Green’s formulas for the Kipriyanov ΔB - operator in the weighted linear form

Cover Page

Cite item

Full Text

Abstract

For the Kipriyanov singular differential operator in the Euclidean n - half-space, the general Green formula and two its particular cases corresponding to special values of the parameter are obtained.

Full Text

1. Введение.

Обычно для Δ B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoardaWgaaWcbaGaamOqaaqaba aaaa@341A@  -оператора Лапласа MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ Бесселя в евклидовом пространстве точек x=( x 1 ,, x n ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGypaiaaiIcacaWG4bWaaS baaSqaaiaaigdaaeqaaOGaaGilaiablAciljaaiYcacaWG4bWaaSba aSqaaiaad6gaaeqaaOGaaGykaaaa@3B8C@

Δ B = i=1 n B γ i , B γ i = 2 x i 2 + γ i x i x i , γ i 0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoardaWgaaWcbaGaamOqaaqaba GccaaI9aWaaabCaeqaleaacaWGPbGaaGypaiaaigdaaeaacaWGUbaa niabggHiLdGccaWGcbWaaSbaaSqaaiabeo7aNnaaBaaabaGaamyAaa qabaaabeaakiaaiYcacaaMf8UaamOqamaaBaaaleaacqaHZoWzdaWg aaqaaiaadMgaaeqaaaqabaGccaaI9aWaaSaaaeaacqGHciITdaahaa WcbeqaaiaaikdaaaaakeaacqGHciITcaWG4bWaa0baaSqaaiaadMga aeaacaaIYaaaaaaakiabgUcaRmaalaaabaGaeq4SdC2aaSbaaSqaai aadMgaaeqaaaGcbaGaamiEamaaBaaaleaacaWGPbaabeaaaaGccaaI GaWaaSaaaeaacqGHciITaeaacqGHciITcaWG4bWaaSbaaSqaaiaadM gaaeqaaaaakiaaiYcacaaMf8Uaeq4SdC2aaSbaaSqaaiaadMgaaeqa aOGaeyyzImRaaGimaiaaiYcaaaa@5F83@

соответствующая весовая линейная форма сопровождается степенным весом i=1 n x i γ i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqeWbqabSqaaiaadMgacaaI9aGaaG ymaaqaaiaad6gaa0Gaey4dIunakiaadIhadaqhaaWcbaGaamyAaaqa aiabeo7aNnaaBaaabaGaamyAaaqabaaaaaaa@3C2E@  (см. книгу [1] и имеющиеся в ней многочисленные ссылки). И. А. Киприянов в начале 1980-х годов на научном семинаре в Воронежском государственном университете поставил задачу об исследовании подобных операторов с отрицательными показателями степенного веса. Оказалось, что оператор Бесселя B γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGcbWaaSbaaSqaaiabgkHiTiabeo 7aNbqabaaaaa@3548@  с отрицательным параметром 1<γ<0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaaIXaGaaGipaiabgkHiTi abeo7aNjaaiYdacaaIWaaaaa@3843@  обладает рядом особенностей, отмеченных в [24]. В частности, при 1<γ<0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIXaGaaGipaiabgkHiTiabeo7aNj aaiYdacaaIWaaaaa@3756@  фундаментальное решение оператора B γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGcbWaaSbaaSqaaiabgkHiTiabeo 7aNbqabaaaaa@3548@  необходимо искать в билинейной форме с весом, уже отличным от x γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaWbaaSqabeaacqGHsislcq aHZoWzaaaaaa@357F@ . Более общие параметры операторов Бесселя приводят к необходимости исследовать операторы Киприянова в весовых линейных формах с весом i=1 n x i ω i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqeWbqabSqaaiaadMgacaaI9aGaaG ymaaqaaiaad6gaa0Gaey4dIunakiaadIhadaqhaaWcbaGaamyAaaqa aiabeM8a3naaBaaabaGaamyAaaqabaaaaaaa@3C54@ , где ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDaaa@338E@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  мультииндекс с произвольными действительными координатами.

Через n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaBaaaleaacaWGUbaabeaaaaa@3D97@  будем обозначать евклидово пространство точек x=( x 1 ,, x n ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGypaiaaiIcacaWG4bWaaS baaSqaaiaaigdaaeqaaOGaaGilaiablAciljaaiYcacaWG4bWaaSba aSqaaiaad6gaaeqaaOGaaGykaaaa@3B8C@ , а через n + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaDaaaleaacaWGUbaabaGaey4kaSca aaaa@3E7A@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@   n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B4@  -полупространство, определенное неравенствами x i >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaadMgaaeqaaO GaaGOpaiaaicdaaaa@3564@ , i= 1,n ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypamaanaaabaGaaGymai aaiYcacaWGUbaaaaaa@35EB@ . Пусть γ=( γ 1 ,, γ n ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcqaHZoWzcaaI9aGaeyOeI0 IaaGikaiabeo7aNnaaBaaaleaacaaIXaaabeaakiaaiYcacqWIMaYs caaISaGaeq4SdC2aaSbaaSqaaiaad6gaaeqaaOGaaGykaaaa@3F64@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  мультииндекс с отрицательными дробными параметрами 1< γ i <0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaaIXaGaaGipaiabgkHiTi abeo7aNnaaBaaaleaacaWGPbaabeaakiaaiYdacaaIWaaaaa@3967@ . Следуя [4], будем называть Δ B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoardaWgaaWcbaGaamOqaaqaba aaaa@341A@  -оператором Киприянова сингулярный дифференциальный оператор

Δ B γ = i=1 n B γ i , B γ i = 2 x i 2 γ i x i x i ,x n + ={x: x i >0}, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoardaWgaaWcbaGaamOqamaaBa aabaGaeyOeI0Iaeq4SdCgabeaaaeqaaOGaaGypamaaqahabeWcbaGa amyAaiaai2dacaaIXaaabaGaamOBaaqdcqGHris5aOGaamOqamaaBa aaleaacqGHsislcqaHZoWzdaWgaaqaaiaadMgaaeqaaaqabaGccaaI SaGaaGzbVlaadkeadaWgaaWcbaGaeyOeI0Iaeq4SdC2aaSbaaeaaca WGPbaabeaaaeqaaOGaaGypamaalaaabaGaeyOaIy7aaWbaaSqabeaa caaIYaaaaaGcbaGaeyOaIyRaamiEamaaDaaaleaacaWGPbaabaGaaG OmaaaaaaGccqGHsisldaWcaaqaaiabeo7aNnaaBaaaleaacaWGPbaa beaaaOqaaiaadIhadaWgaaWcbaGaamyAaaqabaaaaOGaaGiiamaala aabaGaeyOaIylabaGaeyOaIyRaamiEamaaBaaaleaacaWGPbaabeaa aaGccaaISaGaaGzbVlaadIhacqGHiiIZtuuDJXwAK1uy0HMmaeHbfv 3ySLgzG0uy0HgiuD3BaGabaiab=1risnaaDaaaleaacaWGUbaabaGa ey4kaScaaOGaaGypaiaaiUhacaWG4bGaaGOoaiaadIhadaWgaaWcba GaamyAaaqabaGccaaI+aGaaGimaiaai2hacaaISaaaaa@764D@                                                             (1)

отрицательный параметр которого удовлетворяет неравенству 0>γ>1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGOpaiabgkHiTiabeo7aNj aai6dacqGHsislcaaIXaaaaa@3847@ . Оператор (1), как и любой оператор Бесселя, целесообразно применять к функциям, четным по каждой координате своего аргумента, так как в этом случае

lim x i 0 1 x i u x i = 2 u(x) x i 2 | x i =0 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaGfqbqabSqaaiaadIhadaWgaaqaai aadMgaaeqaaiabgkziUkaaicdaaeqakeaaciGGSbGaaiyAaiaac2ga aaWaaSaaaeaacaaIXaaabaGaamiEamaaBaaaleaacaWGPbaabeaaaa GccaaMi8+aaSaaaeaacqGHciITcaWG1baabaGaeyOaIyRaamiEamaa BaaaleaacaWGPbaabeaaaaGccaaI9aWaaSaaaeaacqGHciITdaahaa WcbeqaaiaaikdaaaGccaWG1bGaaGikaiaadIhacaaIPaaabaGaeyOa IyRaamiEamaaDaaaleaacaWGPbaabaGaaGOmaaaaaaGccaaI8bWaaS baaSqaaiaadIhadaWgaaqaaiaadMgaaeqaaiaai2dacaaIWaaabeaa kiaai6caaaa@548D@

Пусть Ω + n + ={x=( x 1 ,, x n ): x i >0} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaahaaWcbeqaaiabgUcaRa aakiabgAOinprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbac eaGae8xhHi1aa0baaSqaaiaad6gaaeaacqGHRaWkaaGccaaI9aGaaG 4EaiaadIhacaaI9aGaaGikaiaadIhadaWgaaWcbaGaaGymaaqabaGc caaISaGaeSOjGSKaaGilaiaadIhadaWgaaWcbaGaamOBaaqabaGcca aIPaGaaGOoaiaadIhadaWgaaWcbaGaamyAaaqabaGccaaI+aGaaGim aiaai2haaaa@5431@ . Учитывая особенность операторов Бесселя, далее полагаем, что область Ω + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaahaaWcbeqaaiabgUcaRa aaaaa@345E@  прилегает к сингулярным координатным гиперплоскостям x i =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaadMgaaeqaaO GaaGypaiaaicdaaaa@3563@ , i= 1,n ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypamaanaaabaGaaGymai aaiYcacaWGUbaaaaaa@35EB@ , оператора Δ B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoardaWgaaWcbaGaamOqaaqaba aaaa@341A@ . Тогда граница области Ω + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaahaaWcbeqaaiabgUcaRa aaaaa@345E@  состоит из двух частей Γ + n + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWrdaahaaWcbeqaaiabgUcaRa aakiabgIGioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbac eaGae8xhHi1aa0baaSqaaiaad6gaaeaacqGHRaWkaaaaaa@427F@  и Γ 0 n + ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWrdaahaaWcbeqaaiaaicdaaa GccqGHiiIZdaqdaaqaamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhA Gq1DVbaceaGae8xhHi1aa0baaSqaaiaad6gaaeaacqGHRaWkaaaaaa aa@4268@ . Область Ω= Ω + Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvcaaI9aGaeuyQdC1aaWbaaS qabeaacqGHRaWkaaGccqGHQicYcqqHPoWvdaahaaWcbeqaaiabgkHi Taaaaaa@3B05@  получена объединением Ω + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaahaaWcbeqaaiabgUcaRa aaaaa@345E@  со своими зеркальными отражениями от координатных гиперплоскостей x i =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaadMgaaeqaaO GaaGypaiaaicdaaaa@3563@ . Граница Γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWraaa@3329@  области Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvaaa@334F@  предполагается гладкой в окрестности Γ Γ 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWrcqGHPiYXcqqHtoWrdaahaa Wcbeqaaiaaicdaaaaaaa@3716@  (условие гладкости границы И. А. Киприянова; см. [1, § 3.1]). Это условие также предполагает, что рассматриваемые функции в области Ω + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaahaaWcbeqaaiabgUcaRa aaaaa@345E@  должны иметь гладкое четное продолжение через границу Γ 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWrdaahaaWcbeqaaiaaicdaaa aaaa@3410@  по отношению к каждой координате x i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaadMgaaeqaaa aa@33D8@ . В связи с этим вводим следующее определение.

