Моментные функции решения стохастической системы дифференциальных уравнений в частных производных

Обложка

Цитировать

Полный текст

Аннотация

Рассматривается задача Коши для линейной неоднородной системы дифференциальных уравнений в частных производных первого порядка с двумя случайными коэффициентами и случайной неоднородностью. Получены явные формулы для моментных функций решения: математическое ожидание, смешанные моментные функции и вторая моментная функция. В качестве приложений выведены явные формулы смешанных моментных функций и второй моментной функции решения уравнения с независимыми гауссовскими случайными коэффициентами.

Полный текст

1. Введение

Рассмотрим задачу Коши для системы дифференциальных уравнений первого порядка

ytε1t Ayz+ε2ty+bt,z                                                                                                                            (1)

yt0,z=y0z                                                                                                                                                          (2)

где tTt0,t1, t 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaaicdaaeqaaa aa@33A0@  задано, y : T × Y  MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaqa aaaaaaaaWdbiaa=rbiaaa@3765@  искомое отображение, b : T × Y  MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaqa aaaaaaaaWdbiaa=rbiaaa@3765@  случайный векторный процесс, A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbaaaa@3287@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaqa aaaaaaaaWdbiaa=rbiaaa@3765@  постоянный оператор, действующий в пространстве Y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGzbaaaa@329F@ , Y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGzbaaaa@329F@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaqa aaaaaaaaWdbiaa=rbiaaa@3765@  конечномерное пространство со скалярным произведением null, ε 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba aaaa@344F@ , ε 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba aaaa@3450@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaqa aaaaaaaaWdbiaa=rbiaaa@3765@  случайные процессы, y0z  MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaqa aaaaaaaaWdbiaa=rbiaaa@3765@  случайный векторный процесс.

Так как уравнение (1) содержит случайные процессы, то решение задачи Коши (1), (2) также является случайным процессом. Для приложений важны статистические характеристики решения MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaqa aaaaaaaaWdbiaa=rbiaaa@3765@  функция распределения, плотность распределения, характеристический функционал или моментные функции. Наиболее важным и одновременно простым является математическое ожидание. Метод сведения стохастической задачи к детерминированному дифференциальному уравнению с обычными и вариационными производными (см. [1-4, 7]) оказался эффективным для нахождения моментных функций решений линейных дифференциальных уравнений. В [2] получены явные формулы для математического ожидания решения мультипликативно возмущенного векторного дифференциального уравнения в частных производных с одним случайным коэффициентом и случайной неоднородностью.

В данной работе решается задача нахождения математического ожидания, смешанных моментных функций и второй моментной функции решения задачи (1), (2) с двумя случайными коэффициентами и случайной неоднородностью. Исследуемая задача сводится к детерминированной системе дифференциальных уравнений с частными и вариационными производными, для которой удается получить явную формулу решения. На основе полученной формулы выписать математическое ожидание, смешанные моментные функции и вторую моментную функцию решения стохастического уравнения с использованием характеристического функционала случайных коэффициентов и неоднородности. В качестве приложений выведены явные формулы смешанных моментных функций и второй моментной функции решения уравнения с независимыми гауссовскими случайными коэффициентами.

2. Математическое ожидание решения задачи (1), (2).

Пусть L1T  MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaqa aaaaaaaaWdbiaa=rbiaaa@3765@  пространство суммируемых функций на отрезке T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubaaaa@329A@  с нормой

vTvtdt,

ψ : L1T  MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbuaqa aaaaaaaaWdbiaa=rbiaaa@3785@  функционал, hL1T  MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbuaqa aaaaaaaaWdbiaa=rbiaaa@3785@  приращение переменной v MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2baaaa@32BC@ .

 Определение 1. Если

ψv+hψvTφt,vhtdt+oh

где o(h)  бесконечно малая высшего порядка относительно и интеграл (Лебега) является линейным ограниченным функционалом по переменной h MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObaaaa@32AE@ , то отображение φ:T× L 1 (T) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaI6aGaamivaiabgEna0k aadYeadaWgaaWcbaGaaGymaaqabaGccaaIOaGaamivaiaaiMcacqGH sgIRtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGabaiab=j qidbaa@47AC@  называется вариационной производной функционала ψ в точке v и обозначается δψ(v)/δv(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH0oazcqaHipqEcaaIOaGaamODai aaiMcacaaIVaGaeqiTdqMaamODaiaaiIcacaWG0bGaaGykaaaa@3D4B@ .

Вариационное дифференцирование аналогично обычному дифференцированию.

Пусть ε(t,ω) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzcaaIOaGaamiDaiaaiYcacq aHjpWDcaaIPaaaaa@3849@  обозначает случайный процесс ( ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDaaa@338E@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbuaqa aaaaaaaaWdbiaa=rbiaaa@3785@  случайное событие; см. [1]). В дальнейшем случайный процесс будем записывать просто как ε(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzcaaIOaGaamiDaiaaiMcaaa a@35C6@ , а обозначение E[ε] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaG4waiabew7aLjaai2faaa a@35FE@  использовать для математического ожидания случайного процесса ε MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzaaa@3368@ .

Определение 2. (см. [1, с. 30]) Функционал

ψ(v)=E exp i T ε(s)v(s)ds , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamODaiaaiMcaca aI9aGaamyramaadmaabaGaciyzaiaacIhacaGGWbWaaeWaaeaacaWG PbWaa8quaeqaleaacaWGubaabeqdcqGHRiI8aOGaeqyTduMaaGikai aadohacaaIPaGaamODaiaaiIcacaWGZbGaaGykaiaayIW7caWGKbGa am4CaaGaayjkaiaawMcaaaGaay5waiaaw2faaiaaiYcaaaa@4D76@

где v L 1 (T) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaeyicI4SaamitamaaBaaale aacaaIXaaabeaakiaaiIcacaWGubGaaGykaaaa@3840@ , i= 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypamaakaaabaGaeyOeI0 IaaGymaaWcbeaaaaa@3539@ , называется характеристическим функционалом случайного процесса ε MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzaaa@3368@ .

Отметим, что с помощью характеристического функционала можно находить моментные функции случайного процесса, например (см. [1]),

δψ(v) δv(t) | v=0 =iE[ε(t)], δ 2 ψ(v) δv(t)δv(τ) | v=0 =E[ε(t)ε(τ)]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabes7aKjabeI8a5jaaiI cacaWG2bGaaGykaaqaaiabes7aKjaadAhacaaIOaGaamiDaiaaiMca aaGaaGiFamaaBaaaleaacaWG2bGaaGypaiaaicdaaeqaaOGaaGypai aadMgacaWGfbGaaG4waiabew7aLjaaiIcacaWG0bGaaGykaiaai2fa caaISaGaaGzbVpaalaaabaGaeqiTdq2aaWbaaSqabeaacaaIYaaaaO GaeqiYdKNaaGikaiaadAhacaaIPaaabaGaeqiTdqMaamODaiaaiIca caWG0bGaaGykaiabes7aKjaadAhacaaIOaGaeqiXdqNaaGykaaaaca aI8bWaaSbaaSqaaiaadAhacaaI9aGaaGimaaqabaGccaaI9aGaeyOe I0IaamyraiaaiUfacqaH1oqzcaaIOaGaamiDaiaaiMcacqaH1oqzca aIOaGaeqiXdqNaaGykaiaai2facaaIUaaaaa@6E1C@

2.1. Переход к детерминированной задаче.

Будем считать, что процессы ε 1 , ε 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaISaGaeqyTdu2aaSbaaSqaaiaaikdaaeqaaaaa@379E@  и b MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbaaaa@32A8@  заданы характеристическим функционалом, т.е. считаем известным

ψ( v 1 , v 2 , v 3 )=E exp(i T ε 1 (s) v 1 (s)ds+i T ε 2 (s) v 2 (s)ds+i T <b( s 1 , s 2 ), v 3 ( s 1 , s 2 )>d s 2 d s 1 ) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamODamaaBaaale aacaaIXaaabeaakiaaiYcacaWG2bWaaSbaaSqaaiaaikdaaeqaaOGa aGilaiaadAhadaWgaaWcbaGaaG4maaqabaGccaaIPaGaaGypaiaadw eadaWadaqaaiGacwgacaGG4bGaaiiCaiaaiIcacaWGPbWaa8quaeqa leaacaWGubaabeqdcqGHRiI8aOGaeqyTdu2aaSbaaSqaaiaaigdaae qaaOGaaGikaiaadohacaaIPaGaamODamaaBaaaleaacaaIXaaabeaa kiaaiIcacaWGZbGaaGykaiaayIW7caWGKbGaam4CaiabgUcaRiaadM gadaWdrbqabSqaaiaadsfaaeqaniabgUIiYdGccqaH1oqzdaWgaaWc baGaaGOmaaqabaGccaaIOaGaam4CaiaaiMcacaWG2bWaaSbaaSqaai aaikdaaeqaaOGaaGikaiaadohacaaIPaGaaGjcVlaadsgacaWGZbGa ey4kaSIaamyAamaapefabeWcbaGaamivaaqab0Gaey4kIipakmaape fabeWcbaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaa cqWFDeIuaeqaniabgUIiYdGccaaI8aGaamOyaiaaiIcacaWGZbWaaS baaSqaaiaaigdaaeqaaOGaaGilaiaadohadaWgaaWcbaGaaGOmaaqa baGccaaIPaGaaGilaiaadAhadaWgaaWcbaGaaG4maaqabaGccaaIOa Gaam4CamaaBaaaleaacaaIXaaabeaakiaaiYcacaWGZbWaaSbaaSqa aiaaikdaaeqaaOGaaGykaiaai6dacaWGKbGaam4CamaaBaaaleaaca aIYaaabeaakiaayIW7caWGKbGaam4CamaaBaaaleaacaaIXaaabeaa kiaaiMcaaiaawUfacaGLDbaacaaIUaaaaa@9153@

Здесь <,> MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI8aGaeyyXICTaaGilaiabgwSixl aai6daaaa@3899@  обозначает скалярное произведение в Y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGzbaaaa@329F@ . Введем обозначение

w=exp i T ε 1 (s) v 1 (s)ds+i T ε 2 (s) v 2 (s)ds+i T <b( s 1 , s 2 ), v 3 ( s 1 , s 2 )>d s 2 d s 1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3bGaaGypaiGacwgacaGG4bGaai iCamaabmaabaGaamyAamaapefabeWcbaGaamivaaqab0Gaey4kIipa kiabew7aLnaaBaaaleaacaaIXaaabeaakiaaiIcacaWGZbGaaGykai aadAhadaWgaaWcbaGaaGymaaqabaGccaaIOaGaam4CaiaaiMcacaaM i8UaamizaiaadohacqGHRaWkcaWGPbWaa8quaeqaleaacaWGubaabe qdcqGHRiI8aOGaeqyTdu2aaSbaaSqaaiaaikdaaeqaaOGaaGikaiaa dohacaaIPaGaamODamaaBaaaleaacaaIYaaabeaakiaaiIcacaWGZb GaaGykaiaayIW7caWGKbGaam4CaiabgUcaRiaadMgadaWdrbqabSqa aiaadsfaaeqaniabgUIiYdGcdaWdrbqabSqaamrr1ngBPrwtHrhAYa qeguuDJXwAKbstHrhAGq1DVbaceaGae8xhHifabeqdcqGHRiI8aOGa aGipaiaadkgacaaIOaGaam4CamaaBaaaleaacaaIXaaabeaakiaaiY cacaWGZbWaaSbaaSqaaiaaikdaaeqaaOGaaGykaiaaiYcacaWG2bWa aSbaaSqaaiaaiodaaeqaaOGaaGikaiaadohadaWgaaWcbaGaaGymaa qabaGccaaISaGaam4CamaaBaaaleaacaaIYaaabeaakiaaiMcacaaI +aGaamizaiaadohadaWgaaWcbaGaaGOmaaqabaGccaaMi8Uaamizai aadohadaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaacaaIUaaa aa@8551@

Умножим уравнение (1) на w MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3baaaa@32BD@  и возьмем математическое ожидание полученного равенства:

E y t w =E ε 1 (t)A y z w +E[ ε 2 (t)yw]+E[b(t,z)w]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbWaamWaaeaadaWcaaqaaiabgk Gi2kaadMhaaeaacqGHciITcaWG0baaaiaadEhaaiaawUfacaGLDbaa caaI9aGaamyramaadmaabaGaeqyTdu2aaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadshacaaIPaGaamyqamaalaaabaGaeyOaIyRaamyEaaqa aiabgkGi2kaadQhaaaGaam4DaaGaay5waiaaw2faaiabgUcaRiaadw eacaaIBbGaeqyTdu2aaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadsha caaIPaGaamyEaiaadEhacaaIDbGaey4kaSIaamyraiaaiUfacaWGIb GaaGikaiaadshacaaISaGaamOEaiaaiMcacaWG3bGaaGyxaiaai6ca aaa@5DEF@                                                                                            (3)

Введем обозначение

y ˜ (t,z, v 1 , v 2 , v 3 )=E[y(t,z)w]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadMhaaiaawoWaaiaaiI cacaWG0bGaaGilaiaadQhacaaISaGaamODamaaBaaaleaacaaIXaaa beaakiaaiYcacaWG2bWaaSbaaSqaaiaaikdaaeqaaOGaaGilaiaadA hadaWgaaWcbaGaaG4maaqabaGccaaIPaGaaGypaiaadweacaaIBbGa amyEaiaaiIcacaWG0bGaaGilaiaadQhacaaIPaGaam4Daiaai2faca aIUaaaaa@499F@

Уравнение (3) (формально) можно записать с помощью y ˜ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadMhaaiaawoWaaaaa@3381@ . Имеем

y ˜ t =iA δ p δ v 1 (t) y ˜ z i δ p δ v 2 (t) y ˜ i δ p ψ δ v 3 (t,z) , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2oaaGaaabaGaam yEaaGaay5adaaabaGaeyOaIyRaamiDaaaacaaI9aGaeyOeI0IaamyA aiaadgeadaWcaaqaaiabes7aKnaaBaaaleaacaWGWbaabeaaaOqaai abes7aKjaadAhadaWgaaWcbaGaaGymaaqabaGccaaIOaGaamiDaiaa iMcaaaWaaSaaaeaacqGHciITdaaiaaqaaiaadMhaaiaawoWaaaqaai abgkGi2kaadQhaaaGaeyOeI0IaamyAamaalaaabaGaeqiTdq2aaSba aSqaaiaadchaaeqaaaGcbaGaeqiTdqMaamODamaaBaaaleaacaaIYa aabeaakiaaiIcacaWG0bGaaGykaaaadaaiaaqaaiaadMhaaiaawoWa aiabgkHiTiaadMgadaWcaaqaaiabes7aKnaaBaaaleaacaWGWbaabe aakiabeI8a5bqaaiabes7aKjaadAhadaWgaaWcbaGaaG4maaqabaGc caaIOaGaamiDaiaaiYcacaWG6bGaaGykaaaacaaISaaaaa@6478@                                                                                               (4)

где δ p ψ/δ v 3 (t,z) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH0oazdaWgaaWcbaGaamiCaaqaba GccqaHipqEcaaIVaGaeqiTdqMaamODamaaBaaaleaacaaIZaaabeaa kiaaiIcacaWG0bGaaGilaiaadQhacaaIPaaaaa@3EBE@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbuaqa aaaaaaaaWdbiaa=rbiaaa@3785@  частная вариационная производная по переменной v 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bWaaSbaaSqaaiaaiodaaeqaaa aa@33A5@ .

Будем считать, что случайный процесс y 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5bWaaSbaaSqaaiaaicdaaeqaaa aa@33A5@  не зависит от случайных процессов ε 1 , ε 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaISaGaeqyTdu2aaSbaaSqaaiaaikdaaeqaaaaa@379E@  и b MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbaaaa@32A8@ . Умножим начальные условие (2) на w MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3baaaa@32BD@  и вычислим математическое ожидание полученного равенства:

E[y( t 0 ,z)w]=E[ y 0 (z)w]=E[ y 0 (z)]E[w]=E[ y 0 (z)]ψ( v 1 , v 2 , v 3 ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaG4waiaadMhacaaIOaGaam iDamaaBaaaleaacaaIWaaabeaakiaaiYcacaWG6bGaaGykaiaadEha caaIDbGaaGypaiaadweacaaIBbGaamyEamaaBaaaleaacaaIWaaabe aakiaaiIcacaWG6bGaaGykaiaadEhacaaIDbGaaGypaiaadweacaaI BbGaamyEamaaBaaaleaacaaIWaaabeaakiaaiIcacaWG6bGaaGykai aai2facaWGfbGaaG4waiaadEhacaaIDbGaaGypaiaadweacaaIBbGa amyEamaaBaaaleaacaaIWaaabeaakiaaiIcacaWG6bGaaGykaiaai2 facqaHipqEcaaIOaGaamODamaaBaaaleaacaaIXaaabeaakiaaiYca caWG2bWaaSbaaSqaaiaaikdaaeqaaOGaaGilaiaadAhadaWgaaWcba GaaG4maaqabaGccaaIPaGaaGOlaaaa@620D@

Перепишем последнее равенство в виде

y ˜ ( t 0 ,z, v 1 , v 2 , v 3 )=E[ y 0 (z)]ψ( v 1 , v 2 , v 3 ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadMhaaiaawoWaaiaaiI cacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiaadQhacaaISaGa amODamaaBaaaleaacaaIXaaabeaakiaaiYcacaWG2bWaaSbaaSqaai aaikdaaeqaaOGaaGilaiaadAhadaWgaaWcbaGaaG4maaqabaGccaaI PaGaaGypaiaadweacaaIBbGaamyEamaaBaaaleaacaaIWaaabeaaki aaiIcacaWG6bGaaGykaiaai2facqaHipqEcaaIOaGaamODamaaBaaa leaacaaIXaaabeaakiaaiYcacaWG2bWaaSbaaSqaaiaaikdaaeqaaO GaaGilaiaadAhadaWgaaWcbaGaaG4maaqabaGccaaIPaGaaGOlaaaa @533A@                                                                                                                (5)

Определение 3. Математическим ожиданием E[y(t,z)] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaG4waiaadMhacaaIOaGaam iDaiaaiYcacaWG6bGaaGykaiaai2faaaa@3968@  решения задачи Коши (1), (2) называется y ˜ (t,z,0,0,0) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadMhaaiaawoWaaiaaiI cacaWG0bGaaGilaiaadQhacaaISaGaaGimaiaaiYcacaaIWaGaaGil aiaaicdacaaIPaaaaa@3BE4@ , где y ˜ (t,z, v 1 , v 2 , v 3 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadMhaaiaawoWaaiaaiI cacaWG0bGaaGilaiaadQhacaaISaGaamODamaaBaaaleaacaaIXaaa beaakiaaiYcacaWG2bWaaSbaaSqaaiaaikdaaeqaaOGaaGilaiaadA hadaWgaaWcbaGaaG4maaqabaGccaaIPaaaaa@3F7D@  решение задачи (4), (5) в некоторой окрестности точки v 1 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaaicdaaaa@352E@ , v 2 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bWaaSbaaSqaaiaaikdaaeqaaO GaaGypaiaaicdaaaa@352F@ , v 3 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bWaaSbaaSqaaiaaiodaaeqaaO GaaGypaiaaicdaaaa@3530@ .

Таким образом, для нахождения математического ожидания E[y(t,z)] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaG4waiaadMhacaaIOaGaam iDaiaaiYcacaWG6bGaaGykaiaai2faaaa@3968@  решения задачи (1), (2) достаточно найти решение y ˜ (t,z, v 1 , v 2 , v 3 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadMhaaiaawoWaaiaaiI cacaWG0bGaaGilaiaadQhacaaISaGaamODamaaBaaaleaacaaIXaaa beaakiaaiYcacaWG2bWaaSbaaSqaaiaaikdaaeqaaOGaaGilaiaadA hadaWgaaWcbaGaaG4maaqabaGccaaIPaaaaa@3F7D@  не случайной (детерминированной) задачи (4), (5) в малой окрестности точки v 1 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaaicdaaaa@352E@ , v 2 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bWaaSbaaSqaaiaaikdaaeqaaO GaaGypaiaaicdaaaa@352F@ , v 3 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bWaaSbaaSqaaiaaiodaaeqaaO GaaGypaiaaicdaaaa@3530@ .

