@6F49@

Решив эту систему, находим

λ s j = t s j+1 τ t s j+1 t s j δ s j+1 δ s j 2(τ t s j )/( t s j+1 t s j ) , λ s j = τ t s j t s j+1 t s j δ s j δ s j+1 2( t s j+1 τ)/( t s j+1 t s j ) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH7oaBdaWgaaWcbaGaam4CamaaBa aabaGaamOAaaqabaaabeaakiaai2dadaWcaaqaaiaadshadaWgaaWc baGaam4CamaaBaaabaGaamOAaiabgUcaRiaaigdaaeqaaaqabaGccq GHsislcqaHepaDaeaacaWG0bWaaSbaaSqaaiaadohadaWgaaqaaiaa dQgacqGHRaWkcaaIXaaabeaaaeqaaOGaeyOeI0IaamiDamaaBaaale aacaWGZbWaaSbaaeaacaWGQbaabeaaaeqaaaaakmaabmaabaWaaSaa aeaacqaH0oazdaWgaaWcbaGaam4CamaaBaaabaGaamOAaiabgUcaRi aaigdaaeqaaaqabaaakeaacqaH0oazdaWgaaWcbaGaam4CamaaBaaa baGaamOAaaqabaaabeaaaaaakiaawIcacaGLPaaadaahaaWcbeqaai aaikdacaaIOaGaeqiXdqNaeyOeI0IaamiDamaaBaaabaGaam4Camaa BaaabaGaamOAaaqabaaabeaacaaIPaGaaG4laiaaiIcacaWG0bWaaS baaeaacaWGZbWaaSbaaeaacaWGQbGaey4kaSIaaGymaaqabaaabeaa cqGHsislcaWG0bWaaSbaaeaacaWGZbWaaSbaaeaacaWGQbaabeaaae qaaiaaiMcaaaGccaaISaGaaGzbVlabeU7aSnaaBaaaleaacaWGZbWa aSbaaeaacaWGQbaabeaaaeqaaOGaaGypamaalaaabaGaeqiXdqNaey OeI0IaamiDamaaBaaaleaacaWGZbWaaSbaaeaacaWGQbaabeaaaeqa aaGcbaGaamiDamaaBaaaleaacaWGZbWaaSbaaeaacaWGQbGaey4kaS IaaGymaaqabaaabeaakiabgkHiTiaadshadaWgaaWcbaGaam4Camaa BaaabaGaamOAaaqabaaabeaaaaGcdaqadaqaamaalaaabaGaeqiTdq 2aaSbaaSqaaiaadohadaWgaaqaaiaadQgaaeqaaaqabaaakeaacqaH 0oazdaWgaaWcbaGaam4CamaaBaaabaGaamOAaiabgUcaRiaaigdaae qaaaqabaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaGaaGik aiaadshadaWgaaqaaiaadohadaWgaaqaaiaadQgacqGHRaWkcaaIXa aabeaaaeqaaiabgkHiTiabes8a0jaaiMcacaaIVaGaaGikaiaadsha daWgaaqaaiaadohadaWgaaqaaiaadQgacqGHRaWkcaaIXaaabeaaae qaaiabgkHiTiaadshadaWgaaqaaiaadohadaWgaaqaaiaadQgaaeqa aaqabaGaaGykaaaakiaai6caaaa@9B73@

Для меры d μ ^ (ξ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGKbWaaecaaeaacqaH8oqBaiaawk WaaiaaiIcacqaH+oaEcaaIPaaaaa@384A@  имеем:

min0Ldμλ^Ldμλ^                                                                                                                (13)

λ ^ j + e 2|ξ | 2 τ d μ ^ (ξ) δ j 2 =0,j=1,,p. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiabeU7aSbGaayPadaWaaS baaSqaaiaadQgaaeqaaOWaaeWaaeaadaWdrbqabSqaamrr1ngBPrwt HrhAYaqeguuDJXwAKbstHrhAGq1DVbaceaGae8xhHi1aaSbaaeaacq GHRaWkaeqaaaqab0Gaey4kIipakiaadwgadaahaaWcbeqaaiabgkHi TiaaikdacaaI8bGaeqOVdGNaaGiFamaaCaaabeqaaiaaikdaaaGaeq iXdqhaaOGaaGjcVlaadsgadaqiaaqaaiabeY7aTbGaayPadaGaaGik aiabe67a4jaaiMcacqGHsislcqaH0oazdaqhaaWcbaGaamOAaaqaai aaikdaaaaakiaawIcacaGLPaaacaaI9aGaaGimaiaaiYcacaaMf8Ua amOAaiaai2dacaaIXaGaaGilaiablAciljaaiYcacaWGWbGaaGOlaa aa@652F@                                                                                                 (14)

Пусть

ρ(t)= ln(1/ δ s j+1 )ln(1/ δ s j ) t s j+1 t s j (t t s j )+ln(1/ δ s j ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHbpGCcaaIOaGaamiDaiaaiMcaca aI9aWaaSaaaeaaciGGSbGaaiOBaiaaiIcacaaIXaGaaG4laiabes7a KnaaBaaaleaacaWGZbWaaSbaaeaacaWGQbGaey4kaSIaaGymaaqaba aabeaakiaaiMcacqGHsislciGGSbGaaiOBaiaaiIcacaaIXaGaaG4l aiabes7aKnaaBaaaleaacaWGZbWaaSbaaeaacaWGQbaabeaaaeqaaO GaaGykaaqaaiaadshadaWgaaWcbaGaam4CamaaBaaabaGaamOAaiab gUcaRiaaigdaaeqaaaqabaGccqGHsislcaWG0bWaaSbaaSqaaiaado hadaWgaaqaaiaadQgaaeqaaaqabaaaaOGaaGikaiaadshacqGHsisl caWG0bWaaSbaaSqaaiaadohadaWgaaqaaiaadQgaaeqaaaqabaGcca aIPaGaey4kaSIaciiBaiaac6gacaaIOaGaaGymaiaai+cacqaH0oaz daWgaaWcbaGaam4CamaaBaaabaGaamOAaaqabaaabeaakiaaiMcaca aIUaaaaa@6434@

Прямая y=ρ(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5bGaaGypaiabeg8aYjaaiIcaca WG0bGaaGykaaaa@37A4@  проходит через точки ( t s j ,ln(1/ δ s j )) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamiDamaaBaaaleaacaWGZb WaaSbaaeaacaWGQbaabeaaaeqaaOGaaGilaiGacYgacaGGUbGaaGik aiaaigdacaaIVaGaeqiTdq2aaSbaaSqaaiaadohadaWgaaqaaiaadQ gaaeqaaaqabaGccaaIPaGaaGykaaaa@3FB3@  и ( t s j+1 ,ln(1/ δ s j+1 )) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamiDamaaBaaaleaacaWGZb WaaSbaaeaacaWGQbGaey4kaSIaaGymaaqabaaabeaakiaaiYcaciGG SbGaaiOBaiaaiIcacaaIXaGaaG4laiabes7aKnaaBaaaleaacaWGZb WaaSbaaeaacaWGQbGaey4kaSIaaGymaaqabaaabeaakiaaiMcacaaI Paaaaa@42ED@  и лежит ниже графика функции y=θ(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5bGaaGypaiabeI7aXjaaiIcaca WG0bGaaGykaaaa@379A@ . Для найденных значений A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbaaaa@3287@  и | ξ 0 | 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI8bGaeqOVdG3aaSbaaSqaaiaaic daaeqaaOGaaGiFamaaCaaaleqabaGaaGOmaaaaaaa@3769@  имеем

+ e 2|ξ | 2 t i d μ ^ (ξ)=A e 2| ξ 0 | 2 t i = δ s j 2( t s j+1 t i )/( t s j+1 t s j ) δ s j+1 2( t i t s j )/( t s j+1 t s j ) = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdrbqabSqaamrr1ngBPrwtHrhAYa qeguuDJXwAKbstHrhAGq1DVbaceaGae8xhHi1aaSbaaeaacqGHRaWk aeqaaaqab0Gaey4kIipakiaadwgadaahaaWcbeqaaiabgkHiTiaaik dacaaI8bGaeqOVdGNaaGiFamaaCaaabeqaaiaaikdaaaGaamiDamaa BaaabaGaamyAaaqabaaaaOGaaGjcVlaadsgadaqiaaqaaiabeY7aTb GaayPadaGaaGikaiabe67a4jaaiMcacaaI9aGaamyqaiaadwgadaah aaWcbeqaaiabgkHiTiaaikdacaaI8bGaeqOVdG3aaSbaaeaacaaIWa aabeaacaaI8bWaaWbaaeqabaGaaGOmaaaacaWG0bWaaSbaaeaacaWG PbaabeaaaaGccaaI9aGaeqiTdq2aa0baaSqaaiaadohadaWgaaqaai aadQgaaeqaaaqaaiaaikdacaaIOaGaamiDamaaBaaabaGaam4Camaa BaaabaGaamOAaiabgUcaRiaaigdaaeqaaaqabaGaeyOeI0IaamiDam aaBaaabaGaamyAaaqabaGaaGykaiaai+cacaaIOaGaamiDamaaBaaa baGaam4CamaaBaaabaGaamOAaiabgUcaRiaaigdaaeqaaaqabaGaey OeI0IaamiDamaaBaaabaGaam4CamaaBaaabaGaamOAaaqabaaabeaa caaIPaaaaOGaeqiTdq2aa0baaSqaaiaadohadaWgaaqaaiaadQgacq GHRaWkcaaIXaaabeaaaeaacaaIYaGaaGikaiaadshadaWgaaqaaiaa dMgaaeqaaiabgkHiTiaadshadaWgaaqaaiaadohadaWgaaqaaiaadQ gaaeqaaaqabaGaaGykaiaai+cacaaIOaGaamiDamaaBaaabaGaam4C amaaBaaabaGaamOAaiabgUcaRiaaigdaaeqaaaqabaGaeyOeI0Iaam iDamaaBaaabaGaam4CamaaBaaabaGaamOAaaqabaaabeaacaaIPaaa aOGaaGypaaaa@9028@

= e 2ρ( t i ) e 2ln(1/ δ i ) = δ i 2 ,i=1,,p. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaamyzamaaCaaaleqabaGaey OeI0IaaGOmaiabeg8aYjaaiIcacaWG0bWaaSbaaeaacaWGPbaabeaa caaIPaaaaOGaeyizImQaamyzamaaCaaaleqabaGaeyOeI0IaaGOmai GacYgacaGGUbGaaGikaiaaigdacaaIVaGaeqiTdq2aaSbaaeaacaWG PbaabeaacaaIPaaaaOGaaGypaiabes7aKnaaDaaaleaacaWGPbaaba GaaGOmaaaakiaaiYcacaaMf8UaamyAaiaai2dacaaIXaGaaGilaiab lAciljaaiYcacaWGWbGaaGOlaaaa@53AB@

Это означает, что d μ ^ (ξ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGKbWaaecaaeaacqaH8oqBaiaawk WaaiaaiIcacqaH+oaEcaaIPaaaaa@384A@  вляется допустимой мерой в расширенной задаче (10) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (11) и является ее решением. Если мы подставим d μ ^ (ξ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGKbWaaecaaeaacqaH8oqBaiaawk WaaiaaiIcacqaH+oaEcaaIPaaaaa@384A@  в функционал, определенный в (10), получим значение задачи (10) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (11), которое также является решением задачи (8) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (9):

+ e 2|ξ | 2 τ d μ ^ (ξ)=A e 2| ξ 0 | 2 τ = δ s j 2( t s j+1 τ)/( t s j+1 t s j ) δ s j+1 2(τ t s j )/( t s j+1 t s j ) = e 2ρ(τ) = e 2θ(τ) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdrbqabSqaamrr1ngBPrwtHrhAYa qeguuDJXwAKbstHrhAGq1DVbaceaGae8xhHi1aaSbaaeaacqGHRaWk aeqaaaqab0Gaey4kIipakiaadwgadaahaaWcbeqaaiabgkHiTiaaik dacaaI8bGaeqOVdGNaaGiFamaaCaaabeqaaiaaikdaaaGaeqiXdqha aOGaaGjcVlaadsgadaqiaaqaaiabeY7aTbGaayPadaGaaGikaiabe6 7a4jaaiMcacaaI9aGaamyqaiaadwgadaahaaWcbeqaaiabgkHiTiaa ikdacaaI8bGaeqOVdG3aaSbaaeaacaaIWaaabeaacaaI8bWaaWbaae qabaGaaGOmaaaacqaHepaDaaGccaaI9aGaeqiTdq2aa0baaSqaaiaa dohadaWgaaqaaiaadQgaaeqaaaqaaiaaikdacaaIOaGaamiDamaaBa aabaGaam4CamaaBaaabaGaamOAaiabgUcaRiaaigdaaeqaaaqabaGa eyOeI0IaeqiXdqNaaGykaiaai+cacaaIOaGaamiDamaaBaaabaGaam 4CamaaBaaabaGaamOAaiabgUcaRiaaigdaaeqaaaqabaGaeyOeI0Ia amiDamaaBaaabaGaam4CamaaBaaabaGaamOAaaqabaaabeaacaaIPa aaaOGaeqiTdq2aa0baaSqaaiaadohadaWgaaqaaiaadQgacqGHRaWk caaIXaaabeaaaeaacaaIYaGaaGikaiabes8a0jabgkHiTiaadshada WgaaqaaiaadohadaWgaaqaaiaadQgaaeqaaaqabaGaaGykaiaai+ca caaIOaGaamiDamaaBaaabaGaam4CamaaBaaabaGaamOAaiabgUcaRi aaigdaaeqaaaqabaGaeyOeI0IaamiDamaaBaaabaGaam4CamaaBaaa baGaamOAaaqabaaabeaacaaIPaaaaOGaaGypaiaadwgadaahaaWcbe qaaiabgkHiTiaaikdacqaHbpGCcaaIOaGaeqiXdqNaaGykaaaakiaa i2dacaWGLbWaaWbaaSqabeaacqGHsislcaaIYaGaeqiUdeNaaGikai abes8a0jaaiMcaaaGccaaIUaaaaa@9FF9@

Это означает, что значение задачи (6) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (7) равно S= e θ(τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGtbGaaGypaiaadwgadaahaaWcbe qaaiabgkHiTiabeI7aXjaaiIcacqaHepaDcaaIPaaaaaaa@3A44@ .