Определение 1. Функцию f=f(x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGypaiaadAgacaaIOaGaam iEaiaaiMcaaaa@36C0@ , определенную в n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B4@  -полупространстве n + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaDaaaleaacaWGUbaabaGaey4kaSca aaaa@3E7A@ , будем называть n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B4@  -четной (по Киприянову), если она допускает четное продолжение по каждой координате x i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaadMgaaeqaaa aa@33D8@  своего аргумента с сохранением класса функций своей принадлежности.

В частности, если u C k ( x i [0,)) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaeyicI4Saam4qamaaCaaale qabaGaam4AaaaakiaaiIcacaWG4bWaaSbaaSqaaiaadMgaaeqaaOGa eyicI4SaaG4waiaaicdacaaISaGaeyOhIuQaaGykaiaaiMcaaaa@3FB1@ , то u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1baaaa@32BB@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@   i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbaaaa@32AF@  -четная функция, если все её производные по x i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaadMgaaeqaaa aa@33D8@  нечетного порядка lk MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGSbGaeyizImQaam4Aaaaa@3557@  равны нулю при x i =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaadMgaaeqaaO GaaGypaiaaicdaaaa@3563@ . Такое определение четности введено И. А. Киприяновым (см. [1, с. 21]). В связи с этим функции, удовлетворяющие определению 1, принято называть четными по Kиприянову.

Из определения 1 вытекает, что каждую из областей Ω + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaahaaWcbeqaaiabgUcaRa aaaaa@345E@  и Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaahaaWcbeqaaiabgkHiTa aaaaa@3469@ , как правило, удобно считать частично замкнутыми, т.е. считать границу Γ 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWrdaahaaWcbeqaaiaaicdaaa aaaa@3410@  границей симметрии и, поэтому полагаем Ω + = Ω + Γ 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaahaaWcbeqaaiabgUcaRa aakiaai2dacqqHPoWvdaahaaWcbeqaaiabgUcaRaaakiabgQIiilab fo5ahnaaCaaaleqabaGaaGimaaaaaaa@3BC5@  и Ω = Ω Γ 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaahaaWcbeqaaiabgkHiTa aakiaai2dacqqHPoWvdaahaaWcbeqaaiabgkHiTaaakiabgQIiilab fo5ahnaaCaaaleqabaGaaGimaaaaaaa@3BDB@ . Точки, принадлежащие Ω + = Ω + Γ 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaahaaWcbeqaaiabgUcaRa aakiaai2dacqqHPoWvdaahaaWcbeqaaiabgUcaRaaakiabgQIiilab fo5ahnaaCaaaleqabaGaaGimaaaaaaa@3BC5@  или Ω = Ω Γ 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaahaaWcbeqaaiabgkHiTa aakiaai2dacqqHPoWvdaahaaWcbeqaaiabgkHiTaaakiabgQIiilab fo5ahnaaCaaaleqabaGaaGimaaaaaaa@3BDB@ , будем называть s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbaaaa@32B9@  -внутренними. Аналогично, подобласть Ω * + = Ω * + Γ * 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaqhaaWcbaGaaGOkaaqaai abgUcaRaaakiaai2dacqqHPoWvdaqhaaWcbaGaaGOkaaqaaiabgUca RaaakiabgQIiilabfo5ahnaaDaaaleaacaaIQaaabaGaaGimaaaaaa a@3DE1@  области Ω + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaahaaWcbeqaaiabgUcaRa aaaaa@345E@  с возможно общей границей Γ * 0 Γ 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWrdaqhaaWcbaGaaGOkaaqaai aaicdaaaGccqGHckcZcqqHtoWrdaahaaWcbeqaaiaaicdaaaaaaa@3919@  будем называть s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbaaaa@32B9@  -подобластью области Ω + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaahaaWcbeqaaiabgUcaRa aaaaa@345E@ . Это же касается и соответствующей подобласти области Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaahaaWcbeqaaiabgkHiTa aaaaa@3469@ .

2. Оператор ΔB в весовой линейной форме

Пусть u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1baaaa@32BB@  и v MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2baaaa@32BC@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@   n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B4@  -четные функции, принадлежащие классу функций C 2 ( Ω + ) C 1 ( Ω + ¯ ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIYaaaaO GaaGikaiabfM6axnaaCaaaleqabaGaey4kaScaaOGaaGykaiabgMIi hlaadoeadaahaaWcbeqaaiaaigdaaaGccaaIOaWaa0aaaeaacqqHPo WvdaahaaWcbeqaaiabgUcaRaaaaaGccaaIPaaaaa@3EFD@ .

Через ω=(ω,, ω n ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDcaaI9aGaaGikaiabeM8a3j aaiYcacqWIMaYscaaISaGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaOGa aGykaaaa@3D0B@  обозначим n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B4@  -мультииндекc, состоящий из произвольных действительных чисел. Введем весовую билинейную форму, в рамках которой сингулярный дифференциальный Δ B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoardaWgaaWcbaGaamOqaaqaba aaaa@341A@  -оператор Киприянова может не совпадать со своим сопряжением, т.е. не является самосопряженным по Лангранжу (эрмитовым). Рассмотрим весовую билинейную форму следующего вида:

(u,v) ω = Ω n + u(x)v(x) x ω dx, x ω = i=1 n x i ω i . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamyDaiaaiYcacaWG2bGaaG ykamaaBaaaleaacqaHjpWDaeqaaOGaaGypamaapefabeWcbaGaeuyQ dC1aa0baaeaacaWGUbaabaGaey4kaScaaaqab0Gaey4kIipakiaadw hacaaIOaGaamiEaiaaiMcacaaMi8UaamODaiaaiIcacaWG4bGaaGyk aiaayIW7caWG4bWaaWbaaSqabeaacqaHjpWDaaGccaaMi8Uaamizai aadIhacaaISaGaaGzbVlaadIhadaahaaWcbeqaaiabeM8a3baakiaa i2dadaqeWbqabSqaaiaadMgacaaI9aGaaGymaaqaaiaad6gaa0Gaey 4dIunakiaadIhadaqhaaWcbaGaamyAaaqaaiabeM8a3naaBaaabaGa amyAaaqabaaaaOGaaGOlaaaa@6029@                                                                                       (2)

Дополнительно введем класс функций, соответствующим образом убывающих на границе Γ 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWrdaWgaaWcbaGaaGimaaqaba aaaa@340F@ . Именно, обозначим через

M ev γ = M ev γ ( Ω + )= C ev 2 ( Ω + ) C 1 ( Ω + ¯ ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=ntinnaaDaaaleaacaWGLbGaamODaaqaaiab eo7aNbaakiaai2dacqWFZestdaqhaaWcbaGaamyzaiaadAhaaeaacq aHZoWzaaGccaaIOaGaeuyQdC1aaWbaaSqabeaacqGHRaWkaaGccaaI PaGaaGypaiaadoeadaqhaaWcbaGaamyzaiaadAhaaeaacaaIYaaaaO GaaGikaiabfM6axnaaCaaaleqabaGaey4kaScaaOGaaGykaiabgMIi hlaadoeadaahaaWcbeqaaiaaigdaaaGccaaIOaWaa0aaaeaacqqHPo WvdaahaaWcbeqaaiabgUcaRaaaaaGccaaIPaaaaa@59D7@

и положим

φ M ev,ω γ = M ev,ω γ ( Ω + )= C ev,ω 2 ( Ω + ) C 1 ( Ω + ¯ ),если  x i ω i φ(x)=O( x i ), x i +0,i= 1,n ¯ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcqGHiiIZtuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGabaiab=ntinnaaDaaaleaacaWG LbGaamODaiaaiYcacqaHjpWDaeaacqaHZoWzaaGccaaI9aGae83mH0 0aa0baaSqaaiaadwgacaWG2bGaaGilaiabeM8a3bqaaiabeo7aNbaa kiaaiIcacqqHPoWvdaahaaWcbeqaaiabgUcaRaaakiaaiMcacaaI9a Gaam4qamaaDaaaleaacaWGLbGaamODaiaaiYcacqaHjpWDaeaacaaI YaaaaOGaaGikaiabfM6axnaaCaaaleqabaGaey4kaScaaOGaaGykai abgMIihlaadoeadaahaaWcbeqaaiaaigdaaaGccaaIOaWaa0aaaeaa cqqHPoWvdaahaaWcbeqaaiabgUcaRaaaaaGccaaIPaGaaGilaiaayw W7caqG1qGaaeyqeiaabUdbcaqG4qGaaeiiaiaadIhadaqhaaWcbaGa amyAaaqaaiabeM8a3naaBaaabaGaamyAaaqabaaaaOGaeqOXdOMaaG ikaiaadIhacaaIPaGaaGypaiaad+eacaaIOaGaamiEamaaBaaaleaa caWGPbaabeaakiaaiMcacaaISaGaaGjbVlaadIhadaWgaaWcbaGaam yAaaqabaGccqGHsgIRcqGHRaWkcaaIWaGaaGilaiaaysW7caWGPbGa aGypamaanaaabaGaaGymaiaaiYcacaWGUbaaaiaai6caaaa@87DD@                  (3)

Введем обозначение

i=1 n B γ i +2 ω i + ( γ i + ω i )( ω i 1) x i 2 = Δ B γ+2ω + (γ+ω)(γ+ ω 0 ) x 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaadMgacaaI9aGaaG ymaaqaaiaad6gaa0GaeyyeIuoakmaadmaabaGaamOqamaaBaaaleaa cqaHZoWzdaWgaaqaaiaadMgaaeqaaiabgUcaRiaaikdacqaHjpWDda WgaaqaaiaadMgaaeqaaaqabaGccqGHRaWkdaWcaaqaaiaaiIcacqaH ZoWzdaWgaaWcbaGaamyAaaqabaGccqGHRaWkcqaHjpWDdaWgaaWcba GaamyAaaqabaGccaaIPaGaaGikaiabeM8a3naaBaaaleaacaWGPbaa beaakiabgkHiTiaaigdacaaIPaaabaGaamiEamaaDaaaleaacaWGPb aabaGaaGOmaaaaaaaakiaawUfacaGLDbaacaaI9aGaeuiLdq0aaSba aSqaaiaadkeadaWgaaqaaiabeo7aNjabgUcaRiaaikdacqaHjpWDae qaaaqabaGccqGHRaWkdaWcaaqaaiaaiIcacqaHZoWzcqGHRaWkcqaH jpWDcaaIPaGaaGikaiabeo7aNjabgUcaRiabeM8a3naaBaaaleaaca aIWaaabeaakiaaiMcaaeaacaWG4bWaaWbaaSqabeaacaaIYaaaaaaa kiaaiYcaaaa@6BBC@

где ω 0 =(1,,1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDdaWgaaWcbaGaaGimaaqaba GccaaI9aGaaGikaiaaigdacaaISaGaeSOjGSKaaGilaiaaigdacaaI Paaaaa@3AAE@ .