2.2. Решение уравнения с обычной и вариационной производными

Пусть F z (g(z))(ξ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiaadQhaaeqaaO GaaGikaiaadEgacaaIOaGaamOEaiaaiMcacaaIPaGaaGikaiabe67a 4jaaiMcaaaa@3B9E@  обозначает преобразование Фурье функции g MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbaaaa@32AD@  по переменной z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6baaaa@32C0@  (см. [6]):

F z (g(z))(ξ)= g(z) e iξz dz. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiaadQhaaeqaaO GaaGikaiaadEgacaaIOaGaamOEaiaaiMcacaaIPaGaaGikaiabe67a 4jaaiMcacaaI9aWaa8qCaeqaleaacqGHsislcqGHEisPaeaacqGHEi sPa0Gaey4kIipakiaadEgacaaIOaGaamOEaiaaiMcacaWGLbWaaWba aSqabeaacaWGPbGaeqOVdGNaamOEaaaakiaayIW7caWGKbGaamOEai aai6caaaa@4EFA@

Применим преобразование Фурье по переменной z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6baaaa@32C0@  к уравнениям (4), (5):

t F z ( y ˜ )=ξA δ p δ v 1 (t) F z ( y ˜ )i δ p δ v 2 (t) F z ( y ˜ )i F z ( δ p ψ( v 1 , v 2 , v 3 ) δ v 3 (t,z) ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2cqaaiabgkGi2k aadshaaaGaamOramaaBaaaleaacaWG6baabeaakiaaiIcadaaiaaqa aiaadMhaaiaawoWaaiaaiMcacaaI9aGaeyOeI0IaeqOVdGNaamyqam aalaaabaGaeqiTdq2aaSbaaSqaaiaadchaaeqaaaGcbaGaeqiTdqMa amODamaaBaaaleaacaaIXaaabeaakiaaiIcacaWG0bGaaGykaaaaca WGgbWaaSbaaSqaaiaadQhaaeqaaOGaaGikamaaGaaabaGaamyEaaGa ay5adaGaaGykaiabgkHiTiaadMgadaWcaaqaaiabes7aKnaaBaaale aacaWGWbaabeaaaOqaaiabes7aKjaadAhadaWgaaWcbaGaaGOmaaqa baGccaaIOaGaamiDaiaaiMcaaaGaamOramaaBaaaleaacaWG6baabe aakiaaiIcadaaiaaqaaiaadMhaaiaawoWaaiaaiMcacqGHsislcaWG PbGaamOramaaBaaaleaacaWG6baabeaakiaaiIcadaWcaaqaaiabes 7aKnaaBaaaleaacaWGWbaabeaakiabeI8a5jaaiIcacaWG2bWaaSba aSqaaiaaigdaaeqaaOGaaGilaiaadAhadaWgaaWcbaGaaGOmaaqaba GccaaISaGaamODamaaBaaaleaacaaIZaaabeaakiaaiMcaaeaacqaH 0oazcaWG2bWaaSbaaSqaaiaaiodaaeqaaOGaaGikaiaadshacaaISa GaamOEaiaaiMcaaaGaaGykaiaaiYcaaaa@779E@                                                                     (6)

F z ( y ˜ )( t 0 ,ξ, v 1 , v 2 , v 3 )= F z (E[ y 0 (z)])(ξ)ψ( v 1 , v 2 , v 3 ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiaadQhaaeqaaO GaaGikamaaGaaabaGaamyEaaGaay5adaGaaGykaiaaiIcacaWG0bWa aSbaaSqaaiaaicdaaeqaaOGaaGilaiabe67a4jaaiYcacaWG2bWaaS baaSqaaiaaigdaaeqaaOGaaGilaiaadAhadaWgaaWcbaGaaGOmaaqa baGccaaISaGaamODamaaBaaaleaacaaIZaaabeaakiaaiMcacaaI9a GaamOramaaBaaaleaacaWG6baabeaakiaaiIcacaWGfbGaaG4waiaa dMhadaWgaaWcbaGaaGimaaqabaGccaaIOaGaamOEaiaaiMcacaaIDb GaaGykaiaaiIcacqaH+oaEcaaIPaGaeqiYdKNaaGikaiaadAhadaWg aaWcbaGaaGymaaqabaGccaaISaGaamODamaaBaaaleaacaaIYaaabe aakiaaiYcacaWG2bWaaSbaaSqaaiaaiodaaeqaaOGaaGykaiaai6ca aaa@5DF0@  (7)

Пусть χ( t 0 ,t,s) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHhpWycaaIOaGaamiDamaaBaaale aacaaIWaaabeaakiaaiYcacaWG0bGaaGilaiaadohacaaIPaaaaa@3A23@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbuaqa aaaaaaaaWdbiaa=rbiaaa@3785@  функция переменной s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbGaeyicI48efv3ySLgznfgDOj daryqr1ngBPrginfgDObcv39gaiqaacqWFDeIuaaa@3EF4@ , определенная следующим образом:

χ( t 0 ,t,s)= sign(s t 0 ), s[min{ t 0 ,t},max{ t 0 ,t}], 0 в противном случае. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHhpWycaaIOaGaamiDamaaBaaale aacaaIWaaabeaakiaaiYcacaWG0bGaaGilaiaadohacaaIPaGaaGyp amaaceaabaqbaeqabiGaaaqaaiaadohacaWGPbGaam4zaiaad6gaca aIOaGaam4CaiabgkHiTiaadshadaWgaaWcbaGaaGimaaqabaGccaaI PaGaaGilaaqaaiaadohacqGHiiIZcaaIBbGaciyBaiaacMgacaGGUb GaaG4EaiaadshadaWgaaWcbaGaaGimaaqabaGccaaISaGaamiDaiaa i2hacaaISaGaciyBaiaacggacaGG4bGaaG4EaiaadshadaWgaaWcba GaaGimaaqabaGccaaISaGaamiDaiaai2hacaaIDbGaaGilaaqaaiaa icdaaeaacaqGYqGaaeiiaiaab+dbcaqGarGaaeOpeiaabkebcaqG4q GaaeOmeiaab2dbcaqG+qGaaeipeiaabccacaqGbrGaae4oeiaaboeb caqGhrGaaeimeiaabwdbcaaIUaaaaaGaay5Eaaaaaa@6B49@

В [2] получена явная формула для решения уравнения,содержащего обычную и вариационные производные, с заданным начальным условием.

Теорема 1 (см. [2, теорема 7.3]). Пусть функционал ψ( v 1 , v 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamODamaaBaaale aacaaIXaaabeaakiaaiYcacaWG2bWaaSbaaSqaaiaaikdaaeqaaOGa aGykaaaa@3983@  разлагается в ряд

ψ( v 1 , v 2 )= k=0 T T ψ k ( s 1 ,, s k , v 2 ) v 1 ( s 1 ) v 1 ( s k )d s 1 d s k , ψ 0 =1, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamODamaaBaaale aacaaIXaaabeaakiaaiYcacaWG2bWaaSbaaSqaaiaaikdaaeqaaOGa aGykaiaai2dadaaeWbqabSqaaiaadUgacaaI9aGaaGimaaqaaiabg6 HiLcqdcqGHris5aOWaa8quaeqaleaacaWGubaabeqdcqGHRiI8aOGa eSOjGS0aa8quaeqaleaacaWGubaabeqdcqGHRiI8aOGaeqiYdK3aaS baaSqaaiaadUgaaeqaaOGaaGikaiaadohadaWgaaWcbaGaaGymaaqa baGccaaISaGaeSOjGSKaaGilaiaadohadaWgaaWcbaGaam4Aaaqaba GccaaISaGaamODamaaBaaaleaacaaIYaaabeaakiaaiMcacaWG2bWa aSbaaSqaaiaaigdaaeqaaOGaaGikaiaadohadaWgaaWcbaGaaGymaa qabaGccaaIPaGaeSOjGSKaamODamaaBaaaleaacaaIXaaabeaakiaa iIcacaWGZbWaaSbaaSqaaiaadUgaaeqaaOGaaGykaiaayIW7caWGKb Gaam4CamaaBaaaleaacaaIXaaabeaakiablAciljaadsgacaWGZbWa aSbaaSqaaiaadUgaaeqaaOGaaGilaiaaywW7cqaHipqEdaWgaaWcba GaaGimaaqabaGccaaI9aGaaGymaiaaiYcaaaa@7119@

где ψ k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEdaWgaaWcbaGaam4Aaaqaba aaaa@34AB@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbuaqa aaaaaaaaWdbiaa=rbiaaa@3785@  симметрические по любой паре переменных функции, имеющие вариационные производные по переменной v 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bWaaSbaaSqaaiaaikdaaeqaaa aa@33A4@ . Тогда решение задачи Коши

t F z ( y ˜ )=ξA δ δ v 1 (t) F z ( y ˜ )i F z ( δψ( v 1 , v 2 ) δ v 2 (t,z) ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2cqaaiabgkGi2k aadshaaaGaamOramaaBaaaleaacaWG6baabeaakiaaiIcadaaiaaqa aiaadMhaaiaawoWaaiaaiMcacaaI9aGaeyOeI0IaeqOVdGNaamyqam aalaaabaGaeqiTdqgabaGaeqiTdqMaamODamaaBaaaleaacaaIXaaa beaakiaaiIcacaWG0bGaaGykaaaacaWGgbWaaSbaaSqaaiaadQhaae qaaOGaaGikamaaGaaabaGaamyEaaGaay5adaGaaGykaiabgkHiTiaa dMgacaWGgbWaaSbaaSqaaiaadQhaaeqaaOGaaGikamaalaaabaGaeq iTdqMaeqiYdKNaaGikaiaadAhadaWgaaWcbaGaaGymaaqabaGccaaI SaGaamODamaaBaaaleaacaaIYaaabeaakiaaiMcaaeaacqaH0oazca WG2bWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadshacaaISaGaamOE aiaaiMcaaaGaaGykaiaaiYcaaaa@62D3@

F z ( y ˜ )( t 0 ,ξ, v 1 , v 2 )= F z (E[ y 0 (z)])(ξ)ψ( v 1 , v 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiaadQhaaeqaaO GaaGikamaaGaaabaGaamyEaaGaay5adaGaaGykaiaaiIcacaWG0bWa aSbaaSqaaiaaicdaaeqaaOGaaGilaiabe67a4jaaiYcacaWG2bWaaS baaSqaaiaaigdaaeqaaOGaaGilaiaadAhadaWgaaWcbaGaaGOmaaqa baGccaaIPaGaaGypaiaadAeadaWgaaWcbaGaamOEaaqabaGccaaIOa GaamyraiaaiUfacaWG5bWaaSbaaSqaaiaaicdaaeqaaOGaaGikaiaa dQhacaaIPaGaaGyxaiaaiMcacaaIOaGaeqOVdGNaaGykaiabeI8a5j aaiIcacaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaadAhadaWg aaWcbaGaaGOmaaqabaGccaaIPaaaaa@57F0@

имеет вид

F z ( y ˜ )(t,ξ, v 1 , v 2 )= F z (E[ y 0 ])(ξ)ψ( v 1 Eξχ( t 0 ,t)A, v 2 )i t 0 t F z δ p ψ( v 1 Eξχ(s,t)A, v 2 ) δ v 2 (s,z) ds. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiaadQhaaeqaaO GaaGikamaaGaaabaGaamyEaaGaay5adaGaaGykaiaaiIcacaWG0bGa aGilaiabe67a4jaaiYcacaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaaG ilaiaadAhadaWgaaWcbaGaaGOmaaqabaGccaaIPaGaaGypaiaadAea daWgaaWcbaGaamOEaaqabaGccaaIOaGaamyraiaaiUfacaWG5bWaaS baaSqaaiaaicdaaeqaaOGaaGyxaiaaiMcacaaIOaGaeqOVdGNaaGyk aiabeI8a5jaaiIcacaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaamyrai abgkHiTiabe67a4jabeE8aJjaaiIcacaWG0bWaaSbaaSqaaiaaicda aeqaaOGaaGilaiaadshacaaIPaGaamyqaiaaiYcacaWG2bWaaSbaaS qaaiaaikdaaeqaaOGaaGykaiabgkHiTiaadMgadaWdXbqabSqaaiaa dshadaWgaaqaaiaaicdaaeqaaaqaaiaadshaa0Gaey4kIipakiaadA eadaWgaaWcbaGaamOEaaqabaGcdaqadaqaamaalaaabaGaeqiTdq2a aSbaaSqaaiaadchaaeqaaOGaeqiYdKNaaGikaiaadAhadaWgaaWcba GaaGymaaqabaGccaWGfbGaeyOeI0IaeqOVdGNaeq4XdmMaaGikaiaa dohacaaISaGaamiDaiaaiMcacaWGbbGaaGilaiaadAhadaWgaaWcba GaaGOmaaqabaGccaaIPaaabaGaeqiTdqMaamODamaaBaaaleaacaaI YaaabeaakiaaiIcacaWGZbGaaGilaiaadQhacaaIPaaaaaGaayjkai aawMcaaiaayIW7caWGKbGaam4Caiaai6caaaa@8AA8@

Полученную в теореме 1 формулу можно обобщить на случай задачи Коши вида (6), (7).

Теорема 2. Пусть функционал ψ( v 1 , v 2 , v 3 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamODamaaBaaale aacaaIXaaabeaakiaaiYcacaWG2bWaaSbaaSqaaiaaikdaaeqaaOGa aGilaiaadAhadaWgaaWcbaGaaG4maaqabaGccaaIPaaaaa@3C27@  разлагается в ряд

ψ( v 1 , v 2 , v 3 )= k=0 T T ψ 1k ( s 1 ,, s k , v 3 ) v 1 ( s 1 ) v 1 ( s k )d s 1 d s k × MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamODamaaBaaale aacaaIXaaabeaakiaaiYcacaWG2bWaaSbaaSqaaiaaikdaaeqaaOGa aGilaiaadAhadaWgaaWcbaGaaG4maaqabaGccaaIPaGaaGypamaaqa habeWcbaGaam4Aaiaai2dacaaIWaaabaGaeyOhIukaniabggHiLdGc daWdrbqabSqaaiaadsfaaeqaniabgUIiYdGccqWIMaYsdaWdrbqabS qaaiaadsfaaeqaniabgUIiYdGccqaHipqEdaWgaaWcbaGaaGymaiaa dUgaaeqaaOGaaGikaiaadohadaWgaaWcbaGaaGymaaqabaGccaaISa GaeSOjGSKaaGilaiaadohadaWgaaWcbaGaam4AaaqabaGccaaISaGa amODamaaBaaaleaacaaIZaaabeaakiaaiMcacaWG2bWaaSbaaSqaai aaigdaaeqaaOGaaGikaiaadohadaWgaaWcbaGaaGymaaqabaGccaaI PaGaeSOjGSKaamODamaaBaaaleaacaaIXaaabeaakiaaiIcacaWGZb WaaSbaaSqaaiaadUgaaeqaaOGaaGykaiaayIW7caWGKbGaam4Camaa BaaaleaacaaIXaaabeaakiablAciljaadsgacaWGZbWaaSbaaSqaai aadUgaaeqaaOGaey41aqlaaa@6F56@

× k=0 T T ψ 2k ( s 1 ,, s k , v 3 ) v 2 ( s 1 ) v 2 ( s k )d s 1 d s k , ψ 10 =1, ψ 20 =1, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHxdaTdaaeWbqabSqaaiaadUgaca aI9aGaaGimaaqaaiabg6HiLcqdcqGHris5aOWaa8quaeqaleaacaWG ubaabeqdcqGHRiI8aOGaeSOjGS0aa8quaeqaleaacaWGubaabeqdcq GHRiI8aOGaeqiYdK3aaSbaaSqaaiaaikdacaWGRbaabeaakiaaiIca caWGZbWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiablAciljaaiYcaca WGZbWaaSbaaSqaaiaadUgaaeqaaOGaaGilaiaadAhadaWgaaWcbaGa aG4maaqabaGccaaIPaGaamODamaaBaaaleaacaaIYaaabeaakiaaiI cacaWGZbWaaSbaaSqaaiaaigdaaeqaaOGaaGykaiablAciljaadAha daWgaaWcbaGaaGOmaaqabaGccaaIOaGaam4CamaaBaaaleaacaWGRb aabeaakiaaiMcacaaMi8UaamizaiaadohadaWgaaWcbaGaaGymaaqa baGccqWIMaYscaWGKbGaam4CamaaBaaaleaacaWGRbaabeaakiaaiY cacaaMf8UaeqiYdK3aaSbaaSqaaiaaigdacaaIWaaabeaakiaai2da caaIXaGaaGilaiabeI8a5naaBaaaleaacaaIYaGaaGimaaqabaGcca aI9aGaaGymaiaaiYcaaaa@71D3@                                                                                 (8)

где ψ ik MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEdaWgaaWcbaGaamyAaiaadU gaaeqaaaaa@3599@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbuaqa aaaaaaaaWdbiaa=rbiaaa@3785@  симметрические по любой паре переменных функции, и имеющие вариационные производные по переменной v 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bWaaSbaaSqaaiaaiodaaeqaaa aa@33A5@ . Тогда

F z ( y ˜ )(t,ξ, v 1 , v 2 , v 3 )=ψ( v 1 Iξχ( t 0 ,t)A, v 2 iχ( t 0 ,t), v 3 ) F z (E[ y 0 ])(ξ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiaadQhaaeqaaO GaaGikamaaGaaabaGaamyEaaGaay5adaGaaGykaiaaiIcacaWG0bGa aGilaiabe67a4jaaiYcacaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaaG ilaiaadAhadaWgaaWcbaGaaGOmaaqabaGccaaISaGaamODamaaBaaa leaacaaIZaaabeaakiaaiMcacaaI9aGaeqiYdKNaaGikaiaadAhada WgaaWcbaGaaGymaaqabaGccaWGjbGaeyOeI0IaeqOVdGNaeq4XdmMa aGikaiaadshadaWgaaWcbaGaaGimaaqabaGccaaISaGaamiDaiaaiM cacaWGbbGaaGilaiaadAhadaWgaaWcbaGaaGOmaaqabaGccqGHsisl caWGPbGaeq4XdmMaaGikaiaadshadaWgaaWcbaGaaGimaaqabaGcca aISaGaamiDaiaaiMcacaaISaGaamODamaaBaaaleaacaaIZaaabeaa kiaaiMcacaWGgbWaaSbaaSqaaiaadQhaaeqaaOGaaGikaiaadweaca aIBbGaamyEamaaBaaaleaacaaIWaaabeaakiaai2facaaIPaGaaGik aiabe67a4jaaiMcacqGHsislaaa@6E58@

i t 0 t F z δ p ψ( v 1 Iξχ(s,t)A, v 2 iχ(s,t), v 3 ) δ v 3 (s,z) ds MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGPbWaa8qCaeqaleaaca WG0bWaaSbaaeaacaaIWaaabeaaaeaacaWG0baaniabgUIiYdGccaWG gbWaaSbaaSqaaiaadQhaaeqaaOWaaeWaaeaadaWcaaqaaiabes7aKn aaBaaaleaacaWGWbaabeaakiabeI8a5jaaiIcacaWG2bWaaSbaaSqa aiaaigdaaeqaaOGaamysaiabgkHiTiabe67a4jabeE8aJjaaiIcaca WGZbGaaGilaiaadshacaaIPaGaamyqaiaaiYcacaWG2bWaaSbaaSqa aiaaikdaaeqaaOGaeyOeI0IaamyAaiabeE8aJjaaiIcacaWGZbGaaG ilaiaadshacaaIPaGaaGilaiaadAhadaWgaaWcbaGaaG4maaqabaGc caaIPaaabaGaeqiTdqMaamODamaaBaaaleaacaaIZaaabeaakiaaiI cacaWGZbGaaGilaiaadQhacaaIPaaaaaGaayjkaiaawMcaaiaayIW7 caWGKbGaam4Caaaa@6668@                                                                                                               (9)

является решением задачи (6), (7).

Замечание 1. Характеристический функционал ψ( v 1 , v 2 , v 3 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamODamaaBaaale aacaaIXaaabeaakiaaiYcacaWG2bWaaSbaaSqaaiaaikdaaeqaaOGa aGilaiaadAhadaWgaaWcbaGaaG4maaqabaGccaaIPaaaaa@3C27@  будет удовлетворять условию (8), если предположить независимость случайных процессов ε 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba aaaa@344F@ , ε 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba aaaa@3450@ .

2.3. Нахождение математического ожидания решения задачи

Для нахождения среднего значения решения задачи (1), (2) нужно найти отображение y ˜ (t,z, v 1 , v 2 , v 3 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadMhaaiaawoWaaiaaiI cacaWG0bGaaGilaiaadQhacaaISaGaamODamaaBaaaleaacaaIXaaa beaakiaaiYcacaWG2bWaaSbaaSqaaiaaikdaaeqaaOGaaGilaiaadA hadaWgaaWcbaGaaG4maaqabaGccaaIPaaaaa@3F7D@ . Это можно сделать вычислив обратное преобразование Фурье F ξ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaa0baaSqaaiabe67a4bqaai abgkHiTiaaigdaaaaaaa@3624@  выражения (9). Поскольку преобразование Фурье от произведения равно свертке преобразований Фурье сомножителей (см. [6, с. 154]), то для детерминированной задачи Коши (4), (5) можно получить явную формулу решения.

Теорема 3. Если характеристический функционал ψ( v 1 , v 2 , v 3 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamODamaaBaaale aacaaIXaaabeaakiaaiYcacaWG2bWaaSbaaSqaaiaaikdaaeqaaOGa aGilaiaadAhadaWgaaWcbaGaaG4maaqabaGccaaIPaaaaa@3C27@  разлагается в степенной ряд вида (8), то

y ˜ (t,z, v 1 , v 2 , v 3 )= F ξ 1 ψ( v 1 Iξχ( t 0 ,t)A, v 2 iχ( t 0 ,t), v 3 )E[ y 0 (z)] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadMhaaiaawoWaaiaaiI cacaWG0bGaaGilaiaadQhacaaISaGaamODamaaBaaaleaacaaIXaaa beaakiaaiYcacaWG2bWaaSbaaSqaaiaaikdaaeqaaOGaaGilaiaadA hadaWgaaWcbaGaaG4maaqabaGccaaIPaGaaGypaiaadAeadaqhaaWc baGaeqOVdGhabaGaeyOeI0IaaGymaaaakiabeI8a5jaaiIcacaWG2b WaaSbaaSqaaiaaigdaaeqaaOGaamysaiabgkHiTiabe67a4jabeE8a JjaaiIcacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiaadshaca aIPaGaamyqaiaaiYcacaWG2bWaaSbaaSqaaiaaikdaaeqaaOGaeyOe I0IaamyAaiabeE8aJjaaiIcacaWG0bWaaSbaaSqaaiaaicdaaeqaaO GaaGilaiaadshacaaIPaGaaGilaiaadAhadaWgaaWcbaGaaG4maaqa baGccaaIPaGaey4fIOIaamyraiaaiUfacaWG5bWaaSbaaSqaaiaaic daaeqaaOGaaGikaiaadQhacaaIPaGaaGyxaiabgkHiTaaa@6B62@

i t 0 t F ξ 1 F z δ p ψ( v 1 Iξχ(s,t)A, v 2 iχ(s,t), v 3 ) δ v 3 (s,z) ds MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGPbGaaGzaVpaapehabe WcbaGaamiDamaaBaaabaGaaGimaaqabaaabaGaamiDaaqdcqGHRiI8 aOGaamOramaaDaaaleaacqaH+oaEaeaacqGHsislcaaIXaaaaOWaae WaaeaacaWGgbWaaSbaaSqaaiaadQhaaeqaaOWaaeWaaeaadaWcaaqa aiabes7aKnaaBaaaleaacaWGWbaabeaakiabeI8a5jaaiIcacaWG2b WaaSbaaSqaaiaaigdaaeqaaOGaamysaiabgkHiTiabe67a4jabeE8a JjaaiIcacaWGZbGaaGilaiaadshacaaIPaGaamyqaiaaiYcacaWG2b WaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamyAaiabeE8aJjaaiIca caWGZbGaaGilaiaadshacaaIPaGaaGilaiaadAhadaWgaaWcbaGaaG 4maaqabaGccaaIPaaabaGaeqiTdqMaamODamaaBaaaleaacaaIZaaa beaakiaaiIcacaWGZbGaaGilaiaadQhacaaIPaaaaaGaayjkaiaawM caaaGaayjkaiaawMcaaiaadsgacaWGZbaaaa@6C57@                                                                                    (10)

является решением детерминированной задачи (4), (5). Здесь F ξ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaa0baaSqaaiabe67a4bqaai abgkHiTiaaigdaaaaaaa@3624@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaqa aaaaaaaaWdbiaa=rbiaaa@3765@  обратное преобразование Фурье, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHxiIkaaa@32B0@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaqa aaaaaaaaWdbiaa=rbiaaa@3765@  свертка по переменной z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6baaaa@32C0@ , I MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGjbaaaa@328F@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaqa aaaaaaaaWdbiaa=rbiaaa@3765@  единичный оператор.