(b) Пусть τ t s ϱ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDcqGHLjYScaWG0bWaaSbaaS qaaiaadohadaWgaaqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhA G8KBLbaceiGae8x8depabeaaaeqaaaaa@437F@ . Если график функции y=θ(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5bGaaGypaiabeI7aXjaaiIcaca WG0bGaaGykaaaa@379A@  представляет собой прямую линию, то t s ϱ = t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaadohadaWgaa qaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceiGae8x8 depabeaaaeqaaOGaaGypaiaadshadaWgaaWcbaGaaGymaaqabaaaaa@42A5@ . На этот раз положим λ ^ 0 =1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiabeU7aSbGaayPadaWaaS baaSqaaiaaicdaaeqaaOGaaGypaiabgkHiTiaaigdaaaa@3796@ , λ ^ s ϱ =1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiabeU7aSbGaayPadaWaaS baaSqaaiaadohadaWgaaqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbst HrhAG8KBLbaceiGae8x8depabeaaaeqaaOGaaGypaiaaigdaaaa@42FD@ , λ ^ s j =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiabeU7aSbGaayPadaWaaS baaSqaaiaadohadaWgaaqaaiaadQgaaeqaaaqabaGccaaI9aGaaGim aaaa@37F6@ , где jϱ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbGaeyiyIK7efv3ySLgznfgDOf daryqr1ngBPrginfgDObYtUvgaiqGacqWFXpq8aaa@406C@ , d μ ^ (ξ)= x γ δ s ϱ δ γ (ξ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGKbWaaecaaeaacqaH8oqBaiaawk WaaiaaiIcacqaH+oaEcaaIPaGaaGypaiaadIhadaahaaWcbeqaaiab eo7aNbaakiabes7aKnaaBaaaleaacaWGZbWaaSbaaeaatuuDJXwAK1 uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGabciab=f=aXdqabaaabeaa kiabes7aKnaaBaaaleaacqaHZoWzaeqaaOGaaGikaiabe67a4jaaiM caaaa@517F@ . Для всех ξ + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEcqGHiiIZtuuDJXwAK1uy0H MmaeHbfv3ySLgzG0uy0HgiuD3BaGabaiab=1risnaaBaaaleaacqGH RaWkaeqaaaaa@40CD@  выполняется неравенство

f(|ξ | 2 )=1+ e 2|ξ | 2 ( t s ϱ τ) 0; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaaiYhacqaH+oaEca aI8bWaaWbaaSqabeaacaaIYaaaaOGaaGykaiaai2dacqGHsislcaaI XaGaey4kaSIaamyzamaaCaaaleqabaGaeyOeI0IaaGOmaiaaiYhacq aH+oaEcaaI8bWaaWbaaeqabaGaaGOmaaaacaaIOaGaamiDamaaBaaa baGaam4CamaaBaaabaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDOb YtUvgaiqGacqWFXpq8aeqaaaqabaGaeyOeI0IaeqiXdqNaaGykaaaa kiabgwMiZkaaicdacaaI7aaaaa@591F@

также имеет место неравенство f(0)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaaicdacaaIPaGaaG ypaiaaicdaaaa@364C@ . Следовательно, условие (13) также выполняется. На луче [ t s ϱ ,+) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaamiDamaaBaaaleaacaWGZb WaaSbaaeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGab ciab=f=aXdqabaaabeaakiaaiYcacqGHRaWkcqGHEisPcaaIPaaaaa@449F@ , равенство θ(t)ln(1/ δ s ϱ ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH4oqCcaaIOaGaamiDaiaaiMcacq GHHjIUciGGSbGaaiOBaiaaiIcacaaIXaGaaG4laiabes7aKnaaBaaa leaacaWGZbWaaSbaaeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0H gip5wzaGabciab=f=aXdqabaaabeaakiaaiMcaaaa@4B44@  выполняется тождественно. Следовательно, ln(1/ δ j )ln(1/ δ s ϱ ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaciGGSbGaaiOBaiaaiIcacaaIXaGaaG 4laiabes7aKnaaBaaaleaacaWGQbaabeaakiaaiMcacqGHKjYOciGG SbGaaiOBaiaaiIcacaaIXaGaaG4laiabes7aKnaaBaaaleaacaWGZb WaaSbaaeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGab ciab=f=aXdqabaaabeaakiaaiMcaaaa@4EA3@ , j=1,,p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbGaaGypaiaaigdacaaISaGaeS OjGSKaaGilaiaadchaaaa@37B5@ . Отсюда

+ e 2|ξ | 2 t j d μ ^ (ξ)= δ s ϱ 2 = e 2ln(1/ δ s ϱ ) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdrbqabSqaamrr1ngBPrwtHrhAYa qeguuDJXwAKbstHrhAGq1DVbaceaGae8xhHi1aaSbaaeaacqGHRaWk aeqaaaqab0Gaey4kIipakiaadwgadaahaaWcbeqaaiabgkHiTiaaik dacaaI8bGaeqOVdGNaaGiFamaaCaaabeqaaiaaikdaaaGaamiDamaa BaaabaGaamOAaaqabaaaaOGaaGjcVlaadsgadaqiaaqaaiabeY7aTb GaayPadaGaaGikaiabe67a4jaaiMcacaaI9aGaeqiTdq2aa0baaSqa aiaadohadaWgaaqaamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHrhAG8 KBLbacfiGae4x8depabeaaaeaacaaIYaaaaOGaaGypaiaadwgadaah aaWcbeqaaiabgkHiTiaaikdaciGGSbGaaiOBaiaaiIcacaaIXaGaaG 4laiabes7aKnaaBaaabaGaam4CamaaBaaabaGae4x8depabeaaaeqa aiaaiMcaaaGccaaIUaaaaa@7026@

Таким образом, мера d μ ^ (ξ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGKbWaaecaaeaacqaH8oqBaiaawk WaaiaaiIcacqaH+oaEcaaIPaaaaa@384A@  допустима в задаче (10) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (11) и является ее решением. Значение этой задачи вычисляется следующим образом:

+ e 2|ξ | 2 τ d μ ^ (ξ)= δ s ϱ 2 = e 2ln(1/ δ s ϱ ) = e 2θ(t) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdrbqabSqaamrr1ngBPrwtHrhAYa qeguuDJXwAKbstHrhAGq1DVbaceaGae8xhHi1aaSbaaeaacqGHRaWk aeqaaaqab0Gaey4kIipakiaadwgadaahaaWcbeqaaiabgkHiTiaaik dacaaI8bGaeqOVdGNaaGiFamaaCaaabeqaaiaaikdaaaGaeqiXdqha aOGaaGjcVlaadsgadaqiaaqaaiabeY7aTbGaayPadaGaaGikaiabe6 7a4jaaiMcacaaI9aGaeqiTdq2aa0baaSqaaiaadohadaWgaaqaamrr 1ngBPrwtHrhAXaqehuuDJXwAKbstHrhAG8KBLbacfiGae4x8depabe aaaeaacaaIYaaaaOGaaGypaiaadwgadaahaaWcbeqaaiabgkHiTiaa ikdaciGGSbGaaiOBaiaaiIcacaaIXaGaaG4laiabes7aKnaaBaaaba Gaam4CamaaBaaabaGae4x8depabeaaaeqaaiaaiMcaaaGccaaI9aGa amyzamaaCaaaleqabaGaeyOeI0IaaGOmaiabeI7aXjaaiIcacaWG0b GaaGykaaaakiaai6caaaa@7787@

Это снова означает, что решение проблемы (6) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (7) равно S= e θ(τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGtbGaaGypaiaadwgadaahaaWcbe qaaiabgkHiTiabeI7aXjaaiIcacqaHepaDcaaIPaaaaaaa@3A44@ .

(c) Пусть τ< t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDcaaI8aGaamiDamaaBaaale aacaaIXaaabeaaaaa@362C@ . Для произвольного y 0 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5bWaaSbaaSqaaiaaicdaaeqaaO GaaGOpaiaaicdaaaa@3531@ , существует прямая линия, заданная уравнением y=at+b MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5bGaaGypaiaadggacaWG0bGaey 4kaSIaamOyaaaa@372E@ , a>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaaGOpaiaaicdaaaa@3429@ , разделяющая точку (τ, y 0 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaeqiXdqNaaGilaiabgkHiTi aadMhadaWgaaWcbaGaaGimaaqabaGccaaIPaaaaa@387C@  и множество M MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbaaaa@3293@ . В то же время

aτ y 0 ba t j +ln 1 δ s j ,j=1,,p. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGHbGaeqiXdqNaeyOeI0 IaamyEamaaBaaaleaacaaIWaaabeaakiabgwMiZkaadkgacqGHLjYS cqGHsislcaWGHbGaamiDamaaBaaaleaacaWGQbaabeaakiabgUcaRi GacYgacaGGUbWaaSaaaeaacaaIXaaabaGaeqiTdq2aaSbaaSqaaiaa dohadaWgaaqaaiaadQgaaeqaaaqabaaaaOGaaGilaiaaywW7caWGQb GaaGypaiaaigdacaaISaGaeSOjGSKaaGilaiaadchacaaIUaaaaa@50FC@

Пусть A= e 2b MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbGaaGypaiaadwgadaahaaWcbe qaaiabgkHiTiaaikdacaWGIbaaaaaa@36F5@ . Выберем ξ 0 + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEdaWgaaWcbaGaaGimaaqaba GccqGHiiIZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGab aiab=1risnaaBaaaleaacqGHRaWkaeqaaaaa@41BD@ , чтобы обеспечить | ξ 0 | 2 =a MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI8bGaeqOVdG3aaSbaaSqaaiaaic daaeqaaOGaaGiFamaaCaaaleqabaGaaGOmaaaakiaai2dacaWGHbaa aa@3920@ . Тогда

A e 2| ξ 0 | 2 t j δ j 2 ,j=1,,p. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbGaamyzamaaCaaaleqabaGaey OeI0IaaGOmaiaaiYhacqaH+oaEdaWgaaqaaiaaicdaaeqaaiaaiYha daahaaqabeaacaaIYaaaaiaadshadaWgaaqaaiaadQgaaeqaaaaaki abgsMiJkabes7aKnaaDaaaleaacaWGQbaabaGaaGOmaaaakiaaiYca caaMf8UaamOAaiaai2dacaaIXaGaaGilaiablAciljaaiYcacaWGWb GaaGOlaaaa@4B0E@

Это значит, что мера d μ ^ (ξ)= x γ T ξ ξ 0 δ γ (ξ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGKbWaaecaaeaacqaH8oqBaiaawk WaaiaaiIcacqaH+oaEcaaIPaGaaGypaiaadIhadaahaaWcbeqaaiab eo7aNbaakiaadsfadaqhaaWcbaGaeqOVdGhabaGaeqOVdG3aaSbaae aacaaIWaaabeaaaaGccqaH0oazdaWgaaWcbaGaeq4SdCgabeaakiaa iIcacqaH+oaEcaaIPaaaaa@4807@  допустима в задаче (10) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (11) и A e 2| ξ 0 | 2 τ e 2 y 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbGaamyzamaaCaaaleqabaGaey OeI0IaaGOmaiaaiYhacqaH+oaEdaWgaaqaaiaaicdaaeqaaiaaiYha daahaaqabeaacaaIYaaaaiabes8a0baakiabgwMiZkaadwgadaahaa WcbeqaaiaaikdacaWG5bWaaSbaaeaacaaIWaaabeaaaaaaaa@4210@ . В силу произвольности y 0 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5bWaaSbaaSqaaiaaicdaaeqaaO GaaGOpaiaaicdaaaa@3531@  значение задачи (10) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (11), а вместе с ним и решение задачи (6) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (7) равно + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkcqGHEisPaaa@3414@ .

Во всех трех случаях, для всех τ0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDcqGHLjYScaaIWaaaaa@3606@ , ошибка оптимального восстановления оценивается снизу: E(τ, δ ¯ ) e θ(τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGikaiabes8a0jaaiYcada qdaaqaaiabes7aKbaacaaIPaGaeyyzImRaamyzamaaCaaaleqabaGa eyOeI0IaeqiUdeNaaGikaiabes8a0jaaiMcaaaaaaa@40CB@ .

4. Верхняя оценка оптимальной ошибки восстановления

Пусть τ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDcqGHLjYScaWG0bWaaSbaaS qaaiaaigdaaeqaaaaa@372C@  и λ ^ 1 ,, λ ^ p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiabeU7aSbGaayPadaWaaS baaSqaaiaaigdaaeqaaOGaaGilaiablAciljaaiYcadaqiaaqaaiab eU7aSbGaayPadaWaaSbaaSqaaiaadchaaeqaaaaa@3B4D@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  множители Лагранжа из случаев (a), (b) для таких значений τ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDaaa@3386@ .

Лемма 2. Пусть для множества функций y ¯ ()=( y 1 (),, y p ()) ( L 2 γ ( + )) p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqdaaqaaiaadMhaaaGaaGikaiabgw SixlaaiMcacaaI9aGaaGikaiaadMhadaWgaaWcbaGaaGymaaqabaGc caaIOaGaeyyXICTaaGykaiaaiYcacqWIMaYscaaISaGaamyEamaaBa aaleaacaWGWbaabeaakiaaiIcacqGHflY1caaIPaGaaGykaiabgIGi olaaiIcacaWGmbWaa0baaSqaaiaaikdaaeaacqaHZoWzaaGccaaIOa Wefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFDeIu daWgaaWcbaGaey4kaScabeaakiaaiMcacaaIPaWaaWbaaSqabeaaca WGWbaaaaaa@5B59@  задача

j=1 p λ ^ j P t j u 0 () y j () L 2 γ ( + ) 2 min, u 0 () L 2 γ ( + ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaadQgacaaI9aGaaG ymaaqaaiaadchaa0GaeyyeIuoakmaaHaaabaGaeq4UdWgacaGLcmaa daWgaaWcbaGaamOAaaqabaqeeuuDJXwAKbsr4rNCHbaceaGccqWFLi cucaWGqbWaaSbaaSqaaiaadshadaWgaaqaaiaadQgaaeqaaaqabaGc caWG1bWaaSbaaSqaaiaaicdaaeqaaOGaaGikaiabgwSixlaaiMcacq GHsislcaWG5bWaaSbaaSqaaiaadQgaaeqaaOGaaGikaiabgwSixlaa iMcacqWFLicudaqhaaWcbaGaamitamaaDaaabaGaaGOmaaqaaiabeo 7aNbaacaaIOaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39ga iuaacqGFDeIudaWgaaqaaiabgUcaRaqabaGaaGykaaqaaiaaikdaaa GccqGHsgIRciGGTbGaaiyAaiaac6gacaaISaGaaGzbVlaadwhadaWg aaWcbaGaaGimaaqabaGccaaIOaGaeyyXICTaaGykaiabgIGiolaadY eadaqhaaWcbaGaaGOmaaqaaiabeo7aNbaakiaaiIcacqGFDeIudaWg aaWcbaGaey4kaScabeaakiaaiMcacaaISaaaaa@7888@                                                                      (15)

имеет решение u ^ 0 ()= u ^ 0 (, y ¯ ()) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiaadwhaaiaawkWaamaaBa aaleaacaaIWaaabeaakiaaiIcacqGHflY1caaIPaGaaGypamaaHaaa baGaamyDaaGaayPadaWaaSbaaSqaaiaaicdaaeqaaOGaaGikaiabgw SixlaaiYcadaqdaaqaaiaadMhaaaGaaGikaiabgwSixlaaiMcacaaI Paaaaa@44B2@ . Тогда для любого σ 1 ,, σ p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHdpWCdaWgaaWcbaGaaGymaaqaba GccaaISaGaeSOjGSKaaGilaiabeo8aZnaaBaaaleaacaWGWbaabeaa aaa@39E7@  значение задачи

P τ u 0 () P τ u ^ 0 () L 2 γ ( + ) 2 max, u 0 () L 2 γ ( + ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWGqbWaaSbaaSqaaiabes8a0bqabaGccaWG1bWaaSbaaSqaaiaa icdaaeqaaOGaaGikaiabgwSixlaaiMcacqGHsislcaWGqbWaaSbaaS qaaiabes8a0bqabaGcdaqiaaqaaiaadwhaaiaawkWaamaaBaaaleaa caaIWaaabeaakiaaiIcacqGHflY1caaIPaGae8xjIa1aa0baaSqaai aadYeadaqhaaqaaiaaikdaaeaacqaHZoWzaaGaaGikamrr1ngBPrwt HrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae4xhHi1aaSbaaeaacq GHRaWkaeqaaiaaiMcaaeaacaaIYaaaaOGaeyOKH4QaciyBaiaacgga caGG4bGaaGilaiaaywW7caWG1bWaaSbaaSqaaiaaicdaaeqaaOGaaG ikaiabgwSixlaaiMcacqGHiiIZcaWGmbWaa0baaSqaaiaaikdaaeaa cqaHZoWzaaGccaaIOaGae4xhHi1aaSbaaSqaaiabgUcaRaqabaGcca aIPaGaaGilaaaa@7251@                                                                           (16)

P t j u 0 () y j () L 2 γ ( + ) σ j ,j=1,,p, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWGqbWaaSbaaSqaaiaadshadaWgaaqaaiaadQgaaeqaaaqabaGc caWG1bWaaSbaaSqaaiaaicdaaeqaaOGaaGikaiabgwSixlaaiMcacq GHsislcaWG5bWaaSbaaSqaaiaadQgaaeqaaOGaaGikaiabgwSixlaa iMcacqWFLicudaWgaaWcbaGaamitamaaDaaabaGaaGOmaaqaaiabeo 7aNbaacaaIOaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39ga iuaacqGFDeIudaWgaaqaaiabgUcaRaqabaGaaGykaaqabaGccqGHKj YOcqaHdpWCdaWgaaWcbaGaamOAaaqabaGccaaISaGaaGzbVlaadQga caaI9aGaaGymaiaaiYcacqWIMaYscaaISaGaamiCaiaaiYcaaaa@6636@                                                                                            (17)