Теорема 1 (общая K γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaaSbaaSqaaiabeo7aNbqaba aaaa@3464@  -формула Грина). Пусть весовая линейная форма определена равенством (2) и пусть γ i (0,1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHZoWzdaWgaaWcbaGaamyAaaqaba GccqGHiiIZcaaIOaGaaGimaiaaiYcacaaIXaGaaGykaaaa@39A0@   ω i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDdaWgaaWcbaGaamyAaaqaba aaaa@34A8@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa8hfGaaa@3A97@  произвольные действительные числа, i= 1,n ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypamaanaaabaGaaGymai aaiYcacaWGUbaaaaaa@35EB@ . Тогда для всех функций u(x) M ev γ ( Ω + ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaIPaGaey icI48efv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiqaacqWF ZestdaqhaaWcbaGaamyzaiaadAhaaeaacqaHZoWzaaGccaaIOaGaeu yQdC1aaWbaaSqabeaacqGHRaWkaaGccaaIPaaaaa@491F@  и v(x) M ev,ω γ ( Ω + ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaaGikaiaadIhacaaIPaGaey icI48efv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiqaacqWF ZestdaqhaaWcbaGaamyzaiaadAhacaaISaGaeqyYdChabaGaeq4SdC gaaOGaaGikaiabfM6axnaaCaaaleqabaGaey4kaScaaOGaaGykaaaa @4BA3@  справедливо равенство

( Δ B γ u,v) ω u, Δ B γ+2ω + (γ+ω)(ω1) x 2 v ω = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaeuiLdq0aaSbaaSqaaiaadk eadaWgaaqaaiabgkHiTiabeo7aNbqabaaabeaakiaadwhacaaISaGa amODaiaaiMcadaWgaaWcbaGaeqyYdChabeaakiabgkHiTmaabmaaba GaamyDaiaaiYcadaWadaqaaiabfs5aenaaBaaaleaacaWGcbWaaSba aeaacqaHZoWzcqGHRaWkcaaIYaGaeqyYdChabeaaaeqaaOGaey4kaS YaaSaaaeaacaaIOaGaeq4SdCMaey4kaSIaeqyYdCNaaGykaiaaiIca cqaHjpWDcqGHsislcaaIXaGaaGykaaqaaiaadIhadaahaaWcbeqaai aaikdaaaaaaOGaaGjcVdGaay5waiaaw2faaiaadAhaaiaawIcacaGL PaaadaWgaaWcbaGaeqyYdChabeaakiaai2daaaa@5D67@

= Γ + u(x) ν ¯ v(x)u(x) v(x) ν ¯ i=1 n u(x)v(x) ω i + γ i x i x ω dΓ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaa8quaeqaleaacqqHtoWrda ahaaqabeaacqGHRaWkaaaabeqdcqGHRiI8aOWaaeWaaeaadaWcaaqa aiabgkGi2kaadwhacaaIOaGaamiEaiaaiMcaaeaacqGHciITdaqdaa qaaiabe27aUbaaaaGaamODaiaaiIcacaWG4bGaaGykaiabgkHiTiaa dwhacaaIOaGaamiEaiaaiMcadaWcaaqaaiabgkGi2kaadAhacaaIOa GaamiEaiaaiMcaaeaacqGHciITdaqdaaqaaiabe27aUbaaaaGaeyOe I0YaaabCaeqaleaacaWGPbGaaGypaiaaigdaaeaacaWGUbaaniabgg HiLdGccaWG1bGaaGikaiaadIhacaaIPaGaamODaiaaiIcacaWG4bGa aGykamaalaaabaWaaeWaaeaacqaHjpWDdaWgaaWcbaGaamyAaaqaba GccqGHRaWkcqaHZoWzdaWgaaWcbaGaamyAaaqabaaakiaawIcacaGL PaaaaeaacaWG4bWaaSbaaSqaaiaadMgaaeqaaaaaaOGaayjkaiaawM caaiaadIhadaahaaWcbeqaaiabeM8a3baakiaayIW7caWGKbGaeu4K dCeaaa@6F0C@                                                              (4)

где ν ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqdaaqaaiabe27aUbaaaaa@338A@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  направление внешней нормали к части границы Γ + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWrdaahaaWcbeqaaiabgUcaRa aaaaa@3438@ .

Доказательство. Сингулярные операторы Бесселя рассмотрим в дивергентной форме:

Δ B γ = i=1 n B γ i = i=1 n x i γ i x i x i γ i x i . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoardaWgaaWcbaGaamOqamaaBa aabaGaeyOeI0Iaeq4SdCgabeaaaeqaaOGaaGypamaaqahabeWcbaGa amyAaiaai2dacaaIXaaabaGaamOBaaqdcqGHris5aOGaamOqamaaBa aaleaacqGHsislcqaHZoWzdaWgaaqaaiaadMgaaeqaaaqabaGccaaI 9aWaaabCaeqaleaacaWGPbGaaGypaiaaigdaaeaacaWGUbaaniabgg HiLdGccaWG4bWaa0baaSqaaiaadMgaaeaacqaHZoWzdaWgaaqaaiaa dMgaaeqaaaaakmaalaaabaGaeyOaIylabaGaeyOaIyRaamiEamaaBa aaleaacaWGPbaabeaaaaGccaWG4bWaa0baaSqaaiaadMgaaeaacqGH sislcqaHZoWzdaWgaaqaaiaadMgaaeqaaaaakmaalaaabaGaeyOaIy labaGaeyOaIyRaamiEamaaBaaaleaacaWGPbaabeaaaaGccaaIUaaa aa@5DB6@

Возьмем произвольную область Ω * + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaqhaaWcbaGaaGOkaaqaai abgUcaRaaaaaa@3512@  с кусочно гладкой границей, строго s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbaaaa@32B9@  -внутреннюю в области Ω + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaahaaWcbeqaaiabgUcaRa aaaaa@345E@ . В этом случае обе функции u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1baaaa@32BB@  и v MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2baaaa@32BC@  принадлежат C ev 2 ( Ω * + ¯ ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaa0baaSqaaiaadwgacaWG2b aabaGaaGOmaaaakiaaiIcadaqdaaqaaiabfM6axnaaDaaaleaacaaI QaaabaGaey4kaScaaaaakiaaiMcaaaa@3A32@ . Исходное выражение имеет вид

( Δ B γ u,v) ω = Ω * + i=1 n x i γ i x i x i γ i x i u(x) v(x) x ω dx= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaeuiLdq0aaSbaaSqaaiaadk eadaWgaaqaaiabgkHiTiabeo7aNbqabaaabeaakiaadwhacaaISaGa amODaiaaiMcadaWgaaWcbaGaeqyYdChabeaakiaai2dadaWdrbqabS qaaiabfM6axnaaDaaabaGaaGOkaaqaaiabgUcaRaaaaeqaniabgUIi YdGcdaqadaqaamaaqahabeWcbaGaamyAaiaai2dacaaIXaaabaGaam OBaaqdcqGHris5aOGaamiEamaaDaaaleaacaWGPbaabaGaeq4SdC2a aSbaaeaacaWGPbaabeaaaaGcdaWcaaqaaiabgkGi2cqaaiabgkGi2k aadIhadaWgaaWcbaGaamyAaaqabaaaaOGaamiEamaaDaaaleaacaWG PbaabaGaeyOeI0Iaeq4SdC2aaSbaaeaacaWGPbaabeaaaaGcdaWcaa qaaiabgkGi2cqaaiabgkGi2kaadIhadaWgaaWcbaGaamyAaaqabaaa aOGaaGjcVlaadwhacaaIOaGaamiEaiaaiMcaaiaawIcacaGLPaaaca WG2bGaaGikaiaadIhacaaIPaGaamiEamaaCaaaleqabaGaeqyYdCha aOGaaGjcVlaadsgacaWG4bGaaGypaaaa@6EA7@

= Ω * + i=1 n x i x i γ i u(x) x i v(x) x i ω i + γ i j=1, ji n x j ω j dx. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaa8quaeqaleaacqqHPoWvda qhaaqaaiaaiQcaaeaacqGHRaWkaaaabeqdcqGHRiI8aOWaaabCaeqa leaacaWGPbGaaGypaiaaigdaaeaacaWGUbaaniabggHiLdGcdaWcaa qaaiabgkGi2cqaaiabgkGi2kaadIhadaWgaaWcbaGaamyAaaqabaaa aOWaaeWaaeaacaWG4bWaa0baaSqaaiaadMgaaeaacqGHsislcqaHZo WzdaWgaaqaaiaadMgaaeqaaaaakmaalaaabaGaeyOaIyRaamyDaiaa iIcacaWG4bGaaGykaaqaaiabgkGi2kaadIhadaWgaaWcbaGaamyAaa qabaaaaaGccaGLOaGaayzkaaGaamODaiaaiIcacaWG4bGaaGykaiaa dIhadaqhaaWcbaGaamyAaaqaaiabeM8a3naaBaaabaGaamyAaaqaba Gaey4kaSIaeq4SdC2aaSbaaeaacaWGPbaabeaaaaGcdaqeWbqabSqa aqaaceqaaiaadQgacaaI9aGaaGymaiaaiYcaaeaacaWGQbGaeyiyIK RaamyAaaaaaeaacaWGUbaaniabg+GivdGccaWG4bWaa0baaSqaaiaa dQgaaeaacqaHjpWDdaWgaaqaaiaadQgaaeqaaaaakiaayIW7caWGKb GaamiEaiaai6caaaa@719C@