Теорема 4. Пусть выполнены условия теоремы 2. Тогда

E[y(t,z)]= F ξ 1 ψ(ξχ( t 0 ,t)A,iχ( t 0 ,t),0)E[ y 0 (z)] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaG4waiaadMhacaaIOaGaam iDaiaaiYcacaWG6bGaaGykaiaai2facaaI9aGaamOramaaDaaaleaa cqaH+oaEaeaacqGHsislcaaIXaaaaOGaeqiYdKNaaGikaiabgkHiTi abe67a4jabeE8aJjaaiIcacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGa aGilaiaadshacaaIPaGaamyqaiaaiYcacqGHsislcaWGPbGaeq4Xdm MaaGikaiaadshadaWgaaWcbaGaaGimaaqabaGccaaISaGaamiDaiaa iMcacaaISaGaaGimaiaaiMcacqGHxiIkcaWGfbGaaG4waiaadMhada WgaaWcbaGaaGimaaqabaGccaaIOaGaamOEaiaaiMcacaaIDbGaeyOe I0caaa@5F72@

i t 0 t F ξ 1 F z δ p ψ(ξχ(s,t)A,iχ(s,t),0) δ v 3 (s,z) ds MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGPbWaa8qCaeqaleaaca WG0bWaaSbaaeaacaaIWaaabeaaaeaacaWG0baaniabgUIiYdGccaWG gbWaa0baaSqaaiabe67a4bqaaiabgkHiTiaaigdaaaGcdaqadaqaai aadAeadaWgaaWcbaGaamOEaaqabaGcdaqadaqaamaalaaabaGaeqiT dq2aaSbaaSqaaiaadchaaeqaaOGaeqiYdKNaaGikaiabgkHiTiabe6 7a4jabeE8aJjaaiIcacaWGZbGaaGilaiaadshacaaIPaGaamyqaiaa iYcacqGHsislcaWGPbGaeq4XdmMaaGikaiaadohacaaISaGaamiDai aaiMcacaaISaGaaGimaiaaiMcaaeaacqaH0oazcaWG2bWaaSbaaSqa aiaaiodaaeqaaOGaaGikaiaadohacaaISaGaamOEaiaaiMcaaaaaca GLOaGaayzkaaaacaGLOaGaayzkaaGaamizaiaadohaaaa@64F2@                                                                                               (11)

является математическим ожиданием решения задачи (1), (2).

3. Смешанные моментные функции.

Формула (10) полезна не только для нахождения математического ожидания E[y(t,z)] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaG4waiaadMhacaaIOaGaam iDaiaaiYcacaWG6bGaaGykaiaai2faaaa@3968@  решения задачи (1),(2), но и может быть применена для нахождения других моментных функций решения задачи (1), (2). Из определения y ˜ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadMhaaiaawoWaaaaa@3381@  следует, что

δ p y ˜ (t,z, v 1 , v 2 , v 3 ) δ v 1 (τ) | v 1 = v 2 = v 3 =0 =iE[y(t,z) ε 1 (τ)], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabes7aKnaaBaaaleaaca WGWbaabeaakmaaGaaabaGaamyEaaGaay5adaGaaGikaiaadshacaaI SaGaamOEaiaaiYcacaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaaGilai aadAhadaWgaaWcbaGaaGOmaaqabaGccaaISaGaamODamaaBaaaleaa caaIZaaabeaakiaaiMcaaeaacqaH0oazcaWG2bWaaSbaaSqaaiaaig daaeqaaOGaaGikaiabes8a0jaaiMcaaaGaaGiFamaaBaaaleaacaWG 2bWaaSbaaeaacaaIXaaabeaacaaI9aGaamODamaaBaaabaGaaGOmaa qabaGaaGypaiaadAhadaWgaaqaaiaaiodaaeqaaiaai2dacaaIWaaa beaakiaai2dacaWGPbGaamyraiaaiUfacaWG5bGaaGikaiaadshaca aISaGaamOEaiaaiMcacqaH1oqzdaWgaaWcbaGaaGymaaqabaGccaaI OaGaeqiXdqNaaGykaiaai2facaaISaaaaa@62BF@

δ p y ˜ (t,z, v 1 , v 2 , v 3 ) δ v 2 (τ) | v 1 = v 2 = v 3 =0 =iE[y(t,z) ε 2 (τ)], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabes7aKnaaBaaaleaaca WGWbaabeaakmaaGaaabaGaamyEaaGaay5adaGaaGikaiaadshacaaI SaGaamOEaiaaiYcacaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaaGilai aadAhadaWgaaWcbaGaaGOmaaqabaGccaaISaGaamODamaaBaaaleaa caaIZaaabeaakiaaiMcaaeaacqaH0oazcaWG2bWaaSbaaSqaaiaaik daaeqaaOGaaGikaiabes8a0jaaiMcaaaGaaGiFamaaBaaaleaacaWG 2bWaaSbaaeaacaaIXaaabeaacaaI9aGaamODamaaBaaabaGaaGOmaa qabaGaaGypaiaadAhadaWgaaqaaiaaiodaaeqaaiaai2dacaaIWaaa beaakiaai2dacaWGPbGaamyraiaaiUfacaWG5bGaaGikaiaadshaca aISaGaamOEaiaaiMcacqaH1oqzdaWgaaWcbaGaaGOmaaqabaGccaaI OaGaeqiXdqNaaGykaiaai2facaaISaaaaa@62C1@

δ p y ˜ (t,z, v 1 , v 2 , v 3 ) δ v 3 (τ,z) | v 1 = v 2 = v 3 =0 =iE[y(t,z) b Т (τ,z)]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabes7aKnaaBaaaleaaca WGWbaabeaakmaaGaaabaGaamyEaaGaay5adaGaaGikaiaadshacaaI SaGaamOEaiaaiYcacaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaaGilai aadAhadaWgaaWcbaGaaGOmaaqabaGccaaISaGaamODamaaBaaaleaa caaIZaaabeaakiaaiMcaaeaacqaH0oazcaWG2bWaaSbaaSqaaiaaio daaeqaaOGaaGikaiabes8a0jaaiYcacaWG6bGaaGykaaaacaaI8bWa aSbaaSqaaiaadAhadaWgaaqaaiaaigdaaeqaaiaai2dacaWG2bWaaS baaeaacaaIYaaabeaacaaI9aGaamODamaaBaaabaGaaG4maaqabaGa aGypaiaaicdaaeqaaOGaaGypaiaadMgacaWGfbGaaG4waiaadMhaca aIOaGaamiDaiaaiYcacaWG6bGaaGykaiaadkgadaahaaWcbeqaaiaa bkcbaaGccaaIOaGaeqiXdqNaaGilaiaadQhacaaIPaGaaGyxaiaai6 caaaa@655C@

Таким образом, смешанные моментные функции может быть найдена из y ˜ (t,z, v 1 , v 2 , v 3 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadMhaaiaawoWaaiaaiI cacaWG0bGaaGilaiaadQhacaaISaGaamODamaaBaaaleaacaaIXaaa beaakiaaiYcacaWG2bWaaSbaaSqaaiaaikdaaeqaaOGaaGilaiaadA hadaWgaaWcbaGaaG4maaqabaGccaaIPaaaaa@3F7D@  с помощью вариационного дифференцирования.

Теорема 5. Пусть выполнены условия теоремы 2. Тогда

E[y(t,z) ε 1 (τ)]=i F ξ 1 δ p ψ( v 1 Iξχ( t 0 ,t)A, v 2 iχ( t 0 ,t), v 3 ) δ v 1 (τ) | v 1 = v 2 = v 3 =0 E[ y 0 (z)] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaG4waiaadMhacaaIOaGaam iDaiaaiYcacaWG6bGaaGykaiabew7aLnaaBaaaleaacaaIXaaabeaa kiaaiIcacqaHepaDcaaIPaGaaGyxaiaai2dacqGHsislcaWGPbGaam OramaaDaaaleaacqaH+oaEaeaacqGHsislcaaIXaaaaOWaaeWaaeaa daWcaaqaaiabes7aKnaaBaaaleaacaWGWbaabeaakiabeI8a5jaaiI cacaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaamysaiabgkHiTiabe67a 4jabeE8aJjaaiIcacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilai aadshacaaIPaGaamyqaiaaiYcacaWG2bWaaSbaaSqaaiaaikdaaeqa aOGaeyOeI0IaamyAaiabeE8aJjaaiIcacaWG0bWaaSbaaSqaaiaaic daaeqaaOGaaGilaiaadshacaaIPaGaaGilaiaadAhadaWgaaWcbaGa aG4maaqabaGccaaIPaaabaGaeqiTdqMaamODamaaBaaaleaacaaIXa aabeaakiaaiIcacqaHepaDcaaIPaaaaiaaiYhadaWgaaWcbaGaamOD amaaBaaabaGaaGymaaqabaGaaGypaiaadAhadaWgaaqaaiaaikdaae qaaiaai2dacaWG2bWaaSbaaeaacaaIZaaabeaacaaI9aGaaGimaaqa baaakiaawIcacaGLPaaacqGHxiIkcaWGfbGaaG4waiaadMhadaWgaa WcbaGaaGimaaqabaGccaaIOaGaamOEaiaaiMcacaaIDbGaeyOeI0ca aa@81E1@

t 0 t F ξ 1 F z δ p 2 ψ( v 1 Iξχ(s,t)A, v 2 iχ(s,t), v 3 ) δ v 1 (τ)δ v 3 (s,z) | v 1 = v 2 = v 3 =0 ds. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaWdXbqabSqaaiaadshada Wgaaqaaiaaicdaaeqaaaqaaiaadshaa0Gaey4kIipakiaadAeadaqh aaWcbaGaeqOVdGhabaGaeyOeI0IaaGymaaaakmaabmaabaGaamOram aaBaaaleaacaWG6baabeaakmaabmaabaWaaSaaaeaacqaH0oazdaqh aaWcbaGaamiCaaqaaiaaikdaaaGccqaHipqEcaaIOaGaamODamaaBa aaleaacaaIXaaabeaakiaadMeacqGHsislcqaH+oaEcqaHhpWycaaI OaGaam4CaiaaiYcacaWG0bGaaGykaiaadgeacaaISaGaamODamaaBa aaleaacaaIYaaabeaakiabgkHiTiaadMgacqaHhpWycaaIOaGaam4C aiaaiYcacaWG0bGaaGykaiaaiYcacaWG2bWaaSbaaSqaaiaaiodaae qaaOGaaGykaaqaaiabes7aKjaadAhadaWgaaWcbaGaaGymaaqabaGc caaIOaGaeqiXdqNaaGykaiabes7aKjaadAhadaWgaaWcbaGaaG4maa qabaGccaaIOaGaam4CaiaaiYcacaWG6bGaaGykaaaacaaI8bWaaSba aSqaaiaadAhadaWgaaqaaiaaigdaaeqaaiaai2dacaWG2bWaaSbaae aacaaIYaaabeaacaaI9aGaamODamaaBaaabaGaaG4maaqabaGaaGyp aiaaicdaaeqaaaGccaGLOaGaayzkaaaacaGLOaGaayzkaaGaamizai aadohacaaIUaaaaa@7BE2@                                                                                          (12)

Доказательство. Так как

E[y(t,z) ε 1 (τ)]=i δ p y ˜ (t,z, v 1 , v 2 , v 3 ) δ v 1 (τ) | v 1 = v 2 = v 3 =0 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaG4waiaadMhacaaIOaGaam iDaiaaiYcacaWG6bGaaGykaiabew7aLnaaBaaaleaacaaIXaaabeaa kiaaiIcacqaHepaDcaaIPaGaaGyxaiaai2dacqGHsislcaWGPbWaaS aaaeaacqaH0oazdaWgaaWcbaGaamiCaaqabaGcdaaiaaqaaiaadMha aiaawoWaaiaaiIcacaWG0bGaaGilaiaadQhacaaISaGaamODamaaBa aaleaacaaIXaaabeaakiaaiYcacaWG2bWaaSbaaSqaaiaaikdaaeqa aOGaaGilaiaadAhadaWgaaWcbaGaaG4maaqabaGccaaIPaaabaGaeq iTdqMaamODamaaBaaaleaacaaIXaaabeaakiaaiIcacqaHepaDcaaI PaaaaiaaiYhadaWgaaWcbaGaamODamaaBaaabaGaaGymaaqabaGaaG ypaiaadAhadaWgaaqaaiaaikdaaeqaaiaai2dacaWG2bWaaSbaaeaa caaIZaaabeaacaaI9aGaaGimaaqabaGccaaISaaaaa@63AC@

то справедливость формулы (12) можно легко установить, если вычислить вариационную производную от y ˜ (t,z, v 1 , v 2 , v 3 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadMhaaiaawoWaaiaaiI cacaWG0bGaaGilaiaadQhacaaISaGaamODamaaBaaaleaacaaIXaaa beaakiaaiYcacaWG2bWaaSbaaSqaaiaaikdaaeqaaOGaaGilaiaadA hadaWgaaWcbaGaaG4maaqabaGccaaIPaaaaa@3F7D@  по переменной v 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bWaaSbaaSqaaiaaigdaaeqaaa aa@33A3@ .

Теорема 6. Пусть выполнены условия теоремы 2. Тогда

E[y(t,z) ε 2 (τ)]=i F ξ 1 δ p ψ( v 1 Iξχ( t 0 ,t)A, v 2 iχ( t 0 ,t), v 3 ) δ v 2 (τ) | v 1 = v 2 = v 3 =0 E[ y 0 (z)] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaG4waiaadMhacaaIOaGaam iDaiaaiYcacaWG6bGaaGykaiabew7aLnaaBaaaleaacaaIYaaabeaa kiaaiIcacqaHepaDcaaIPaGaaGyxaiaai2dacqGHsislcaWGPbGaam OramaaDaaaleaacqaH+oaEaeaacqGHsislcaaIXaaaaOWaaeWaaeaa daWcaaqaaiabes7aKnaaBaaaleaacaWGWbaabeaakiabeI8a5jaaiI cacaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaamysaiabgkHiTiabe67a 4jabeE8aJjaaiIcacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilai aadshacaaIPaGaamyqaiaaiYcacaWG2bWaaSbaaSqaaiaaikdaaeqa aOGaeyOeI0IaamyAaiabeE8aJjaaiIcacaWG0bWaaSbaaSqaaiaaic daaeqaaOGaaGilaiaadshacaaIPaGaaGilaiaadAhadaWgaaWcbaGa aG4maaqabaGccaaIPaaabaGaeqiTdqMaamODamaaBaaaleaacaaIYa aabeaakiaaiIcacqaHepaDcaaIPaaaaiaaiYhadaWgaaWcbaGaamOD amaaBaaabaGaaGymaaqabaGaaGypaiaadAhadaWgaaqaaiaaikdaae qaaiaai2dacaWG2bWaaSbaaeaacaaIZaaabeaacaaI9aGaaGimaaqa baaakiaawIcacaGLPaaacqGHxiIkcaWGfbGaaG4waiaadMhadaWgaa WcbaGaaGimaaqabaGccaaIOaGaamOEaiaaiMcacaaIDbGaeyOeI0ca aa@81E3@

t 0 t F ξ 1 F z δ p 2 ψ( v 1 Iξχ(s,t)A, v 2 iχ(s,t), v 3 ) δ v 2 (τ)δ v 3 (s,z) | v 1 = v 2 = v 3 =0 ds. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaWdXbqabSqaaiaadshada Wgaaqaaiaaicdaaeqaaaqaaiaadshaa0Gaey4kIipakiaadAeadaqh aaWcbaGaeqOVdGhabaGaeyOeI0IaaGymaaaakmaabmaabaGaamOram aaBaaaleaacaWG6baabeaakmaabmaabaWaaSaaaeaacqaH0oazdaqh aaWcbaGaamiCaaqaaiaaikdaaaGccqaHipqEcaaIOaGaamODamaaBa aaleaacaaIXaaabeaakiaadMeacqGHsislcqaH+oaEcqaHhpWycaaI OaGaam4CaiaaiYcacaWG0bGaaGykaiaadgeacaaISaGaamODamaaBa aaleaacaaIYaaabeaakiabgkHiTiaadMgacqaHhpWycaaIOaGaam4C aiaaiYcacaWG0bGaaGykaiaaiYcacaWG2bWaaSbaaSqaaiaaiodaae qaaOGaaGykaaqaaiabes7aKjaadAhadaWgaaWcbaGaaGOmaaqabaGc caaIOaGaeqiXdqNaaGykaiabes7aKjaadAhadaWgaaWcbaGaaG4maa qabaGccaaIOaGaam4CaiaaiYcacaWG6bGaaGykaaaacaaI8bWaaSba aSqaaiaadAhadaWgaaqaaiaaigdaaeqaaiaai2dacaWG2bWaaSbaae aacaaIYaaabeaacaaI9aGaamODamaaBaaabaGaaG4maaqabaGaaGyp aiaaicdaaeqaaaGccaGLOaGaayzkaaaacaGLOaGaayzkaaGaamizai aadohacaaIUaaaaa@7BE3@                                                                                           (13)

Теорема 7. Пусть выполнены условия теоремы 2. Тогда

E[y(t,z) b Т (τ,z)]=i F ξ 1 δ p ψ( v 1 Iξχ( t 0 ,t)A, v 2 iχ( t 0 ,t), v 3 ) δ v 3 (τ,z) | v 1 = v 2 = v 3 =0 E[ y 0 Т (z)] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaG4waiaadMhacaaIOaGaam iDaiaaiYcacaWG6bGaaGykaiaadkgadaahaaWcbeqaaiaabkcbaaGc caaIOaGaeqiXdqNaaGilaiaadQhacaaIPaGaaGyxaiaai2dacqGHsi slcaWGPbGaamOramaaDaaaleaacqaH+oaEaeaacqGHsislcaaIXaaa aOWaaeWaaeaadaWcaaqaaiabes7aKnaaBaaaleaacaWGWbaabeaaki abeI8a5jaaiIcacaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaamysaiab gkHiTiabe67a4jabeE8aJjaaiIcacaWG0bWaaSbaaSqaaiaaicdaae qaaOGaaGilaiaadshacaaIPaGaamyqaiaaiYcacaWG2bWaaSbaaSqa aiaaikdaaeqaaOGaeyOeI0IaamyAaiabeE8aJjaaiIcacaWG0bWaaS baaSqaaiaaicdaaeqaaOGaaGilaiaadshacaaIPaGaaGilaiaadAha daWgaaWcbaGaaG4maaqabaGccaaIPaaabaGaeqiTdqMaamODamaaBa aaleaacaaIZaaabeaakiaaiIcacqaHepaDcaaISaGaamOEaiaaiMca aaGaaGiFamaaBaaaleaacaWG2bWaaSbaaeaacaaIXaaabeaacaaI9a GaamODamaaBaaabaGaaGOmaaqabaGaaGypaiaadAhadaWgaaqaaiaa iodaaeqaaiaai2dacaaIWaaabeaaaOGaayjkaiaawMcaaiabgEHiQi aadweacaaIBbGaamyEamaaDaaaleaacaaIWaaabaGaaeOieaaakiaa iIcacaWG6bGaaGykaiaai2facqGHsislaaa@8526@

t 0 t F ξ 1 F z δ p 2 ψ( v 1 Iξχ(s,t)A, v 2 iχ(s,t), v 3 ) δ v 3 (τ,z)δ v 3 (s,z) | v 1 = v 2 = v 3 =0 ds. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaWdXbqabSqaaiaadshada Wgaaqaaiaaicdaaeqaaaqaaiaadshaa0Gaey4kIipakiaadAeadaqh aaWcbaGaeqOVdGhabaGaeyOeI0IaaGymaaaakmaabmaabaGaamOram aaBaaaleaacaWG6baabeaakmaabmaabaWaaSaaaeaacqaH0oazdaqh aaWcbaGaamiCaaqaaiaaikdaaaGccqaHipqEcaaIOaGaamODamaaBa aaleaacaaIXaaabeaakiaadMeacqGHsislcqaH+oaEcqaHhpWycaaI OaGaam4CaiaaiYcacaWG0bGaaGykaiaadgeacaaISaGaamODamaaBa aaleaacaaIYaaabeaakiabgkHiTiaadMgacqaHhpWycaaIOaGaam4C aiaaiYcacaWG0bGaaGykaiaaiYcacaWG2bWaaSbaaSqaaiaaiodaae qaaOGaaGykaaqaaiabes7aKjaadAhadaWgaaWcbaGaaG4maaqabaGc caaIOaGaeqiXdqNaaGilaiaadQhacaaIPaGaeqiTdqMaamODamaaBa aaleaacaaIZaaabeaakiaaiIcacaWGZbGaaGilaiaadQhacaaIPaaa aiaaiYhadaWgaaWcbaGaamODamaaBaaabaGaaGymaaqabaGaaGypai aadAhadaWgaaqaaiaaikdaaeqaaiaai2dacaWG2bWaaSbaaeaacaaI ZaaabeaacaaI9aGaaGimaaqabaaakiaawIcacaGLPaaaaiaawIcaca GLPaaacaWGKbGaam4Caiaai6caaaa@7D99@                                                                                            (14)

4. Вторая моментная функция.