не превосходит значения задачи

P τ u 0 () L 2 γ ( + ) 2 max, u 0 () L 2 γ ( + ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWGqbWaaSbaaSqaaiabes8a0bqabaGccaWG1bWaaSbaaSqaaiaa icdaaeqaaOGaaGikaiabgwSixlaaiMcacqWFLicudaqhaaWcbaGaam itamaaDaaabaGaaGOmaaqaaiabeo7aNbaacaaIOaWefv3ySLgznfgD Ojdaryqr1ngBPrginfgDObcv39gaiuaacqGFDeIudaWgaaqaaiabgU caRaqabaGaaGykaaqaaiaaikdaaaGccqGHsgIRciGGTbGaaiyyaiaa cIhacaaISaGaaGzbVlaadwhadaWgaaWcbaGaaGimaaqabaGccaaIOa GaeyyXICTaaGykaiabgIGiolaadYeadaqhaaWcbaGaaGOmaaqaaiab eo7aNbaakiaaiIcacqGFDeIudaWgaaWcbaGaey4kaScabeaakiaaiM cacaaISaaaaa@6839@                                                                                        (18)

j=1 p λ ^ j P t j u 0 () L 2 γ ( + ) 2 j=1 p λ ^ j σ j 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaadQgacaaI9aGaaG ymaaqaaiaadchaa0GaeyyeIuoakmaaHaaabaGaeq4UdWgacaGLcmaa daWgaaWcbaGaamOAaaqabaqeeuuDJXwAKbsr4rNCHbaceaGccqWFLi cucaWGqbWaaSbaaSqaaiaadshadaWgaaqaaiaadQgaaeqaaaqabaGc caWG1bWaaSbaaSqaaiaaicdaaeqaaOGaaGikaiabgwSixlaaiMcacq WFLicudaqhaaWcbaGaamitamaaDaaabaGaaGOmaaqaaiabeo7aNbaa caaIOaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacq GFDeIudaWgaaqaaiabgUcaRaqabaGaaGykaaqaaiaaikdaaaGccqGH KjYOdaaeWbqabSqaaiaadQgacaaI9aGaaGymaaqaaiaadchaa0Gaey yeIuoakiaayIW7daqiaaqaaiabeU7aSbGaayPadaWaaSbaaSqaaiaa dQgaaeqaaOGaeq4Wdm3aa0baaSqaaiaadQgaaeaacaaIYaaaaOGaaG Olaaaa@6CE8@                                                                                              (19)

Доказательство. Равенство нулю дифференциала Фреше выпуклого гладкого целевого функционала из (15) в точке u ^ 0 () MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiaadwhaaiaawkWaamaaBa aaleaacaaIWaaabeaakiaaiIcacqGHflY1caaIPaaaaa@381C@ , т.е. равенство

2 j=1 p λ ^ j + x γ ( P t j u ^ 0 (x) y j (x)) P t j u 0 (x)dx=0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIYaWaaabCaeqaleaacaWGQbGaaG ypaiaaigdaaeaacaWGWbaaniabggHiLdGccaaMi8+aaecaaeaacqaH 7oaBaiaawkWaamaaBaaaleaacaWGQbaabeaakmaapefabeWcbaWefv 3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFDeIudaWg aaqaaiabgUcaRaqabaaabeqdcqGHRiI8aOGaamiEamaaCaaaleqaba Gaeq4SdCgaaOGaaGikaiaadcfadaWgaaWcbaGaamiDamaaBaaabaGa amOAaaqabaaabeaakmaaHaaabaGaamyDaaGaayPadaWaaSbaaSqaai aaicdaaeqaaOGaaGikaiaadIhacaaIPaGaeyOeI0IaamyEamaaBaaa leaacaWGQbaabeaakiaaiIcacaWG4bGaaGykaiaaiMcacaWGqbWaaS baaSqaaiaadshadaWgaaqaaiaadQgaaeqaaaqabaGccaWG1bWaaSba aSqaaiaaicdaaeqaaOGaaGikaiaadIhacaaIPaGaamizaiaadIhaca aI9aGaaGimaiaaiYcaaaa@68BC@                                                                                              (20)

является необходимым и достаточным условием для доставки минимума к этому функционалу функцией u ^ 0 () MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiaadwhaaiaawkWaamaaBa aaleaacaaIWaaabeaakiaaiIcacqGHflY1caaIPaaaaa@381C@ . Принимая во внимание это равенство, легко получить, что

j=1 p λ ^ j P t j u 0 () y j () L 2 γ ( + ) 2 = j=1 p λ ^ j P t j u 0 () P t j u ^ 0 () L 2 γ ( + ) 2 + j=1 p λ ^ j P t j u ^ 0 () y j () L 2 γ ( + ) 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaadQgacaaI9aGaaG ymaaqaaiaadchaa0GaeyyeIuoakmaaHaaabaGaeq4UdWgacaGLcmaa daWgaaWcbaGaamOAaaqabaqeeuuDJXwAKbsr4rNCHbaceaGccqWFLi cucaWGqbWaaSbaaSqaaiaadshadaWgaaqaaiaadQgaaeqaaaqabaGc caWG1bWaaSbaaSqaaiaaicdaaeqaaOGaaGikaiabgwSixlaaiMcacq GHsislcaWG5bWaaSbaaSqaaiaadQgaaeqaaOGaaGikaiabgwSixlaa iMcacqWFLicudaqhaaWcbaGaamitamaaDaaabaGaaGOmaaqaaiabeo 7aNbaacaaIOaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39ga iuaacqGFDeIudaWgaaqaaiabgUcaRaqabaGaaGykaaqaaiaaikdaaa GccaaI9aWaaabCaeqaleaacaWGQbGaaGypaiaaigdaaeaacaWGWbaa niabggHiLdGcdaqiaaqaaiabeU7aSbGaayPadaWaaSbaaSqaaiaadQ gaaeqaaOGae8xjIaLaamiuamaaBaaaleaacaWG0bWaaSbaaeaacaWG QbaabeaaaeqaaOGaamyDamaaBaaaleaacaaIWaaabeaakiaaiIcacq GHflY1caaIPaGaeyOeI0IaamiuamaaBaaaleaacaWG0bWaaSbaaeaa caWGQbaabeaaaeqaaOWaaecaaeaacaWG1baacaGLcmaadaWgaaWcba GaaGimaaqabaGccaaIOaGaeyyXICTaaGykaiab=vIiqnaaDaaaleaa caWGmbWaa0baaeaacaaIYaaabaGaeq4SdCgaaiaaiIcacqGFDeIuda WgaaqaaiabgUcaRaqabaGaaGykaaqaaiaaikdaaaGccqGHRaWkdaae WbqabSqaaiaadQgacaaI9aGaaGymaaqaaiaadchaa0GaeyyeIuoakm aaHaaabaGaeq4UdWgacaGLcmaadaWgaaWcbaGaamOAaaqabaGccqWF LicucaWGqbWaaSbaaSqaaiaadshadaWgaaqaaiaadQgaaeqaaaqaba GcdaqiaaqaaiaadwhaaiaawkWaamaaBaaaleaacaaIWaaabeaakiaa iIcacqGHflY1caaIPaGaeyOeI0IaamyEamaaBaaaleaacaWGQbaabe aakiaaiIcacqGHflY1caaIPaGae8xjIa1aa0baaSqaaiaadYeadaqh aaqaaiaaikdaaeaacqaHZoWzaaGaaGikaiab+1risnaaBaaabaGaey 4kaScabeaacaaIPaaabaGaaGOmaaaakiaai6caaaa@AEE4@

Пусть функция u 0 () MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaaicdaaeqaaO GaaGikaiabgwSixlaaiMcaaaa@375A@  действительна для задачи (16) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (17). Тогда

j=1 p λ ^ j P t j u ^ 0 () y j () L 2 γ ( + ) 2 = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaadQgacaaI9aGaaG ymaaqaaiaadchaa0GaeyyeIuoakmaaHaaabaGaeq4UdWgacaGLcmaa daWgaaWcbaGaamOAaaqabaqeeuuDJXwAKbsr4rNCHbaceaGccqWFLi cucaWGqbWaaSbaaSqaaiaadshadaWgaaqaaiaadQgaaeqaaaqabaGc daqiaaqaaiaadwhaaiaawkWaamaaBaaaleaacaaIWaaabeaakiaaiI cacqGHflY1caaIPaGaeyOeI0IaamyEamaaBaaaleaacaWGQbaabeaa kiaaiIcacqGHflY1caaIPaGae8xjIa1aa0baaSqaaiaadYeadaqhaa qaaiaaikdaaeaacqaHZoWzaaGaaGikamrr1ngBPrwtHrhAYaqeguuD JXwAKbstHrhAGq1DVbacfaGae4xhHi1aaSbaaeaacqGHRaWkaeqaai aaiMcaaeaacaaIYaaaaOGaaGypaaaa@643F@

= j=1 p λ ^ j P t j u 0 () y j () L 2 γ ( + ) 2 j=1 p λ ^ j P t j u ^ 0 () y j () L 2 γ ( + ) 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaaabCaeqaleaacaWGQbGaaG ypaiaaigdaaeaacaWGWbaaniabggHiLdGcdaqiaaqaaiabeU7aSbGa ayPadaWaaSbaaSqaaiaadQgaaeqaaebbfv3ySLgzGueE0jxyaGabaO Gae8xjIaLaamiuamaaBaaaleaacaWG0bWaaSbaaeaacaWGQbaabeaa aeqaaOGaamyDamaaBaaaleaacaaIWaaabeaakiaaiIcacqGHflY1ca aIPaGaeyOeI0IaamyEamaaBaaaleaacaWGQbaabeaakiaaiIcacqGH flY1caaIPaGae8xjIa1aa0baaSqaaiaadYeadaqhaaqaaiaaikdaae aacqaHZoWzaaGaaGikamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhA Gq1DVbacfaGae4xhHi1aaSbaaeaacqGHRaWkaeqaaiaaiMcaaeaaca aIYaaaaOGaeyOeI0YaaabCaeqaleaacaWGQbGaaGypaiaaigdaaeaa caWGWbaaniabggHiLdGcdaqiaaqaaiabeU7aSbGaayPadaWaaSbaaS qaaiaadQgaaeqaaOGae8xjIaLaamiuamaaBaaaleaacaWG0bWaaSba aeaacaWGQbaabeaaaeqaaOWaaecaaeaacaWG1baacaGLcmaadaWgaa WcbaGaaGimaaqabaGccaaIOaGaeyyXICTaaGykaiabgkHiTiaadMha daWgaaWcbaGaamOAaaqabaGccaaIOaGaeyyXICTaaGykaiab=vIiqn aaDaaaleaacaWGmbWaa0baaeaacaaIYaaabaGaeq4SdCgaaiaaiIca cqGFDeIudaWgaaqaaiabgUcaRaqabaGaaGykaaqaaiaaikdaaaGccq GHKjYOaaa@8998@

j=1 p λ ^ j P t j u 0 () y j () L 2 γ ( + ) 2 j=1 p λ ^ j σ j . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHKjYOdaaeWbqabSqaaiaadQgaca aI9aGaaGymaaqaaiaadchaa0GaeyyeIuoakmaaHaaabaGaeq4UdWga caGLcmaadaWgaaWcbaGaamOAaaqabaqeeuuDJXwAKbsr4rNCHbacea GccqWFLicucaWGqbWaaSbaaSqaaiaadshadaWgaaqaaiaadQgaaeqa aaqabaGccaWG1bWaaSbaaSqaaiaaicdaaeqaaOGaaGikaiabgwSixl aaiMcacqGHsislcaWG5bWaaSbaaSqaaiaadQgaaeqaaOGaaGikaiab gwSixlaaiMcacqWFLicudaqhaaWcbaGaamitamaaDaaabaGaaGOmaa qaaiabeo7aNbaacaaIOaWefv3ySLgznfgDOjdaryqr1ngBPrginfgD Obcv39gaiuaacqGFDeIudaWgaaqaaiabgUcaRaqabaGaaGykaaqaai aaikdaaaGccqGHKjYOdaaeWbqabSqaaiaadQgacaaI9aGaaGymaaqa aiaadchaa0GaeyyeIuoakiaayIW7daqiaaqaaiabeU7aSbGaayPada WaaSbaaSqaaiaadQgaaeqaaOGaeq4Wdm3aaSbaaSqaaiaadQgaaeqa aOGaaGOlaaaa@749F@

Это означает, что функция u 0 () u ^ 0 () MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaaicdaaeqaaO GaaGikaiabgwSixlaaiMcacqGHsisldaqiaaqaaiaadwhaaiaawkWa amaaBaaaleaacaaIWaaabeaakiaaiIcacqGHflY1caaIPaaaaa@3EA2@  допустима в задаче (18) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (19). Значение функционала (16) на функции u 0 () MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaaicdaaeqaaO GaaGikaiabgwSixlaaiMcaaaa@375A@  равно значнию функционала (18).

Лемма 3Значения задач (6) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A96@ (7) и (18) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A96@ (19), где σ j = δ j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHdpWCdaWgaaWcbaGaamOAaaqaba GccaaI9aGaeqiTdq2aaSbaaSqaaiaadQgaaeqaaaaa@3830@ , j=1,,p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbGaaGypaiaaigdacaaISaGaeS OjGSKaaGilaiaadchaaaa@37B5@ , совпадают.

Доказательство. С помощью равенства Парсеваля MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ Планшереля перейдем от задачи (18) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (19) к задаче

+ e 2|ξ | 2 τ dμ(ξ)max, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdrbqabSqaamrr1ngBPrwtHrhAYa qeguuDJXwAKbstHrhAGq1DVbaceaGae8xhHi1aaSbaaeaacqGHRaWk aeqaaaqab0Gaey4kIipakiaadwgadaahaaWcbeqaaiabgkHiTiaaik dacaaI8bGaeqOVdGNaaGiFamaaCaaabeqaaiaaikdaaaGaeqiXdqha aOGaaGjcVlaadsgacqaH8oqBcaaIOaGaeqOVdGNaaGykaiabgkziUk Gac2gacaGGHbGaaiiEaiaaiYcaaaa@55DB@                                                                                                           (21)

j=1 p λ ^ j + e 2|ξ | 2 t j dμ(ξ) j=1 p λ ^ j δ j 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaadQgacaaI9aGaaG ymaaqaaiaadchaa0GaeyyeIuoakmaaHaaabaGaeq4UdWgacaGLcmaa daWgaaWcbaGaamOAaaqabaGcdaWdrbqabSqaamrr1ngBPrwtHrhAYa qeguuDJXwAKbstHrhAGq1DVbaceaGae8xhHi1aaSbaaeaacqGHRaWk aeqaaaqab0Gaey4kIipakiaadwgadaahaaWcbeqaaiabgkHiTiaaik dacaaI8bGaeqOVdGNaaGiFamaaCaaabeqaaiaaikdaaaGaamiDamaa BaaabaGaamOAaaqabaaaaOGaamizaiabeY7aTjaaiIcacqaH+oaEca aIPaGaeyizIm6aaabCaeqaleaacaWGQbGaaGypaiaaigdaaeaacaWG WbaaniabggHiLdGcdaqiaaqaaiabeU7aSbGaayPadaWaaSbaaSqaai aadQgaaeqaaOGaeqiTdq2aa0baaSqaaiaadQgaaeaacaaIYaaaaOGa aGilaaaa@67A5@                                                                                              (22)

где

dμ(ξ)= 1 2 2ν Γ 2 (ν+1) | F γ u 0 (ξ )| 2 ξ 2ν+1 dξ0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGKbGaeqiVd0MaaGikaiabe67a4j aaiMcacaaI9aWaaSaaaeaacaaIXaaabaGaaGOmamaaCaaaleqabaGa aGOmaiabe27aUbaakiabfo5ahnaaCaaaleqabaGaaGOmaaaakiaaiI cacqaH9oGBcqGHRaWkcaaIXaGaaGykaaaacaaMi8UaaGiFaiaadAea daWgaaWcbaGaeq4SdCgabeaakiaadwhadaWgaaWcbaGaaGimaaqaba GccaaIOaGaeqOVdGNaaGykaiaaiYhadaahaaWcbeqaaiaaikdaaaGc cqaH+oaEdaahaaWcbeqaaiaaikdacqaH9oGBcqGHRaWkcaaIXaaaaO GaaGjcVlaadsgacqaH+oaEcqGHLjYScaaIWaGaaGOlaaaa@5D60@