Интегрируя по частям, получим

( Δ B γ u,v) ω = Γ * + Γ * 0 i=1 n u(x) ν ¯ v(x) x i ω i j=1, ji n x j ω j dΓ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaeuiLdq0aaSbaaSqaaiaadk eadaWgaaqaaiabgkHiTiabeo7aNbqabaaabeaakiaadwhacaaISaGa amODaiaaiMcadaWgaaWcbaGaeqyYdChabeaakiaai2dadaWdrbqabS qaaiabfo5ahnaaDaaabaGaaGOkaaqaaiabgUcaRaaacqGHQicYcqqH toWrdaqhaaqaaiaaiQcaaeaacaaIWaaaaaqab0Gaey4kIipakmaaqa habeWcbaGaamyAaiaai2dacaaIXaaabaGaamOBaaqdcqGHris5aOWa aSaaaeaacqGHciITcaWG1bGaaGikaiaadIhacaaIPaaabaGaeyOaIy 7aa0aaaeaacqaH9oGBaaaaaiaadAhacaaIOaGaamiEaiaaiMcacaWG 4bWaa0baaSqaaiaadMgaaeaacqaHjpWDdaWgaaqaaiaadMgaaeqaaa aakmaarahabeWcbaabaiqabaGaamOAaiaai2dacaaIXaGaaGilaaqa aiaadQgacqGHGjsUcaWGPbaaaaqaaiaad6gaa0Gaey4dIunakiaadI hadaqhaaWcbaGaamOAaaqaaiabeM8a3naaBaaabaGaamOAaaqabaaa aOGaaGjcVlaadsgacqqHtoWrcqGHsislaaa@719E@

Ω * + i=1 n u(x) x i v(x) x i x i ω i +v(x) ω i + γ i x i ω i 1 j=1, ji n x j ω j dx, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaWdrbqabSqaaiabfM6axn aaDaaabaGaaGOkaaqaaiabgUcaRaaaaeqaniabgUIiYdGcdaaeWbqa bSqaaiaadMgacaaI9aGaaGymaaqaaiaad6gaa0GaeyyeIuoakmaala aabaGaeyOaIyRaaGjcVlaadwhacaaIOaGaamiEaiaaiMcaaeaacqGH ciITcaWG4bWaaSbaaSqaaiaadMgaaeqaaaaakmaabmaabaWaaSaaae aacqGHciITcaaMi8UaamODaiaaiIcacaWG4bGaaGykaaqaaiabgkGi 2kaadIhadaWgaaWcbaGaamyAaaqabaaaaOGaamiEamaaDaaaleaaca WGPbaabaGaeqyYdC3aaSbaaeaacaWGPbaabeaaaaGccqGHRaWkcaWG 2bGaaGikaiaadIhacaaIPaWaaeWaaeaacqaHjpWDdaWgaaWcbaGaam yAaaqabaGccqGHRaWkcqaHZoWzdaWgaaWcbaGaamyAaaqabaaakiaa wIcacaGLPaaacaWG4bWaa0baaSqaaiaadMgaaeaacqaHjpWDdaWgaa qaaiaadMgaaeqaaiabgkHiTiaaigdaaaaakiaawIcacaGLPaaadaqe WbqabSqaaqaaceqaaiaadQgacaaI9aGaaGymaiaaiYcaaeaacaWGQb GaeyiyIKRaamyAaaaaaeaacaWGUbaaniabg+GivdGccaWG4bWaa0ba aSqaaiaadQgaaeaacqaHjpWDdaWgaaqaaiaadQgaaeqaaaaakiaayI W7caWGKbGaamiEaiaaiYcaaaa@7E91@

где ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBaaa@3379@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  направление внешней нормали к границе Γ * + Γ * 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWrdaqhaaWcbaGaaGOkaaqaai abgUcaRaaakiabgQIiilabfo5ahnaaDaaaleaacaaIQaaabaGaaGim aaaaaaa@3999@ . Применяя формулу интегрирования по частям второй раз, имеем

Ω * + i=1 n B γ i u(x) v(x) x ω dx= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdrbqabSqaaiabfM6axnaaDaaaba GaaGOkaaqaaiabgUcaRaaaaeqaniabgUIiYdGcdaqadaqaamaaqaha beWcbaGaamyAaiaai2dacaaIXaaabaGaamOBaaqdcqGHris5aOGaam OqamaaBaaaleaacqGHsislcqaHZoWzdaWgaaqaaiaadMgaaeqaaaqa baGccaWG1bGaaGikaiaadIhacaaIPaaacaGLOaGaayzkaaGaamODai aaiIcacaWG4bGaaGykaiaadIhadaahaaWcbeqaaiabeM8a3baakiaa yIW7caWGKbGaamiEaiaai2daaaa@512D@

= Γ * + Γ * 0 u(x) ν ¯ v(x)u(x) v(x) ν ¯ i=1 n u(x)v(x) ω i + γ i x i x ω dΓ+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaa8quaeqaleaacqqHtoWrda qhaaqaaiaaiQcaaeaacqGHRaWkaaGaeyOkIGSaeu4KdC0aa0baaeaa caaIQaaabaGaaGimaaaaaeqaniabgUIiYdGcdaqadaqaamaalaaaba GaeyOaIyRaamyDaiaaiIcacaWG4bGaaGykaaqaaiabgkGi2oaanaaa baGaeqyVd4gaaaaacaWG2bGaaGikaiaadIhacaaIPaGaeyOeI0Iaam yDaiaaiIcacaWG4bGaaGykamaalaaabaGaeyOaIyRaamODaiaaiIca caWG4bGaaGykaaqaaiabgkGi2oaanaaabaGaeqyVd4gaaaaacqGHsi sldaaeWbqabSqaaiaadMgacaaI9aGaaGymaaqaaiaad6gaa0Gaeyye IuoakiaadwhacaaIOaGaamiEaiaaiMcacaWG2bGaaGikaiaadIhaca aIPaWaaSaaaeaadaqadaqaaiabeM8a3naaBaaaleaacaWGPbaabeaa kiabgUcaRiabeo7aNnaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawM caaaqaaiaadIhadaWgaaWcbaGaamyAaaqabaaaaaGccaGLOaGaayzk aaGaamiEamaaCaaaleqabaGaeqyYdChaaOGaaGjcVlaadsgacqqHto WrcqGHRaWkaaa@753A@

+ Ω * + u(x) i=1 n B γ i +2 ω i + ( γ i + ω i )( ω i 1) x i 2 v(x) x ω dx. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWdrbqabSqaaiabfM6axn aaDaaabaGaaGOkaaqaaiabgUcaRaaaaeqaniabgUIiYdGccaWG1bGa aGikaiaadIhacaaIPaWaaeWaaeaadaaeWbqabSqaaiaadMgacaaI9a GaaGymaaqaaiaad6gaa0GaeyyeIuoakmaadmaabaGaamOqamaaBaaa leaacqaHZoWzdaWgaaqaaiaadMgaaeqaaiabgUcaRiaaikdacqaHjp WDdaWgaaqaaiaadMgaaeqaaaqabaGccqGHRaWkdaWcaaqaaiaaiIca cqaHZoWzdaWgaaWcbaGaamyAaaqabaGccqGHRaWkcqaHjpWDdaWgaa WcbaGaamyAaaqabaGccaaIPaGaaGikaiabeM8a3naaBaaaleaacaWG PbaabeaakiabgkHiTiaaigdacaaIPaaabaGaamiEamaaDaaaleaaca WGPbaabaGaaGOmaaaaaaaakiaawUfacaGLDbaacaWG2bGaaGikaiaa dIhacaaIPaaacaGLOaGaayzkaaGaamiEamaaCaaaleqabaGaeqyYdC haaOGaaGjcVlaadsgacaWG4bGaaGOlaaaa@6950@                                                                           (5)

Учтем, что в (5) участок границы Γ 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWrdaahaaWcbeqaaiaaicdaaa aaaa@3410@  состоит из соответствующих кусков координатных плоскостей x i =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaadMgaaeqaaO GaaGypaiaaicdaaaa@3563@ . Поэтому на части границы Γ * 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWrdaqhaaWcbaGaaGOkaaqaai aaicdaaaaaaa@34C4@  направление нормали ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBaaa@3379@  совпадает с соответствующим направлением оси O x i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaamiEamaaBaaaleaacaWGPb aabeaaaaa@34AC@ . Интеграл по Γ 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWrdaahaaWcbeqaaiaaicdaaa aaaa@3410@  представляет собой набор интегралов по каждой такой части границы, заданной уравнением x i =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaadMgaaeqaaO GaaGypaiaaicdaaaa@3563@ , которую обозначим Γ * 0,i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWrdaqhaaWcbaGaaGOkaaqaai aaicdacaaISaGaamyAaaaaaaa@3668@ . Имеем

Γ * 0 i=1 n u(x) x i v(x)u(x) v(x) x i u(x)v(x) ω i + γ i x i x ω d Γ 0 = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdrbqabSqaaiabfo5ahnaaDaaaba GaaGOkaaqaaiaaicdaaaaabeqdcqGHRiI8aOWaaeWaaeaadaaeWbqa bSqaaiaadMgacaaI9aGaaGymaaqaaiaad6gaa0GaeyyeIuoakmaala aabaGaeyOaIyRaaGjcVlaadwhacaaIOaGaamiEaiaaiMcaaeaacqGH ciITcaWG4bWaaSbaaSqaaiaadMgaaeqaaaaakiaadAhacaaIOaGaam iEaiaaiMcacqGHsislcaWG1bGaaGikaiaadIhacaaIPaWaaSaaaeaa cqGHciITcaWG2bGaaGikaiaadIhacaaIPaaabaGaeyOaIyRaamiEam aaBaaaleaacaWGPbaabeaaaaGccqGHsislcaWG1bGaaGikaiaadIha caaIPaGaamODaiaaiIcacaWG4bGaaGykamaalaaabaWaaeWaaeaacq aHjpWDdaWgaaWcbaGaamyAaaqabaGccqGHRaWkcqaHZoWzdaWgaaWc baGaamyAaaqabaaakiaawIcacaGLPaaaaeaacaWG4bWaaSbaaSqaai aadMgaaeqaaaaaaOGaayjkaiaawMcaaiaadIhadaahaaWcbeqaaiab eM8a3baakiaaiccacaWGKbGaeu4KdC0aaWbaaSqabeaacaaIWaaaaO GaaGypaaaa@71E3@

= i=1 n Γ * 0,i u(x) x i v(x)u(x) v(x) x i u(x)v(x) ω i + γ i x i x ω d Γ 0 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaaabCaeqaleaacaWGPbGaaG ypaiaaigdaaeaacaWGUbaaniabggHiLdGcdaWdrbqabSqaaiabfo5a hnaaDaaabaGaaGOkaaqaaiaaicdacaaISaGaamyAaaaaaeqaniabgU IiYdGcdaqadaqaamaalaaabaGaeyOaIyRaamyDaiaaiIcacaWG4bGa aGykaaqaaiabgkGi2kaadIhadaWgaaWcbaGaamyAaaqabaaaaOGaam ODaiaaiIcacaWG4bGaaGykaiabgkHiTiaadwhacaaIOaGaamiEaiaa iMcadaWcaaqaaiabgkGi2kaadAhacaaIOaGaamiEaiaaiMcaaeaacq GHciITcaWG4bWaaSbaaSqaaiaadMgaaeqaaaaakiabgkHiTiaadwha caaIOaGaamiEaiaaiMcacaWG2bGaaGikaiaadIhacaaIPaWaaSaaae aadaqadaqaaiabeM8a3naaBaaaleaacaWGPbaabeaakiabgUcaRiab eo7aNnaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaaqaaiaadI hadaWgaaWcbaGaamyAaaqabaaaaaGccaGLOaGaayzkaaGaamiEamaa CaaaleqabaGaeqyYdChaaOGaaGjcVlaadsgacqqHtoWrdaahaaWcbe qaaiaaicdaaaGccaaIUaaaaa@7395@