Умножим уравнение (1) на y Т (τ,z)w MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5bWaaWbaaSqabeaacaqGIqaaaO GaaGikaiabes8a0jaaiYcacaWG6bGaaGykaiaadEhaaaa@397A@  и возьмем математическое ожидание полученного равенства

E y(t,z) t y Т (τ,z)w = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbWaamWaaeaadaWcaaqaaiabgk Gi2kaadMhacaaIOaGaamiDaiaaiYcacaWG6bGaaGykaaqaaiabgkGi 2kaadshaaaGaamyEamaaCaaaleqabaGaaeOieaaakiaaiIcacqaHep aDcaaISaGaamOEaiaaiMcacaWG3baacaGLBbGaayzxaaGaaGypaaaa @45E3@

=E ε 1 (t)A y(t,z) z y Т (τ,z)w +E[ ε 2 (t)y(t,z) y Т (τ,z)w]+E[b(t,z) y Т (τ,z)w]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaamyramaadmaabaGaeqyTdu 2aaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadshacaaIPaGaamyqamaa laaabaGaeyOaIyRaamyEaiaaiIcacaWG0bGaaGilaiaadQhacaaIPa aabaGaeyOaIyRaamOEaaaacaWG5bWaaWbaaSqabeaacaqGIqaaaOGa aGikaiabes8a0jaaiYcacaWG6bGaaGykaiaadEhaaiaawUfacaGLDb aacqGHRaWkcaWGfbGaaG4waiabew7aLnaaBaaaleaacaaIYaaabeaa kiaaiIcacaWG0bGaaGykaiaadMhacaaIOaGaamiDaiaaiYcacaWG6b GaaGykaiaadMhadaahaaWcbeqaaiaabkcbaaGccaaIOaGaeqiXdqNa aGilaiaadQhacaaIPaGaam4Daiaai2facqGHRaWkcaWGfbGaaG4wai aadkgacaaIOaGaamiDaiaaiYcacaWG6bGaaGykaiaadMhadaahaaWc beqaaiaabkcbaaGccaaIOaGaeqiXdqNaaGilaiaadQhacaaIPaGaam 4Daiaai2facaaIUaaaaa@71C1@                                                                                                              (15)

Введем обозначение

ζ(t,τ,z, v 1 , v 2 , v 3 )=E[y(t,z) y Т (τ,z)w]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH2oGEcaaIOaGaamiDaiaaiYcacq aHepaDcaaISaGaamOEaiaaiYcacaWG2bWaaSbaaSqaaiaaigdaaeqa aOGaaGilaiaadAhadaWgaaWcbaGaaGOmaaqabaGccaaISaGaamODam aaBaaaleaacaaIZaaabeaakiaaiMcacaaI9aGaamyraiaaiUfacaWG 5bGaaGikaiaadshacaaISaGaamOEaiaaiMcacaWG5bWaaWbaaSqabe aacaqGIqaaaOGaaGikaiabes8a0jaaiYcacaWG6bGaaGykaiaadEha caaIDbGaaGOlaaaa@52D4@

Уравнение (15) (формально) можно записать с помощью ζ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH2oGEaaa@337E@  в виде

ζ(t,τ,z, v 1 , v 2 , v 3 ) t = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2kabeA7a6jaaiI cacaWG0bGaaGilaiabes8a0jaaiYcacaWG6bGaaGilaiaadAhadaWg aaWcbaGaaGymaaqabaGccaaISaGaamODamaaBaaaleaacaaIYaaabe aakiaaiYcacaWG2bWaaSbaaSqaaiaaiodaaeqaaOGaaGykaaqaaiab gkGi2kaadshaaaGaaGypaaaa@4691@

=iA δ p δ v 1 (t) ζ(t,τ,z, v 1 , v 2 , v 3 ) z i δ p δ v 2 (t) ζ(t,τ,z, v 1 , v 2 , v 3 )i δ p y ˜ (τ,z, v 1 , v 2 , v 3 ) δ v 3 (t,z) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaeyOeI0IaamyAaiaadgeada Wcaaqaaiabes7aKnaaBaaaleaacaWGWbaabeaaaOqaaiabes7aKjaa dAhadaWgaaWcbaGaaGymaaqabaGccaaIOaGaamiDaiaaiMcaaaWaaS aaaeaacqGHciITcqaH2oGEcaaIOaGaamiDaiaaiYcacqaHepaDcaaI SaGaamOEaiaaiYcacaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaaGilai aadAhadaWgaaWcbaGaaGOmaaqabaGccaaISaGaamODamaaBaaaleaa caaIZaaabeaakiaaiMcaaeaacqGHciITcaWG6baaaiabgkHiTiaadM gadaWcaaqaaiabes7aKnaaBaaaleaacaWGWbaabeaaaOqaaiabes7a KjaadAhadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiDaiaaiMcaaa GaeqOTdONaaGikaiaadshacaaISaGaeqiXdqNaaGilaiaadQhacaaI SaGaamODamaaBaaaleaacaaIXaaabeaakiaaiYcacaWG2bWaaSbaaS qaaiaaikdaaeqaaOGaaGilaiaadAhadaWgaaWcbaGaaG4maaqabaGc caaIPaGaeyOeI0IaamyAamaalaaabaGaeqiTdq2aaSbaaSqaaiaadc haaeqaaOWaaacaaeaacaWG5baacaGLdmaacaaIOaGaeqiXdqNaaGil aiaadQhacaaISaGaamODamaaBaaaleaacaaIXaaabeaakiaaiYcaca WG2bWaaSbaaSqaaiaaikdaaeqaaOGaaGilaiaadAhadaWgaaWcbaGa aG4maaqabaGccaaIPaaabaGaeqiTdqMaamODamaaBaaaleaacaaIZa aabeaakiaaiIcacaWG0bGaaGilaiaadQhacaaIPaaaaiaai6caaaa@8887@                                                                             (16)

Умножим начальные условие (2) на y Т ( t 0 ,z)w MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5bWaaWbaaSqabeaacaqGIqaaaO GaaGikaiaadshadaWgaaWcbaGaaGimaaqabaGccaaISaGaamOEaiaa iMcacaWG3baaaa@399E@  и вычислим математическое ожидание полученного равенства, находим

E[y( t 0 ,z) y Т ( t 0 ,z)w]=E[ y 0 (z) y 0 Т (z)w]=E[ y 0 (z) y 0 Т ]E[w]=E[ y 0 (z) y 0 Т (z)]ψ( v 1 , v 2 , v 3 ); MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaG4waiaadMhacaaIOaGaam iDamaaBaaaleaacaaIWaaabeaakiaaiYcacaWG6bGaaGykaiaadMha daahaaWcbeqaaiaabkcbaaGccaaIOaGaamiDamaaBaaaleaacaaIWa aabeaakiaaiYcacaWG6bGaaGykaiaadEhacaaIDbGaaGypaiaadwea caaIBbGaamyEamaaBaaaleaacaaIWaaabeaakiaaiIcacaWG6bGaaG ykaiaadMhadaqhaaWcbaGaaGimaaqaaiaabkcbaaGccaaIOaGaamOE aiaaiMcacaWG3bGaaGyxaiaai2dacaWGfbGaaG4waiaadMhadaWgaa WcbaGaaGimaaqabaGccaaIOaGaamOEaiaaiMcacaWG5bWaa0baaSqa aiaaicdaaeaacaqGIqaaaOGaaGyxaiaadweacaaIBbGaam4Daiaai2 facaaI9aGaamyraiaaiUfacaWG5bWaaSbaaSqaaiaaicdaaeqaaOGa aGikaiaadQhacaaIPaGaamyEamaaDaaaleaacaaIWaaabaGaaeOiea aakiaaiIcacaWG6bGaaGykaiaai2facqaHipqEcaaIOaGaamODamaa BaaaleaacaaIXaaabeaakiaaiYcacaWG2bWaaSbaaSqaaiaaikdaae qaaOGaaGilaiaadAhadaWgaaWcbaGaaG4maaqabaGccaaIPaGaaG4o aaaa@758B@

предполагаем, что случайный процесс y 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5bWaaSbaaSqaaiaaicdaaeqaaa aa@33A5@  не зависит от случайных процессов ε 1 , ε 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaISaGaeqyTdu2aaSbaaSqaaiaaikdaaeqaaaaa@379E@  и b MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbaaaa@32A8@ . Перепишем последнее равенство в виде

ζ( t 0 , t 0 ,z, v 1 , v 2 , v 3 )=E[ y 0 (z) y 0 Т (z)]ψ( v 1 , v 2 , v 3 ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH2oGEcaaIOaGaamiDamaaBaaale aacaaIWaaabeaakiaaiYcacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGa aGilaiaadQhacaaISaGaamODamaaBaaaleaacaaIXaaabeaakiaaiY cacaWG2bWaaSbaaSqaaiaaikdaaeqaaOGaaGilaiaadAhadaWgaaWc baGaaG4maaqabaGccaaIPaGaaGypaiaadweacaaIBbGaamyEamaaBa aaleaacaaIWaaabeaakiaaiIcacaWG6bGaaGykaiaadMhadaqhaaWc baGaaGimaaqaaiaabkcbaaGccaaIOaGaamOEaiaaiMcacaaIDbGaeq iYdKNaaGikaiaadAhadaWgaaWcbaGaaGymaaqabaGccaaISaGaamOD amaaBaaaleaacaaIYaaabeaakiaaiYcacaWG2bWaaSbaaSqaaiaaio daaeqaaOGaaGykaiaai6caaaa@5AD2@                                                                                                                          (17)

Определение 4. Второй моментной функцией E[y(t,z) y Т (τ,z)] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaG4waiaadMhacaaIOaGaam iDaiaaiYcacaWG6bGaaGykaiaadMhadaahaaWcbeqaaiaabkcbaaGc caaIOaGaeqiXdqNaaGilaiaadQhacaaIPaGaaGyxaaaa@4025@  решения задачи Коши (1), (2) называется величина ζ(t,τ,z,0,0,0) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH2oGEcaaIOaGaamiDaiaaiYcacq aHepaDcaaISaGaamOEaiaaiYcacaaIWaGaaGilaiaaicdacaaISaGa aGimaiaaiMcaaaa@3E5C@ , где ζ(t,τ,z, v 1 , v 2 , v 3 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH2oGEcaaIOaGaamiDaiaaiYcacq aHepaDcaaISaGaamOEaiaaiYcacaWG2bWaaSbaaSqaaiaaigdaaeqa aOGaaGilaiaadAhadaWgaaWcbaGaaGOmaaqabaGccaaISaGaamODam aaBaaaleaacaaIZaaabeaakiaaiMcaaaa@41F5@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcLbuaqa aaaaaaaaWdbiaa=rbiaaa@3787@  симметричное по переменным t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32BA@ , τ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDaaa@3386@  решение уравненияЁ(16), удовлетворяющее условию

ζ( t 0 ,τ,z, v 1 , v 2 , v 3 )=E[y( t 0 ,z) y Т (τ,z)w] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH2oGEcaaIOaGaamiDamaaBaaale aacaaIWaaabeaakiaaiYcacqaHepaDcaaISaGaamOEaiaaiYcacaWG 2bWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaadAhadaWgaaWcbaGaaG OmaaqabaGccaaISaGaamODamaaBaaaleaacaaIZaaabeaakiaaiMca caaI9aGaamyraiaaiUfacaWG5bGaaGikaiaadshadaWgaaWcbaGaaG imaaqabaGccaaISaGaamOEaiaaiMcacaWG5bWaaWbaaSqabeaacaqG IqaaaOGaaGikaiabes8a0jaaiYcacaWG6bGaaGykaiaadEhacaaIDb aaaa@53FC@

в некоторой окрестности точки v 1 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaaicdaaaa@352E@ , v 2 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bWaaSbaaSqaaiaaikdaaeqaaO GaaGypaiaaicdaaaa@352F@ , v 3 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bWaaSbaaSqaaiaaiodaaeqaaO GaaGypaiaaicdaaaa@3530@ .

Запишем уравнение (16) при τ= t 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDcaaI9aGaamiDamaaBaaale aacaaIWaaabeaaaaa@362C@ :

ζ(t, t 0 ,z, v 1 , v 2 , v 3 ) t = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2kabeA7a6jaaiI cacaWG0bGaaGilaiaadshadaWgaaWcbaGaaGimaaqabaGccaaISaGa amOEaiaaiYcacaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaadA hadaWgaaWcbaGaaGOmaaqabaGccaaISaGaamODamaaBaaaleaacaaI ZaaabeaakiaaiMcaaeaacqGHciITcaWG0baaaiaai2daaaa@46B5@

=iA δ p δ v 1 (t) ζ(t, t 0 ,z, v 1 , v 2 , v 3 ) z i δ p δ v 2 (t) ζ(t, t 0 ,z, v 1 , v 2 , v 3 )i δ p y ˜ ( t 0 ,z, v 1 , v 2 , v 3 ) δ v 3 (t,z) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaeyOeI0IaamyAaiaadgeada Wcaaqaaiabes7aKnaaBaaaleaacaWGWbaabeaaaOqaaiabes7aKjaa dAhadaWgaaWcbaGaaGymaaqabaGccaaIOaGaamiDaiaaiMcaaaWaaS aaaeaacqGHciITcqaH2oGEcaaIOaGaamiDaiaaiYcacaWG0bWaaSba aSqaaiaaicdaaeqaaOGaaGilaiaadQhacaaISaGaamODamaaBaaale aacaaIXaaabeaakiaaiYcacaWG2bWaaSbaaSqaaiaaikdaaeqaaOGa aGilaiaadAhadaWgaaWcbaGaaG4maaqabaGccaaIPaaabaGaeyOaIy RaamOEaaaacqGHsislcaWGPbWaaSaaaeaacqaH0oazdaWgaaWcbaGa amiCaaqabaaakeaacqaH0oazcaWG2bWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiaadshacaaIPaaaaiabeA7a6jaaiIcacaWG0bGaaGilaiaa dshadaWgaaWcbaGaaGimaaqabaGccaaISaGaamOEaiaaiYcacaWG2b WaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaadAhadaWgaaWcbaGaaGOm aaqabaGccaaISaGaamODamaaBaaaleaacaaIZaaabeaakiaaiMcacq GHsislcaWGPbWaaSaaaeaacqaH0oazdaWgaaWcbaGaamiCaaqabaGc daaiaaqaaiaadMhaaiaawoWaaiaaiIcacaWG0bWaaSbaaSqaaiaaic daaeqaaOGaaGilaiaadQhacaaISaGaamODamaaBaaaleaacaaIXaaa beaakiaaiYcacaWG2bWaaSbaaSqaaiaaikdaaeqaaOGaaGilaiaadA hadaWgaaWcbaGaaG4maaqabaGccaaIPaaabaGaeqiTdqMaamODamaa BaaaleaacaaIZaaabeaakiaaiIcacaWG0bGaaGilaiaadQhacaaIPa aaaiaai6caaaa@88F3@                                                                (18)

Задача (18), (17) имеет вид задачи (4), (5). Найдем её решение по формуле (10):

ζ(t, t 0 ,z, v 1 , v 2 , v 3 )= F ξ 1 ψ( v 1 Iξχ( t 0 ,t)A, v 2 iχ( t 0 ,t), v 3 )E[ y 0 (z) y 0 Т (z)] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH2oGEcaaIOaGaamiDaiaaiYcaca WG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiaadQhacaaISaGaamOD amaaBaaaleaacaaIXaaabeaakiaaiYcacaWG2bWaaSbaaSqaaiaaik daaeqaaOGaaGilaiaadAhadaWgaaWcbaGaaG4maaqabaGccaaIPaGa aGypaiaadAeadaqhaaWcbaGaeqOVdGhabaGaeyOeI0IaaGymaaaaki abeI8a5jaaiIcacaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaamysaiab gkHiTiabe67a4jabeE8aJjaaiIcacaWG0bWaaSbaaSqaaiaaicdaae qaaOGaaGilaiaadshacaaIPaGaamyqaiaaiYcacaWG2bWaaSbaaSqa aiaaikdaaeqaaOGaeyOeI0IaamyAaiabeE8aJjaaiIcacaWG0bWaaS baaSqaaiaaicdaaeqaaOGaaGilaiaadshacaaIPaGaaGilaiaadAha daWgaaWcbaGaaG4maaqabaGccaaIPaGaey4fIOIaamyraiaaiUfaca WG5bWaaSbaaSqaaiaaicdaaeqaaOGaaGikaiaadQhacaaIPaGaamyE amaaDaaaleaacaaIWaaabaGaaeOieaaakiaaiIcacaWG6bGaaGykai aai2facqGHsislaaa@72FA@

i t 0 t F ξ 1 F z δ p y ˜ ( t 0 ,z, v 1 Iξχ(s,t)A, v 2 iχ(s,t), v 3 ) δ v 3 (s,z) ds. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGPbWaa8qCaeqaleaaca WG0bWaaSbaaeaacaaIWaaabeaaaeaacaWG0baaniabgUIiYdGccaWG gbWaa0baaSqaaiabe67a4bqaaiabgkHiTiaaigdaaaGcdaqadaqaai aadAeadaWgaaWcbaGaamOEaaqabaGcdaqadaqaamaalaaabaGaeqiT dq2aaSbaaSqaaiaadchaaeqaaOWaaacaaeaacaWG5baacaGLdmaaca aIOaGaamiDamaaBaaaleaacaaIWaaabeaakiaaiYcacaWG6bGaaGil aiaadAhadaWgaaWcbaGaaGymaaqabaGccaWGjbGaeyOeI0IaeqOVdG Naeq4XdmMaaGikaiaadohacaaISaGaamiDaiaaiMcacaWGbbGaaGil aiaadAhadaWgaaWcbaGaaGOmaaqabaGccqGHsislcaWGPbGaeq4Xdm MaaGikaiaadohacaaISaGaamiDaiaaiMcacaaISaGaamODamaaBaaa leaacaaIZaaabeaakiaaiMcaaeaacqaH0oazcaWG2bWaaSbaaSqaai aaiodaaeqaaOGaaGikaiaadohacaaISaGaamOEaiaaiMcaaaaacaGL OaGaayzkaaaacaGLOaGaayzkaaGaamizaiaadohacaaIUaaaaa@6FCB@

Так как ζ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH2oGEaaa@337E@ симметрична по двум первым переменным, то

ζ( t 0 ,τ,z, v 1 , v 2 , v 3 )= F ξ 1 ψ( v 1 Iξχ( t 0 ,τ)A, v 2 iχ( t 0 ,τ), v 3 )E[ y 0 (z) y 0 Т (z)] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH2oGEcaaIOaGaamiDamaaBaaale aacaaIWaaabeaakiaaiYcacqaHepaDcaaISaGaamOEaiaaiYcacaWG 2bWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaadAhadaWgaaWcbaGaaG OmaaqabaGccaaISaGaamODamaaBaaaleaacaaIZaaabeaakiaaiMca caaI9aGaamOramaaDaaaleaacqaH+oaEaeaacqGHsislcaaIXaaaaO GaeqiYdKNaaGikaiaadAhadaWgaaWcbaGaaGymaaqabaGccaWGjbGa eyOeI0IaeqOVdGNaeq4XdmMaaGikaiaadshadaWgaaWcbaGaaGimaa qabaGccaaISaGaeqiXdqNaaGykaiaadgeacaaISaGaamODamaaBaaa leaacaaIYaaabeaakiabgkHiTiaadMgacqaHhpWycaaIOaGaamiDam aaBaaaleaacaaIWaaabeaakiaaiYcacqaHepaDcaaIPaGaaGilaiaa dAhadaWgaaWcbaGaaG4maaqabaGccaaIPaGaey4fIOIaamyraiaaiU facaWG5bWaaSbaaSqaaiaaicdaaeqaaOGaaGikaiaadQhacaaIPaGa amyEamaaDaaaleaacaaIWaaabaGaaeOieaaakiaaiIcacaWG6bGaaG ykaiaai2facqGHsislaaa@755E@

i t 0 τ F ξ 1 F z δ p y ˜ ( t 0 ,z, v 1 Iξχ(s,τ)A, v 2 iχ(s,τ), v 3 ) δ v 3 (s,z) ds. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGPbWaa8qCaeqaleaaca WG0bWaaSbaaeaacaaIWaaabeaaaeaacqaHepaDa0Gaey4kIipakiaa dAeadaqhaaWcbaGaeqOVdGhabaGaeyOeI0IaaGymaaaakmaabmaaba GaamOramaaBaaaleaacaWG6baabeaakmaabmaabaWaaSaaaeaacqaH 0oazdaWgaaWcbaGaamiCaaqabaGcdaaiaaqaaiaadMhaaiaawoWaai aaiIcacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiaadQhacaaI SaGaamODamaaBaaaleaacaaIXaaabeaakiaadMeacqGHsislcqaH+o aEcqaHhpWycaaIOaGaam4CaiaaiYcacqaHepaDcaaIPaGaamyqaiaa iYcacaWG2bWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamyAaiabeE 8aJjaaiIcacaWGZbGaaGilaiabes8a0jaaiMcacaaISaGaamODamaa BaaaleaacaaIZaaabeaakiaaiMcaaeaacqaH0oazcaWG2bWaaSbaaS qaaiaaiodaaeqaaOGaaGikaiaadohacaaISaGaamOEaiaaiMcaaaaa caGLOaGaayzkaaaacaGLOaGaayzkaaGaamizaiaadohacaaIUaaaaa@722F@                                                                                              (19)

Равенство (19) является начальным условием для уравнения (16). Задача (16), (19) имеет вид задачи (4), (5). Найдем её решение по формуле (10):

ζ(t,τ,z, v 1 , v 2 , v 3 )= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH2oGEcaaIOaGaamiDaiaaiYcacq aHepaDcaaISaGaamOEaiaaiYcacaWG2bWaaSbaaSqaaiaaigdaaeqa aOGaaGilaiaadAhadaWgaaWcbaGaaGOmaaqabaGccaaISaGaamODam aaBaaaleaacaaIZaaabeaakiaaiMcacaaI9aaaaa@42BC@

= F ξ 1 ψ( v 1 Iξχ( t 0 ,t)Aξχ( t 0 ,τ)A, v 2 iχ( t 0 ,t)iχ( t 0 ,τ), v 3 )E[ y 0 (z) y 0 Т (z)] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaamOramaaDaaaleaacqaH+o aEaeaacqGHsislcaaIXaaaaOGaeqiYdKNaaGikaiaadAhadaWgaaWc baGaaGymaaqabaGccaWGjbGaeyOeI0IaeqOVdGNaeq4XdmMaaGikai aadshadaWgaaWcbaGaaGimaaqabaGccaaISaGaamiDaiaaiMcacaWG bbGaeyOeI0IaeqOVdGNaeq4XdmMaaGikaiaadshadaWgaaWcbaGaaG imaaqabaGccaaISaGaeqiXdqNaaGykaiaadgeacaaISaGaamODamaa BaaaleaacaaIYaaabeaakiabgkHiTiaadMgacqaHhpWycaaIOaGaam iDamaaBaaaleaacaaIWaaabeaakiaaiYcacaWG0bGaaGykaiabgkHi TiaadMgacqaHhpWycaaIOaGaamiDamaaBaaaleaacaaIWaaabeaaki aaiYcacqaHepaDcaaIPaGaaGilaiaadAhadaWgaaWcbaGaaG4maaqa baGccaaIPaGaey4fIOIaamyraiaaiUfacaWG5bWaaSbaaSqaaiaaic daaeqaaOGaaGikaiaadQhacaaIPaGaamyEamaaDaaaleaacaaIWaaa baGaaeOieaaakiaaiIcacaWG6bGaaGykaiaai2facqGHsislaaa@76F3@

i t 0 τ F ξ 1 F z δ p y ˜ ( t 0 ,z, v 1 Iξχ(t, t 0 )Aξχ(s,τ)A, v 2 iχ(t, t 0 )iχ(s,τ), v 3 ) δ v 3 (s,z) ds MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGPbWaa8qCaeqaleaaca WG0bWaaSbaaeaacaaIWaaabeaaaeaacqaHepaDa0Gaey4kIipakiaa dAeadaqhaaWcbaGaeqOVdGhabaGaeyOeI0IaaGymaaaakmaabmaaba GaamOramaaBaaaleaacaWG6baabeaakmaabmaabaWaaSaaaeaacqaH 0oazdaWgaaWcbaGaamiCaaqabaGcdaaiaaqaaiaadMhaaiaawoWaai aaiIcacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiaadQhacaaI SaGaamODamaaBaaaleaacaaIXaaabeaakiaadMeacqGHsislcqaH+o aEcqaHhpWycaaIOaGaamiDaiaaiYcacaWG0bWaaSbaaSqaaiaaicda aeqaaOGaaGykaiaadgeacqGHsislcqaH+oaEcqaHhpWycaaIOaGaam 4CaiaaiYcacqaHepaDcaaIPaGaamyqaiaaiYcacaWG2bWaaSbaaSqa aiaaikdaaeqaaOGaeyOeI0IaamyAaiabeE8aJjaaiIcacaWG0bGaaG ilaiaadshadaWgaaWcbaGaaGimaaqabaGccaaIPaGaeyOeI0IaamyA aiabeE8aJjaaiIcacaWGZbGaaGilaiabes8a0jaaiMcacaaISaGaam ODamaaBaaaleaacaaIZaaabeaakiaaiMcaaeaacqaH0oazcaWG2bWa aSbaaSqaaiaaiodaaeqaaOGaaGikaiaadohacaaISaGaamOEaiaaiM caaaaacaGLOaGaayzkaaaacaGLOaGaayzkaaGaamizaiaadohacqGH sislaaa@851D@

i t 0 t F ξ 1 F z δ p y ˜ (τ,z, v 1 Iξχ(s,t)A, v 2 iχ(s,t), v 3 ) δ v 3 (s,z) ds. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGPbWaa8qCaeqaleaaca WG0bWaaSbaaeaacaaIWaaabeaaaeaacaWG0baaniabgUIiYdGccaWG gbWaa0baaSqaaiabe67a4bqaaiabgkHiTiaaigdaaaGcdaqadaqaai aadAeadaWgaaWcbaGaamOEaaqabaGcdaqadaqaamaalaaabaGaeqiT dq2aaSbaaSqaaiaadchaaeqaaOWaaacaaeaacaWG5baacaGLdmaaca aIOaGaeqiXdqNaaGilaiaadQhacaaISaGaamODamaaBaaaleaacaaI XaaabeaakiaadMeacqGHsislcqaH+oaEcqaHhpWycaaIOaGaam4Cai aaiYcacaWG0bGaaGykaiaadgeacaaISaGaamODamaaBaaaleaacaaI YaaabeaakiabgkHiTiaadMgacqaHhpWycaaIOaGaam4CaiaaiYcaca WG0bGaaGykaiaaiYcacaWG2bWaaSbaaSqaaiaaiodaaeqaaOGaaGyk aaqaaiabes7aKjaadAhadaWgaaWcbaGaaG4maaqabaGccaaIOaGaam 4CaiaaiYcacaWG6bGaaGykaaaaaiaawIcacaGLPaaaaiaawIcacaGL PaaacaWGKbGaam4Caiaai6caaaa@6FA7@                                                                                                (20)