Функция Лагранжа этой задачи имеет вид

L 1 (dμ(),ν)= ν 0 + e 2|ξ | 2 τ dμ(ξ)+ ν 1 j=1 p λ ^ j + e 2|ξ | 2 t j dμ(ξ) j=1 p λ ^ j δ j 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=jrimnaaBaaaleaacaaIXaaabeaakiaaiIca caWGKbGaeqiVd0MaaGikaiabgwSixlaaiMcacaaISaGaeqyVd4MaaG ykaiaai2dacqaH9oGBdaWgaaWcbaGaaGimaaqabaGcdaWdrbqabSqa amrr1ngBPrwtHrhAYaqehuuDJXwAKbstHrhAGq1DVbacfaGae4xhHi 1aaSbaaeaacqGHRaWkaeqaaaqab0Gaey4kIipakiaayIW7caWGLbWa aWbaaSqabeaacqGHsislcaaIYaGaaGiFaiabe67a4jaaiYhadaahaa qabeaacaaIYaaaaiabes8a0baakiaayIW7caWGKbGaeqiVd0MaaGik aiabe67a4jaaiMcacqGHRaWkcqaH9oGBdaWgaaWcbaGaaGymaaqaba GcdaqadaqaamaaqahabeWcbaGaamOAaiaai2dacaaIXaaabaGaamiC aaqdcqGHris5aOWaaecaaeaacqaH7oaBaiaawkWaamaaBaaaleaaca WGQbaabeaakmaapefabeWcbaGae4xhHi1aaSbaaeaacqGHRaWkaeqa aaqab0Gaey4kIipakiaadwgadaahaaWcbeqaaiabgkHiTiaaikdaca aI8bGaeqOVdGNaaGiFamaaCaaabeqaaiaaikdaaaGaamiDamaaBaaa baGaamOAaaqabaaaaOGaamizaiabeY7aTjaaiIcacqaH+oaEcaaIPa GaeyOeI0YaaabCaeqaleaacaWGQbGaaGypaiaaigdaaeaacaWGWbaa niabggHiLdGcdaqiaaqaaiabeU7aSbGaayPadaWaaSbaaSqaaiaadQ gaaeqaaOGaeqiTdq2aa0baaSqaaiaadQgaaeaacaaIYaaaaaGccaGL OaGaayzkaaGaaGilaaaa@9B91@

где множество ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBaaa@3379@  множителей Лагранжа теперь имеет вид ν=( ν 0 , ν 1 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBcaaI9aGaaGikaiabe27aUn aaBaaaleaacaaIWaaabeaakiaaiYcacqaH9oGBdaWgaaWcbaGaaGym aaqabaGccaaIPaaaaa@3BAC@ . Из того, что мера d μ ^ (ξ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGKbWaaecaaeaacqaH8oqBaiaawk WaaiaaiIcacqaH+oaEcaaIPaaaaa@384A@ , которая является решением проблемы (18) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (19), допустимо в этой задаче, следует, что она также допустима в задаче (21) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (22). Пусть ν 0 = ν ^ 0 =1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBdaWgaaWcbaGaaGimaaqaba GccaaI9aWaaecaaeaacqaH9oGBaiaawkWaamaaBaaaleaacaaIWaaa beaakiaai2dacqGHsislcaaIXaaaaa@3B09@ , ν 1 = ν ^ 1 =1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBdaWgaaWcbaGaaGymaaqaba GccaaI9aWaaecaaeaacqaH9oGBaiaawkWaamaaBaaaleaacaaIXaaa beaakiaai2dacaaIXaaaaa@3A1E@ . Тогда

mindμ0L1dμν^L1dμ^ν^Ldμ^λ^mindμ0Ldμλ^                                                                              (23)

где ν ^ =( ν ^ 0 , ν ^ 1 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiabe27aUbGaayPadaGaaG ypaiaaiIcadaqiaaqaaiabe27aUbGaayPadaWaaSbaaSqaaiaaicda aeqaaOGaaGilamaaHaaabaGaeqyVd4gacaGLcmaadaWgaaWcbaGaaG ymaaqabaGccaaIPaaaaa@3DF2@ ; с учетом (14), имеем

ν ^ 1 j=1 p λ ^ j + e 2|ξ | 2 t j d μ ^ (ξ) j=1 p λ ^ j δ j 2 =0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiabe27aUbGaayPadaWaaS baaSqaaiaaigdaaeqaaOWaaeWaaeaadaaeWbqabSqaaiaadQgacaaI 9aGaaGymaaqaaiaadchaa0GaeyyeIuoakmaaHaaabaGaeq4UdWgaca GLcmaadaWgaaWcbaGaamOAaaqabaGcdaWdrbqabSqaamrr1ngBPrwt HrhAYaqeguuDJXwAKbstHrhAGq1DVbaceaGae8xhHi1aaSbaaeaacq GHRaWkaeqaaaqab0Gaey4kIipakiaadwgadaahaaWcbeqaaiabgkHi TiaaikdacaaI8bGaeqOVdGNaaGiFamaaCaaabeqaaiaaikdaaaGaam iDamaaBaaabaGaamOAaaqabaaaaOGaamizamaaHaaabaGaeqiVd0ga caGLcmaacaaIOaGaeqOVdGNaaGykaiabgkHiTmaaqahabeWcbaGaam OAaiaai2dacaaIXaaabaGaamiCaaqdcqGHris5aOWaaecaaeaacqaH 7oaBaiaawkWaamaaBaaaleaacaWGQbaabeaakiabes7aKnaaDaaale aacaWGQbaabaGaaGOmaaaaaOGaayjkaiaawMcaaiaai2dacaaIWaGa aGOlaaaa@6E16@                                                                                              (24)

Это значит, что d μ ^ (ξ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGKbWaaecaaeaacqaH8oqBaiaawk WaaiaaiIcacqaH+oaEcaaIPaaaaa@384A@  является решением задачи (21) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (22). Следовательно, значение этой задачи равно значению задачи (21) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (22). Отсюда следует, что возведенное в квадрат значение задачи (10) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (11) равно решению задачи (18) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (19). Следовательно, значения задач (10) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (11) и (18) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (19) совпадают.

5. Основной результат.

Теорема 1. Для любого τ>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDcaaI+aGaaGimaaaa@3508@  имеет место равенство

E(τ, δ ¯ )= e θ(τ) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGikaiabes8a0jaaiYcada qdaaqaaiabes7aKbaacaaIPaGaaGypaiaadwgadaahaaWcbeqaaiab gkHiTiabeI7aXjaaiIcacqaHepaDcaaIPaaaaOGaaGOlaaaa@408E@

(i)      Если 0τ< t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaeyizImQaeqiXdqNaaGipai aadshadaWgaaWcbaGaaGymaaqabaaaaa@389B@ , то θ(τ)= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH4oqCcaaIOaGaeqiXdqNaaGykai aai2dacqGHsislcqGHEisPaaa@39C6@ .

(ii)  Если τ= t s j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDcaaI9aGaamiDamaaBaaale aacaWGZbWaaSbaaeaacaWGQbaabeaaaeqaaaaa@377A@ , j=1,,ϱ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbGaaGypaiaaigdacaaISaGaeS OjGSKaaGilamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbac eiGae8x8depaaa@42B5@ , то метод m ^ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiaad2gaaiaawkWaaaaa@3375@ , определенный формулой m ^ ( y ¯ ())()= y s j () MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiaad2gaaiaawkWaaiaaiI cadaqdaaqaaiaadMhaaaGaaGikaiabgwSixlaaiMcacaaIPaGaaGik aiabgwSixlaaiMcacaaI9aGaamyEamaaBaaaleaacaWGZbWaaSbaae aacaWGQbaabeaaaeqaaOGaaGikaiabgwSixlaaiMcaaaa@44F9@ , является оптимальным.

(iii)  Если ϱ2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabciab=f=aXlabgwMiZkaaikdaaaa@4038@ , τ( t s j , t s j+1 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDcqGHiiIZcaaIOaGaamiDam aaBaaaleaacaWGZbWaaSbaaeaacaWGQbaabeaaaeqaaOGaaGilaiaa dshadaWgaaWcbaGaam4CamaaBaaabaGaamOAaiabgUcaRiaaigdaae qaaaqabaGccaaIPaaaaa@3F30@ , то метод m ^ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiaad2gaaiaawkWaaaaa@3375@ , определенный формулой

m ^ ( y ¯ ())()=( Ψ s j y s j ) γ ()+ ( Ψ s j+1 y s j+1 ) γ (), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiaad2gaaiaawkWaaiaaiI cadaqdaaqaaiaadMhaaaGaaGikaiabgwSixlaaiMcacaaIPaGaaGik aiabgwSixlaaiMcacaaI9aGaaGikaiabfI6aznaaBaaaleaacaWGZb WaaSbaaeaacaWGQbaabeaaaeqaaOGaey4fIOIaamyEamaaBaaaleaa caWGZbWaaSbaaeaacaWGQbaabeaaaeqaaOGaaGykamaaBaaaleaacq aHZoWzaeqaaOGaaGikaiabgwSixlaaiMcacqGHRaWkcaaIOaGaeuiQ dK1aaSbaaSqaaiaadohadaWgaaqaaiaadQgacqGHRaWkcaaIXaaabe aaaeqaaOGaey4fIOIaamyEamaaBaaaleaacaWGZbWaaSbaaeaacaWG QbGaey4kaSIaaGymaaqabaaabeaakiaaiMcadaWgaaWcbaGaeq4SdC gabeaakiaaiIcacqGHflY1caaIPaGaaGilaaaa@60B2@                                                                                  (25)

где Ψ s j () MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHOoqwdaWgaaWcbaGaam4CamaaBa aabaGaamOAaaqabaaabeaakiaaiIcacqGHflY1caaIPaaaaa@393D@ , Ψ s j+1 () MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHOoqwdaWgaaWcbaGaam4CamaaBa aabaGaamOAaiabgUcaRiaaigdaaeqaaaqabaGccaaIOaGaeyyXICTa aGykaaaa@3ADA@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  функции, образы Фурье MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ Бесселя которых имеют вид

F γ Ψ s j (ξ)= ( t s j+1 τ) δ s j+1 2 e |ξ | 2 (τ t s j ) ( t s j+1 τ) δ s j+1 2 +(τ t s j ) δ s j 2 e 2|ξ | 2 ( t s j+1 t s j ) , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiabeo7aNbqaba GccqqHOoqwdaWgaaWcbaGaam4CamaaBaaabaGaamOAaaqabaaabeaa kiaaiIcacqaH+oaEcaaIPaGaaGypamaalaaabaGaaGikaiaadshada WgaaWcbaGaam4CamaaBaaabaGaamOAaiabgUcaRiaaigdaaeqaaaqa baGccqGHsislcqaHepaDcaaIPaGaeqiTdq2aa0baaSqaaiaadohada WgaaqaaiaadQgacqGHRaWkcaaIXaaabeaaaeaacaaIYaaaaOGaamyz amaaCaaaleqabaGaeyOeI0IaaGiFaiabe67a4jaaiYhadaahaaqabe aacaaIYaaaaiaaiIcacqaHepaDcqGHsislcaWG0bWaaSbaaeaacaWG ZbWaaSbaaeaacaWGQbaabeaaaeqaaiaaiMcaaaaakeaacaaIOaGaam iDamaaBaaaleaacaWGZbWaaSbaaeaacaWGQbGaey4kaSIaaGymaaqa baaabeaakiabgkHiTiabes8a0jaaiMcacqaH0oazdaqhaaWcbaGaam 4CamaaBaaabaGaamOAaiabgUcaRiaaigdaaeqaaaqaaiaaikdaaaGc cqGHRaWkcaaIOaGaeqiXdqNaeyOeI0IaamiDamaaBaaaleaacaWGZb WaaSbaaeaacaWGQbaabeaaaeqaaOGaaGykaiabes7aKnaaDaaaleaa caWGZbWaaSbaaeaacaWGQbaabeaaaeaacaaIYaaaaOGaamyzamaaCa aaleqabaGaeyOeI0IaaGOmaiaaiYhacqaH+oaEcaaI8bWaaWbaaeqa baGaaGOmaaaacaaIOaGaamiDamaaBaaabaGaam4CamaaBaaabaGaam OAaiabgUcaRiaaigdaaeqaaaqabaGaeyOeI0IaamiDamaaBaaabaGa am4CamaaBaaabaGaamOAaaqabaaabeaacaaIPaaaaaaakiaaiYcaaa a@87A9@                                                                      (26)

F γ Ψ s j+1 (ξ)= (τ t s j ) δ s j 2 e |ξ | 2 (τ+ t s j+1 2 t s j ) ( t s j+1 τ) δ s j+1 2 +(τ t s j ) δ s j 2 e 2|ξ | 2 ( t s j+1 t s j ) , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiabeo7aNbqaba GccqqHOoqwdaWgaaWcbaGaam4CamaaBaaabaGaamOAaiabgUcaRiaa igdaaeqaaaqabaGccaaIOaGaeqOVdGNaaGykaiaai2dadaWcaaqaai aaiIcacqaHepaDcqGHsislcaWG0bWaaSbaaSqaaiaadohadaWgaaqa aiaadQgaaeqaaaqabaGccaaIPaGaeqiTdq2aa0baaSqaaiaadohada WgaaqaaiaadQgaaeqaaaqaaiaaikdaaaGccaWGLbWaaWbaaSqabeaa cqGHsislcaaI8bGaeqOVdGNaaGiFamaaCaaabeqaaiaaikdaaaGaaG ikaiabes8a0jabgUcaRiaadshadaWgaaqaaiaadohadaWgaaqaaiaa dQgacqGHRaWkcaaIXaaabeaaaeqaaiabgkHiTiaaikdacaWG0bWaaS baaeaacaWGZbWaaSbaaeaacaWGQbaabeaaaeqaaiaaiMcaaaaakeaa caaIOaGaamiDamaaBaaaleaacaWGZbWaaSbaaeaacaWGQbGaey4kaS IaaGymaaqabaaabeaakiabgkHiTiabes8a0jaaiMcacqaH0oazdaqh aaWcbaGaam4CamaaBaaabaGaamOAaiabgUcaRiaaigdaaeqaaaqaai aaikdaaaGccqGHRaWkcaaIOaGaeqiXdqNaeyOeI0IaamiDamaaBaaa leaacaWGZbWaaSbaaeaacaWGQbaabeaaaeqaaOGaaGykaiabes7aKn aaDaaaleaacaWGZbWaaSbaaeaacaWGQbaabeaaaeaacaaIYaaaaOGa amyzamaaCaaaleqabaGaeyOeI0IaaGOmaiaaiYhacqaH+oaEcaaI8b WaaWbaaeqabaGaaGOmaaaacaaIOaGaamiDamaaBaaabaGaam4Camaa BaaabaGaamOAaiabgUcaRiaaigdaaeqaaaqabaGaeyOeI0IaamiDam aaBaaabaGaam4CamaaBaaabaGaamOAaaqabaaabeaacaaIPaaaaaaa kiaaiYcaaaa@8C69@                                                                    (27)

является оптимальным.

(iv)  Если τ> t s ϱ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDcaaI+aGaamiDamaaBaaale aacaWGZbWaaSbaaeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgi p5wzaGabciab=f=aXdqabaaabeaaaaa@4281@ , то метод m ^ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiaad2gaaiaawkWaaaaa@3375@ , определенный формулой m ^ ( y ¯ ())()= P τ t s ϱ y s ϱ () MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiaad2gaaiaawkWaaiaaiI cadaqdaaqaaiaadMhaaaGaaGikaiabgwSixlaaiMcacaaIPaGaaGik aiabgwSixlaaiMcacaaI9aGaamiuamaaBaaaleaacqaHepaDcqGHsi slcaWG0bWaaSbaaeaacaWGZbWaaSbaaeaatuuDJXwAK1uy0HwmaeHb fv3ySLgzG0uy0Hgip5wzaGabciab=f=aXdqabaaabeaaaeqaaOGaam yEamaaBaaaleaacaWGZbWaaSbaaeaacqWFXpq8aeqaaaqabaGccaaI OaGaeyyXICTaaGykaaaa@5859@ , является оптимальным.