При условии принадлежности функций v MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2baaaa@32BC@  функциональному классу M ev,ω γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=ntinnaaDaaaleaacaWGLbGaamODaiaaiYca cqaHjpWDaeaacqaHZoWzaaaaaa@42AC@  (см. (3)) все интегралы по Γ * 0,i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWrdaqhaaWcbaGaaGOkaaqaai aaicdacaaISaGaamyAaaaaaaa@3668@  исчезнут. Поэтому

Γ * 0 i=1 n u(x) x i v(x)u(x) v(x) x i u(x)v(x) ω i + γ i x i x ω d Γ 0 =0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdrbqabSqaaiabfo5ahnaaDaaaba GaaGOkaaqaaiaaicdaaaaabeqdcqGHRiI8aOWaaeWaaeaadaaeWbqa bSqaaiaadMgacaaI9aGaaGymaaqaaiaad6gaa0GaeyyeIuoakmaala aabaGaeyOaIyRaaGjcVlaadwhacaaIOaGaamiEaiaaiMcaaeaacqGH ciITcaWG4bWaaSbaaSqaaiaadMgaaeqaaaaakiaadAhacaaIOaGaam iEaiaaiMcacqGHsislcaWG1bGaaGikaiaadIhacaaIPaWaaSaaaeaa cqGHciITcaaMi8UaamODaiaaiIcacaWG4bGaaGykaaqaaiabgkGi2k aadIhadaWgaaWcbaGaamyAaaqabaaaaOGaeyOeI0IaamyDaiaaiIca caWG4bGaaGykaiaadAhacaaIOaGaamiEaiaaiMcadaWcaaqaamaabm aabaGaeqyYdC3aaSbaaSqaaiaadMgaaeqaaOGaey4kaSIaeq4SdC2a aSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaaabaGaamiEamaaBa aaleaacaWGPbaabeaaaaaakiaawIcacaGLPaaacaWG4bWaaWbaaSqa beaacqaHjpWDaaGccaaMi8Uaamizaiabfo5ahnaaCaaaleqabaGaaG imaaaakiaai2dacaaIWaGaaGOlaaaa@75CD@

Устремляя в полученном равенстве Ω * + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaqhaaWcbaGaaGOkaaqaai abgUcaRaaaaaa@3512@  к Ω + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaahaaWcbeqaaiabgUcaRa aaaaa@345E@  и учитывая непрерывность функций u/ ν ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHciITcaWG1bGaaG4laiabgkGi2o aanaaabaGaeqyVd4gaaaaa@3809@  и v/ ν ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHciITcaWG2bGaaG4laiabgkGi2o aanaaabaGaeqyVd4gaaaaa@380A@  в Ω + ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqdaaqaaiabfM6axnaaCaaaleqaba Gaey4kaScaaaaaaaa@346F@ , получим

Γ 0 i=1 n u(x) x i v(x)u(x) v(x) x i u(x)v(x) ω i + γ i x i x ω d Γ 0 = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdrbqabSqaaiabfo5ahnaaCaaabe qaaiaaicdaaaaabeqdcqGHRiI8aOWaaeWaaeaadaaeWbqabSqaaiaa dMgacaaI9aGaaGymaaqaaiaad6gaa0GaeyyeIuoakmaalaaabaGaey OaIyRaaGjcVlaadwhacaaIOaGaamiEaiaaiMcaaeaacqGHciITcaWG 4bWaaSbaaSqaaiaadMgaaeqaaaaakiaadAhacaaIOaGaamiEaiaaiM cacqGHsislcaWG1bGaaGikaiaadIhacaaIPaWaaSaaaeaacqGHciIT caWG2bGaaGikaiaadIhacaaIPaaabaGaeyOaIyRaamiEamaaBaaale aacaWGPbaabeaaaaGccqGHsislcaWG1bGaaGikaiaadIhacaaIPaGa amODaiaaiIcacaWG4bGaaGykamaalaaabaWaaeWaaeaacqaHjpWDda WgaaWcbaGaamyAaaqabaGccqGHRaWkcqaHZoWzdaWgaaWcbaGaamyA aaqabaaakiaawIcacaGLPaaaaeaacaWG4bWaaSbaaSqaaiaadMgaae qaaaaaaOGaayjkaiaawMcaaiaadIhadaahaaWcbeqaaiabeM8a3baa kiaayIW7caWGKbGaeu4KdC0aaWbaaSqabeaacaaIWaaaaOGaaGypaa aa@7216@

= i=1 n Γ 0,i u(x) x i v(x)u(x) v(x) x i u(x)v(x) ω i + γ i x i x ω d Γ 0 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaaabCaeqaleaacaWGPbGaaG ypaiaaigdaaeaacaWGUbaaniabggHiLdGcdaWdrbqabSqaaiabfo5a hnaaCaaabeqaaiaaicdacaaISaGaamyAaaaaaeqaniabgUIiYdGcda qadaqaamaalaaabaGaeyOaIyRaamyDaiaaiIcacaWG4bGaaGykaaqa aiabgkGi2kaadIhadaWgaaWcbaGaamyAaaqabaaaaOGaamODaiaaiI cacaWG4bGaaGykaiabgkHiTiaadwhacaaIOaGaamiEaiaaiMcadaWc aaqaaiabgkGi2kaadAhacaaIOaGaamiEaiaaiMcaaeaacqGHciITca WG4bWaaSbaaSqaaiaadMgaaeqaaaaakiabgkHiTiaadwhacaaIOaGa amiEaiaaiMcacaWG2bGaaGikaiaadIhacaaIPaWaaSaaaeaadaqada qaaiabeM8a3naaBaaaleaacaWGPbaabeaakiabgUcaRiabeo7aNnaa BaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaaqaaiaadIhadaWgaa WcbaGaamyAaaqabaaaaaGccaGLOaGaayzkaaGaamiEamaaCaaaleqa baGaeqyYdChaaOGaaGjcVlaadsgacqqHtoWrdaahaaWcbeqaaiaaic daaaGccaaI9aGaaGimaaaa@73AA@                                                     (6)

Из равенств (5) и (6) равенство (4) вытекает с очевидностью. Доказательство закончено.

3. Формулы Грина для оператора Киприянова

Равенство (4) будем называть общей K γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaaSbaaSqaaiabgkHiTiabeo 7aNbqabaaaaa@3551@  -формулой Грина для Δ B γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoardaWgaaWcbaGaamOqamaaBa aabaGaeyOeI0Iaeq4SdCgabeaaaeqaaaaa@36CF@  -оператора Киприянова.

Наиболее употребительными при исследовании уравнений с Δ B γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoardaWgaaWcbaGaamOqamaaBa aabaGaeyOeI0Iaeq4SdCgabeaaaeqaaaaa@36CF@  -оператором Киприянова (1) оказываются формулы, полученные из (4) при совпадении мультииндексов весовой билинейной формы (2) с параметрами операторов Бесселя, входящих в оператор Киприянова (1), т.е. ω=γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDcaaI9aGaeyOeI0Iaeq4SdC gaaa@36E9@ ; если мультииндекс билинейной формы (2) ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDaaa@338E@  состоит из единиц, т.е. ω= ω 0 =(1,,1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDcaaI9aGaeqyYdC3aaSbaaS qaaiaaicdaaeqaaOGaaGypaiaaiIcacaaIXaGaaGilaiablAciljaa iYcacaaIXaGaaGykaaaa@3D42@  (см. [2, 3]). В этих случаях из (4) получим две формулы, которые будем называть первой и второй основными K γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaaSbaaSqaaiabgkHiTiabeo 7aNbqabaaaaa@3551@  -формулами Грина для оператора Киприянова.

Первая основная K-γ -формула Грина.

Пусть мультииндексы ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDaaa@338E@  и γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHZoWzaaa@3368@  совпадают: ω i = γ i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDdaWgaaWcbaGaamyAaaqaba GccaaI9aGaeyOeI0Iaeq4SdC2aaSbaaSqaaiaadMgaaeqaaaaa@3927@ , i= 1,n ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypamaanaaabaGaaGymai aaiYcacaWGUbaaaaaa@35EB@ , и пусть u C ev 2 ( Ω + ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaeyicI4Saam4qamaaDaaale aacaWGLbGaamODaaqaaiaaikdaaaGccaaIOaGaeuyQdC1aaWbaaSqa beaacqGHRaWkaaGccaaIPaaaaa@3BEB@  и v C ev 2 ( Ω + ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaeyicI4Saam4qamaaDaaale aacaWGLbGaamODaaqaaiaaikdaaaGccaaIOaGaeuyQdC1aaWbaaSqa beaacqGHRaWkaaGccaaIPaaaaa@3BEC@ . Тогда

( Δ B γ u,v) ω u, Δ B γ v γ = Γ + u(x) ν ¯ v(x)u(x) v(x) ν ¯ x γ dΓ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaeuiLdq0aaSbaaSqaaiaadk eadaWgaaqaaiabgkHiTiabeo7aNbqabaaabeaakiaayIW7caWG1bGa aGilaiaadAhacaaIPaWaaSbaaSqaaiabeM8a3bqabaGccqGHsislda qadaqaaiaadwhacaaISaGaeuiLdq0aaSbaaSqaaiaadkeadaWgaaqa aiabgkHiTiabeo7aNbqabaaabeaakiaaiccacaWG2baacaGLOaGaay zkaaWaaSbaaSqaaiabgkHiTiabeo7aNbqabaGccaaI9aWaa8quaeqa leaacqqHtoWrdaahaaqabeaacqGHRaWkaaaabeqdcqGHRiI8aOWaae WaaeaadaWcaaqaaiabgkGi2kaadwhacaaIOaGaamiEaiaaiMcaaeaa cqGHciITdaqdaaqaaiabe27aUbaaaaGaamODaiaaiIcacaWG4bGaaG ykaiabgkHiTiaadwhacaaIOaGaamiEaiaaiMcadaWcaaqaaiabgkGi 2kaadAhacaaIOaGaamiEaiaaiMcaaeaacqGHciITdaqdaaqaaiabe2 7aUbaaaaaacaGLOaGaayzkaaGaamiEamaaCaaaleqabaGaeyOeI0Ia eq4SdCgaaOGaaGjcVlaadsgacqqHtoWrcaaIUaaaaa@7346@                                                      (7)