Подставив (10) в (20), получим окончательное представление для решения задачи (16), (19):

ζ(t,τ,z, v 1 , v 2 , v 3 )= F ξ 1 ψ( v 1 Iξχ( t 0 ,t)Aξχ( t 0 ,τ)A, v 2 iχ( t 0 ,t)iχ( t 0 ,τ), v 3 )E[ y 0 (z) y 0 Т (z)] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH2oGEcaaIOaGaamiDaiaaiYcacq aHepaDcaaISaGaamOEaiaaiYcacaWG2bWaaSbaaSqaaiaaigdaaeqa aOGaaGilaiaadAhadaWgaaWcbaGaaGOmaaqabaGccaaISaGaamODam aaBaaaleaacaaIZaaabeaakiaaiMcacaaI9aGaamOramaaDaaaleaa cqaH+oaEaeaacqGHsislcaaIXaaaaOGaeqiYdKNaaGikaiaadAhada WgaaWcbaGaaGymaaqabaGccaWGjbGaeyOeI0IaeqOVdGNaeq4XdmMa aGikaiaadshadaWgaaWcbaGaaGimaaqabaGccaaISaGaamiDaiaaiM cacaWGbbGaeyOeI0IaeqOVdGNaeq4XdmMaaGikaiaadshadaWgaaWc baGaaGimaaqabaGccaaISaGaeqiXdqNaaGykaiaadgeacaaISaGaam ODamaaBaaaleaacaaIYaaabeaakiabgkHiTiaadMgacqaHhpWycaaI OaGaamiDamaaBaaaleaacaaIWaaabeaakiaaiYcacaWG0bGaaGykai abgkHiTiaadMgacqaHhpWycaaIOaGaamiDamaaBaaaleaacaaIWaaa beaakiaaiYcacqaHepaDcaaIPaGaaGilaiaadAhadaWgaaWcbaGaaG 4maaqabaGccaaIPaGaey4fIOIaamyraiaaiUfacaWG5bWaaSbaaSqa aiaaicdaaeqaaOGaaGikaiaadQhacaaIPaGaamyEamaaDaaaleaaca aIWaaabaGaaeOieaaakiaaiIcacaWG6bGaaGykaiaai2facqGHsisl aaa@8727@

i t 0 τ F ξ 1 ( F z ( δ p δ v 3 (s,z) { F ξ 1 ψ( v 1 Iξχ( t 0 ,t)Aξχ(s,τ)A, v 2 iχ( t 0 ,t)iχ(s,τ), v 3 )E[ y 0 (z)]}))ds MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGPbWaa8qCaeqaleaaca WG0bWaaSbaaeaacaaIWaaabeaaaeaacqaHepaDa0Gaey4kIipakiaa dAeadaqhaaWcbaGaeqOVdGhabaGaeyOeI0IaaGymaaaakiaaiIcaca WGgbWaaSbaaSqaaiaadQhaaeqaaOGaaGikamaalaaabaGaeqiTdq2a aSbaaSqaaiaadchaaeqaaaGcbaGaeqiTdqMaamODamaaBaaaleaaca aIZaaabeaakiaaiIcacaWGZbGaaGilaiaadQhacaaIPaaaaiaaiUha caWGgbWaa0baaSqaaiabe67a4bqaaiabgkHiTiaaigdaaaGccqaHip qEcaaIOaGaamODamaaBaaaleaacaaIXaaabeaakiaadMeacqGHsisl cqaH+oaEcqaHhpWycaaIOaGaamiDamaaBaaaleaacaaIWaaabeaaki aaiYcacaWG0bGaaGykaiaadgeacqGHsislcqaH+oaEcqaHhpWycaaI OaGaam4CaiaaiYcacqaHepaDcaaIPaGaamyqaiaaiYcacaWG2bWaaS baaSqaaiaaikdaaeqaaOGaeyOeI0IaamyAaiabeE8aJjaaiIcacaWG 0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiaadshacaaIPaGaeyOeI0 IaamyAaiabeE8aJjaaiIcacaWGZbGaaGilaiabes8a0jaaiMcacaaI SaGaamODamaaBaaaleaacaaIZaaabeaakiaaiMcacqGHxiIkcaWGfb GaaG4waiaadMhadaWgaaWcbaGaaGimaaqabaGccaaIOaGaamOEaiaa iMcacaaIDbGaaGyFaiaaiMcacaaIPaGaamizaiaadohacqGHsislaa a@8EDF@

i t 0 t F ξ 1 ( F z ( δ p δ v 3 (s,z) { F ξ 1 ψ( v 1 Iξχ( t 0 ,τ)Aξχ(s,t)A, v 2 iχ( t 0 ,τ)iχ(s,t), v 3 )E[ y 0 (z)] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGPbWaa8qCaeqaleaaca WG0bWaaSbaaeaacaaIWaaabeaaaeaacaWG0baaniabgUIiYdGccaWG gbWaa0baaSqaaiabe67a4bqaaiabgkHiTiaaigdaaaGccaaIOaGaam OramaaBaaaleaacaWG6baabeaakiaaiIcadaWcaaqaaiabes7aKnaa BaaaleaacaWGWbaabeaaaOqaaiabes7aKjaadAhadaWgaaWcbaGaaG 4maaqabaGccaaIOaGaam4CaiaaiYcacaWG6bGaaGykaaaacaaI7bGa amOramaaDaaaleaacqaH+oaEaeaacqGHsislcaaIXaaaaOGaeqiYdK NaaGikaiaadAhadaWgaaWcbaGaaGymaaqabaGccaWGjbGaeyOeI0Ia eqOVdGNaeq4XdmMaaGikaiaadshadaWgaaWcbaGaaGimaaqabaGcca aISaGaeqiXdqNaaGykaiaadgeacqGHsislcqaH+oaEcqaHhpWycaaI OaGaam4CaiaaiYcacaWG0bGaaGykaiaadgeacaaISaGaamODamaaBa aaleaacaaIYaaabeaakiabgkHiTiaadMgacqaHhpWycaaIOaGaamiD amaaBaaaleaacaaIWaaabeaakiaaiYcacqaHepaDcaaIPaGaeyOeI0 IaamyAaiabeE8aJjaaiIcacaWGZbGaaGilaiaadshacaaIPaGaaGil aiaadAhadaWgaaWcbaGaaG4maaqabaGccaaIPaGaey4fIOIaamyrai aaiUfacaWG5bWaaSbaaSqaaiaaicdaaeqaaOGaaGikaiaadQhacaaI PaGaaGyxaiabgkHiTaaa@89C5@

i t 0 τ F ξ 1 ( F z ( δ p ψ( v 1 Iξχ(σ,τ)Aξχ(s,t)A, v 2 iχ(σ,τ)iχ(s,t), v 3 ) δ v 3 (σ,z) ))d}))ds= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGPbWaa8qCaeqaleaaca WG0bWaaSbaaeaacaaIWaaabeaaaeaacqaHepaDa0Gaey4kIipakiaa dAeadaqhaaWcbaGaeqOVdGhabaGaeyOeI0IaaGymaaaakiaaiIcaca WGgbWaaSbaaSqaaiaadQhaaeqaaOGaaGikamaalaaabaGaeqiTdq2a aSbaaSqaaiaadchaaeqaaOGaeqiYdKNaaGikaiaadAhadaWgaaWcba GaaGymaaqabaGccaWGjbGaeyOeI0IaeqOVdGNaeq4XdmMaaGikaiab eo8aZjaaiYcacqaHepaDcaaIPaGaamyqaiabgkHiTiabe67a4jabeE 8aJjaaiIcacaWGZbGaaGilaiaadshacaaIPaGaamyqaiaaiYcacaWG 2bWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamyAaiabeE8aJjaaiI cacqaHdpWCcaaISaGaeqiXdqNaaGykaiabgkHiTiaadMgacqaHhpWy caaIOaGaam4CaiaaiYcacaWG0bGaaGykaiaaiYcacaWG2bWaaSbaaS qaaiaaiodaaeqaaOGaaGykaaqaaiabes7aKjaadAhadaWgaaWcbaGa aG4maaqabaGccaaIOaGaeq4WdmNaaGilaiaadQhacaaIPaaaaiaaiM cacaaIPaGaamizaiaai2hacaaIPaGaaGykaiaadsgacaWGZbGaaGyp aaaa@843E@

= F ξ 1 ψ( v 1 Iξχ( t 0 ,t)Aξχ( t 0 ,τ)A, v 2 iχ( t 0 ,t)iχ( t 0 ,τ), v 3 )E[ y 0 (z) y 0 Т (z)] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaamOramaaDaaaleaacqaH+o aEaeaacqGHsislcaaIXaaaaOGaeqiYdKNaaGikaiaadAhadaWgaaWc baGaaGymaaqabaGccaWGjbGaeyOeI0IaeqOVdGNaeq4XdmMaaGikai aadshadaWgaaWcbaGaaGimaaqabaGccaaISaGaamiDaiaaiMcacaWG bbGaeyOeI0IaeqOVdGNaeq4XdmMaaGikaiaadshadaWgaaWcbaGaaG imaaqabaGccaaISaGaeqiXdqNaaGykaiaadgeacaaISaGaamODamaa BaaaleaacaaIYaaabeaakiabgkHiTiaadMgacqaHhpWycaaIOaGaam iDamaaBaaaleaacaaIWaaabeaakiaaiYcacaWG0bGaaGykaiabgkHi TiaadMgacqaHhpWycaaIOaGaamiDamaaBaaaleaacaaIWaaabeaaki aaiYcacqaHepaDcaaIPaGaaGilaiaadAhadaWgaaWcbaGaaG4maaqa baGccaaIPaGaey4fIOIaamyraiaaiUfacaWG5bWaaSbaaSqaaiaaic daaeqaaOGaaGikaiaadQhacaaIPaGaamyEamaaDaaaleaacaaIWaaa baGaaeOieaaakiaaiIcacaWG6bGaaGykaiaai2facqGHsislaaa@76F3@

i t 0 τ F ξ 1 ( F z B( F ξ 1 ( δ p ψ( v 1 Iξχ( t 0 ,t)Aξχ(s,τ)A, v 2 iχ( t 0 ,t)iχ(s,τ), v 3 ) δ v 3 (s,z) )E[ y 0 (z)]))ds MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGPbWaa8qCaeqaleaaca WG0bWaaSbaaeaacaaIWaaabeaaaeaacqaHepaDa0Gaey4kIipakiaa dAeadaqhaaWcbaGaeqOVdGhabaGaeyOeI0IaaGymaaaakiaaiIcaca WGgbWaaSbaaSqaaiaadQhaaeqaaOGaamOqaiaaiIcacaWGgbWaa0ba aSqaaiabe67a4bqaaiabgkHiTiaaigdaaaGccaaIOaWaaSaaaeaacq aH0oazdaWgaaWcbaGaamiCaaqabaGccqaHipqEcaaIOaGaamODamaa BaaaleaacaaIXaaabeaakiaadMeacqGHsislcqaH+oaEcqaHhpWyca aIOaGaamiDamaaBaaaleaacaaIWaaabeaakiaaiYcacaWG0bGaaGyk aiaadgeacqGHsislcqaH+oaEcqaHhpWycaaIOaGaam4CaiaaiYcacq aHepaDcaaIPaGaamyqaiaaiYcacaWG2bWaaSbaaSqaaiaaikdaaeqa aOGaeyOeI0IaamyAaiabeE8aJjaaiIcacaWG0bWaaSbaaSqaaiaaic daaeqaaOGaaGilaiaadshacaaIPaGaeyOeI0IaamyAaiabeE8aJjaa iIcacaWGZbGaaGilaiabes8a0jaaiMcacaaISaGaamODamaaBaaale aacaaIZaaabeaakiaaiMcaaeaacqaH0oazcaWG2bWaaSbaaSqaaiaa iodaaeqaaOGaaGikaiaadohacaaISaGaamOEaiaaiMcaaaGaaGykai abgEHiQiaadweacaaIBbGaamyEamaaBaaaleaacaaIWaaabeaakiaa iIcacaWG6bGaaGykaiaai2facaaIPaGaaGykaiaadsgacaWGZbGaey OeI0caaa@8EFF@

i t 0 t F ξ 1 ( F z ( F ξ 1 ( δ p ψ( v 1 Iξχ( t 0 ,τ)Aξχ(s,t)A, v 2 iχ( t 0 ,τ)iχ(s,t), v 3 ) δ v 3 (s,z) )E[ y 0 (z)]))ds MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGPbWaa8qCaeqaleaaca WG0bWaaSbaaeaacaaIWaaabeaaaeaacaWG0baaniabgUIiYdGccaWG gbWaa0baaSqaaiabe67a4bqaaiabgkHiTiaaigdaaaGccaaIOaGaam OramaaBaaaleaacaWG6baabeaakiaaiIcacaWGgbWaa0baaSqaaiab e67a4bqaaiabgkHiTiaaigdaaaGccaaIOaWaaSaaaeaacqaH0oazda WgaaWcbaGaamiCaaqabaGccqaHipqEcaaIOaGaamODamaaBaaaleaa caaIXaaabeaakiaadMeacqGHsislcqaH+oaEcqaHhpWycaaIOaGaam iDamaaBaaaleaacaaIWaaabeaakiaaiYcacqaHepaDcaaIPaGaamyq aiabgkHiTiabe67a4jabeE8aJjaaiIcacaWGZbGaaGilaiaadshaca aIPaGaamyqaiaaiYcacaWG2bWaaSbaaSqaaiaaikdaaeqaaOGaeyOe I0IaamyAaiabeE8aJjaaiIcacaWG0bWaaSbaaSqaaiaaicdaaeqaaO GaaGilaiabes8a0jaaiMcacqGHsislcaWGPbGaeq4XdmMaaGikaiaa dohacaaISaGaamiDaiaaiMcacaaISaGaamODamaaBaaaleaacaaIZa aabeaakiaaiMcaaeaacqaH0oazcaWG2bWaaSbaaSqaaiaaiodaaeqa aOGaaGikaiaadohacaaISaGaamOEaiaaiMcaaaGaaGykaiabgEHiQi aadweacaaIBbGaamyEamaaBaaaleaacaaIWaaabeaakiaaiIcacaWG 6bGaaGykaiaai2facaaIPaGaaGykaiaadsgacaWGZbGaeyOeI0caaa@8D6C@

t 0 t t 0 τ F ξ 1 ( F z ( F ξ 1 ( F z ( δ p 2 ψ( v 1 Iξχ(σ,τ)Aξχ(s,t)A, v 2 iχ(σ,τ)iχ(s,t), v 3 ) δ v 3 (σ,z)δ v 3 (s,z) ))))dσds. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaWdXbqabSqaaiaadshada Wgaaqaaiaaicdaaeqaaaqaaiaadshaa0Gaey4kIipakmaapehabeWc baGaamiDamaaBaaabaGaaGimaaqabaaabaGaeqiXdqhaniabgUIiYd GccaWGgbWaa0baaSqaaiabe67a4bqaaiabgkHiTiaaigdaaaGccaaI OaGaamOramaaBaaaleaacaWG6baabeaakiaaiIcacaWGgbWaa0baaS qaaiabe67a4bqaaiabgkHiTiaaigdaaaGccaaIOaGaamOramaaBaaa leaacaWG6baabeaakiaaiIcadaWcaaqaaiabes7aKnaaDaaaleaaca WGWbaabaGaaGOmaaaakiabeI8a5jaaiIcacaWG2bWaaSbaaSqaaiaa igdaaeqaaOGaamysaiabgkHiTiabe67a4jabeE8aJjaaiIcacqaHdp WCcaaISaGaeqiXdqNaaGykaiaadgeacqGHsislcqaH+oaEcqaHhpWy caaIOaGaam4CaiaaiYcacaWG0bGaaGykaiaadgeacaaISaGaamODam aaBaaaleaacaaIYaaabeaakiabgkHiTiaadMgacqaHhpWycaaIOaGa eq4WdmNaaGilaiabes8a0jaaiMcacqGHsislcaWGPbGaeq4XdmMaaG ikaiaadohacaaISaGaamiDaiaaiMcacaaISaGaamODamaaBaaaleaa caaIZaaabeaakiaaiMcaaeaacqaH0oazcaWG2bWaaSbaaSqaaiaaio daaeqaaOGaaGikaiabeo8aZjaaiYcacaWG6bGaaGykaiabes7aKjaa dAhadaWgaaWcbaGaaG4maaqabaGccaaIOaGaam4CaiaaiYcacaWG6b GaaGykaaaacaaIPaGaaGykaiaaiMcacaaIPaGaamizaiabeo8aZjaa dsgacaWGZbGaaGOlaaaa@9971@

Таким образом, решение задачи (16), (19) задается следующей формулой

ζ(t,τ,z, v 1 , v 2 , v 3 )= F ξ 1 ψ( v 1 Iξχ( t 0 ,t)Aξχ( t 0 ,τ)A, v 2 iχ( t 0 ,t)iχ( t 0 ,τ), v 3 )E[ y 0 (z) y 0 Т (z)] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH2oGEcaaIOaGaamiDaiaaiYcacq aHepaDcaaISaGaamOEaiaaiYcacaWG2bWaaSbaaSqaaiaaigdaaeqa aOGaaGilaiaadAhadaWgaaWcbaGaaGOmaaqabaGccaaISaGaamODam aaBaaaleaacaaIZaaabeaakiaaiMcacaaI9aGaamOramaaDaaaleaa cqaH+oaEaeaacqGHsislcaaIXaaaaOGaeqiYdKNaaGikaiaadAhada WgaaWcbaGaaGymaaqabaGccaWGjbGaeyOeI0IaeqOVdGNaeq4XdmMa aGikaiaadshadaWgaaWcbaGaaGimaaqabaGccaaISaGaamiDaiaaiM cacaWGbbGaeyOeI0IaeqOVdGNaeq4XdmMaaGikaiaadshadaWgaaWc baGaaGimaaqabaGccaaISaGaeqiXdqNaaGykaiaadgeacaaISaGaam ODamaaBaaaleaacaaIYaaabeaakiabgkHiTiaadMgacqaHhpWycaaI OaGaamiDamaaBaaaleaacaaIWaaabeaakiaaiYcacaWG0bGaaGykai abgkHiTiaadMgacqaHhpWycaaIOaGaamiDamaaBaaaleaacaaIWaaa beaakiaaiYcacqaHepaDcaaIPaGaaGilaiaadAhadaWgaaWcbaGaaG 4maaqabaGccaaIPaGaey4fIOIaamyraiaaiUfacaWG5bWaaSbaaSqa aiaaicdaaeqaaOGaaGikaiaadQhacaaIPaGaamyEamaaDaaaleaaca aIWaaabaGaaeOieaaakiaaiIcacaWG6bGaaGykaiaai2facqGHsisl aaa@8727@

i t 0 τ F ξ 1 ( F z ( F ξ 1 ( δ p ψ( v 1 Iξχ( t 0 ,t)Aξχ(s,τ)A, v 2 iχ( t 0 ,t)iχ(s,τ), v 3 ) δ v 3 (s,z) )))E[ y 0 (z)]ds MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGPbWaa8qCaeqaleaaca WG0bWaaSbaaeaacaaIWaaabeaaaeaacqaHepaDa0Gaey4kIipakiaa dAeadaqhaaWcbaGaeqOVdGhabaGaeyOeI0IaaGymaaaakiaaiIcaca WGgbWaaSbaaSqaaiaadQhaaeqaaOGaaGikaiaadAeadaqhaaWcbaGa eqOVdGhabaGaeyOeI0IaaGymaaaakiaaiIcadaWcaaqaaiabes7aKn aaBaaaleaacaWGWbaabeaakiabeI8a5jaaiIcacaWG2bWaaSbaaSqa aiaaigdaaeqaaOGaamysaiabgkHiTiabe67a4jabeE8aJjaaiIcaca WG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiaadshacaaIPaGaamyq aiabgkHiTiabe67a4jabeE8aJjaaiIcacaWGZbGaaGilaiabes8a0j aaiMcacaWGbbGaaGilaiaadAhadaWgaaWcbaGaaGOmaaqabaGccqGH sislcaWGPbGaeq4XdmMaaGikaiaadshadaWgaaWcbaGaaGimaaqaba GccaaISaGaamiDaiaaiMcacqGHsislcaWGPbGaeq4XdmMaaGikaiaa dohacaaISaGaeqiXdqNaaGykaiaaiYcacaWG2bWaaSbaaSqaaiaaio daaeqaaOGaaGykaaqaaiabes7aKjaadAhadaWgaaWcbaGaaG4maaqa baGccaaIOaGaam4CaiaaiYcacaWG6bGaaGykaaaacaaIPaGaaGykai aaiMcacqGHxiIkcaWGfbGaaG4waiaadMhadaWgaaWcbaGaaGimaaqa baGccaaIOaGaamOEaiaaiMcacaaIDbGaamizaiaadohacqGHsislaa a@8E38@

i t 0 t F ξ 1 ( F z ( F ξ 1 ( δ p ψ( v 1 Iξχ( t 0 ,τ)Aξχ(s,t)A, v 2 iχ( t 0 ,τ)iχ(s,t), v 3 ) δ v 3 (s,z) )))E[ y 0 (z)]ds MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGPbWaa8qCaeqaleaaca WG0bWaaSbaaeaacaaIWaaabeaaaeaacaWG0baaniabgUIiYdGccaWG gbWaa0baaSqaaiabe67a4bqaaiabgkHiTiaaigdaaaGccaaIOaGaam OramaaBaaaleaacaWG6baabeaakiaaiIcacaWGgbWaa0baaSqaaiab e67a4bqaaiabgkHiTiaaigdaaaGccaaIOaWaaSaaaeaacqaH0oazda WgaaWcbaGaamiCaaqabaGccqaHipqEcaaIOaGaamODamaaBaaaleaa caaIXaaabeaakiaadMeacqGHsislcqaH+oaEcqaHhpWycaaIOaGaam iDamaaBaaaleaacaaIWaaabeaakiaaiYcacqaHepaDcaaIPaGaamyq aiabgkHiTiabe67a4jabeE8aJjaaiIcacaWGZbGaaGilaiaadshaca aIPaGaamyqaiaaiYcacaWG2bWaaSbaaSqaaiaaikdaaeqaaOGaeyOe I0IaamyAaiabeE8aJjaaiIcacaWG0bWaaSbaaSqaaiaaicdaaeqaaO GaaGilaiabes8a0jaaiMcacqGHsislcaWGPbGaeq4XdmMaaGikaiaa dohacaaISaGaamiDaiaaiMcacaaISaGaamODamaaBaaaleaacaaIZa aabeaakiaaiMcaaeaacqaH0oazcaWG2bWaaSbaaSqaaiaaiodaaeqa aOGaaGikaiaadohacaaISaGaamOEaiaaiMcaaaGaaGykaiaaiMcaca aIPaGaey4fIOIaamyraiaaiUfacaWG5bWaaSbaaSqaaiaaicdaaeqa aOGaaGikaiaadQhacaaIPaGaaGyxaiaadsgacaWGZbGaeyOeI0caaa@8D6C@

t 0 t t 0 τ F ξ 1 ( F z ( F ξ 1 ( F z ( δ p 2 ψ( v 1 Iξχ(σ,τ)Aξχ(s,t)A, v 2 iχ(σ,τ)iχ(s,t), v 3 ) δ v 3 (σ,z)δ v 3 (s,z) ))))dσds. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaWdXbqabSqaaiaadshada Wgaaqaaiaaicdaaeqaaaqaaiaadshaa0Gaey4kIipakmaapehabeWc baGaamiDamaaBaaabaGaaGimaaqabaaabaGaeqiXdqhaniabgUIiYd GccaWGgbWaa0baaSqaaiabe67a4bqaaiabgkHiTiaaigdaaaGccaaI OaGaamOramaaBaaaleaacaWG6baabeaakiaaiIcacaWGgbWaa0baaS qaaiabe67a4bqaaiabgkHiTiaaigdaaaGccaaIOaGaamOramaaBaaa leaacaWG6baabeaakiaaiIcadaWcaaqaaiabes7aKnaaDaaaleaaca WGWbaabaGaaGOmaaaakiabeI8a5jaaiIcacaWG2bWaaSbaaSqaaiaa igdaaeqaaOGaamysaiabgkHiTiabe67a4jabeE8aJjaaiIcacqaHdp WCcaaISaGaeqiXdqNaaGykaiaadgeacqGHsislcqaH+oaEcqaHhpWy caaIOaGaam4CaiaaiYcacaWG0bGaaGykaiaadgeacaaISaGaamODam aaBaaaleaacaaIYaaabeaakiabgkHiTiaadMgacqaHhpWycaaIOaGa eq4WdmNaaGilaiabes8a0jaaiMcacqGHsislcaWGPbGaeq4XdmMaaG ikaiaadohacaaISaGaamiDaiaaiMcacaaISaGaamODamaaBaaaleaa caaIZaaabeaakiaaiMcaaeaacqaH0oazcaWG2bWaaSbaaSqaaiaaio daaeqaaOGaaGikaiabeo8aZjaaiYcacaWG6bGaaGykaiabes7aKjaa dAhadaWgaaWcbaGaaG4maaqabaGccaaIOaGaam4CaiaaiYcacaWG6b GaaGykaaaacaaIPaGaaGykaiaaiMcacaaIPaGaamizaiabeo8aZjaa dsgacaWGZbGaaGOlaaaa@9971@                                                                    (21)