Доказательство. Пусть τ[ t s j , t s j+1 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDcqGHiiIZcaaIBbGaamiDam aaBaaaleaacaWGZbWaaSbaaeaacaWGQbaabeaaaeqaaOGaaGilaiaa dshadaWgaaWcbaGaam4CamaaBaaabaGaamOAaiabgUcaRiaaigdaae qaaaqabaGccaaIPaaaaa@3F63@ . Выше было показано, что можно было бы выбрать набор множителей Лагранжа, в котором только множители λ ^ s j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiabeU7aSbGaayPadaWaaS baaSqaaiaadohadaWgaaqaaiaadQgaaeqaaaqabaaaaa@366B@  и λ ^ s j+1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiabeU7aSbGaayPadaWaaS baaSqaaiaadohadaWgaaqaaiaadQgacqGHRaWkcaaIXaaabeaaaeqa aaaa@3808@  не равны нулю. Следовательно, задача (15) принимает вид

λ ^ s j P t s j u 0 () y s j () L 2 γ ( + ) + λ ^ s j+1 P t s j+1 u 0 () y s j+1 () L 2 γ ( + ) min, u 0 () L 2 γ ( + ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiabeU7aSbGaayPadaWaaS baaSqaaiaadohadaWgaaqaaiaadQgaaeqaaaqabaqeeuuDJXwAKbsr 4rNCHbaceaGccqWFLicucaWGqbWaaSbaaSqaaiaadshadaWgaaqaai aadohadaWgaaqaaiaadQgaaeqaaaqabaaabeaakiaadwhadaWgaaWc baGaaGimaaqabaGccaaIOaGaeyyXICTaaGykaiabgkHiTiaadMhada WgaaWcbaGaam4CamaaBaaabaGaamOAaaqabaaabeaakiaaiIcacqGH flY1caaIPaGae8xjIa1aaSbaaSqaaiaadYeadaqhaaqaaiaaikdaae aacqaHZoWzaaGaaGikamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhA Gq1DVbacfaGae4xhHi1aaSbaaeaacqGHRaWkaeqaaiaaiMcaaeqaaO Gaey4kaSYaaecaaeaacqaH7oaBaiaawkWaamaaBaaaleaacaWGZbWa aSbaaeaacaWGQbGaey4kaSIaaGymaaqabaaabeaakiab=vIiqjaadc fadaWgaaWcbaGaamiDamaaBaaabaGaam4CamaaBaaabaGaamOAaiab gUcaRiaaigdaaeqaaaqabaaabeaakiaadwhadaWgaaWcbaGaaGimaa qabaGccaaIOaGaeyyXICTaaGykaiabgkHiTiaadMhadaWgaaWcbaGa am4CamaaBaaabaGaamOAaiabgUcaRiaaigdaaeqaaaqabaGccaaIOa GaeyyXICTaaGykaiab=vIiqnaaBaaaleaacaWGmbWaa0baaeaacaaI YaaabaGaeq4SdCgaaiaaiIcacqGFDeIudaWgaaqaaiabgUcaRaqaba GaaGykaaqabaGccqGHsgIRciGGTbGaaiyAaiaac6gacaaISaGaaGzb VlaadwhadaWgaaWcbaGaaGimaaqabaGccaaIOaGaeyyXICTaaGykai abgIGiolaadYeadaqhaaWcbaGaaGOmaaqaaiabeo7aNbaakiaaiIca cqGFDeIudaWgaaWcbaGaey4kaScabeaakiaaiMcacaaIUaaaaa@9AB0@

Пусть u ^ 0 ()= u ^ 0 (,y()) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiaadwhaaiaawkWaamaaBa aaleaacaaIWaaabeaakiaaiIcacqGHflY1caaIPaGaaGypamaaHaaa baGaamyDaaGaayPadaWaaSbaaSqaaiaaicdaaeqaaOGaaGikaiabgw SixlaaiYcacaWG5bGaaGikaiabgwSixlaaiMcacaaIPaaaaa@44A1@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  решение этой задачи. Тогда выполнено условие (20). В образах Фурье MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ Бесселя это условие может быть записано в виде

κ=j j+1 + ξ γ ( e |ξ | 2 t s κ F γ u ^ 0 (ξ) F γ y s κ (ξ)) e |ξ | 2 t s κ F γ u 0 (ξ)dξ=0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiabeQ7aRjaai2daca WGQbaabaGaamOAaiabgUcaRiaaigdaa0GaeyyeIuoakiaaysW7daWd rbqabSqaamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacea Gae8xhHi1aaSbaaeaacqGHRaWkaeqaaaqab0Gaey4kIipakiabe67a 4naaCaaaleqabaGaeq4SdCgaaOGaaGikaiaadwgadaahaaWcbeqaai abgkHiTiaaiYhacqaH+oaEcaaI8bWaaWbaaeqabaGaaGOmaaaacaWG 0bWaaSbaaeaacaWGZbWaaSbaaeaacqaH6oWAaeqaaaqabaaaaOGaam OramaaBaaaleaacqaHZoWzaeqaaOWaaecaaeaacaWG1baacaGLcmaa daWgaaWcbaGaaGimaaqabaGccaaIOaGaeqOVdGNaaGykaiabgkHiTi aadAeadaWgaaWcbaGaeq4SdCgabeaakiaadMhadaWgaaWcbaGaam4C amaaBaaabaGaeqOUdSgabeaaaeqaaOGaaGikaiabe67a4jaaiMcaca aIPaGaamyzamaaCaaaleqabaGaeyOeI0IaaGiFaiabe67a4jaaiYha daahaaqabeaacaaIYaaaaiaadshadaWgaaqaaiaadohadaWgaaqaai abeQ7aRbqabaaabeaaaaGccaWGgbWaaSbaaSqaaiabeo7aNbqabaGc caWG1bWaaSbaaSqaaiaaicdaaeqaaOGaaGikaiabe67a4jaaiMcaca aMi8Uaamizaiabe67a4jaai2dacaaIWaGaaGOlaaaa@854C@                                                               (28)

Пусть

F γ u ^ 0 (ξ)= λ ^ s j e |ξ | 2 t s j F γ y s j + λ ^ s j+1 e |ξ | 2 t s j+1 F γ y s j+1 λ ^ s j e 2|ξ | 2 t s j + λ ^ s j+1 e 2|ξ | 2 t s j+1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiabeo7aNbqaba GcdaqiaaqaaiaadwhaaiaawkWaamaaBaaaleaacaaIWaaabeaakiaa iIcacqaH+oaEcaaIPaGaaGypamaalaaabaWaaecaaeaacqaH7oaBai aawkWaamaaBaaaleaacaWGZbWaaSbaaeaacaWGQbaabeaaaeqaaOGa amyzamaaCaaaleqabaGaeyOeI0IaaGiFaiabe67a4jaaiYhadaahaa qabeaacaaIYaaaaiaadshadaWgaaqaaiaadohadaWgaaqaaiaadQga aeqaaaqabaaaaOGaamOramaaBaaaleaacqaHZoWzaeqaaOGaamyEam aaBaaaleaacaWGZbWaaSbaaeaacaWGQbaabeaaaeqaaOGaey4kaSYa aecaaeaacqaH7oaBaiaawkWaamaaBaaaleaacaWGZbWaaSbaaeaaca WGQbGaey4kaSIaaGymaaqabaaabeaakiaadwgadaahaaWcbeqaaiab gkHiTiaaiYhacqaH+oaEcaaI8bWaaWbaaeqabaGaaGOmaaaacaWG0b WaaSbaaeaacaWGZbWaaSbaaeaacaWGQbGaey4kaSIaaGymaaqabaaa beaaaaGccaWGgbWaaSbaaSqaaiabeo7aNbqabaGccaWG5bWaaSbaaS qaaiaadohadaWgaaqaaiaadQgacqGHRaWkcaaIXaaabeaaaeqaaaGc baWaaecaaeaacqaH7oaBaiaawkWaamaaBaaaleaacaWGZbWaaSbaae aacaWGQbaabeaaaeqaaOGaamyzamaaCaaaleqabaGaeyOeI0IaaGOm aiaaiYhacqaH+oaEcaaI8bWaaWbaaeqabaGaaGOmaaaacaWG0bWaaS baaeaacaWGZbWaaSbaaeaacaWGQbaabeaaaeqaaaaakiabgUcaRmaa HaaabaGaeq4UdWgacaGLcmaadaWgaaWcbaGaam4CamaaBaaabaGaam OAaiabgUcaRiaaigdaaeqaaaqabaGccaWGLbWaaWbaaSqabeaacqGH sislcaaIYaGaaGiFaiabe67a4jaaiYhadaahaaqabeaacaaIYaaaai aadshadaWgaaqaaiaadohadaWgaaqaaiaadQgacqGHRaWkcaaIXaaa beaaaeqaaaaaaaGccaaIUaaaaa@8D25@                                                               (29)

Тогда равенство (28) выполняется для всех u 0 () L 2 γ ( + ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaaicdaaeqaaO GaaGikaiabgwSixlaaiMcacqGHiiIZcaWGmbWaa0baaSqaaiaaikda aeaacqaHZoWzaaGccaaIOaWefv3ySLgznfgDOjdaryqr1ngBPrginf gDObcv39gaiqaacqWFDeIudaWgaaWcbaGaey4kaScabeaakiaaiMca aaa@497D@ . Пусть для множества y ¯ ()=( y 1 (),, y p ()) ( L 2 γ ( + )) p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqdaaqaaiaadMhaaaGaaGikaiabgw SixlaaiMcacaaI9aGaaGikaiaadMhadaWgaaWcbaGaaGymaaqabaGc caaIOaGaeyyXICTaaGykaiaaiYcacqWIMaYscaaISaGaamyEamaaBa aaleaacaWGWbaabeaakiaaiIcacqGHflY1caaIPaGaaGykaiabgIGi olaaiIcacaWGmbWaa0baaSqaaiaaikdaaeaacqaHZoWzaaGccaaIOa Wefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFDeIu daWgaaWcbaGaey4kaScabeaakiaaiMcacaaIPaWaaWbaaSqabeaaca WGWbaaaaaa@5B59@  функции F γ y j () MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiabeo7aNbqaba GccaWG5bWaaSbaaSqaaiaadQgaaeqaaOGaaGikaiabgwSixlaaiMca aaa@3A3B@ , j=1,,p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbGaaGypaiaaigdacaaISaGaeS OjGSKaaGilaiaadchaaaa@37B5@ , финитны. Тогда функция (29) принадлежит пространству L 2 γ ( + ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaa0baaSqaaiaaikdaaeaacq aHZoWzaaGccaaIOaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv 39gaiqaacqWFDeIudaWgaaWcbaGaey4kaScabeaakiaaiMcaaaa@4260@ . Тогда функция u ^ 0 ()= u ^ 0 (,y()) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiaadwhaaiaawkWaamaaBa aaleaacaaIWaaabeaakiaaiIcacqGHflY1caaIPaGaaGypamaaHaaa baGaamyDaaGaayPadaWaaSbaaSqaaiaaicdaaeqaaOGaaGikaiabgw SixlaaiYcacaWG5bGaaGikaiabgwSixlaaiMcacaaIPaaaaa@44A1@ , определенная формулой (29), также принадлежит пространству L 2 γ ( + ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaa0baaSqaaiaaikdaaeaacq aHZoWzaaGccaaIOaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv 39gaiqaacqWFDeIudaWgaaWcbaGaey4kaScabeaakiaaiMcaaaa@4260@  и является решением задачи (15). Финитные функции плотны в L 2 γ ( + ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaa0baaSqaaiaaikdaaeaacq aHZoWzaaGccaaIOaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv 39gaiqaacqWFDeIudaWgaaWcbaGaey4kaScabeaakiaaiMcaaaa@4260@ . Следовательно, функции с финитными образами Фурье MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ Бесселя являются плотными в L 2 γ ( + ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaa0baaSqaaiaaikdaaeaacq aHZoWzaaGccaaIOaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv 39gaiqaacqWFDeIudaWgaaWcbaGaey4kaScabeaakiaaiMcaaaa@4260@ .

Пусть функции u ˜ 0 () L 2 γ ( + ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadwhaaiaawoWaamaaBa aaleaacaaIWaaabeaakiaaiIcacqGHflY1caaIPaGaeyicI4Saamit amaaDaaaleaacaaIYaaabaGaeq4SdCgaaOGaaGikamrr1ngBPrwtHr hAYaqeguuDJXwAKbstHrhAGq1DVbaceaGae8xhHi1aaSbaaSqaaiab gUcaRaqabaGccaaIPaaaaa@4A3F@ , y ¯ ()=( y 1 (),, y p ()) ( L 2 γ ( + )) p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqdaaqaaiaadMhaaaGaaGikaiabgw SixlaaiMcacaaI9aGaaGikaiaadMhadaWgaaWcbaGaaGymaaqabaGc caaIOaGaeyyXICTaaGykaiaaiYcacqWIMaYscaaISaGaamyEamaaBa aaleaacaWGWbaabeaakiaaiIcacqGHflY1caaIPaGaaGykaiabgIGi olaaiIcacaWGmbWaa0baaSqaaiaaikdaaeaacqaHZoWzaaGccaaIOa Wefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFDeIu daWgaaWcbaGaey4kaScabeaakiaaiMcacaaIPaWaaWbaaSqabeaaca WGWbaaaaaa@5B59@  удовлетворяют неравенствам

P t s j u ˜ 0 () y s j () L 2 γ ( + ) δ j ,j=1,,p. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWGqbWaaSbaaSqaaiaadshadaWgaaqaaiaadohadaWgaaqaaiaa dQgaaeqaaaqabaaabeaakmaaGaaabaGaamyDaaGaay5adaWaaSbaaS qaaiaaicdaaeqaaOGaaGikaiabgwSixlaaiMcacqGHsislcaWG5bWa aSbaaSqaaiaadohadaWgaaqaaiaadQgaaeqaaaqabaGccaaIOaGaey yXICTaaGykaiab=vIiqnaaBaaaleaacaWGmbWaa0baaeaacaaIYaaa baGaeq4SdCgaaiaaiIcatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0H giuD3BaGqbaiab+1risnaaBaaabaGaey4kaScabeaacaaIPaaabeaa kiabgsMiJkabes7aKnaaBaaaleaacaWGQbaabeaakiaaiYcacaaMf8 UaamOAaiaai2dacaaIXaGaaGilaiablAciljaaiYcacaWGWbGaaGOl aaaa@690E@

Выберем последовательность y ¯ (k) ()=( y 1 (k) (),, y p (k) ()) ( L 2 γ ( + )) p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqdaaqaaiaadMhaaaWaaWbaaSqabe aacaaIOaGaam4AaiaaiMcaaaGccaaIOaGaeyyXICTaaGykaiaai2da caaIOaGaamyEamaaDaaaleaacaaIXaaabaGaaGikaiaadUgacaaIPa aaaOGaaGikaiabgwSixlaaiMcacaaISaGaeSOjGSKaaGilaiaadMha daqhaaWcbaGaamiCaaqaaiaaiIcacaWGRbGaaGykaaaakiaaiIcacq GHflY1caaIPaGaaGykaiabgIGiolaaiIcacaWGmbWaa0baaSqaaiaa ikdaaeaacqaHZoWzaaGccaaIOaWefv3ySLgznfgDOjdaryqr1ngBPr ginfgDObcv39gaiqaacqWFDeIudaWgaaWcbaGaey4kaScabeaakiaa iMcacaaIPaWaaWbaaSqabeaacaWGWbaaaaaa@6291@ , k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaeyicI48efv3ySLgznfgDOj daryqr1ngBPrginfgDObcv39gaiqaacqWFveItaaa@3EE0@ , для которой функции F γ y j (k) () MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiabeo7aNbqaba GccaWG5bWaa0baaSqaaiaadQgaaeaacaaIOaGaam4AaiaaiMcaaaGc caaIOaGaeyyXICTaaGykaaaa@3C91@ , j=1,,p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbGaaGypaiaaigdacaaISaGaeS OjGSKaaGilaiaadchaaaa@37B5@ , финитны и

y j () y j (k) () L 2 γ ( + ) 1 k ,j=1,,p,k. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWG5bWaaSbaaSqaaiaadQgaaeqaaOGaaGikaiabgwSixlaaiMca cqGHsislcaWG5bWaa0baaSqaaiaadQgaaeaacaaIOaGaam4AaiaaiM caaaGccaaIOaGaeyyXICTaaGykaiab=vIiqnaaBaaaleaacaWGmbWa a0baaeaacaaIYaaabaGaeq4SdCgaaiaaiIcatuuDJXwAK1uy0HMmae Hbfv3ySLgzG0uy0HgiuD3BaGqbaiab+1risnaaBaaabaGaey4kaSca beaacaaIPaaabeaakiabgsMiJoaalaaabaGaaGymaaqaaiaadUgaaa GaaGilaiaaywW7caWGQbGaaGypaiaaigdacaaISaGaeSOjGSKaaGil aiaadchacaaISaGaaGzbVlaadUgacqGHiiIZcqGFveItcaaIUaaaaa@6A46@