Доказательство. Равенство (7) вытекает из общей формулы (4), если в ней положить ω i = γ i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDdaWgaaWcbaGaamyAaaqaba GccaaI9aGaeyOeI0Iaeq4SdC2aaSbaaSqaaiaadMgaaeqaaaaa@3927@ . Остается проверить его справедливость при условии, что u,v C ev 2 ( Ω + ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGilaiaadAhacqGHiiIZca WGdbWaa0baaSqaaiaadwgacaWG2baabaGaaGOmaaaakiaaiIcacqqH PoWvdaahaaWcbeqaaiabgUcaRaaakiaaiMcaaaa@3D9C@ . Для этого вернемся к равенству (6), правая часть которого при ω=γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDcaaI9aGaeyOeI0Iaeq4SdC gaaa@36E9@  примет следующий вид:

i=1 n Γ 0,i u(x) x i v(x) x i γ i u(x) v(x) x i x i γ i j=1, ji n x γ j d Γ 0,i , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaadMgacaaI9aGaaG ymaaqaaiaad6gaa0GaeyyeIuoakmaapefabeWcbaGaeu4KdC0aaWba aeqabaGaaGimaiaaiYcacaWGPbaaaaqab0Gaey4kIipakmaabmaaba WaaSaaaeaacqGHciITcaWG1bGaaGikaiaadIhacaaIPaaabaGaeyOa IyRaamiEamaaBaaaleaacaWGPbaabeaaaaGccaWG2bGaaGikaiaadI hacaaIPaGaamiEamaaDaaaleaacaWGPbaabaGaeyOeI0Iaeq4SdC2a aSbaaeaacaWGPbaabeaaaaGccqGHsislcaWG1bGaaGikaiaadIhaca aIPaWaaSaaaeaacqGHciITcaaMi8UaamODaiaaiIcacaWG4bGaaGyk aaqaaiabgkGi2kaadIhadaWgaaWcbaGaamyAaaqabaaaaOGaamiEam aaDaaaleaacaWGPbaabaGaeyOeI0Iaeq4SdC2aaSbaaeaacaWGPbaa beaaaaaakiaawIcacaGLPaaadaqeWbqabSqaaqaaceqaaiaadQgaca aI9aGaaGymaiaaiYcaaeaacaWGQbGaeyiyIKRaamyAaaaaaeaacaWG Ubaaniabg+GivdGccaWG4bWaaWbaaSqabeaacqGHsislcqaHZoWzda WgaaqaaiaadQgaaeqaaaaakiaayIW7caWGKbGaeu4KdC0aaWbaaSqa beaacaaIWaGaaGilaiaadMgaaaGccaaISaaaaa@7AB3@                                                                        (8)

где Γ 0,i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWrdaahaaWcbeqaaiaaicdaca aISaGaamyAaaaaaaa@35B4@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  соответствующий участок границы области Ω + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaahaaWcbeqaaiabgUcaRa aaaaa@345E@ , уравнение которого x i =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaadMgaaeqaaO GaaGypaiaaicdaaaa@3563@ . Напомним, что в силу естественных причин, связанных с симметрией, область Ω + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaahaaWcbeqaaiabgUcaRa aaaaa@345E@  мы считаем частично замкнутой, т.е. Ω + = Ω + Γ 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaahaaWcbeqaaiabgUcaRa aakiaai2dacqqHPoWvdaahaaWcbeqaaiabgUcaRaaakiabgQIiilab fo5ahnaaCaaaleqabaGaaGimaaaaaaa@3BC5@ . Это означает, что рассматриваемые функции непрерывно дифференцируемы в окрестности каждого участка Γ 0,i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWrdaahaaWcbeqaaiaaicdaca aISaGaamyAaaaaaaa@35B4@  границы Γ 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWrdaahaaWcbeqaaiaaicdaaa aaaa@3410@ . Из x i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaadMgaaeqaaa aa@33D8@  -четности этих функций вытекают неравенства

u(x) x i =O( x i )при x i 0; v(x) x i =O( x i )при x i 0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2kaayIW7caWG1b GaaGikaiaadIhacaaIPaaabaGaeyOaIyRaamiEamaaBaaaleaacaWG PbaabeaaaaGccaaI9aGaam4taiaaiIcacaWG4bWaaSbaaSqaaiaadM gaaeqaaOGaaGykaiaaykW7caaMc8Uaae4peiaabcebcaqG4qGaaGPa VlaaykW7caWG4bWaaSbaaSqaaiaadMgaaeqaaOGaeyOKH4QaaGimai aaiUdacaaMf8+aaSaaaeaacqGHciITcaaMi8UaamODaiaaiIcacaWG 4bGaaGykaaqaaiabgkGi2kaadIhadaWgaaWcbaGaamyAaaqabaaaaO GaaGypaiaad+eacaaIOaGaamiEamaaBaaaleaacaWGPbaabeaakiaa iMcacaaMc8UaaGPaVlaab+dbcaqGarGaaeioeiaaykW7caaMc8Uaam iEamaaBaaaleaacaWGPbaabeaakiabgkziUkaaicdacaaIUaaaaa@6D63@                                                                  (9)

Отсюда, учитывая, что 0< γ i <1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaiabeo7aNnaaBaaale aacaWGPbaabeaakiaaiYdacaaIXaaaaa@378D@ , получим

lim x i +0 x i γ i u(x) x i =0, lim x i +0 x i γ i v(x) x i =0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaGfqbqabSqaaiaadIhadaWgaaqaai aadMgaaeqaaiabgkziUkabgUcaRiaaicdaaeqakeaaciGGSbGaaiyA aiaac2gaaaGaamiEamaaDaaaleaacaWGPbaabaGaeyOeI0Iaeq4SdC 2aaSbaaeaacaWGPbaabeaaaaGcdaWcaaqaaiabgkGi2kaayIW7caWG 1bGaaGikaiaadIhacaaIPaaabaGaeyOaIyRaamiEamaaBaaaleaaca WGPbaabeaaaaGccaaI9aGaaGimaiaaiYcacaaMf8+aaybuaeqaleaa caWG4bWaaSbaaeaacaWGPbaabeaacqGHsgIRcqGHRaWkcaaIWaaabe GcbaGaciiBaiaacMgacaGGTbaaaiaadIhadaqhaaWcbaGaamyAaaqa aiabgkHiTiabeo7aNnaaBaaabaGaamyAaaqabaaaaOWaaSaaaeaacq GHciITcaaMi8UaamODaiaaiIcacaWG4bGaaGykaaqaaiabgkGi2kaa dIhadaWgaaWcbaGaamyAaaqabaaaaOGaaGypaiaaicdacaaIUaaaaa@68F0@

Следовательно, каждое слагаемое в сумме (8)

u(x) x i v(x) x i γ i u(x) v(x) x i x i γ i | Γ 0,i =0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqadaqaamaalaaabaGaeyOaIyRaaG jcVlaadwhacaaIOaGaamiEaiaaiMcaaeaacqGHciITcaWG4bWaaSba aSqaaiaadMgaaeqaaaaakiaadAhacaaIOaGaamiEaiaaiMcacaWG4b Waa0baaSqaaiaadMgaaeaacqGHsislcqaHZoWzdaWgaaqaaiaadMga aeqaaaaakiabgkHiTiaadwhacaaIOaGaamiEaiaaiMcadaWcaaqaai abgkGi2kaayIW7caWG2bGaaGikaiaadIhacaaIPaaabaGaeyOaIyRa amiEamaaBaaaleaacaWGPbaabeaaaaGccaWG4bWaa0baaSqaaiaadM gaaeaacqGHsislcqaHZoWzdaWgaaqaaiaadMgaaeqaaaaaaOGaayjk aiaawMcaaiaaiYhadaWgaaWcbaGaeu4KdC0aaWbaaeqabaGaaGimai aaiYcacaWGPbaaaaqabaGccaaI9aGaaGimaiaai6caaaa@61AC@

Тогда

Γ 0 i=1 n u(x) x i v(x) x i γ i u(x) v(x) x i x i γ i j=1, ji n x γ j d Γ 0,i = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdrbqabSqaaiabfo5ahnaaCaaabe qaaiaaicdaaaaabeqdcqGHRiI8aOWaaabCaeqaleaacaWGPbGaaGyp aiaaigdaaeaacaWGUbaaniabggHiLdGcdaqadaqaamaalaaabaGaey OaIyRaamyDaiaaiIcacaWG4bGaaGykaaqaaiabgkGi2kaadIhadaWg aaWcbaGaamyAaaqabaaaaOGaamODaiaaiIcacaWG4bGaaGykaiaadI hadaqhaaWcbaGaamyAaaqaaiabgkHiTiabeo7aNnaaBaaabaGaamyA aaqabaaaaOGaeyOeI0IaamyDaiaaiIcacaWG4bGaaGykamaalaaaba GaeyOaIyRaamODaiaaiIcacaWG4bGaaGykaaqaaiabgkGi2kaadIha daWgaaWcbaGaamyAaaqabaaaaOGaamiEamaaDaaaleaacaWGPbaaba GaeyOeI0Iaeq4SdC2aaSbaaeaacaWGPbaabeaaaaaakiaawIcacaGL PaaadaqeWbqabSqaaqaaceqaaiaadQgacaaI9aGaaGymaiaaiYcaae aacaWGQbGaeyiyIKRaamyAaaaaaeaacaWGUbaaniabg+GivdGccaWG 4bWaaWbaaSqabeaacqGHsislcqaHZoWzdaWgaaqaaiaadQgaaeqaaa aakiaayIW7caWGKbGaeu4KdC0aaWbaaSqabeaacaaIWaGaaGilaiaa dMgaaaGccaaI9aaaaa@778F@

= i=1 n Γ 0,i u(x) x i v(x) x i γ i u(x) v(x) x i x i γ i j=1, ji n x γ j d Γ 0,i =0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaaabCaeqaleaacaWGPbGaaG ypaiaaigdaaeaacaWGUbaaniabggHiLdGcdaWdrbqabSqaaiabfo5a hnaaCaaabeqaaiaaicdacaaISaGaamyAaaaaaeqaniabgUIiYdGcda qadaqaamaalaaabaGaeyOaIyRaaGjcVlaadwhacaaIOaGaamiEaiaa iMcaaeaacqGHciITcaWG4bWaaSbaaSqaaiaadMgaaeqaaaaakiaadA hacaaIOaGaamiEaiaaiMcacaWG4bWaa0baaSqaaiaadMgaaeaacqGH sislcqaHZoWzdaWgaaqaaiaadMgaaeqaaaaakiabgkHiTiaadwhaca aIOaGaamiEaiaaiMcadaWcaaqaaiabgkGi2kaayIW7caWG2bGaaGik aiaadIhacaaIPaaabaGaeyOaIyRaamiEamaaBaaaleaacaWGPbaabe aaaaGccaWG4bWaa0baaSqaaiaadMgaaeaacqGHsislcqaHZoWzdaWg aaqaaiaadMgaaeqaaaaaaOGaayjkaiaawMcaamaarahabeWcbaabai qabaGaamOAaiaai2dacaaIXaGaaGilaaqaaiaadQgacqGHGjsUcaWG Pbaaaaqaaiaad6gaa0Gaey4dIunakiaadIhadaahaaWcbeqaaiabgk HiTiabeo7aNnaaBaaabaGaamOAaaqabaaaaOGaaGiiaiaadsgacqqH toWrdaahaaWcbeqaaiaaicdacaaISaGaamyAaaaakiaai2dacaaIWa GaaGilaaaa@7DA5@

Равенство (7) доказано.