Отметим, что функция ζ(t,τ,z, v 1 , v 2 , v 3 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH2oGEcaaIOaGaamiDaiaaiYcacq aHepaDcaaISaGaamOEaiaaiYcacaWG2bWaaSbaaSqaaiaaigdaaeqa aOGaaGilaiaadAhadaWgaaWcbaGaaGOmaaqabaGccaaISaGaamODam aaBaaaleaacaaIZaaabeaakiaaiMcaaaa@41F5@ , определяемая формулой (21), симметрична по t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32BA@  и τ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDaaa@3386@ .

Теорема 8. Если характеристический функционал ψ( v 1 , v 2 , v 3 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamODamaaBaaale aacaaIXaaabeaakiaaiYcacaWG2bWaaSbaaSqaaiaaikdaaeqaaOGa aGilaiaadAhadaWgaaWcbaGaaG4maaqabaGccaaIPaaaaa@3C27@  разлагается в степенной ряд вида (8) имеет вариационную производную второго порядка по переменной v 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bWaaSbaaSqaaiaaiodaaeqaaa aa@33A5@ , то

E[y(t,z) y Т (τ,z)]= F ξ 1 ψ(ξχ( t 0 ,t)Aξχ( t 0 ,τ)A,iχ( t 0 ,t)iχ( t 0 ,τ),0)E[ y 0 (z) y 0 Т (z)] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaG4waiaadMhacaaIOaGaam iDaiaaiYcacaWG6bGaaGykaiaadMhadaahaaWcbeqaaiaabkcbaaGc caaIOaGaeqiXdqNaaGilaiaadQhacaaIPaGaaGyxaiaai2dacaWGgb Waa0baaSqaaiabe67a4bqaaiabgkHiTiaaigdaaaGccqaHipqEcaaI OaGaeyOeI0IaeqOVdGNaeq4XdmMaaGikaiaadshadaWgaaWcbaGaaG imaaqabaGccaaISaGaamiDaiaaiMcacaWGbbGaeyOeI0IaeqOVdGNa eq4XdmMaaGikaiaadshadaWgaaWcbaGaaGimaaqabaGccaaISaGaeq iXdqNaaGykaiaadgeacaaISaGaeyOeI0IaamyAaiabeE8aJjaaiIca caWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiaadshacaaIPaGaey OeI0IaamyAaiabeE8aJjaaiIcacaWG0bWaaSbaaSqaaiaaicdaaeqa aOGaaGilaiabes8a0jaaiMcacaaISaGaaGimaiaaiMcacqGHxiIkca WGfbGaaG4waiaadMhadaWgaaWcbaGaaGimaaqabaGccaaIOaGaamOE aiaaiMcacaWG5bWaa0baaSqaaiaaicdaaeaacaqGIqaaaOGaaGikai aadQhacaaIPaGaaGyxaiabgkHiTaaa@7F7C@

i t 0 τ F ξ 1 ( F z ( F ξ 1 ( δ p ψ(ξχ( t 0 ,t)Aξχ(s,τ)A,iχ( t 0 ,t)iχ(s,τ), v 3 ) δ v 3 (s,z) | v 3 =0 )))E[ y 0 (z)]ds MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGPbGaaGzaVpaapehabe WcbaGaamiDamaaBaaabaGaaGimaaqabaaabaGaeqiXdqhaniabgUIi YdGccaWGgbWaa0baaSqaaiabe67a4bqaaiabgkHiTiaaigdaaaGcca aIOaGaamOramaaBaaaleaacaWG6baabeaakiaaiIcacaWGgbWaa0ba aSqaaiabe67a4bqaaiabgkHiTiaaigdaaaGccaaIOaWaaSaaaeaacq aH0oazdaWgaaWcbaGaamiCaaqabaGccqaHipqEcaaIOaGaeyOeI0Ia eqOVdGNaeq4XdmMaaGikaiaadshadaWgaaWcbaGaaGimaaqabaGcca aISaGaamiDaiaaiMcacaWGbbGaeyOeI0IaeqOVdGNaeq4XdmMaaGik aiaadohacaaISaGaeqiXdqNaaGykaiaadgeacaaISaGaeyOeI0Iaam yAaiabeE8aJjaaiIcacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGil aiaadshacaaIPaGaeyOeI0IaamyAaiabeE8aJjaaiIcacaWGZbGaaG ilaiabes8a0jaaiMcacaaISaGaamODamaaBaaaleaacaaIZaaabeaa kiaaiMcaaeaacqaH0oazcaWG2bWaaSbaaSqaaiaaiodaaeqaaOGaaG ikaiaadohacaaISaGaamOEaiaaiMcaaaGaaGiFamaaBaaaleaacaWG 2bWaaSbaaeaacaaIZaaabeaacaaI9aGaaGimaaqabaGccaaIPaGaaG ykaiaaiMcacqGHxiIkcaWGfbGaaG4waiaadMhadaWgaaWcbaGaaGim aaqabaGccaaIOaGaamOEaiaaiMcacaaIDbGaamizaiaadohacqGHsi slaaa@8FB1@

i t 0 t F ξ 1 ( F z ( F ξ 1 ( δ p ψ(ξχ( t 0 ,τ)Aξχ(s,t)A,iχ( t 0 ,τ)iχ(s,t), v 3 ) δ v 3 (s,z) | v 3 =0 )))E[ y 0 (z)]ds MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGPbGaaGzaVpaapehabe WcbaGaamiDamaaBaaabaGaaGimaaqabaaabaGaamiDaaqdcqGHRiI8 aOGaamOramaaDaaaleaacqaH+oaEaeaacqGHsislcaaIXaaaaOGaaG ikaiaadAeadaWgaaWcbaGaamOEaaqabaGccaaIOaGaamOramaaDaaa leaacqaH+oaEaeaacqGHsislcaaIXaaaaOGaaGikamaalaaabaGaeq iTdq2aaSbaaSqaaiaadchaaeqaaOGaeqiYdKNaaGikaiabgkHiTiab e67a4jabeE8aJjaaiIcacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaG ilaiabes8a0jaaiMcacaWGbbGaeyOeI0IaeqOVdGNaeq4XdmMaaGik aiaadohacaaISaGaamiDaiaaiMcacaWGbbGaaGilaiabgkHiTiaadM gacqaHhpWycaaIOaGaamiDamaaBaaaleaacaaIWaaabeaakiaaiYca cqaHepaDcaaIPaGaeyOeI0IaamyAaiabeE8aJjaaiIcacaWGZbGaaG ilaiaadshacaaIPaGaaGilaiaadAhadaWgaaWcbaGaaG4maaqabaGc caaIPaaabaGaeqiTdqMaamODamaaBaaaleaacaaIZaaabeaakiaaiI cacaWGZbGaaGilaiaadQhacaaIPaaaaiaaiYhadaWgaaWcbaGaamOD amaaBaaabaGaaG4maaqabaGaaGypaiaaicdaaeqaaOGaaGykaiaaiM cacaaIPaGaey4fIOIaamyraiaaiUfacaWG5bWaaSbaaSqaaiaaicda aeqaaOGaaGikaiaadQhacaaIPaGaaGyxaiaadsgacaWGZbGaeyOeI0 caaa@8EE5@

t 0 t t 0 τ F ξ 1 ( F z ( F ξ 1 ( F z ( δ p 2 ψ(ξχ(σ,τ)Aξχ(s,t)A,iχ(σ,τ)iχ(s,t), v 3 ) δ v 3 (σ,z)δ v 3 (s,z) | v 3 =0 ))))dσds MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaWdXbqabSqaaiaadshada Wgaaqaaiaaicdaaeqaaaqaaiaadshaa0Gaey4kIipakiaaygW7daWd XbqabSqaaiaadshadaWgaaqaaiaaicdaaeqaaaqaaiabes8a0bqdcq GHRiI8aOGaamOramaaDaaaleaacqaH+oaEaeaacqGHsislcaaIXaaa aOGaaGikaiaadAeadaWgaaWcbaGaamOEaaqabaGccaaIOaGaamOram aaDaaaleaacqaH+oaEaeaacqGHsislcaaIXaaaaOGaaGikaiaadAea daWgaaWcbaGaamOEaaqabaGccaaIOaWaaSaaaeaacqaH0oazdaqhaa WcbaGaamiCaaqaaiaaikdaaaGccqaHipqEcaaIOaGaeyOeI0IaeqOV dGNaeq4XdmMaaGikaiabeo8aZjaaiYcacqaHepaDcaaIPaGaamyqai abgkHiTiabe67a4jabeE8aJjaaiIcacaWGZbGaaGilaiaadshacaaI PaGaamyqaiaaiYcacqGHsislcaWGPbGaeq4XdmMaaGikaiabeo8aZj aaiYcacqaHepaDcaaIPaGaeyOeI0IaamyAaiabeE8aJjaaiIcacaWG ZbGaaGilaiaadshacaaIPaGaaGilaiaadAhadaWgaaWcbaGaaG4maa qabaGccaaIPaaabaGaeqiTdqMaamODamaaBaaaleaacaaIZaaabeaa kiaaiIcacqaHdpWCcaaISaGaamOEaiaaiMcacqaH0oazcaWG2bWaaS baaSqaaiaaiodaaeqaaOGaaGikaiaadohacaaISaGaamOEaiaaiMca aaGaaGiFamaaBaaaleaacaWG2bWaaSbaaeaacaaIZaaabeaacaaI9a GaaGimaaqabaGccaaIPaGaaGykaiaaiMcacaaIPaGaamizaiabeo8a ZjaadsgacaWGZbaaaa@9A32@                                                                     (22)

является второй моментной функцией решения задачи (1), (2).

Доказательство. Согласно определению E[y(t,z) y Т (τ,z)]=ζ(t,τ,z,0,0,0) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaG4waiaadMhacaaIOaGaam iDaiaaiYcacaWG6bGaaGykaiaadMhadaahaaWcbeqaaiaabkcbaaGc caaIOaGaeqiXdqNaaGilaiaadQhacaaIPaGaaGyxaiaai2dacqaH2o GEcaaIOaGaamiDaiaaiYcacqaHepaDcaaISaGaamOEaiaaiYcacaaI WaGaaGilaiaaicdacaaISaGaaGimaiaaiMcaaaa@4D87@ . Подставляя v 1 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaaicdaaaa@352E@ , v 2 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bWaaSbaaSqaaiaaikdaaeqaaO GaaGypaiaaicdaaaa@352F@ , v 3 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bWaaSbaaSqaaiaaiodaaeqaaO GaaGypaiaaicdaaaa@3530@  в формулу (21), находим, что E[y(t,z) y Т (τ,z)] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaG4waiaadMhacaaIOaGaam iDaiaaiYcacaWG6bGaaGykaiaadMhadaahaaWcbeqaaiaabkcbaaGc caaIOaGaeqiXdqNaaGilaiaadQhacaaIPaGaaGyxaaaa@4025@  определяется формулой (22).

5. Случай независимых случайных процессов ε1, ε2 и b.

Если процессы ε 1 , ε 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaISaGaeqyTdu2aaSbaaSqaaiaaikdaaeqaaaaa@379E@  и b MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbaaaa@32A8@  независимы, то

ψ( v 1 , v 2 , v 3 )= ψ ε 1 ( v 1 ) ψ ε 2 ( v 2 ) ψ b ( v 3 ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamODamaaBaaale aacaaIXaaabeaakiaaiYcacaWG2bWaaSbaaSqaaiaaikdaaeqaaOGa aGilaiaadAhadaWgaaWcbaGaaG4maaqabaGccaaIPaGaaGypaiabeI 8a5naaBaaaleaacqaH1oqzdaWgaaqaaiaaigdaaeqaaaqabaGccaaI OaGaamODamaaBaaaleaacaaIXaaabeaakiaaiMcacqaHipqEdaWgaa WcbaGaeqyTdu2aaSbaaeaacaaIYaaabeaaaeqaaOGaaGikaiaadAha daWgaaWcbaGaaGOmaaqabaGccaaIPaGaeqiYdK3aaSbaaSqaaiaadk gaaeqaaOGaaGikaiaadAhadaWgaaWcbaGaaG4maaqabaGccaaIPaGa aGilaaaa@5394@

где ψ ε 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEdaWgaaWcbaGaeqyTdu2aaS baaeaacaaIXaaabeaaaeqaaaaa@363E@ , ψ ε 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEdaWgaaWcbaGaeqyTdu2aaS baaeaacaaIYaaabeaaaeqaaaaa@363F@ , ψ b MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEdaWgaaWcbaGaamOyaaqaba aaaa@34A2@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbuaqa aaaaaaaaWdbiaa=rbiaaa@3785@  характеристические функционалы для ε1, ε2 и b соответственно.

Теорема 9. Если случайные процессы ε1, ε2 и b независимы, то

E[y(t,z)]= ψ ε 2 (iχ( t 0 ,t)) F ξ 1 ( ψ ε 1 (ξχ( t 0 ,t)A))E[ y 0 (z)]+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaG4waiaadMhacaaIOaGaam iDaiaaiYcacaWG6bGaaGykaiaai2facaaI9aGaeqiYdK3aaSbaaSqa aiabew7aLnaaBaaabaGaaGOmaaqabaaabeaakiaaiIcacqGHsislca WGPbGaeq4XdmMaaGikaiaadshadaWgaaWcbaGaaGimaaqabaGccaaI SaGaamiDaiaaiMcacaaIPaGaamOramaaDaaaleaacqaH+oaEaeaacq GHsislcaaIXaaaaOGaaGikaiabeI8a5naaBaaaleaacqaH1oqzdaWg aaqaaiaaigdaaeqaaaqabaGccaaIOaGaeyOeI0IaeqOVdGNaeq4Xdm MaaGikaiaadshadaWgaaWcbaGaaGimaaqabaGccaaISaGaamiDaiaa iMcacaWGbbGaaGykaiaaiMcacqGHxiIkcaWGfbGaaG4waiaadMhada WgaaWcbaGaaGimaaqabaGccaaIOaGaamOEaiaaiMcacaaIDbGaey4k aScaaa@674C@

+ t 0 t ψ ε 2 (iχ(s,t)) F ξ 1 ( ψ ε 1 (ξχ(s,t)A))E[b(s,z)]ds MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWdXbqabSqaaiaadshada Wgaaqaaiaaicdaaeqaaaqaaiaadshaa0Gaey4kIipakiabeI8a5naa BaaaleaacqaH1oqzdaWgaaqaaiaaikdaaeqaaaqabaGccaaIOaGaey OeI0IaamyAaiabeE8aJjaaiIcacaWGZbGaaGilaiaadshacaaIPaGa aGykaiaadAeadaqhaaWcbaGaeqOVdGhabaGaeyOeI0IaaGymaaaaki aaiIcacqaHipqEdaWgaaWcbaGaeqyTdu2aaSbaaeaacaaIXaaabeaa aeqaaOGaaGikaiabgkHiTiabe67a4jabeE8aJjaaiIcacaWGZbGaaG ilaiaadshacaaIPaGaamyqaiaaiMcacaaIPaGaey4fIOIaamyraiaa iUfacaWGIbGaaGikaiaadohacaaISaGaamOEaiaaiMcacaaIDbGaam izaiaadohaaaa@64C5@                                                                                                               (23)

является математическим ожиданием решения задачи (1), (2).

Доказательство. Поскольку

δ p ψ(ξχ(s,t)A,iχ(s,t),0) δ v 3 (s,z) = ψ ε 1 (ξχ(s,t)A) ψ ε 2 (iχ(s,t)) δ p ψ b (0) δ v 3 (s,z) = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabes7aKnaaBaaaleaaca WGWbaabeaakiabeI8a5jaaiIcacqGHsislcqaH+oaEcqaHhpWycaaI OaGaam4CaiaaiYcacaWG0bGaaGykaiaadgeacaaISaGaeyOeI0Iaam yAaiabeE8aJjaaiIcacaWGZbGaaGilaiaadshacaaIPaGaaGilaiaa icdacaaIPaaabaGaeqiTdqMaamODamaaBaaaleaacaaIZaaabeaaki aaiIcacaWGZbGaaGilaiaadQhacaaIPaaaaiaai2dacqaHipqEdaWg aaWcbaGaeqyTdu2aaSbaaeaacaaIXaaabeaaaeqaaOGaaGikaiabgk HiTiabe67a4jabeE8aJjaaiIcacaWGZbGaaGilaiaadshacaaIPaGa amyqaiaaiMcacqaHipqEdaWgaaWcbaGaeqyTdu2aaSbaaeaacaaIYa aabeaaaeqaaOGaaGikaiabgkHiTiaadMgacqaHhpWycaaIOaGaam4C aiaaiYcacaWG0bGaaGykaiaaiMcadaWcaaqaaiabes7aKnaaBaaale aacaWGWbaabeaakiabeI8a5naaBaaaleaacaWGIbaabeaakiaaiIca caaIWaGaaGykaaqaaiabes7aKjaadAhadaWgaaWcbaGaaG4maaqaba GccaaIOaGaam4CaiaaiYcacaWG6bGaaGykaaaacaaI9aaaaa@8043@

=i ψ ε 1 (ξχ(s,t)A) ψ ε 2 (iχ(s,t))E[b(s,z)]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaamyAaiabeI8a5naaBaaale aacqaH1oqzdaWgaaqaaiaaigdaaeqaaaqabaGccaaIOaGaeyOeI0Ia eqOVdGNaeq4XdmMaaGikaiaadohacaaISaGaamiDaiaaiMcacaWGbb GaaGykaiabeI8a5naaBaaaleaacqaH1oqzdaWgaaqaaiaaikdaaeqa aaqabaGccaaIOaGaeyOeI0IaamyAaiabeE8aJjaaiIcacaWGZbGaaG ilaiaadshacaaIPaGaaGykaiaadweacaaIBbGaamOyaiaaiIcacaWG ZbGaaGilaiaadQhacaaIPaGaaGyxaiaai6caaaa@586D@

Подставив найденные выражения в формулу (11) и вычислив прямое и обратное преобразования Фурье, получаем формулу (23).

Замечание 2. Отметим, что для нахождения математического ожидания E[y(t,z)] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaG4waiaadMhacaaIOaGaam iDaiaaiYcacaWG6bGaaGykaiaai2faaaa@3968@  нужно знать характеристические функционалы процессов ε1, ε2, и только математическое ожидание процесса b.