Зафиксируем число k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaeyicI48efv3ySLgznfgDOj daryqr1ngBPrginfgDObcv39gaiqaacqWFveItaaa@3EE0@ . Существует решение u ^ 0 (, y (k) ()) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiaadwhaaiaawkWaamaaBa aaleaacaaIWaaabeaakiaaiIcacqGHflY1caaISaGaamyEamaaCaaa leqabaGaaGikaiaadUgacaaIPaaaaOGaaGikaiabgwSixlaaiMcaca aIPaaaaa@400B@  задачи (15). В силу неравенств

P t j u ˜ 0 () y j (k) () L 2 γ ( + ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWGqbWaaSbaaSqaaiaadshadaWgaaqaaiaadQgaaeqaaaqabaGc daaiaaqaaiaadwhaaiaawoWaamaaBaaaleaacaaIWaaabeaakiaaiI cacqGHflY1caaIPaGaeyOeI0IaamyEamaaDaaaleaacaWGQbaabaGa aGikaiaadUgacaaIPaaaaOGaaGikaiabgwSixlaaiMcacqWFLicuda WgaaWcbaGaamitamaaDaaabaGaaGOmaaqaaiabeo7aNbaacaaIOaWe fv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqGFDeIuda WgaaqaaiabgUcaRaqabaGaaGykaaqabaGccqGHKjYOaaa@5D78@

P t j u ˜ 0 () y j () L 2 γ ( + ) + y j () y j (k) () L 2 γ ( + ) δ j + 1 k ,j=1,,p, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHKjYOrqqr1ngBPrgifHhDYfgaiq aacqWFLicucaWGqbWaaSbaaSqaaiaadshadaWgaaqaaiaadQgaaeqa aaqabaGcdaaiaaqaaiaadwhaaiaawoWaamaaBaaaleaacaaIWaaabe aakiaaiIcacqGHflY1caaIPaGaeyOeI0IaamyEamaaBaaaleaacaWG QbaabeaakiaaiIcacqGHflY1caaIPaGae8xjIa1aaSbaaSqaaiaadY eadaqhaaqaaiaaikdaaeaacqaHZoWzaaGaaGikamrr1ngBPrwtHrhA YaqeguuDJXwAKbstHrhAGq1DVbacfaGae4xhHi1aaSbaaeaacqGHRa WkaeqaaiaaiMcaaeqaaOGaey4kaSIae8xjIaLaamyEamaaBaaaleaa caWGQbaabeaakiaaiIcacqGHflY1caaIPaGaeyOeI0IaamyEamaaDa aaleaacaWGQbaabaGaaGikaiaadUgacaaIPaaaaOGaaGikaiabgwSi xlaaiMcacqWFLicudaWgaaWcbaGaamitamaaDaaabaGaaGOmaaqaai abeo7aNbaacaaIOaGae4xhHi1aaSbaaeaacqGHRaWkaeqaaiaaiMca aeqaaOGaeyizImQaeqiTdq2aaSbaaSqaaiaadQgaaeqaaOGaey4kaS YaaSaaaeaacaaIXaaabaGaam4AaaaacaaISaGaaGzbVlaadQgacaaI 9aGaaGymaiaaiYcacqWIMaYscaaISaGaamiCaiaaiYcaaaa@8435@

функция u ˜ 0 () MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadwhaaiaawoWaamaaBa aaleaacaaIWaaabeaakiaaiIcacqGHflY1caaIPaaaaa@381C@  допустима в задаче (16) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (17) с σ j = σ j (k)= δ j +1/k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHdpWCdaWgaaWcbaGaamOAaaqaba GccaaI9aGaeq4Wdm3aaSbaaSqaaiaadQgaaeqaaOGaaGikaiaadUga caaIPaGaaGypaiabes7aKnaaBaaaleaacaWGQbaabeaakiabgUcaRi aaigdacaaIVaGaam4Aaaaa@4184@ . Пусть

a(k)= j=1 p λ ^ j σ j 2 (k)/ j=1 p λ ^ j δ j 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaaGikaiaadUgacaaIPaGaaG ypamaakaaabaWaaabCaeqaleaacaWGQbGaaGypaiaaigdaaeaacaWG WbaaniabggHiLdGcdaqiaaqaaiabeU7aSbGaayPadaWaaSbaaSqaai aadQgaaeqaaOGaeq4Wdm3aa0baaSqaaiaadQgaaeaacaaIYaaaaOGa aGikaiaadUgacaaIPaGaaG4lamaaqahabeWcbaGaamOAaiaai2daca aIXaaabaGaamiCaaqdcqGHris5aOWaaecaaeaacqaH7oaBaiaawkWa amaaBaaaleaacaWGQbaabeaakiabes7aKnaaDaaaleaacaWGQbaaba GaaGOmaaaaaeqaaOGaaGOlaaaa@5361@

В силу леммы 2 значение задачи (16) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (17) не превышает значения задачи (18) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (19).

Произведем замену функции u 0 ()=a(k) v 0 () MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaaicdaaeqaaO GaaGikaiabgwSixlaaiMcacaaI9aGaamyyaiaaiIcacaWGRbGaaGyk aiaadAhadaWgaaWcbaGaaGimaaqabaGccaaIOaGaeyyXICTaaGykaa aa@40F6@  для задачи (18) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (19). Эта задача примет вид

a(k) P τ v 0 () P τ u ^ 0 () L 2 γ ( + ) 2 max, u 0 () L 2 γ ( + ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaaGikaiaadUgacaaIPaqeeu uDJXwAKbsr4rNCHbaceaGae8xjIaLaamiuamaaBaaaleaacqaHepaD aeqaaOGaamODamaaBaaaleaacaaIWaaabeaakiaaiIcacqGHflY1ca aIPaGaeyOeI0IaamiuamaaBaaaleaacqaHepaDaeqaaOWaaecaaeaa caWG1baacaGLcmaadaWgaaWcbaGaaGimaaqabaGccaaIOaGaeyyXIC TaaGykaiab=vIiqnaaDaaaleaacaWGmbWaa0baaeaacaaIYaaabaGa eq4SdCgaaiaaiIcatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD 3BaGqbaiab+1risnaaBaaabaGaey4kaScabeaacaaIPaaabaGaaGOm aaaakiabgkziUkGac2gacaGGHbGaaiiEaiaaiYcacaaMf8UaamyDam aaBaaaleaacaaIWaaabeaakiaaiIcacqGHflY1caaIPaGaeyicI4Sa amitamaaDaaaleaacaaIYaaabaGaeq4SdCgaaOGaaGikaiab+1risn aaBaaaleaacqGHRaWkaeqaaOGaaGykaiaaiYcaaaa@758D@                                                                    (30)

j=1 p λ ^ j P t j v 0 () L 2 γ ( + ) 2 j=1 p λ ^ j σ j 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaadQgacaaI9aGaaG ymaaqaaiaadchaa0GaeyyeIuoakmaaHaaabaGaeq4UdWgacaGLcmaa daWgaaWcbaGaamOAaaqabaqeeuuDJXwAKbsr4rNCHbaceaGccqWFLi cucaWGqbWaaSbaaSqaaiaadshadaWgaaqaaiaadQgaaeqaaaqabaGc caWG2bWaaSbaaSqaaiaaicdaaeqaaOGaaGikaiabgwSixlaaiMcacq WFLicudaqhaaWcbaGaamitamaaDaaabaGaaGOmaaqaaiabeo7aNbaa caaIOaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacq GFDeIudaWgaaqaaiabgUcaRaqabaGaaGykaaqaaiaaikdaaaGccqGH KjYOdaaeWbqabSqaaiaadQgacaaI9aGaaGymaaqaaiaadchaa0Gaey yeIuoakiaayIW7daqiaaqaaiabeU7aSbGaayPadaWaaSbaaSqaaiaa dQgaaeqaaOGaeq4Wdm3aa0baaSqaaiaadQgaaeaacaaIYaaaaOGaaG Olaaaa@6CE9@                                                                                                (31)

Значение задачи (30) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (31) совпадает со значением задачи (6) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (7), умноженным на a(k) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaaGikaiaadUgacaaIPaaaaa@34FC@ , и оно равно a(k) e θ(τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaaGikaiaadUgacaaIPaGaam yzamaaCaaaleqabaGaeyOeI0IaeqiUdeNaaGikaiabes8a0jaaiMca aaaaaa@3BE0@ . Поскольку функция u ˜ 0 () MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadwhaaiaawoWaamaaBa aaleaacaaIWaaabeaakiaaiIcacqGHflY1caaIPaaaaa@381C@  допустимо в задаче (16) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (17), имеем

P τ u ˜ 0 () P τ u ^ 0 (, y (k) ()) L 2 γ ( + ) a(k) e θ(τ) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWGqbWaaSbaaSqaaiabes8a0bqabaGcdaaiaaqaaiaadwhaaiaa woWaamaaBaaaleaacaaIWaaabeaakiaaiIcacqGHflY1caaIPaGaey OeI0IaamiuamaaBaaaleaacqaHepaDaeqaaOWaaecaaeaacaWG1baa caGLcmaadaWgaaWcbaGaaGimaaqabaGccaaIOaGaeyyXICTaaGilai aadMhadaahaaWcbeqaaiaaiIcacaWGRbGaaGykaaaakiaaiIcacqGH flY1caaIPaGaaGykaiab=vIiqnaaBaaaleaacaWGmbWaa0baaeaaca aIYaaabaGaeq4SdCgaaiaaiIcatuuDJXwAK1uy0HMmaeHbfv3ySLgz G0uy0HgiuD3BaGqbaiab+1risnaaBaaabaGaey4kaScabeaacaaIPa aabeaakiabgsMiJkaadggacaaIOaGaam4AaiaaiMcacaWGLbWaaWba aSqabeaacqGHsislcqaH4oqCcaaIOaGaeqiXdqNaaGykaaaakiaai6 caaaa@7107@                                                                                    (32)

Пусть Ψ s j () MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHOoqwdaWgaaWcbaGaam4CamaaBa aabaGaamOAaaqabaaabeaakiaaiIcacqGHflY1caaIPaaaaa@393D@ , Φ s j+1 () MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHMoGrdaWgaaWcbaGaam4CamaaBa aabaGaamOAaiabgUcaRiaaigdaaeqaaaqabaGccaaIOaGaeyyXICTa aGykaaaa@3AC5@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  функции, образы Фурье MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ Бесселя которых имеют следующий вид в соответствии с (26) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (27):

F γ Ψ s j (ξ)= ( t s j+1 τ) δ s j+1 2 e |ξ | 2 (τ t s j ) ( t s j+1 τ) δ s j+1 2 +(τ t s j ) δ s j 2 e 2|ξ | 2 ( t s j+1 t s j ) , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiabeo7aNbqaba GccqqHOoqwdaWgaaWcbaGaam4CamaaBaaabaGaamOAaaqabaaabeaa kiaaiIcacqaH+oaEcaaIPaGaaGypamaalaaabaGaaGikaiaadshada WgaaWcbaGaam4CamaaBaaabaGaamOAaiabgUcaRiaaigdaaeqaaaqa baGccqGHsislcqaHepaDcaaIPaGaeqiTdq2aa0baaSqaaiaadohada WgaaqaaiaadQgacqGHRaWkcaaIXaaabeaaaeaacaaIYaaaaOGaamyz amaaCaaaleqabaGaeyOeI0IaaGiFaiabe67a4jaaiYhadaahaaqabe aacaaIYaaaaiaaiIcacqaHepaDcqGHsislcaWG0bWaaSbaaeaacaWG ZbWaaSbaaeaacaWGQbaabeaaaeqaaiaaiMcaaaaakeaacaaIOaGaam iDamaaBaaaleaacaWGZbWaaSbaaeaacaWGQbGaey4kaSIaaGymaaqa baaabeaakiabgkHiTiabes8a0jaaiMcacqaH0oazdaqhaaWcbaGaam 4CamaaBaaabaGaamOAaiabgUcaRiaaigdaaeqaaaqaaiaaikdaaaGc cqGHRaWkcaaIOaGaeqiXdqNaeyOeI0IaamiDamaaBaaaleaacaWGZb WaaSbaaeaacaWGQbaabeaaaeqaaOGaaGykaiabes7aKnaaDaaaleaa caWGZbWaaSbaaeaacaWGQbaabeaaaeaacaaIYaaaaOGaamyzamaaCa aaleqabaGaeyOeI0IaaGOmaiaaiYhacqaH+oaEcaaI8bWaaWbaaeqa baGaaGOmaaaacaaIOaGaamiDamaaBaaabaGaam4CamaaBaaabaGaam OAaiabgUcaRiaaigdaaeqaaaqabaGaeyOeI0IaamiDamaaBaaabaGa am4CamaaBaaabaGaamOAaaqabaaabeaacaaIPaaaaaaakiaaiYcaaa a@87A9@

F γ Ψ s j+1 (ξ)= (τ t s j ) δ s j 2 e |ξ | 2 (τ+ t s j+1 2 t s j ) ( t s j+1 τ) δ s j+1 2 +(τ t s j ) δ s j 2 e 2|ξ | 2 ( t s j+1 t s j ) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiabeo7aNbqaba GccqqHOoqwdaWgaaWcbaGaam4CamaaBaaabaGaamOAaiabgUcaRiaa igdaaeqaaaqabaGccaaIOaGaeqOVdGNaaGykaiaai2dadaWcaaqaai aaiIcacqaHepaDcqGHsislcaWG0bWaaSbaaSqaaiaadohadaWgaaqa aiaadQgaaeqaaaqabaGccaaIPaGaeqiTdq2aa0baaSqaaiaadohada WgaaqaaiaadQgaaeqaaaqaaiaaikdaaaGccaWGLbWaaWbaaSqabeaa cqGHsislcaaI8bGaeqOVdGNaaGiFamaaCaaabeqaaiaaikdaaaGaaG ikaiabes8a0jabgUcaRiaadshadaWgaaqaaiaadohadaWgaaqaaiaa dQgacqGHRaWkcaaIXaaabeaaaeqaaiabgkHiTiaaikdacaWG0bWaaS baaeaacaWGZbWaaSbaaeaacaWGQbaabeaaaeqaaiaaiMcaaaaakeaa caaIOaGaamiDamaaBaaaleaacaWGZbWaaSbaaeaacaWGQbGaey4kaS IaaGymaaqabaaabeaakiabgkHiTiabes8a0jaaiMcacqaH0oazdaqh aaWcbaGaam4CamaaBaaabaGaamOAaiabgUcaRiaaigdaaeqaaaqaai aaikdaaaGccqGHRaWkcaaIOaGaeqiXdqNaeyOeI0IaamiDamaaBaaa leaacaWGZbWaaSbaaeaacaWGQbaabeaaaeqaaOGaaGykaiabes7aKn aaDaaaleaacaWGZbWaaSbaaeaacaWGQbaabeaaaeaacaaIYaaaaOGa amyzamaaCaaaleqabaGaeyOeI0IaaGOmaiaaiYhacqaH+oaEcaaI8b WaaWbaaeqabaGaaGOmaaaacaaIOaGaamiDamaaBaaabaGaam4Camaa BaaabaGaamOAaiabgUcaRiaaigdaaeqaaaqabaGaeyOeI0IaamiDam aaBaaabaGaam4CamaaBaaabaGaamOAaaqabaaabeaacaaIPaaaaaaa kiaai6caaaa@8C6B@