Из формулы (7) вытекают важные для приложений следствия (см. также [3], где рассматривался только случай ω i = γ i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDdaWgaaWcbaGaamyAaaqaba GccaaI9aGaeyOeI0Iaeq4SdC2aaSbaaSqaaiaadMgaaeqaaaaa@3927@  ).

1. Пусть в (7) u=v MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGypaiaadAhaaaa@347D@ ; тогда

Ω + Δ B γ u u x ω dx= Ω + u Δ B γ u x γ dx. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdrbqabSqaaiabfM6axnaaCaaabe qaaiabgUcaRaaaaeqaniabgUIiYdGcdaqadaqaaiabfs5aenaaBaaa leaacaWGcbWaaSbaaeaacqGHsislcqaHZoWzaeqaaaqabaGccaaMi8 UaamyDaaGaayjkaiaawMcaaiaadwhacaaMi8UaamiEamaaCaaaleqa baGaeqyYdChaaOGaaGjcVlaadsgacaWG4bGaaGypamaapefabeWcba GaeuyQdC1aaWbaaeqabaGaey4kaScaaaqab0Gaey4kIipakiaadwha cqqHuoardaWgaaWcbaGaamOqamaaBaaabaGaeyOeI0Iaeq4SdCgabe aaaeqaaOGaaGjcVlaadwhacaaMi8UaamiEamaaCaaaleqabaGaeyOe I0Iaeq4SdCgaaOGaaGjcVlaadsgacaWG4bGaaGOlaaaa@60AA@

2. Если в (7) v=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaaGypaiaaigdaaaa@343E@ , то

Ω + Δ B γ u x ω dx= Γ + u(x) ν ¯ x γ dΓ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdrbqabSqaaiabfM6axnaaCaaabe qaaiabgUcaRaaaaeqaniabgUIiYdGccqqHuoardaWgaaWcbaGaamOq amaaBaaabaGaeyOeI0Iaeq4SdCgabeaaaeqaaOGaaGjcVlaadwhaca aMi8UaamiEamaaCaaaleqabaGaeqyYdChaaOGaaGjcVlaadsgacaWG 4bGaaGypamaapefabeWcbaGaeu4KdC0aaWbaaeqabaGaey4kaScaaa qab0Gaey4kIipakmaalaaabaGaeyOaIyRaamyDaiaaiIcacaWG4bGa aGykaaqaaiabgkGi2oaanaaabaGaeqyVd4gaaaaacaaMi8UaamiEam aaCaaaleqabaGaeyOeI0Iaeq4SdCgaaOGaaGjcVlaadsgacqqHtoWr caaIUaaaaa@5DD0@

3. Условием K γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaaSbaaSqaaiabeo7aNbqaba aaaa@3464@  -гармоничности функции u=u(x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGypaiaadwhacaaIOaGaam iEaiaaiMcaaaa@36DE@  в области Ω + = Ω + Γ 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaahaaWcbeqaaiabgUcaRa aakiaai2dacqqHPoWvdaahaaWcbeqaaiabgUcaRaaakiabgQIiilab fo5ahnaaCaaaleqabaGaaGimaaaaaaa@3BC5@  является равенство

Γ + u(x) ν ¯ x γ dΓ=0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdrbqabSqaaiabfo5ahnaaCaaabe qaaiabgUcaRaaaaeqaniabgUIiYdGcdaWcaaqaaiabgkGi2kaayIW7 caWG1bGaaGikaiaadIhacaaIPaaabaGaeyOaIy7aa0aaaeaacqaH9o GBaaaaaiaayIW7caWG4bWaaWbaaSqabeaacqGHsislcqaHZoWzaaGc caaIGaGaamizaiabfo5ahjaai2dacaaIWaGaaGOlaaaa@4AA1@

Вторая основная K γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaaSbaaSqaaiabgkHiTiabeo 7aNbqabaaaaa@3551@  -формула Грина Пусть ω= ω 0 =(1,1,,1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDcaaI9aGaeqyYdC3aaSbaaS qaaiaaicdaaeqaaOGaaGypaiaaiIcacaaIXaGaaGilaiaaigdacaaI SaGaeSOjGSKaaGilaiaaigdacaaIPaaaaa@3EB3@  и

u M ev γ ,v M ev, ω 0 γ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaeyicI48efv3ySLgznfgDOf daryqr1ngBPrginfgDObYtUvgaiqaacqWFZestdaqhaaWcbaGaamyz aiaadAhaaeaacqaHZoWzaaGccaaISaGaaGzbVlaadAhacqGHiiIZcq WFZestdaqhaaWcbaGaamyzaiaadAhacaaISaGaeqyYdC3aaSbaaeaa caaIWaaabeaaaeaacqaHZoWzaaGccaaIUaaaaa@5073@                                                                                                  (10)

Тогда

( Δ B γ u,v) ω u, Δ B γ+2 v ω 0 = Γ + u(x) ν ¯ v(x)u(x) v(x) ν ¯ i=1 n u(x)v(x) 1+ γ i x i x ω 0 dΓ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaeuiLdq0aaSbaaSqaaiaadk eadaWgaaqaaiabgkHiTiabeo7aNbqabaaabeaakiaadwhacaaISaGa amODaiaaiMcadaWgaaWcbaGaeqyYdChabeaakmaabmaabaGaamyDai aaiYcacqqHuoardaWgaaWcbaGaamOqamaaBaaabaGaeq4SdCMaey4k aSIaaGOmaaqabaaabeaakiaadAhaaiaawIcacaGLPaaadaWgaaWcba GaeqyYdC3aaSbaaeaacaaIWaaabeaaaeqaaOGaaGypamaapefabeWc baGaeu4KdC0aaWbaaeqabaGaey4kaScaaaqab0Gaey4kIipakmaabm aabaWaaSaaaeaacqGHciITcaWG1bGaaGikaiaadIhacaaIPaaabaGa eyOaIy7aa0aaaeaacqaH9oGBaaaaaiaadAhacaaIOaGaamiEaiaaiM cacqGHsislcaWG1bGaaGikaiaadIhacaaIPaWaaSaaaeaacqGHciIT caWG2bGaaGikaiaadIhacaaIPaaabaGaeyOaIy7aa0aaaeaacqaH9o GBaaaaaiabgkHiTmaaqahabeWcbaGaamyAaiaai2dacaaIXaaabaGa amOBaaqdcqGHris5aOGaamyDaiaaiIcacaWG4bGaaGykaiaayIW7ca WG2bGaaGikaiaadIhacaaIPaGaaGjcVpaalaaabaWaaeWaaeaacaaI XaGaey4kaSIaeq4SdC2aaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaay zkaaaabaGaamiEamaaBaaaleaacaWGPbaabeaaaaaakiaawIcacaGL PaaacaWG4bWaaWbaaSqabeaacqaHjpWDdaWgaaqaaiaaicdaaeqaaa aakiaayIW7caWGKbGaeu4KdCKaaGilaaaa@898F@                     (11)

где ω 0 =(1,1,,1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDdaWgaaWcbaGaaGimaaqaba GccaaI9aGaaGikaiaaigdacaaISaGaaGymaiaaiYcacqWIMaYscaaI SaGaaGymaiaaiMcaaaa@3C1F@ .

Доказательство. Равенство (11) вытекает также из общей формулы (4), если положить ω i =1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDdaWgaaWcbaGaamyAaaqaba GccaaI9aGaaGymaaaa@3634@ . Остается проверить его справедливость при условии (10). Для этого вернемся к равенству (6), правая часть которого при ω= ω 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDcaaI9aGaeqyYdC3aaSbaaS qaaiaaicdaaeqaaaaa@3708@  примет следующий вид:

i=1 n Γ 0,i u(x) ν ¯ v(x)u(x) v(x) ν ¯ u(x)v(x) 1+ γ i x i x ω 0 dΓ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaadMgacaaI9aGaaG ymaaqaaiaad6gaa0GaeyyeIuoakmaapefabeWcbaGaeu4KdC0aaWba aeqabaGaaGimaiaaiYcacaWGPbaaaaqab0Gaey4kIipakmaabmaaba WaaSaaaeaacqGHciITcaWG1bGaaGikaiaadIhacaaIPaaabaGaeyOa Iy7aa0aaaeaacqaH9oGBaaaaaiaadAhacaaIOaGaamiEaiaaiMcacq GHsislcaWG1bGaaGikaiaadIhacaaIPaWaaSaaaeaacqGHciITcaWG 2bGaaGikaiaadIhacaaIPaaabaGaeyOaIy7aa0aaaeaacqaH9oGBaa aaaiabgkHiTiaadwhacaaIOaGaamiEaiaaiMcacaWG2bGaaGikaiaa dIhacaaIPaWaaSaaaeaadaqadaqaaiaaigdacqGHRaWkcqaHZoWzda WgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaaaeaacaWG4bWaaSba aSqaaiaadMgaaeqaaaaaaOGaayjkaiaawMcaaiaadIhadaahaaWcbe qaaiabeM8a3naaBaaabaGaaGimaaqabaaaaOGaaGjcVlaadsgacqqH toWrcaaIUaaaaa@6F1E@                                                              (12)

Первые два слагаемых в правой части равенства (12) равны нулю по причине выполнения условий (9). Равенство нулю третьего слагаемого в (12) есть следствие требования (10). Следовательно,

Γ 0 i=1 n u(x) ν ¯ v(x)u(x) v(x) ν ¯ u(x)v(x) 1+ γ i x i x ω 0 dΓ=0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdrbqabSqaaiabfo5ahnaaCaaabe qaaiaaicdaaaaabeqdcqGHRiI8aOWaaeWaaeaadaaeWbqabSqaaiaa dMgacaaI9aGaaGymaaqaaiaad6gaa0GaeyyeIuoakmaalaaabaGaey OaIyRaaGjcVlaadwhacaaIOaGaamiEaiaaiMcaaeaacqGHciITdaqd aaqaaiabe27aUbaaaaGaamODaiaaiIcacaWG4bGaaGykaiabgkHiTi aadwhacaaIOaGaamiEaiaaiMcadaWcaaqaaiabgkGi2kaayIW7caWG 2bGaaGikaiaadIhacaaIPaaabaGaeyOaIy7aa0aaaeaacqaH9oGBaa aaaiabgkHiTiaadwhacaaIOaGaamiEaiaaiMcacaWG2bGaaGikaiaa dIhacaaIPaWaaSaaaeaadaqadaqaaiaaigdacqGHRaWkcqaHZoWzda WgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaaaeaacaWG4bWaaSba aSqaaiaadMgaaeqaaaaaaOGaayjkaiaawMcaaiaadIhadaahaaWcbe qaaiabeM8a3naaBaaabaGaaGimaaqabaaaaOGaaGjcVlaadsgacqqH toWrcaaI9aGaaGimaiaai6caaaa@721D@

Из формулы (11) вытекают следующие результаты.