Теорема 10. Если случайные процессы ε1, ε2 и b независимы, то

E[y(t,z) ε 1 (τ)]=i ψ ε 2 (iχ( t 0 ,t)) F ξ 1 ( δ p ψ ε 1 ( v 1 Iξχ( t 0 ,t)A) δ v 1 (τ) | v 1 =0 )E[ y 0 (z)] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaG4waiaadMhacaaIOaGaam iDaiaaiYcacaWG6bGaaGykaiabew7aLnaaBaaaleaacaaIXaaabeaa kiaaiIcacqaHepaDcaaIPaGaaGyxaiaai2dacqGHsislcaWGPbGaeq iYdK3aaSbaaSqaaiabew7aLnaaBaaabaGaaGOmaaqabaaabeaakiaa iIcacqGHsislcaWGPbGaeq4XdmMaaGikaiaadshadaWgaaWcbaGaaG imaaqabaGccaaISaGaamiDaiaaiMcacaaIPaGaamOramaaDaaaleaa cqaH+oaEaeaacqGHsislcaaIXaaaaOGaaGikamaalaaabaGaeqiTdq 2aaSbaaSqaaiaadchaaeqaaOGaeqiYdK3aaSbaaSqaaiabew7aLnaa BaaabaGaaGymaaqabaaabeaakiaaiIcacaWG2bWaaSbaaSqaaiaaig daaeqaaOGaamysaiabgkHiTiabe67a4jabeE8aJjaaiIcacaWG0bWa aSbaaSqaaiaaicdaaeqaaOGaaGilaiaadshacaaIPaGaamyqaiaaiM caaeaacqaH0oazcaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiab es8a0jaaiMcaaaGaaGiFamaaBaaaleaacaWG2bWaaSbaaeaacaaIXa aabeaacaaI9aGaaGimaaqabaGccaaIPaGaey4fIOIaamyraiaaiUfa caWG5bWaaSbaaSqaaiaaicdaaeqaaOGaaGikaiaadQhacaaIPaGaaG yxaiabgkHiTaaa@7FDD@

i t 0 t ψ ε 2 (iχ(s,t)) F ξ 1 ( δ p ψ ε 1 ( v 1 Iξχ(s,t)A) δ v 1 (τ) | v 1 =0 )E[b(s,z)]ds MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGPbGaaGzaVpaapehabe WcbaGaamiDamaaBaaabaGaaGimaaqabaaabaGaamiDaaqdcqGHRiI8 aOGaeqiYdK3aaSbaaSqaaiabew7aLnaaBaaabaGaaGOmaaqabaaabe aakiaaiIcacqGHsislcaWGPbGaeq4XdmMaaGikaiaadohacaaISaGa amiDaiaaiMcacaaIPaGaamOramaaDaaaleaacqaH+oaEaeaacqGHsi slcaaIXaaaaOGaaGikamaalaaabaGaeqiTdq2aaSbaaSqaaiaadcha aeqaaOGaeqiYdK3aaSbaaSqaaiabew7aLnaaBaaabaGaaGymaaqaba aabeaakiaaiIcacaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaamysaiab gkHiTiabe67a4jabeE8aJjaaiIcacaWGZbGaaGilaiaadshacaaIPa GaamyqaiaaiMcaaeaacqaH0oazcaWG2bWaaSbaaSqaaiaaigdaaeqa aOGaaGikaiabes8a0jaaiMcaaaGaaGiFamaaBaaaleaacaWG2bWaaS baaeaacaaIXaaabeaacaaI9aGaaGimaaqabaGccaaIPaGaey4fIOIa amyraiaaiUfacaWGIbGaaGikaiaadohacaaISaGaamOEaiaaiMcaca aIDbGaamizaiaadohaaaa@7831@                                                                                               (24)

является смешанной моментной функцией решения задачи (1), (2).

Доказательство. Вычислим значение вариационных производных входящих в формулу (12) в предположение, что случайные процессы ε1, ε2 и b независимы:

δ p ψ( v 1 Iξχ( t 0 ,t)A, v 2 iχ( t 0 ,t), v 3 ) δ v 1 (τ) | v 1 = v 2 = v 3 =0 = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabes7aKnaaBaaaleaaca WGWbaabeaakiabeI8a5jaaiIcacaWG2bWaaSbaaSqaaiaaigdaaeqa aOGaamysaiabgkHiTiabe67a4jabeE8aJjaaiIcacaWG0bWaaSbaaS qaaiaaicdaaeqaaOGaaGilaiaadshacaaIPaGaamyqaiaaiYcacaWG 2bWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamyAaiabeE8aJjaaiI cacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiaadshacaaIPaGa aGilaiaadAhadaWgaaWcbaGaaG4maaqabaGccaaIPaaabaGaeqiTdq MaamODamaaBaaaleaacaaIXaaabeaakiaaiIcacqaHepaDcaaIPaaa aiaaiYhadaWgaaWcbaGaamODamaaBaaabaGaaGymaaqabaGaaGypai aadAhadaWgaaqaaiaaikdaaeqaaiaai2dacaWG2bWaaSbaaeaacaaI ZaaabeaacaaI9aGaaGimaaqabaGccaaI9aaaaa@63E3@

= ψ ε 2 (iχ( t 0 ,t)) δ p ψ ε 1 ( v 1 Iξχ( t 0 ,t)A) δ v 1 (τ) | v 1 =0 ψ b (0)= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaeqiYdK3aaSbaaSqaaiabew 7aLnaaBaaabaGaaGOmaaqabaaabeaakiaaiIcacqGHsislcaWGPbGa eq4XdmMaaGikaiaadshadaWgaaWcbaGaaGimaaqabaGccaaISaGaam iDaiaaiMcacaaIPaWaaSaaaeaacqaH0oazdaWgaaWcbaGaamiCaaqa baGccqaHipqEdaWgaaWcbaGaeqyTdu2aaSbaaeaacaaIXaaabeaaae qaaOGaaGikaiaadAhadaWgaaWcbaGaaGymaaqabaGccaWGjbGaeyOe I0IaeqOVdGNaeq4XdmMaaGikaiaadshadaWgaaWcbaGaaGimaaqaba GccaaISaGaamiDaiaaiMcacaWGbbGaaGykaaqaaiabes7aKjaadAha daWgaaWcbaGaaGymaaqabaGccaaIOaGaeqiXdqNaaGykaaaacaaI8b WaaSbaaSqaaiaadAhadaWgaaqaaiaaigdaaeqaaiaai2dacaaIWaaa beaakiabeI8a5naaBaaaleaacaWGIbaabeaakiaaiIcacaaIWaGaaG ykaiaai2daaaa@67D4@

= ψ ε 2 (iχ( t 0 ,t)) δ p ψ ε 1 ( v 1 Iξχ( t 0 ,t)A) δ v 1 (τ) | v 1 =0 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaeqiYdK3aaSbaaSqaaiabew 7aLnaaBaaabaGaaGOmaaqabaaabeaakiaaiIcacqGHsislcaWGPbGa eq4XdmMaaGikaiaadshadaWgaaWcbaGaaGimaaqabaGccaaISaGaam iDaiaaiMcacaaIPaWaaSaaaeaacqaH0oazdaWgaaWcbaGaamiCaaqa baGccqaHipqEdaWgaaWcbaGaeqyTdu2aaSbaaeaacaaIXaaabeaaae qaaOGaaGikaiaadAhadaWgaaWcbaGaaGymaaqabaGccaWGjbGaeyOe I0IaeqOVdGNaeq4XdmMaaGikaiaadshadaWgaaWcbaGaaGimaaqaba GccaaISaGaamiDaiaaiMcacaWGbbGaaGykaaqaaiabes7aKjaadAha daWgaaWcbaGaaGymaaqabaGccaaIOaGaeqiXdqNaaGykaaaacaaI8b WaaSbaaSqaaiaadAhadaWgaaqaaiaaigdaaeqaaiaai2dacaaIWaaa beaakiaaiYcaaaa@62B9@

δ p 2 ψ( v 1 Iξχ(s,t)A, v 2 iχ(s,t), v 3 ) δ v 1 (τ)δ v 3 (s,z) | v 1 = v 2 = v 3 =0 = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabes7aKnaaDaaaleaaca WGWbaabaGaaGOmaaaakiabeI8a5jaaiIcacaWG2bWaaSbaaSqaaiaa igdaaeqaaOGaamysaiabgkHiTiabe67a4jabeE8aJjaaiIcacaWGZb GaaGilaiaadshacaaIPaGaamyqaiaaiYcacaWG2bWaaSbaaSqaaiaa ikdaaeqaaOGaeyOeI0IaamyAaiabeE8aJjaaiIcacaWGZbGaaGilai aadshacaaIPaGaaGilaiaadAhadaWgaaWcbaGaaG4maaqabaGccaaI PaaabaGaeqiTdqMaamODamaaBaaaleaacaaIXaaabeaakiaaiIcacq aHepaDcaaIPaGaeqiTdqMaamODamaaBaaaleaacaaIZaaabeaakiaa iIcacaWGZbGaaGilaiaadQhacaaIPaaaaiaaiYhadaWgaaWcbaGaam ODamaaBaaabaGaaGymaaqabaGaaGypaiaadAhadaWgaaqaaiaaikda aeqaaiaai2dacaWG2bWaaSbaaeaacaaIZaaabeaacaaI9aGaaGimaa qabaGccaaI9aaaaa@6A63@

= δ p ψ ε 1 ( v 1 Iξχ(s,t)A) δ v 1 (τ) | v 1 =0 ψ ε 2 (iχ(s,t)) δ ψ b ( v 3 ) δ v 3 (τ,z) | v 3 =0 = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaaSaaaeaacqaH0oazdaWgaa WcbaGaamiCaaqabaGccqaHipqEdaWgaaWcbaGaeqyTdu2aaSbaaeaa caaIXaaabeaaaeqaaOGaaGikaiaadAhadaWgaaWcbaGaaGymaaqaba GccaWGjbGaeyOeI0IaeqOVdGNaeq4XdmMaaGikaiaadohacaaISaGa amiDaiaaiMcacaWGbbGaaGykaaqaaiabes7aKjaadAhadaWgaaWcba GaaGymaaqabaGccaaIOaGaeqiXdqNaaGykaaaacaaI8bWaaSbaaSqa aiaadAhadaWgaaqaaiaaigdaaeqaaiaai2dacaaIWaaabeaakiabeI 8a5naaBaaaleaacqaH1oqzdaWgaaqaaiaaikdaaeqaaaqabaGccaaI OaGaeyOeI0IaamyAaiabeE8aJjaaiIcacaWGZbGaaGilaiaadshaca aIPaGaaGykamaalaaabaGaeqiTdqMaeqiYdK3aaSbaaSqaaiaadkga aeqaaOGaaGikaiaadAhadaWgaaWcbaGaaG4maaqabaGccaaIPaaaba GaeqiTdqMaamODamaaBaaaleaacaaIZaaabeaakiaaiIcacqaHepaD caaISaGaamOEaiaaiMcaaaGaaGiFamaaBaaaleaacaWG2bWaaSbaae aacaaIZaaabeaacaaI9aGaaGimaaqabaGccaaI9aaaaa@75E3@

= δ p ψ ε 1 ( v 1 Iξχ(s,t)A) δ v 1 (τ) | v 1 =0 ψ ε 2 (iχ(s,t))E[b(s,z)]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaaSaaaeaacqaH0oazdaWgaa WcbaGaamiCaaqabaGccqaHipqEdaWgaaWcbaGaeqyTdu2aaSbaaeaa caaIXaaabeaaaeqaaOGaaGikaiaadAhadaWgaaWcbaGaaGymaaqaba GccaWGjbGaeyOeI0IaeqOVdGNaeq4XdmMaaGikaiaadohacaaISaGa amiDaiaaiMcacaWGbbGaaGykaaqaaiabes7aKjaadAhadaWgaaWcba GaaGymaaqabaGccaaIOaGaeqiXdqNaaGykaaaacaaI8bWaaSbaaSqa aiaadAhadaWgaaqaaiaaigdaaeqaaiaai2dacaaIWaaabeaakiabeI 8a5naaBaaaleaacqaH1oqzdaWgaaqaaiaaikdaaeqaaaqabaGccaaI OaGaeyOeI0IaamyAaiabeE8aJjaaiIcacaWGZbGaaGilaiaadshaca aIPaGaaGykaiaadweacaaIBbGaamOyaiaaiIcacaWGZbGaaGilaiaa dQhacaaIPaGaaGyxaiaai6caaaa@6868@

Подставив найденные выражения в формулу (12) и вычислив прямое и обратное преобразования Фурье, получаем формулу (24).

Теорема 11. Если случайные процессы ε1, ε2 и b независимы, то

E[y(t,z) ε 2 (τ)]=i δ p ψ ε 2 ( v 2 iχ( t 0 ,t)) δ v 2 (τ) | v 2 =0 F ξ 1 ( ψ ε 1 (ξχ( t 0 ,t)A))E[ y 0 (z)] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaG4waiaadMhacaaIOaGaam iDaiaaiYcacaWG6bGaaGykaiabew7aLnaaBaaaleaacaaIYaaabeaa kiaaiIcacqaHepaDcaaIPaGaaGyxaiaai2dacqGHsislcaWGPbWaaS aaaeaacqaH0oazdaWgaaWcbaGaamiCaaqabaGccqaHipqEdaWgaaWc baGaeqyTdu2aaSbaaeaacaaIYaaabeaaaeqaaOGaaGikaiaadAhada WgaaWcbaGaaGOmaaqabaGccqGHsislcaWGPbGaeq4XdmMaaGikaiaa dshadaWgaaWcbaGaaGimaaqabaGccaaISaGaamiDaiaaiMcacaaIPa aabaGaeqiTdqMaamODamaaBaaaleaacaaIYaaabeaakiaaiIcacqaH epaDcaaIPaaaaiaaiYhadaWgaaWcbaGaamODamaaBaaabaGaaGOmaa qabaGaaGypaiaaicdaaeqaaOGaamOramaaDaaaleaacqaH+oaEaeaa cqGHsislcaaIXaaaaOGaaGikaiabeI8a5naaBaaaleaacqaH1oqzda WgaaqaaiaaigdaaeqaaaqabaGccaaIOaGaeyOeI0IaeqOVdGNaeq4X dmMaaGikaiaadshadaWgaaWcbaGaaGimaaqabaGccaaISaGaamiDai aaiMcacaWGbbGaaGykaiaaiMcacqGHxiIkcaWGfbGaaG4waiaadMha daWgaaWcbaGaaGimaaqabaGccaaIOaGaamOEaiaaiMcacaaIDbGaey OeI0caaa@7F13@

i t 0 t δ p ψ ε 2 ( v 2 iχ(s,t)) δ v 2 (τ) | v 2 =0 F ξ 1 ( ψ ε 1 (ξχ(s,t)A))E[b(s,z)]ds MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGPbWaa8qCaeqaleaaca WG0bWaaSbaaeaacaaIWaaabeaaaeaacaWG0baaniabgUIiYdGcdaWc aaqaaiabes7aKnaaBaaaleaacaWGWbaabeaakiabeI8a5naaBaaale aacqaH1oqzdaWgaaqaaiaaikdaaeqaaaqabaGccaaIOaGaamODamaa BaaaleaacaaIYaaabeaakiabgkHiTiaadMgacqaHhpWycaaIOaGaam 4CaiaaiYcacaWG0bGaaGykaiaaiMcaaeaacqaH0oazcaWG2bWaaSba aSqaaiaaikdaaeqaaOGaaGikaiabes8a0jaaiMcaaaGaaGiFamaaBa aaleaacaWG2bWaaSbaaeaacaaIYaaabeaacaaI9aGaaGimaaqabaGc caWGgbWaa0baaSqaaiabe67a4bqaaiabgkHiTiaaigdaaaGccaaIOa GaeqiYdK3aaSbaaSqaaiabew7aLnaaBaaabaGaaGymaaqabaaabeaa kiaaiIcacqGHsislcqaH+oaEcqaHhpWycaaIOaGaam4CaiaaiYcaca WG0bGaaGykaiaadgeacaaIPaGaaGykaiabgEHiQiaadweacaaIBbGa amOyaiaaiIcacaWGZbGaaGilaiaadQhacaaIPaGaaGyxaiaadsgaca WGZbaaaa@75DC@                                                                              (25)

является смешанной моментной функцией решения задачи (1), (2).

Теорема 11 доказывается аналогично теореме 10.

Теорема 12. Если случайные процессы ε 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba aaaa@344F@ , ε 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba aaaa@3450@  и b MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbaaaa@32A8@  независимы, то

E[y(t,z) b Т (τ,z)]= ψ ε 2 (iχ( t 0 ,t)) F ξ 1 ( ψ ε 1 (ξχ( t 0 ,t)A))E[b(s,z)]E[ y 0 Т (z)]+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaG4waiaadMhacaaIOaGaam iDaiaaiYcacaWG6bGaaGykaiaadkgadaahaaWcbeqaaiaabkcbaaGc caaIOaGaeqiXdqNaaGilaiaadQhacaaIPaGaaGyxaiaai2dacqaHip qEdaWgaaWcbaGaeqyTdu2aaSbaaeaacaaIYaaabeaaaeqaaOGaaGik aiabgkHiTiaadMgacqaHhpWycaaIOaGaamiDamaaBaaaleaacaaIWa aabeaakiaaiYcacaWG0bGaaGykaiaaiMcacaWGgbWaa0baaSqaaiab e67a4bqaaiabgkHiTiaaigdaaaGccaaIOaGaeqiYdK3aaSbaaSqaai abew7aLnaaBaaabaGaaGymaaqabaaabeaakiaaiIcacqGHsislcqaH +oaEcqaHhpWycaaIOaGaamiDamaaBaaaleaacaaIWaaabeaakiaaiY cacaWG0bGaaGykaiaadgeacaaIPaGaaGykaiaadweacaaIBbGaamOy aiaaiIcacaWGZbGaaGilaiaadQhacaaIPaGaaGyxaiabgEHiQiaadw eacaaIBbGaamyEamaaDaaaleaacaaIWaaabaGaaeOieaaakiaaiIca caWG6bGaaGykaiaai2facqGHRaWkaaa@762B@

+ t 0 t ψ ε 2 (iχ(s,t)) F ξ 1 ( ψ ε 1 (ξχ(s,t)A))E[b(s,z) b Т (τ,z)]ds MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWdXbqabSqaaiaadshada Wgaaqaaiaaicdaaeqaaaqaaiaadshaa0Gaey4kIipakiabeI8a5naa BaaaleaacqaH1oqzdaWgaaqaaiaaikdaaeqaaaqabaGccaaIOaGaey OeI0IaamyAaiabeE8aJjaaiIcacaWGZbGaaGilaiaadshacaaIPaGa aGykaiaadAeadaqhaaWcbaGaeqOVdGhabaGaeyOeI0IaaGymaaaaki aaiIcacqaHipqEdaWgaaWcbaGaeqyTdu2aaSbaaeaacaaIXaaabeaa aeqaaOGaaGikaiabgkHiTiabe67a4jabeE8aJjaaiIcacaWGZbGaaG ilaiaadshacaaIPaGaamyqaiaaiMcacaaIPaGaey4fIOIaamyraiaa iUfacaWGIbGaaGikaiaadohacaaISaGaamOEaiaaiMcacaWGIbWaaW baaSqabeaacaqGIqaaaOGaaGikaiabes8a0jaaiYcacaWG6bGaaGyk aiaai2facaWGKbGaam4Caaaa@6B6B@                                                                                                        (26)

является смешанной моментной функцией решения задачи (1), (2).

Доказательство. Вычислим значения вариационных производных, входящих в формулу (14), в предположении, что случайные процессы ε1, ε2 и b независимы:

δ p ψ( v 1 Iξχ( t 0 ,t)A, v 2 iχ( t 0 ,t), v 3 ) δ v 3 (τ,z) | v 1 = v 2 = v 3 =0 =i ψ ε 2 (iχ( t 0 ,t)) ψ ε 1 (ξχ( t 0 ,t)A)E[b(τ,z)], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabes7aKnaaBaaaleaaca WGWbaabeaakiabeI8a5jaaiIcacaWG2bWaaSbaaSqaaiaaigdaaeqa aOGaamysaiabgkHiTiabe67a4jabeE8aJjaaiIcacaWG0bWaaSbaaS qaaiaaicdaaeqaaOGaaGilaiaadshacaaIPaGaamyqaiaaiYcacaWG 2bWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamyAaiabeE8aJjaaiI cacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiaadshacaaIPaGa aGilaiaadAhadaWgaaWcbaGaaG4maaqabaGccaaIPaaabaGaeqiTdq MaamODamaaBaaaleaacaaIZaaabeaakiaaiIcacqaHepaDcaaISaGa amOEaiaaiMcaaaGaaGiFamaaBaaaleaacaWG2bWaaSbaaeaacaaIXa aabeaacaaI9aGaamODamaaBaaabaGaaGOmaaqabaGaaGypaiaadAha daWgaaqaaiaaiodaaeqaaiaai2dacaaIWaaabeaakiaai2dacaWGPb GaeqiYdK3aaSbaaSqaaiabew7aLnaaBaaabaGaaGOmaaqabaaabeaa kiaaiIcacqGHsislcaWGPbGaeq4XdmMaaGikaiaadshadaWgaaWcba GaaGimaaqabaGccaaISaGaamiDaiaaiMcacaaIPaGaeqiYdK3aaSba aSqaaiabew7aLnaaBaaabaGaaGymaaqabaaabeaakiaaiIcacqGHsi slcqaH+oaEcqaHhpWycaaIOaGaamiDamaaBaaaleaacaaIWaaabeaa kiaaiYcacaWG0bGaaGykaiaadgeacaaIPaGaamyraiaaiUfacaWGIb GaaGikaiabes8a0jaaiYcacaWG6bGaaGykaiaai2facaaISaaaaa@8E2C@

δ p 2 ψ( v 1 Iξχ(s,t)A, v 2 iχ(s,t), v 3 ) δ v 3 (τ,z)δ v 3 (s,z) | v 1 = v 2 = v 3 =0 = ψ ε 2 (iχ(s,t)) ψ ε 1 (ξχ(s,t)A)E[b(s,z) b Т (τ,z)]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabes7aKnaaDaaaleaaca WGWbaabaGaaGOmaaaakiabeI8a5jaaiIcacaWG2bWaaSbaaSqaaiaa igdaaeqaaOGaamysaiabgkHiTiabe67a4jabeE8aJjaaiIcacaWGZb GaaGilaiaadshacaaIPaGaamyqaiaaiYcacaWG2bWaaSbaaSqaaiaa ikdaaeqaaOGaeyOeI0IaamyAaiabeE8aJjaaiIcacaWGZbGaaGilai aadshacaaIPaGaaGilaiaadAhadaWgaaWcbaGaaG4maaqabaGccaaI PaaabaGaeqiTdqMaamODamaaBaaaleaacaaIZaaabeaakiaaiIcacq aHepaDcaaISaGaamOEaiaaiMcacqaH0oazcaWG2bWaaSbaaSqaaiaa iodaaeqaaOGaaGikaiaadohacaaISaGaamOEaiaaiMcaaaGaaGiFam aaBaaaleaacaWG2bWaaSbaaeaacaaIXaaabeaacaaI9aGaamODamaa BaaabaGaaGOmaaqabaGaaGypaiaadAhadaWgaaqaaiaaiodaaeqaai aai2dacaaIWaaabeaakiaai2dacqGHsislcqaHipqEdaWgaaWcbaGa eqyTdu2aaSbaaeaacaaIYaaabeaaaeqaaOGaaGikaiabgkHiTiaadM gacqaHhpWycaaIOaGaam4CaiaaiYcacaWG0bGaaGykaiaaiMcacqaH ipqEdaWgaaWcbaGaeqyTdu2aaSbaaeaacaaIXaaabeaaaeqaaOGaaG ikaiabgkHiTiabe67a4jabeE8aJjaaiIcacaWGZbGaaGilaiaadsha caaIPaGaamyqaiaaiMcacaWGfbGaaG4waiaadkgacaaIOaGaam4Cai aaiYcacaWG6bGaaGykaiaadkgadaahaaWcbeqaaiaabkcbaaGccaaI OaGaeqiXdqNaaGilaiaadQhacaaIPaGaaGyxaiaai6caaaa@98A4@

Подставив найденные выражения в формулу (14) и вычислив прямое и обратное преобразования Фурье, получаем формулу (26).