Пусть τ( t s j , t s j+1 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDcqGHiiIZcaaIOaGaamiDam aaBaaaleaacaWGZbWaaSbaaeaacaWGQbaabeaaaeqaaOGaaGilaiaa dshadaWgaaWcbaGaam4CamaaBaaabaGaamOAaiabgUcaRiaaigdaae qaaaqabaGccaaIPaaaaa@3F30@ . Образы Фурье MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ Бесселя (26) и (27) функций Ψ s j () MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHOoqwdaWgaaWcbaGaam4CamaaBa aabaGaamOAaaqabaaabeaakiaaiIcacqGHflY1caaIPaaaaa@393D@  и Ψ s j+1 () MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHOoqwdaWgaaWcbaGaam4CamaaBa aabaGaamOAaiabgUcaRiaaigdaaeqaaaqabaGccaaIOaGaeyyXICTa aGykaaaa@3ADA@  принадлежат пространству четных бесконечно дифференцируемых быстро убывающих функций. Следовательно, функции Ψ s j () MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHOoqwdaWgaaWcbaGaam4CamaaBa aabaGaamOAaaqabaaabeaakiaaiIcacqGHflY1caaIPaaaaa@393D@  и Ψ s j+1 () MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHOoqwdaWgaaWcbaGaam4CamaaBa aabaGaamOAaiabgUcaRiaaigdaaeqaaaqabaGccaaIOaGaeyyXICTa aGykaaaa@3ADA@  принадлежат этому пространству. В рассматриваемом случае мы определяем метод восстановления с использованием обобщенной свертки в соответствии с (25):

m ^ ( y ¯ ())()=( Ψ s j y s j ) γ ()+ ( Ψ s j+1 y s j+1 ) γ (). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiaad2gaaiaawkWaaiaaiI cadaqdaaqaaiaadMhaaaGaaGikaiabgwSixlaaiMcacaaIPaGaaGik aiabgwSixlaaiMcacaaI9aGaaGikaiabfI6aznaaBaaaleaacaWGZb WaaSbaaeaacaWGQbaabeaaaeqaaOGaey4fIOIaamyEamaaBaaaleaa caWGZbWaaSbaaeaacaWGQbaabeaaaeqaaOGaaGykamaaBaaaleaacq aHZoWzaeqaaOGaaGikaiabgwSixlaaiMcacqGHRaWkcaaIOaGaeuiQ dK1aaSbaaSqaaiaadohadaWgaaqaaiaadQgacqGHRaWkcaaIXaaabe aaaeqaaOGaey4fIOIaamyEamaaBaaaleaacaWGZbWaaSbaaeaacaWG QbGaey4kaSIaaGymaaqabaaabeaakiaaiMcadaWgaaWcbaGaeq4SdC gabeaakiaaiIcacqGHflY1caaIPaGaaGOlaaaa@60B4@

Тогда

F γ m ^ ( y ¯ (k) ())(ξ)= F γ Ψ s j (ξ) F γ y s j (k) (ξ)+ F γ Ψ s j+1 (ξ) F γ y s j+1 (k) (ξ)= e |ξ | 2 τ F γ u ˜ 0 (, y ¯ (k) ())(ξ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiabeo7aNbqaba Gcdaqiaaqaaiaad2gaaiaawkWaaiaaiIcadaqdaaqaaiaadMhaaaWa aWbaaSqabeaacaaIOaGaam4AaiaaiMcaaaGccaaIOaGaeyyXICTaaG ykaiaaiMcacaaIOaGaeqOVdGNaaGykaiaai2dacaWGgbWaaSbaaSqa aiabeo7aNbqabaGccqqHOoqwdaWgaaWcbaGaam4CamaaBaaabaGaam OAaaqabaaabeaakiaaiIcacqaH+oaEcaaIPaGaamOramaaBaaaleaa cqaHZoWzaeqaaOGaamyEamaaDaaaleaacaWGZbWaaSbaaeaacaWGQb aabeaaaeaacaaIOaGaam4AaiaaiMcaaaGccaaIOaGaeqOVdGNaaGyk aiabgUcaRiaadAeadaWgaaWcbaGaeq4SdCgabeaakiabfI6aznaaBa aaleaacaWGZbWaaSbaaeaacaWGQbGaey4kaSIaaGymaaqabaaabeaa kiaaiIcacqaH+oaEcaaIPaGaamOramaaBaaaleaacqaHZoWzaeqaaO GaamyEamaaDaaaleaacaWGZbWaaSbaaeaacaWGQbGaey4kaSIaaGym aaqabaaabaGaaGikaiaadUgacaaIPaaaaOGaaGikaiabe67a4jaaiM cacaaI9aGaamyzamaaCaaaleqabaGaeyOeI0IaaGiFaiabe67a4jaa iYhadaahaaqabeaacaaIYaaaaiabes8a0baakiaadAeadaWgaaWcba Gaeq4SdCgabeaakmaaGaaabaGaamyDaaGaay5adaWaaSbaaSqaaiaa icdaaeqaaOGaaGikaiabgwSixlaaiYcadaqdaaqaaiaadMhaaaWaaW baaSqabeaacaaIOaGaam4AaiaaiMcaaaGccaaIOaGaeyyXICTaaGyk aiaaiMcacaaIOaGaeqOVdGNaaGykaiaai6caaaa@8EFF@                                          (33)

Это значит, что

m ^ ( y ¯ (k) ())()= P τ u ˜ 0 (, y ¯ (k) ())(). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiaad2gaaiaawkWaaiaaiI cadaqdaaqaaiaadMhaaaWaaWbaaSqabeaacaaIOaGaam4AaiaaiMca aaGccaaIOaGaeyyXICTaaGykaiaaiMcacaaIOaGaeyyXICTaaGykai aai2dacaWGqbWaaSbaaSqaaiabes8a0bqabaGcdaaiaaqaaiaadwha aiaawoWaamaaBaaaleaacaaIWaaabeaakiaaiIcacqGHflY1caaISa Waa0aaaeaacaWG5baaamaaCaaaleqabaGaaGikaiaadUgacaaIPaaa aOGaaGikaiabgwSixlaaiMcacaaIPaGaaGikaiabgwSixlaaiMcaca aIUaaaaa@562C@                                                                                                             (34)

Если τ= t s j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDcaaI9aGaamiDamaaBaaale aacaWGZbWaaSbaaeaacaWGQbaabeaaaeqaaaaa@377A@ , включая случай τ= t s ϱ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDcaaI9aGaamiDamaaBaaale aacaWGZbWaaSbaaeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgi p5wzaGabciab=f=aXdqabaaabeaaaaa@4280@ , то

F γ m ^ ( y ¯ (k) ())(ξ)= F γ y s j (k) (ξ)= e |ξ | 2 τ F γ u ˜ 0 (, y ¯ (k) ())(ξ)= F γ ( P τ u ˜ 0 (, y ¯ (k) ()))(ξ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiabeo7aNbqaba Gcdaqiaaqaaiaad2gaaiaawkWaaiaaiIcadaqdaaqaaiaadMhaaaWa aWbaaSqabeaacaaIOaGaam4AaiaaiMcaaaGccaaIOaGaeyyXICTaaG ykaiaaiMcacaaIOaGaeqOVdGNaaGykaiaai2dacaWGgbWaaSbaaSqa aiabeo7aNbqabaGccaWG5bWaa0baaSqaaiaadohadaWgaaqaaiaadQ gaaeqaaaqaaiaaiIcacaWGRbGaaGykaaaakiaaiIcacqaH+oaEcaaI PaGaaGypaiaadwgadaahaaWcbeqaaiabgkHiTiaaiYhacqaH+oaEca aI8bWaaWbaaeqabaGaaGOmaaaacqaHepaDaaGccaWGgbWaaSbaaSqa aiabeo7aNbqabaGcdaaiaaqaaiaadwhaaiaawoWaamaaBaaaleaaca aIWaaabeaakiaaiIcacqGHflY1caaISaWaa0aaaeaacaWG5baaamaa CaaaleqabaGaaGikaiaadUgacaaIPaaaaOGaaGikaiabgwSixlaaiM cacaaIPaGaaGikaiabe67a4jaaiMcacaaI9aGaamOramaaBaaaleaa cqaHZoWzaeqaaOGaaGikaiaadcfadaWgaaWcbaGaeqiXdqhabeaakm aaGaaabaGaamyDaaGaay5adaWaaSbaaSqaaiaaicdaaeqaaOGaaGik aiabgwSixlaaiYcadaqdaaqaaiaadMhaaaWaaWbaaSqabeaacaaIOa Gaam4AaiaaiMcaaaGccaaIOaGaeyyXICTaaGykaiaaiMcacaaIPaGa aGikaiabe67a4jaaiMcacaaISaaaaa@856C@

так что в этом случае (34) тоже верно.

Пусть снова функции u ˜ 0 () L 2 γ ( + ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadwhaaiaawoWaamaaBa aaleaacaaIWaaabeaakiaaiIcacqGHflY1caaIPaGaeyicI4Saamit amaaDaaaleaacaaIYaaabaGaeq4SdCgaaOGaaGikamrr1ngBPrwtHr hAYaqeguuDJXwAKbstHrhAGq1DVbaceaGae8xhHi1aaSbaaSqaaiab gUcaRaqabaGccaaIPaaaaa@4A3F@ , y ¯ ()=( y 1 (),, y p ()) ( L 2 γ ( + )) p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqdaaqaaiaadMhaaaGaaGikaiabgw SixlaaiMcacaaI9aGaaGikaiaadMhadaWgaaWcbaGaaGymaaqabaGc caaIOaGaeyyXICTaaGykaiaaiYcacqWIMaYscaaISaGaamyEamaaBa aaleaacaWGWbaabeaakiaaiIcacqGHflY1caaIPaGaaGykaiabgIGi olaaiIcacaWGmbWaa0baaSqaaiaaikdaaeaacqaHZoWzaaGccaaIOa Wefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFDeIu daWgaaWcbaGaey4kaScabeaakiaaiMcacaaIPaWaaWbaaSqabeaaca WGWbaaaaaa@5B59@  удовлетворяют неравенствам

P t s j u ˜ 0 () y s j () L 2 γ ( + ) δ j ,j=1,,p. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWGqbWaaSbaaSqaaiaadshadaWgaaqaaiaadohadaWgaaqaaiaa dQgaaeqaaaqabaaabeaakmaaGaaabaGaamyDaaGaay5adaWaaSbaaS qaaiaaicdaaeqaaOGaaGikaiabgwSixlaaiMcacqGHsislcaWG5bWa aSbaaSqaaiaadohadaWgaaqaaiaadQgaaeqaaaqabaGccaaIOaGaey yXICTaaGykaiab=vIiqnaaBaaaleaacaWGmbWaa0baaeaacaaIYaaa baGaeq4SdCgaaiaaiIcatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0H giuD3BaGqbaiab+1risnaaBaaabaGaey4kaScabeaacaaIPaaabeaa kiabgsMiJkabes7aKnaaBaaaleaacaWGQbaabeaakiaaiYcacaaMf8 UaamOAaiaai2dacaaIXaGaaGilaiablAciljaaiYcacaWGWbGaaGOl aaaa@690E@

Тогда для любого k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaeyicI48efv3ySLgznfgDOj daryqr1ngBPrginfgDObcv39gaiqaacqWFveItaaa@3EE0@

P τ u ˜ 0 () m ^ ( y ¯ ())() L 2 γ ( + ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWGqbWaaSbaaSqaaiabes8a0bqabaGcdaaiaaqaaiaadwhaaiaa woWaamaaBaaaleaacaaIWaaabeaakiaaiIcacqGHflY1caaIPaGaey OeI0YaaecaaeaacaWGTbaacaGLcmaacaaMi8UaaGikamaanaaabaGa amyEaaaacaaIOaGaeyyXICTaaGykaiaaiMcacaaIOaGaeyyXICTaaG ykaiab=vIiqnaaBaaaleaacaWGmbWaa0baaeaacaaIYaaabaGaeq4S dCgaaiaaiIcatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaG qbaiab+1risnaaBaaabaGaey4kaScabeaacaaIPaaabeaakiabgsMi Jcaa@6223@

P τ u ˜ 0 () m ^ ( y ¯ (k) ())() L 2 γ ( + ) + m ^ ( y ¯ (k) ())() m ^ ( y ¯ ())() L 2 γ ( + ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHKjYOrqqr1ngBPrgifHhDYfgaiq aacqWFLicucaWGqbWaaSbaaSqaaiabes8a0bqabaGcdaaiaaqaaiaa dwhaaiaawoWaamaaBaaaleaacaaIWaaabeaakiaaiIcacqGHflY1ca aIPaGaeyOeI0YaaecaaeaacaWGTbaacaGLcmaacaaMi8UaaGikamaa naaabaGaamyEaaaadaahaaWcbeqaaiaaiIcacaWGRbGaaGykaaaaki aaiIcacqGHflY1caaIPaGaaGykaiaaiIcacqGHflY1caaIPaGae8xj Ia1aaSbaaSqaaiaadYeadaqhaaqaaiaaikdaaeaacqaHZoWzaaGaaG ikamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae4xh Hi1aaSbaaeaacqGHRaWkaeqaaiaaiMcaaeqaaOGaey4kaSIae8xjIa 1aaecaaeaacaWGTbaacaGLcmaacaaMi8UaaGikamaanaaabaGaamyE aaaadaahaaWcbeqaaiaaiIcacaWGRbGaaGykaaaakiaaiIcacqGHfl Y1caaIPaGaaGykaiaaiIcacqGHflY1caaIPaGaeyOeI0Yaaecaaeaa caWGTbaacaGLcmaacaaMi8UaaGikamaanaaabaGaamyEaaaacaaIOa GaeyyXICTaaGykaiaaiMcacaaIOaGaeyyXICTaaGykaiab=vIiqnaa BaaaleaacaWGmbWaa0baaeaacaaIYaaabaGaeq4SdCgaaiaaiIcacq GFDeIudaWgaaqaaiabgUcaRaqabaGaaGykaaqabaGccqGHKjYOaaa@8E2D@

P τ u ˜ 0 () P τ u ˜ 0 (, y ¯ (k) ()) L 2 γ ( + ) + m ^ ( y ¯ (k) ())() m ^ ( y ¯ ())() L 2 γ ( + ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHKjYOrqqr1ngBPrgifHhDYfgaiq aacqWFLicucaWGqbWaaSbaaSqaaiabes8a0bqabaGcdaaiaaqaaiaa dwhaaiaawoWaamaaBaaaleaacaaIWaaabeaakiaaiIcacqGHflY1ca aIPaGaeyOeI0IaamiuamaaBaaaleaacqaHepaDaeqaaOWaaacaaeaa caWG1baacaGLdmaadaWgaaWcbaGaaGimaaqabaGccaaIOaGaeyyXIC TaaGilamaanaaabaGaamyEaaaadaahaaWcbeqaaiaaiIcacaWGRbGa aGykaaaakiaaiIcacqGHflY1caaIPaGaaGykaiab=vIiqnaaBaaale aacaWGmbWaa0baaeaacaaIYaaabaGaeq4SdCgaaiaaiIcatuuDJXwA K1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab+1risnaaBaaaba Gaey4kaScabeaacaaIPaaabeaakiabgUcaRiab=vIiqnaaHaaabaGa amyBaaGaayPadaGaaGjcVlaaiIcadaqdaaqaaiaadMhaaaWaaWbaaS qabeaacaaIOaGaam4AaiaaiMcaaaGccaaIOaGaeyyXICTaaGykaiaa iMcacaaIOaGaeyyXICTaaGykaiabgkHiTmaaHaaabaGaamyBaaGaay PadaGaaGjcVlaaiIcadaqdaaqaaiaadMhaaaGaaGikaiabgwSixlaa iMcacaaIPaGaaGikaiabgwSixlaaiMcacqWFLicudaWgaaWcbaGaam itamaaDaaabaGaaGOmaaqaaiabeo7aNbaacaaIOaGae4xhHi1aaSba aeaacqGHRaWkaeqaaiaaiMcaaeqaaOGaeyizImkaaa@8FB5@

a(k) e θ(τ) + m ^ ( y ¯ (k) () y ¯ ())() L 2 γ ( + ) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHKjYOcaWGHbGaaGikaiaadUgaca aIPaGaamyzamaaCaaaleqabaGaeyOeI0IaeqiUdeNaaGikaiabes8a 0jaaiMcaaaGccqGHRaWkrqqr1ngBPrgifHhDYfgaiqaacqWFLicuda qiaaqaaiaad2gaaiaawkWaaiaayIW7caaIOaWaa0aaaeaacaWG5baa amaaCaaaleqabaGaaGikaiaadUgacaaIPaaaaOGaaGikaiabgwSixl aaiMcacqGHsisldaqdaaqaaiaadMhaaaGaaGikaiabgwSixlaaiMca caaIPaGaaGikaiabgwSixlaaiMcacqWFLicudaWgaaWcbaGaamitam aaDaaabaGaaGOmaaqaaiabeo7aNbaacaaIOaWefv3ySLgznfgDOjda ryqr1ngBPrginfgDObcv39gaiuaacqGFDeIudaWgaaqaaiabgUcaRa qabaGaaGykaaqabaGccaaIUaaaaa@6C05@