1. Пусть ω= ω 0 =(1,1,,1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDcaaI9aGaeqyYdC3aaSbaaS qaaiaaicdaaeqaaOGaaGypaiaaiIcacaaIXaGaaGilaiaaigdacaaI SaGaeSOjGSKaaGilaiaaigdacaaIPaaaaa@3EB3@  и u=v MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGypaiaadAhaaaa@347D@  в (11). Тогда

Ω + Δ B γ u u x ω dx Ω + u Δ B γ+2 u x ω 0 dx= Γ + i=1 n u 2 (x) 1+ γ i x i x ω 0 dΓ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdrbqabSqaaiabfM6axnaaCaaabe qaaiabgUcaRaaaaeqaniabgUIiYdGcdaqadaqaaiabfs5aenaaBaaa leaacaWGcbWaaSbaaeaacqGHsislcqaHZoWzaeqaaaqabaGccaaMi8 UaamyDaaGaayjkaiaawMcaaiaadwhacaWG4bWaaWbaaSqabeaacqaH jpWDaaGccaaMi8UaamizaiaadIhacqGHsisldaWdrbqabSqaaiabfM 6axnaaCaaabeqaaiabgUcaRaaaaeqaniabgUIiYdGccaWG1bGaeuiL dq0aaSbaaSqaaiaadkeadaWgaaqaaiabeo7aNjabgUcaRiaaikdaae qaaaqabaGccaWG1bGaaGjcVlaadIhadaahaaWcbeqaaiabeM8a3naa BaaabaGaaGimaaqabaaaaOGaaGjcVlaadsgacaWG4bGaaGypaiabgk HiTmaapefabeWcbaGaeu4KdC0aaWbaaeqabaGaey4kaScaaaqab0Ga ey4kIipakmaaqahabeWcbaGaamyAaiaai2dacaaIXaaabaGaamOBaa qdcqGHris5aOGaamyDamaaCaaaleqabaGaaGOmaaaakiaaiIcacaWG 4bGaaGykamaalaaabaWaaeWaaeaacaaIXaGaey4kaSIaeq4SdC2aaS baaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaaabaGaamiEamaaBaaa leaacaWGPbaabeaaaaGccaWG4bWaaWbaaSqabeaacqaHjpWDdaWgaa qaaiaaicdaaeqaaaaakiaayIW7caWGKbGaeu4KdCKaaGOlaaaa@7EC7@

2. Пусть ω= ω 0 =(1,1,,1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDcaaI9aGaeqyYdC3aaSbaaS qaaiaaicdaaeqaaOGaaGypaiaaiIcacaaIXaGaaGilaiaaigdacaaI SaGaeSOjGSKaaGilaiaaigdacaaIPaaaaa@3EB3@  и v=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaaGypaiaaigdaaaa@343E@  в (11). Тогда

Ω + Δ B γ u x ω dx= Γ + u(x) ν ¯ i=1 n u(x) 1+ γ i x i x ω 0 dΓ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdrbqabSqaaiabfM6axnaaCaaabe qaaiabgUcaRaaaaeqaniabgUIiYdGccqqHuoardaWgaaWcbaGaamOq amaaBaaabaGaeyOeI0Iaeq4SdCgabeaaaeqaaOGaaGjcVlaadwhaca aMi8UaamiEamaaCaaaleqabaGaeqyYdChaaOGaaGjcVlaadsgacaWG 4bGaaGypamaapefabeWcbaGaeu4KdC0aaWbaaeqabaGaey4kaScaaa qab0Gaey4kIipakmaabmaabaWaaSaaaeaacqGHciITcaWG1bGaaGik aiaadIhacaaIPaaabaGaeyOaIy7aa0aaaeaacqaH9oGBaaaaaiabgk HiTmaaqahabeWcbaGaamyAaiaai2dacaaIXaaabaGaamOBaaqdcqGH ris5aOGaamyDaiaaiIcacaWG4bGaaGykamaalaaabaWaaeWaaeaaca aIXaGaey4kaSIaeq4SdC2aaSbaaSqaaiaadMgaaeqaaaGccaGLOaGa ayzkaaaabaGaamiEamaaBaaaleaacaWGPbaabeaaaaaakiaawIcaca GLPaaacaWG4bWaaWbaaSqabeaacqaHjpWDdaWgaaqaaiaaicdaaeqa aaaakiaayIW7caWGKbGaeu4KdCKaaGOlaaaa@6FF7@                                                                         (13)

3. Условием K γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaaSbaaSqaaiabeo7aNbqaba aaaa@3464@  - гармоничности функции u=u(x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGypaiaadwhacaaIOaGaam iEaiaaiMcaaaa@36DE@  в области Ω + = Ω + Γ 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaahaaWcbeqaaiabgUcaRa aakiaai2dacqqHPoWvdaahaaWcbeqaaiabgUcaRaaakiabgQIiilab fo5ahnaaCaaaleqabaGaaGimaaaaaaa@3BC5@  является равенство

Γ + u(x) ν ¯ x γ dΓ= Γ + i=1 n u(x) 1+ γ i x i x ω 0 dΓ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdrbqabSqaaiabfo5ahnaaCaaabe qaaiabgUcaRaaaaeqaniabgUIiYdGcdaWcaaqaaiabgkGi2kaayIW7 caWG1bGaaGikaiaadIhacaaIPaaabaGaeyOaIy7aa0aaaeaacqaH9o GBaaaaaiaayIW7caWG4bWaaWbaaSqabeaacqGHsislcqaHZoWzaaGc caaMi8Uaamizaiabfo5ahjaai2dadaWdrbqabSqaaiabfo5ahnaaCa aabeqaaiabgUcaRaaaaeqaniabgUIiYdGcdaaeWbqabSqaaiaadMga caaI9aGaaGymaaqaaiaad6gaa0GaeyyeIuoakiaadwhacaaIOaGaam iEaiaaiMcadaWcaaqaamaabmaabaGaaGymaiabgUcaRiabeo7aNnaa BaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaaqaaiaadIhadaWgaa WcbaGaamyAaaqabaaaaOGaamiEamaaCaaaleqabaGaeqyYdC3aaSba aeaacaaIWaaabeaaaaGccaaMi8Uaamizaiabfo5ahjaaiYcaaaa@6879@            (14)

которое выполняется в любой s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbaaaa@32B9@  -внутренней (симметрично внутренней, см. введение) подобласти Ω * + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaqhaaWcbaGaaGOkaaqaai abgUcaRaaaaaa@3512@  области Ω + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaahaaWcbeqaaiabgUcaRa aaaaa@345E@ .

Доказательство. Действительно, если функция u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1baaaa@32BB@  является K γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaaSbaaSqaaiabeo7aNbqaba aaaa@3464@  -гармонической, то равенство (14) непосредственно следует из (13). Напротив, пусть в каждой внутренней s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbaaaa@32B9@  -подобласти Ω * + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaqhaaWcbaGaaGOkaaqaai abgUcaRaaaaaa@3512@  области Ω + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaahaaWcbeqaaiabgUcaRa aaaaa@345E@  выполняется (14). Тогда из (13) вытекает, что равенство

Ω * + Δ B γ u x ω dx=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdrbqabSqaaiabfM6axnaaDaaaba GaaGOkaaqaaiabgUcaRaaaaeqaniabgUIiYdGccqqHuoardaWgaaWc baGaamOqamaaBaaabaGaeyOeI0Iaeq4SdCgabeaaaeqaaOGaaGjcVl aadwhacaaMi8UaamiEamaaCaaaleqabaGaeqyYdChaaOGaaGjcVlaa dsgacaWG4bGaaGypaiaaicdaaaa@4889@

выполняется в любой подобласти области Ω + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaahaaWcbeqaaiabgUcaRa aaaaa@345E@ , что возможно лишь в случае, когда Δ B γ u(x)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoardaWgaaWcbaGaamOqamaaBa aabaGaeyOeI0Iaeq4SdCgabeaaaeqaaOGaamyDaiaaiIcacaWG4bGa aGykaiaai2dacaaIWaaaaa@3BB6@  в любой точке x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BE@  области Ω + = Ω + Γ 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaahaaWcbeqaaiabgUcaRa aakiaai2dacqqHPoWvdaahaaWcbeqaaiabgUcaRaaakiabgQIiilab fo5ahnaaCaaaleqabaGaaGimaaaaaaa@3BC5@ .

×

About the authors

Lev N. Lyakhov

Воронежский государственный университет; Елецкий государственный университет им. И. А. Бунина; Липецкий государственный педагогический университет им. П. П. Семенова-Тян-Шанского

Author for correspondence.
Email: levnlya@mail.ru
Russian Federation, Воронеж; Елецк; Липецк

Yuri N. Bulatov

Елецкий государственный университет им. И. А. Бунина

Email: y.bulatov@bk.ru
Russian Federation, Елецк

References

  1. Киприянов И. А. Сингулярные эллиптические краевые задачи. — М.: Наука, 1997.
  2. Ляхов Л. Н., Булатов Ю. Н., Рощупкин С. А., Санина Е. Л. Псевдосдвиг и фундаментальное решение ∆B-оператора Киприянова// Диффер. уравн. — 2022. — 58, № 12. — С. 1654–1665.
  3. Ляхов Л. Н., Булатов Ю. Н., Рощупкин С. А., Санина Е. Л. Единственность решения задач Дирихле для уравнения Пуассона с сингулярным ∆B-оператором Киприянова// Диффер. уравн. — 2023. — 59, № 4. — С. 483–493.
  4. Ляхов Л. Н., Санина Е. Л. Оператор Киприянова—Бельтрами с отрицательной размерностью операторов Бесселя и сингулярная задача Дирихле для B-гармонического уравнения// Диффер. уравн. — 2020. — 56, № 12. — С. 1610–1620.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Ляхов Л.N., Булатов Ю.N.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).