Переходя в этом неравенстве к пределу в k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaeyOKH4QaeyOhIukaaa@360F@ , получаем

P τ u ˜ 0 () m ^ ( y ¯ ())() L 2 γ ( + ) e θ(τ) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWGqbWaaSbaaSqaaiabes8a0bqabaGcdaaiaaqaaiaadwhaaiaa woWaamaaBaaaleaacaaIWaaabeaakiaaiIcacqGHflY1caaIPaGaey OeI0YaaecaaeaacaWGTbaacaGLcmaacaaMi8UaaGikamaanaaabaGa amyEaaaacaaIOaGaeyyXICTaaGykaiaaiMcacaaIOaGaeyyXICTaaG ykaiab=vIiqnaaBaaaleaacaWGmbWaa0baaeaacaaIYaaabaGaeq4S dCgaaiaaiIcatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaG qbaiab+1risnaaBaaabaGaey4kaScabeaacaaIPaaabeaakiabgsMi JkaadwgadaahaaWcbeqaaiabgkHiTiabeI7aXjaaiIcacqaHepaDca aIPaaaaOGaaGOlaaaa@69C9@

В этом неравенстве перейдем к верхней грани по всем u ˜ 0 () L 2 γ ( + ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadwhaaiaawoWaamaaBa aaleaacaaIWaaabeaakiaaiIcacqGHflY1caaIPaGaeyicI4Saamit amaaDaaaleaacaaIYaaabaGaeq4SdCgaaOGaaGikamrr1ngBPrwtHr hAYaqeguuDJXwAKbstHrhAGq1DVbaceaGae8xhHi1aaSbaaSqaaiab gUcaRaqabaGccaaIPaaaaa@4A3F@  и y ¯ ()=( y 1 (),, y p ()) ( L 2 γ ( + )) p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqdaaqaaiaadMhaaaGaaGikaiabgw SixlaaiMcacaaI9aGaaGikaiaadMhadaWgaaWcbaGaaGymaaqabaGc caaIOaGaeyyXICTaaGykaiaaiYcacqWIMaYscaaISaGaamyEamaaBa aaleaacaWGWbaabeaakiaaiIcacqGHflY1caaIPaGaaGykaiabgIGi olaaiIcacaWGmbWaa0baaSqaaiaaikdaaeaacqaHZoWzaaGccaaIOa Wefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFDeIu daWgaaWcbaGaey4kaScabeaakiaaiMcacaaIPaWaaWbaaSqabeaaca WGWbaaaaaa@5B59@ , для которых

P t s j u ˜ 0 () y s j () L 2 γ ( + ) δ j ,j=1,,p. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWGqbWaaSbaaSqaaiaadshadaWgaaqaaiaadohadaWgaaqaaiaa dQgaaeqaaaqabaaabeaakmaaGaaabaGaamyDaaGaay5adaWaaSbaaS qaaiaaicdaaeqaaOGaaGikaiabgwSixlaaiMcacqGHsislcaWG5bWa aSbaaSqaaiaadohadaWgaaqaaiaadQgaaeqaaaqabaGccaaIOaGaey yXICTaaGykaiab=vIiqnaaBaaaleaacaWGmbWaa0baaeaacaaIYaaa baGaeq4SdCgaaiaaiIcatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0H giuD3BaGqbaiab+1risnaaBaaabaGaey4kaScabeaacaaIPaaabeaa kiabgsMiJkabes7aKnaaBaaaleaacaWGQbaabeaakiaaiYcacaaMf8 UaamOAaiaai2dacaaIXaGaaGilaiablAciljaaiYcacaWGWbGaaGOl aaaa@690E@

Тогда получим e(τ, δ ¯ , m ^ ) e θ(τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGLbGaaGikaiabes8a0jaaiYcada qdaaqaaiabes7aKbaacaaISaWaaecaaeaacaWGTbaacaGLcmaacaaI PaGaeyizImQaamyzamaaCaaaleqabaGaeyOeI0IaeqiUdeNaaGikai abes8a0jaaiMcaaaaaaa@4344@ . Учитывая нижнюю оценку, доказанную ранее, получаем

e θ(τ) E(τ, δ ¯ )e(τ, δ ¯ , m ^ ) e θ(τ) , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGLbWaaWbaaSqabeaacqGHsislcq aH4oqCcaaIOaGaeqiXdqNaaGykaaaakiabgsMiJkaadweacaaIOaGa eqiXdqNaaGilamaanaaabaGaeqiTdqgaaiaaiMcacqGHKjYOcaWGLb GaaGikaiabes8a0jaaiYcadaqdaaqaaiabes7aKbaacaaISaWaaeca aeaacaWGTbaacaGLcmaacaaIPaGaeyizImQaamyzamaaCaaaleqaba GaeyOeI0IaeqiUdeNaaGikaiabes8a0jaaiMcaaaGccaaISaaaaa@54BC@

откуда следует, что E(τ, δ ¯ )= e θ(τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGikaiabes8a0jaaiYcada qdaaqaaiabes7aKbaacaaIPaGaaGypaiaadwgadaahaaWcbeqaaiab gkHiTiabeI7aXjaaiIcacqaHepaDcaaIPaaaaaaa@3FCC@  и что m ^ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiaad2gaaiaawkWaaaaa@3375@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  оптимальный метод.

Пусть τ> t s ϱ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDcaaI+aGaamiDamaaBaaale aacaWGZbWaaSbaaeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgi p5wzaGabciab=f=aXdqabaaabeaaaaa@4281@ . Тогда λ ^ s ϱ =1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiabeU7aSbGaayPadaWaaS baaSqaaiaadohadaWgaaqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbst HrhAG8KBLbaceiGae8x8depabeaaaeqaaOGaaGypaiaaigdaaaa@42FD@ , а остальные множители Лагранжа равны нулю. Задача (15) примет вид

P t s ϱ u ˜ 0 () y s ϱ () L 2 γ ( + ) 2 min. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWGqbWaaSbaaSqaaiaadshadaWgaaqaaiaadohadaWgaaqaamrr 1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfiGae4x8depabe aaaeqaaaqabaGcdaaiaaqaaiaadwhaaiaawoWaamaaBaaaleaacaaI WaaabeaakiaaiIcacqGHflY1caaIPaGaeyOeI0IaamyEamaaBaaale aacaWGZbWaaSbaaeaacqGFXpq8aeqaaaqabaGccaaIOaGaeyyXICTa aGykaiab=vIiqnaaDaaaleaacaWGmbWaa0baaeaacaaIYaaabaGaeq 4SdCgaaiaaiIcatuuDJXwAK1uy0HMmaeXbfv3ySLgzG0uy0HgiuD3B aGGbaiab91risnaaBaaabaGaey4kaScabeaacaaIPaaabaGaaGOmaa aakiabgkziUkGac2gacaGGPbGaaiOBaiaai6caaaa@6E54@

Пусть для заданного множества y ¯ ()=( y 1 (),, y p ()) ( L 2 γ ( + )) p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqdaaqaaiaadMhaaaGaaGikaiabgw SixlaaiMcacaaI9aGaaGikaiaadMhadaWgaaWcbaGaaGymaaqabaGc caaIOaGaeyyXICTaaGykaiaaiYcacqWIMaYscaaISaGaamyEamaaBa aaleaacaWGWbaabeaakiaaiIcacqGHflY1caaIPaGaaGykaiabgIGi olaaiIcacaWGmbWaa0baaSqaaiaaikdaaeaacqaHZoWzaaGccaaIOa Wefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFDeIu daWgaaWcbaGaey4kaScabeaakiaaiMcacaaIPaWaaWbaaSqabeaaca WGWbaaaaaa@5B59@  функции F γ y j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiabeo7aNbqaba GccaWG5bWaaSbaaSqaaiaadQgaaeqaaaaa@3682@ , j=1,,p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbGaaGypaiaaigdacaaISaGaeS OjGSKaaGilaiaadchaaaa@37B5@ , финитны. Тогда решение u ˜ 0 ()= u ˜ 0 (, y ¯ ()) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadwhaaiaawoWaamaaBa aaleaacaaIWaaabeaakiaaiIcacqGHflY1caaIPaGaaGypamaaGaaa baGaamyDaaGaay5adaWaaSbaaSqaaiaaicdaaeqaaOGaaGikaiabgw SixlaaiYcadaqdaaqaaiaadMhaaaGaaGikaiabgwSixlaaiMcacaaI Paaaaa@44B2@  этой задачи существует и F γ u ˜ 0 (ξ)= e |ξ | 2 t s ϱ F γ y s ϱ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiabeo7aNbqaba GcdaaiaaqaaiaadwhaaiaawoWaamaaBaaaleaacaaIWaaabeaakiaa iIcacqaH+oaEcaaIPaGaaGypaiaadwgadaahaaWcbeqaaiaaiYhacq aH+oaEcaaI8bWaaWbaaeqabaGaaGOmaaaacaWG0bWaaSbaaeaacaWG ZbWaaSbaaeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaG abciab=f=aXdqabaaabeaaaaGccaWGgbWaaSbaaSqaaiabeo7aNbqa baGccaWG5bWaaSbaaSqaaiaadohadaWgaaqaaiab=f=aXdqabaaabe aaaaa@564F@ . Неравенство (32) в этом случае доказывается по-прежнему. Теперь определяем метод m ^ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiaad2gaaiaawkWaaaaa@3375@  посредством равенства

m ^ ( y ¯ ())()= P τ t s ϱ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiaad2gaaiaawkWaaiaaiI cadaqdaaqaaiaadMhaaaGaaGikaiabgwSixlaaiMcacaaIPaGaaGik aiabgwSixlaaiMcacaaI9aGaamiuamaaBaaaleaacqaHepaDcqGHsi slcaWG0bWaaSbaaeaacaWGZbWaaSbaaeaatuuDJXwAK1uy0HwmaeHb fv3ySLgzG0uy0Hgip5wzaGabciab=f=aXdqabaaabeaaaeqaaOGaaG Olaaaa@50AB@                                                                                                                      (35)

Тогда

F γ m ^ ( y ¯ (k) ())(ξ)= e |ξ | 2 (τ t s ϱ ) F γ y s ϱ (ξ)= e |ξ | 2 τ F γ u ^ 0 (, y ¯ (k) ()). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiabeo7aNbqaba Gcdaqiaaqaaiaad2gaaiaawkWaaiaaiIcadaqdaaqaaiaadMhaaaWa aWbaaSqabeaacaaIOaGaam4AaiaaiMcaaaGccaaIOaGaeyyXICTaaG ykaiaaiMcacaaIOaGaeqOVdGNaaGykaiaai2dacaWGLbWaaWbaaSqa beaacqGHsislcaaI8bGaeqOVdGNaaGiFamaaCaaabeqaaiaaikdaaa GaaGikaiabes8a0jabgkHiTiaadshadaWgaaqaaiaadohadaWgaaqa amrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceiGae8x8de pabeaaaeqaaiaaiMcaaaGccaWGgbWaaSbaaSqaaiabeo7aNbqabaGc caWG5bWaaSbaaSqaaiaadohadaWgaaqaaiab=f=aXdqabaaabeaaki aaiIcacqaH+oaEcaaIPaGaaGypaiaadwgadaahaaWcbeqaaiabgkHi TiaaiYhacqaH+oaEcaaI8bWaaWbaaeqabaGaaGOmaaaacqaHepaDaa GccaWGgbWaaSbaaSqaaiabeo7aNbqabaGcdaqiaaqaaiaadwhaaiaa wkWaamaaBaaaleaacaaIWaaabeaakiaaiIcacqGHflY1caaISaWaa0 aaaeaacaWG5baaamaaCaaaleqabaGaaGikaiaadUgacaaIPaaaaOGa aGikaiabgwSixlaaiMcacaaIPaGaaGOlaaaa@813E@

Это означает, что

m ^ ( y ¯ (k) ())()= P τ u ^ 0 (, y ¯ (k) ()). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiaad2gaaiaawkWaaiaaiI cadaqdaaqaaiaadMhaaaWaaWbaaSqabeaacaaIOaGaam4AaiaaiMca aaGccaaIOaGaeyyXICTaaGykaiaaiMcacaaIOaGaeyyXICTaaGykai aai2dacaWGqbWaaSbaaSqaaiabes8a0bqabaGcdaqiaaqaaiaadwha aiaawkWaamaaBaaaleaacaaIWaaabeaakiaaiIcacqGHflY1caaISa Waa0aaaeaacaWG5baaamaaCaaaleqabaGaaGikaiaadUgacaaIPaaa aOGaaGikaiabgwSixlaaiMcacaaIPaGaaGOlaaaa@527D@

Дальнейшие рассуждения повторяют рассуждения предыдущего случая.

Основные результаты, изложенные выше в настоящей статье, анонсированы в [16].

×

Об авторах

М. В. Половинкина

Воронежский государственный университет инженерных технологий

Автор, ответственный за переписку.
Email: polovinkina-marina@yandex.ru
Россия, Воронеж

Список литературы

  1. Градштейн И. С., Рыжик И. М. Таблицы интегралов, сумм, рядов и произведений. — М.: ГИФМЛ, 1963.
  2. Житомирский Я. И. Задача Коши для систем линейных уравнений в частных производных с дифференциальными операторами типа Бесселя// Мат. сб. — 1955. — 36 (78), № 2. — С. 299–310.
  3. Катрахов В. В., Ситник С. М. Метод операторов преобразования и краевые задачи для сингулярных эллиптических уравнений// Совр. мат. Фундам. напр. — 2018. — 64, № 2. — С. 211–426.
  4. Киприянов И. А. Сингулярные эллиптические краевые задачи. — М.: Наука, 1997.
  5. Киприянов И. А. Преобразование Фурье—Бесселя и теоремы вложения для весовых классов// Тр. Мат. ин-та им. В. А. Стеклова РАН. — 1967. — 89. — С. 130–213.
  6. Киприянов И. А., Засорин Ю. В. О фундаментальном решении волнового уравнения с многими особенностями// Диффер. уравн. — 1992. — 28, № 3. — С. 452–462.
  7. Киприянов И. А., Куликов А. А. Теорема Пэли—Винера—Шварца для преобразования Фурье— Бесселя// Докл. АН СССР. — 1988. — 298, № 1. — С. 13–17. 8. Левитан Б. М. Разложение в ряды и интегралы Фурье по функциям Бесселя// Усп. мат. наук. — 1951. — 6, № 2. — С. 102–143.
  8. Ляхов Л. Н. Гиперсингулярные интегралы и их приложения к описанию функциональных классов Киприянова и к интегральным уравнениям с потенциальными ядрами. — Липецк: ЛГПУ, 2007.
  9. Магарил-Ильяев Г. Г., Осипенко К. Ю. Оптимальное восстановление решения уравнения теплопроводности по неточным измерениям// Мат. сб. — 2009. — 200, № 5. — С. 37–54.
  10. Магарил-Ильяев Г. Г., Сивкова Е. О. Наилучшее восстановление оператора Лапласа функции по ее неточно заданному спектру// Мат. сб. — 2012. — 203, № 4. — С. 119–130.
  11. Сивкова Е. О. Об оптимальном восстановлении лапласиана функции по ее неточно заданному преобразованию Фурье// Владикавказ. мат. ж. — 2012. — 14, № 4. — С. 63–72.
  12. Ситник С. М., Шишкина Э. Л. Метод операторов преобразования для дифференциальных уравнений с операторами Бесселя. — М.: Физматлит, 2019.
  13. Muravnik A. B. Fourier–Bessel transformation of compactly supported non-negative functions and estimates of solutions of singular differential equations// Funct. Differ. Equations. — 2001. — 8, № 3–4. — P. 353–363.
  14. Muravnik A. B. Functional differential parabolic equations: Integral transformations and qualitative properties of solutions of the Cauchy problem// J. Math. Sci. — 2016. — 216, № 3. — P. 345–496
  15. Polovinkina M. V., Polovinkin I. P. Recovery of the solution of the singular heat equation from measurement data// Bol. Soc. Mat. Mex. — 2023. — 29. — 41.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Половинкина М.В., 2024

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).