Теорема 13. Если случайные процессы ε1, ε2 и b независимы, то

E[y(t,z) y Т (τ,z)]= ψ ε 2 (iχ( t 0 ,t)iχ( t 0 ,τ)) F ξ 1 ( ψ ε 1 (ξχ( t 0 ,t)Aξχ( t 0 ,τ)A))E[ y 0 (z) y 0 Т (z)]+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaG4waiaadMhacaaIOaGaam iDaiaaiYcacaWG6bGaaGykaiaadMhadaahaaWcbeqaaiaabkcbaaGc caaIOaGaeqiXdqNaaGilaiaadQhacaaIPaGaaGyxaiaai2dacqaHip qEdaWgaaWcbaGaeqyTdu2aaSbaaeaacaaIYaaabeaaaeqaaOGaaGik aiabgkHiTiaadMgacqaHhpWycaaIOaGaamiDamaaBaaaleaacaaIWa aabeaakiaaiYcacaWG0bGaaGykaiabgkHiTiaadMgacqaHhpWycaaI OaGaamiDamaaBaaaleaacaaIWaaabeaakiaaiYcacqaHepaDcaaIPa GaaGykaiaadAeadaqhaaWcbaGaeqOVdGhabaGaeyOeI0IaaGymaaaa kiaaiIcacqaHipqEdaWgaaWcbaGaeqyTdu2aaSbaaeaacaaIXaaabe aaaeqaaOGaaGikaiabgkHiTiabe67a4jabeE8aJjaaiIcacaWG0bWa aSbaaSqaaiaaicdaaeqaaOGaaGilaiaadshacaaIPaGaamyqaiabgk HiTiabe67a4jabeE8aJjaaiIcacaWG0bWaaSbaaSqaaiaaicdaaeqa aOGaaGilaiabes8a0jaaiMcacaWGbbGaaGykaiaaiMcacqGHxiIkca WGfbGaaG4waiaadMhadaWgaaWcbaGaaGimaaqabaGccaaIOaGaamOE aiaaiMcacaWG5bWaa0baaSqaaiaaicdaaeaacaqGIqaaaOGaaGikai aadQhacaaIPaGaaGyxaiabgUcaRaaa@8756@

+ t 0 τ { ψ ε 2 (iχ( t 0 ,t)iχ(s,τ)) F ξ 1 ( ψ ε 1 (ξχ( t 0 ,t)Aξχ(s,τ)A))E[b(s,z)]E[ y 0 (z)]}ds+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWdXbqabSqaaiaadshada Wgaaqaaiaaicdaaeqaaaqaaiabes8a0bqdcqGHRiI8aOGaaG4Eaiab eI8a5naaBaaaleaacqaH1oqzdaWgaaqaaiaaikdaaeqaaaqabaGcca aIOaGaeyOeI0IaamyAaiabeE8aJjaaiIcacaWG0bWaaSbaaSqaaiaa icdaaeqaaOGaaGilaiaadshacaaIPaGaeyOeI0IaamyAaiabeE8aJj aaiIcacaWGZbGaaGilaiabes8a0jaaiMcacaaIPaGaamOramaaDaaa leaacqaH+oaEaeaacqGHsislcaaIXaaaaOGaaGikaiabeI8a5naaBa aaleaacqaH1oqzdaWgaaqaaiaaigdaaeqaaaqabaGccaaIOaGaeyOe I0IaeqOVdGNaeq4XdmMaaGikaiaadshadaWgaaWcbaGaaGimaaqaba GccaaISaGaamiDaiaaiMcacaWGbbGaeyOeI0IaeqOVdGNaeq4XdmMa aGikaiaadohacaaISaGaeqiXdqNaaGykaiaadgeacaaIPaGaaGykai aadweacaaIBbGaamOyaiaaiIcacaWGZbGaaGilaiaadQhacaaIPaGa aGyxaiabgEHiQiaadweacaaIBbGaamyEamaaBaaaleaacaaIWaaabe aakiaaiIcacaWG6bGaaGykaiaai2facaaI9bGaamizaiaadohacqGH RaWkaaa@83B8@

+ t 0 t { ψ ε 2 (iχ( t 0 ,τ)iχ(s,t)) F ξ 1 ( ψ ε 1 (ξχ( t 0 ,τ)Aξχ(s,t)A))E[b(s,z)]E[ y 0 (z)]}ds+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWdXbqabSqaaiaadshada Wgaaqaaiaaicdaaeqaaaqaaiaadshaa0Gaey4kIipakiaaiUhacqaH ipqEdaWgaaWcbaGaeqyTdu2aaSbaaeaacaaIYaaabeaaaeqaaOGaaG ikaiabgkHiTiaadMgacqaHhpWycaaIOaGaamiDamaaBaaaleaacaaI WaaabeaakiaaiYcacqaHepaDcaaIPaGaeyOeI0IaamyAaiabeE8aJj aaiIcacaWGZbGaaGilaiaadshacaaIPaGaaGykaiaadAeadaqhaaWc baGaeqOVdGhabaGaeyOeI0IaaGymaaaakiaaiIcacqaHipqEdaWgaa WcbaGaeqyTdu2aaSbaaeaacaaIXaaabeaaaeqaaOGaaGikaiabgkHi Tiabe67a4jabeE8aJjaaiIcacaWG0bWaaSbaaSqaaiaaicdaaeqaaO GaaGilaiabes8a0jaaiMcacaWGbbGaeyOeI0IaeqOVdGNaeq4XdmMa aGikaiaadohacaaISaGaamiDaiaaiMcacaWGbbGaaGykaiaaiMcaca WGfbGaaG4waiaadkgacaaIOaGaam4CaiaaiYcacaWG6bGaaGykaiaa i2facqGHxiIkcaWGfbGaaG4waiaadMhadaWgaaWcbaGaaGimaaqaba GccaaIOaGaamOEaiaaiMcacaaIDbGaaGyFaiaadsgacaWGZbGaey4k aScaaa@82EC@

+ t 0 t t 0 τ ψ ε 2 (iχ(σ,τ)iχ(s,t)) F ξ 1 ( ψ ε 1 (ξχ(σ,τ)Aξχ(s,t)A))E[b(s,z) b Т (σ,z)]dσds MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWdXbqabSqaaiaadshada Wgaaqaaiaaicdaaeqaaaqaaiaadshaa0Gaey4kIipakmaapehabeWc baGaamiDamaaBaaabaGaaGimaaqabaaabaGaeqiXdqhaniabgUIiYd GccqaHipqEdaWgaaWcbaGaeqyTdu2aaSbaaeaacaaIYaaabeaaaeqa aOGaaGikaiabgkHiTiaadMgacqaHhpWycaaIOaGaeq4WdmNaaGilai abes8a0jaaiMcacqGHsislcaWGPbGaeq4XdmMaaGikaiaadohacaaI SaGaamiDaiaaiMcacaaIPaGaamOramaaDaaaleaacqaH+oaEaeaacq GHsislcaaIXaaaaOGaaGikaiabeI8a5naaBaaaleaacqaH1oqzdaWg aaqaaiaaigdaaeqaaaqabaGccaaIOaGaeyOeI0IaeqOVdGNaeq4Xdm MaaGikaiabeo8aZjaaiYcacqaHepaDcaaIPaGaamyqaiabgkHiTiab e67a4jabeE8aJjaaiIcacaWGZbGaaGilaiaadshacaaIPaGaamyqai aaiMcacaaIPaGaey4fIOIaamyraiaaiUfacaWGIbGaaGikaiaadoha caaISaGaamOEaiaaiMcacaWGIbWaaWbaaSqabeaacaqGIqaaaOGaaG ikaiabeo8aZjaaiYcacaWG6bGaaGykaiaai2facaWGKbGaeq4WdmNa amizaiaadohaaaa@8827@                                                                  (27)

является второй моментной функцией решения задачи (1), (2).

Доказательство. Поскольку

F ξ 1 ψ(ξχ( t 0 ,t)Aξχ( t 0 ,τ)A,iχ( t 0 ,t)iχ( t 0 ,τ),0)= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaa0baaSqaaiabe67a4bqaai abgkHiTiaaigdaaaGccqaHipqEcaaIOaGaeyOeI0IaeqOVdGNaeq4X dmMaaGikaiaadshadaWgaaWcbaGaaGimaaqabaGccaaISaGaamiDai aaiMcacaWGbbGaeyOeI0IaeqOVdGNaeq4XdmMaaGikaiaadshadaWg aaWcbaGaaGimaaqabaGccaaISaGaeqiXdqNaaGykaiaadgeacaaISa GaeyOeI0IaamyAaiabeE8aJjaaiIcacaWG0bWaaSbaaSqaaiaaicda aeqaaOGaaGilaiaadshacaaIPaGaeyOeI0IaamyAaiabeE8aJjaaiI cacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiabes8a0jaaiMca caaISaGaaGimaiaaiMcacaaI9aaaaa@6358@

= ψ ε 2 (iχ( t 0 ,t)iχ( t 0 ,τ)) F ξ 1 ( ψ ε 1 (ξχ( t 0 ,t)Aξχ( t 0 ,τ)A)) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaeqiYdK3aaSbaaSqaaiabew 7aLnaaBaaabaGaaGOmaaqabaaabeaakiaaiIcacqGHsislcaWGPbGa eq4XdmMaaGikaiaadshadaWgaaWcbaGaaGimaaqabaGccaaISaGaam iDaiaaiMcacqGHsislcaWGPbGaeq4XdmMaaGikaiaadshadaWgaaWc baGaaGimaaqabaGccaaISaGaeqiXdqNaaGykaiaaiMcacaWGgbWaa0 baaSqaaiabe67a4bqaaiabgkHiTiaaigdaaaGccaaIOaGaeqiYdK3a aSbaaSqaaiabew7aLnaaBaaabaGaaGymaaqabaaabeaakiaaiIcacq GHsislcqaH+oaEcqaHhpWycaaIOaGaamiDamaaBaaaleaacaaIWaaa beaakiaaiYcacaWG0bGaaGykaiaadgeacqGHsislcqaH+oaEcqaHhp WycaaIOaGaamiDamaaBaaaleaacaaIWaaabeaakiaaiYcacqaHepaD caaIPaGaamyqaiaaiMcacaaIPaaaaa@6B3D@

и

F ξ 1 '( F z '( F ξ 1 '( δ p ψ'(ξχ( t 0 ,t)Aξχ(s,τ)A,iχ( t 0 ,t)iχ(s,τ), v 3 ) δ v 3 (s,z) | v 3 =0 )))= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaa0baaSqaaiabe67a4bqaai abgkHiTiaaigdaaaGccaaIGbGaaGikaiaadAeadaWgaaWcbaGaamOE aaqabaGccaaIGbGaaGikaiaadAeadaqhaaWcbaGaeqOVdGhabaGaey OeI0IaaGymaaaakiaaicgacaaIOaWaaSaaaeaacqaH0oazdaWgaaWc baGaamiCaaqabaGccqaHipqEcaaIGbGaaGikaiabgkHiTiabe67a4j abeE8aJjaaiIcacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiaa dshacaaIPaGaamyqaiabgkHiTiabe67a4jabeE8aJjaaiIcacaWGZb GaaGilaiabes8a0jaaiMcacaWGbbGaaGilaiabgkHiTiaadMgacqaH hpWycaaIOaGaamiDamaaBaaaleaacaaIWaaabeaakiaaiYcacaWG0b GaaGykaiabgkHiTiaadMgacqaHhpWycaaIOaGaam4CaiaaiYcacqaH epaDcaaIPaGaaGilaiaadAhadaWgaaWcbaGaaG4maaqabaGccaaIPa aabaGaeqiTdqMaamODamaaBaaaleaacaaIZaaabeaakiaaiIcacaWG ZbGaaGilaiaadQhacaaIPaaaaiaaiYhadaWgaaWcbaGaamODamaaBa aabaGaaG4maaqabaGaaGypaiaaicdaaeqaaOGaaGykaiaaiMcacaaI PaGaaGypaaaa@8009@

=i F ξ 1 '( F z '( F ξ 1 '( ψ ε 1 '(ξχ( t 0 ,t)Aξχ(s,τ)A) ψ ε 2 '(iχ( t 0 ,t)iχ(s,τ))E[b(s,z)])))= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaamyAaiaadAeadaqhaaWcba GaeqOVdGhabaGaeyOeI0IaaGymaaaakiaaicgacaaIOaGaamOramaa BaaaleaacaWG6baabeaakiaaicgacaaIOaGaamOramaaDaaaleaacq aH+oaEaeaacqGHsislcaaIXaaaaOGaaGiyaiaaiIcacqaHipqEdaWg aaWcbaGaeqyTdu2aaSbaaeaacaaIXaaabeaaaeqaaOGaaGiyaiaaiI cacqGHsislcqaH+oaEcqaHhpWycaaIOaGaamiDamaaBaaaleaacaaI WaaabeaakiaaiYcacaWG0bGaaGykaiaadgeacqGHsislcqaH+oaEcq aHhpWycaaIOaGaam4CaiaaiYcacqaHepaDcaaIPaGaamyqaiaaiMca cqaHipqEdaWgaaWcbaGaeqyTdu2aaSbaaeaacaaIYaaabeaaaeqaaO GaaGiyaiaaiIcacqGHsislcaWGPbGaeq4XdmMaaGikaiaadshadaWg aaWcbaGaaGimaaqabaGccaaISaGaamiDaiaaiMcacqGHsislcaWGPb Gaeq4XdmMaaGikaiaadohacaaISaGaeqiXdqNaaGykaiaaiMcacaWG fbGaaG4waiaadkgacaaIOaGaam4CaiaaiYcacaWG6bGaaGykaiaai2 facaaIPaGaaGykaiaaiMcacaaI9aaaaa@8068@

=i F ξ 1 '( F z '( ψ ε 2 '(iχ( t 0 ,t)iχ(s,τ))E[b(s,z)] F ξ 1 '( ψ ε 1 '(ξχ( t 0 ,t)Aξχ(s,τ)A))))= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaamyAaiaadAeadaqhaaWcba GaeqOVdGhabaGaeyOeI0IaaGymaaaakiaaicgacaaIOaGaamOramaa BaaaleaacaWG6baabeaakiaaicgacaaIOaGaeqiYdK3aaSbaaSqaai abew7aLnaaBaaabaGaaGOmaaqabaaabeaakiaaicgacaaIOaGaeyOe I0IaamyAaiabeE8aJjaaiIcacaWG0bWaaSbaaSqaaiaaicdaaeqaaO GaaGilaiaadshacaaIPaGaeyOeI0IaamyAaiabeE8aJjaaiIcacaWG ZbGaaGilaiabes8a0jaaiMcacaaIPaGaamyraiaaiUfacaWGIbGaaG ikaiaadohacaaISaGaamOEaiaaiMcacaaIDbGaamOramaaDaaaleaa cqaH+oaEaeaacqGHsislcaaIXaaaaOGaaGiyaiaaiIcacqaHipqEda WgaaWcbaGaeqyTdu2aaSbaaeaacaaIXaaabeaaaeqaaOGaaGiyaiaa iIcacqGHsislcqaH+oaEcqaHhpWycaaIOaGaamiDamaaBaaaleaaca aIWaaabeaakiaaiYcacaWG0bGaaGykaiaadgeacqGHsislcqaH+oaE cqaHhpWycaaIOaGaam4CaiaaiYcacqaHepaDcaaIPaGaamyqaiaaiM cacaaIPaGaaGykaiaaiMcacaaI9aaaaa@8068@

=i F ξ 1 '( ψ ε 2 '(iχ( t 0 ,t)iχ(s,τ)) F z '( F ξ 1 '( ψ ε 1 '(ξχ( t 0 ,t)Aξχ(s,τ)A))E[b(s,z)]))= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaamyAaiaadAeadaqhaaWcba GaeqOVdGhabaGaeyOeI0IaaGymaaaakiaaicgacaaIOaGaeqiYdK3a aSbaaSqaaiabew7aLnaaBaaabaGaaGOmaaqabaaabeaakiaaicgaca aIOaGaeyOeI0IaamyAaiabeE8aJjaaiIcacaWG0bWaaSbaaSqaaiaa icdaaeqaaOGaaGilaiaadshacaaIPaGaeyOeI0IaamyAaiabeE8aJj aaiIcacaWGZbGaaGilaiabes8a0jaaiMcacaaIPaGaamOramaaBaaa leaacaWG6baabeaakiaaicgacaaIOaGaamOramaaDaaaleaacqaH+o aEaeaacqGHsislcaaIXaaaaOGaaGiyaiaaiIcacqaHipqEdaWgaaWc baGaeqyTdu2aaSbaaeaacaaIXaaabeaaaeqaaOGaaGiyaiaaiIcacq GHsislcqaH+oaEcqaHhpWycaaIOaGaamiDamaaBaaaleaacaaIWaaa beaakiaaiYcacaWG0bGaaGykaiaadgeacqGHsislcqaH+oaEcqaHhp WycaaIOaGaam4CaiaaiYcacqaHepaDcaaIPaGaamyqaiaaiMcacaaI PaGaamyraiaaiUfacaWGIbGaaGikaiaadohacaaISaGaamOEaiaaiM cacaaIDbGaaGykaiaaiMcacaaI9aaaaa@8068@

= i 2π F ξ 1 '( ψ ε 2 '(iχ( t 0 ,t)iχ(s,τ)) ψ ε 1 '(ξχ( t 0 ,t)Aξχ(s,τ)A) F z (E[b(s,z)]))= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaaSaaaeaacaWGPbaabaGaaG Omaiabec8aWbaacaWGgbWaa0baaSqaaiabe67a4bqaaiabgkHiTiaa igdaaaGccaaIGbGaaGikaiabeI8a5naaBaaaleaacqaH1oqzdaWgaa qaaiaaikdaaeqaaaqabaGccaaIGbGaaGikaiabgkHiTiaadMgacqaH hpWycaaIOaGaamiDamaaBaaaleaacaaIWaaabeaakiaaiYcacaWG0b GaaGykaiabgkHiTiaadMgacqaHhpWycaaIOaGaam4CaiaaiYcacqaH epaDcaaIPaGaaGykaiabeI8a5naaBaaaleaacqaH1oqzdaWgaaqaai aaigdaaeqaaaqabaGccaaIGbGaaGikaiabgkHiTiabe67a4jabeE8a JjaaiIcacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiaadshaca aIPaGaamyqaiabgkHiTiabe67a4jabeE8aJjaaiIcacaWGZbGaaGil aiabes8a0jaaiMcacaWGbbGaaGykaiabgEHiQiaadAeadaWgaaWcba GaamOEaaqabaGccaaIOaGaamyraiaaiUfacaWGIbGaaGikaiaadoha caaISaGaamOEaiaaiMcacaaIDbGaaGykaiaaiMcacaaI9aaaaa@7C3A@

=i ψ ε 2 '(iχ( t 0 ,t)iχ(s,τ)) F ξ 1 '( ψ ε 1 '(ξχ( t 0 ,t)Aξχ(s,τ)A))E[b(s,z)], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaamyAaiabeI8a5naaBaaale aacqaH1oqzdaWgaaqaaiaaikdaaeqaaaqabaGccaaIGbGaaGikaiab gkHiTiaadMgacqaHhpWycaaIOaGaamiDamaaBaaaleaacaaIWaaabe aakiaaiYcacaWG0bGaaGykaiabgkHiTiaadMgacqaHhpWycaaIOaGa am4CaiaaiYcacqaHepaDcaaIPaGaaGykaiaadAeadaqhaaWcbaGaeq OVdGhabaGaeyOeI0IaaGymaaaakiaaicgacaaIOaGaeqiYdK3aaSba aSqaaiabew7aLnaaBaaabaGaaGymaaqabaaabeaakiaaicgacaaIOa GaeyOeI0IaeqOVdGNaeq4XdmMaaGikaiaadshadaWgaaWcbaGaaGim aaqabaGccaaISaGaamiDaiaaiMcacaWGbbGaeyOeI0IaeqOVdGNaeq 4XdmMaaGikaiaadohacaaISaGaeqiXdqNaaGykaiaadgeacaaIPaGa aGykaiaadweacaaIBbGaamOyaiaaiIcacaWGZbGaaGilaiaadQhaca aIPaGaaGyxaiaaiYcaaaa@754C@

преобразуя последнее подинтегральное выражение, получаем

F ξ 1 '( F z '( F ξ 1 '( F z '( δ p 2 ψ'(ξχ(σ,τ)Aξχ(s,t)A,iχ(σ,τ)iχ(s,t), v 3 ) δ v 3 (σ,z)δ v 3 (s,z) | v 3 =0 ))))= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaa0baaSqaaiabe67a4bqaai abgkHiTiaaigdaaaGccaaIGbGaaGikaiaadAeadaWgaaWcbaGaamOE aaqabaGccaaIGbGaaGikaiaadAeadaqhaaWcbaGaeqOVdGhabaGaey OeI0IaaGymaaaakiaaicgacaaIOaGaamOramaaBaaaleaacaWG6baa beaakiaaicgacaaIOaWaaSaaaeaacqaH0oazdaqhaaWcbaGaamiCaa qaaiaaikdaaaGccqaHipqEcaaIGbGaaGikaiabgkHiTiabe67a4jab eE8aJjaaiIcacqaHdpWCcaaISaGaeqiXdqNaaGykaiaadgeacqGHsi slcqaH+oaEcqaHhpWycaaIOaGaam4CaiaaiYcacaWG0bGaaGykaiaa dgeacaaISaGaeyOeI0IaamyAaiabeE8aJjaaiIcacqaHdpWCcaaISa GaeqiXdqNaaGykaiabgkHiTiaadMgacqaHhpWycaaIOaGaam4Caiaa iYcacaWG0bGaaGykaiaaiYcacaWG2bWaaSbaaSqaaiaaiodaaeqaaO GaaGykaaqaaiabes7aKjaadAhadaWgaaWcbaGaaG4maaqabaGccaaI OaGaeq4WdmNaaGilaiaadQhacaaIPaGaeqiTdqMaamODamaaBaaale aacaaIZaaabeaakiaaiIcacaWGZbGaaGilaiaadQhacaaIPaaaaiaa iYhadaWgaaWcbaGaamODamaaBaaabaGaaG4maaqabaGaaGypaiaaic daaeqaaOGaaGykaiaaiMcacaaIPaGaaGykaiaai2daaaa@8D39@

= F ξ 1 '( F z '( F ξ 1 '( F z ( ψ ε 2 '(iχ(σ,τ)iχ(s,t)) ψ ε 1 '(ξχ(σ,τ)Aξχ(s,t)A)E[b(s,z) b Т (σ,z)]))))= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaeyOeI0IaamOramaaDaaale aacqaH+oaEaeaacqGHsislcaaIXaaaaOGaaGiyaiaaiIcacaWGgbWa aSbaaSqaaiaadQhaaeqaaOGaaGiyaiaaiIcacaWGgbWaa0baaSqaai abe67a4bqaaiabgkHiTiaaigdaaaGccaaIGbGaaGikaiaadAeadaWg aaWcbaGaamOEaaqabaGccaaIOaGaeqiYdK3aaSbaaSqaaiabew7aLn aaBaaabaGaaGOmaaqabaaabeaakiaaicgacaaIOaGaeyOeI0IaamyA aiabeE8aJjaaiIcacqaHdpWCcaaISaGaeqiXdqNaaGykaiabgkHiTi aadMgacqaHhpWycaaIOaGaam4CaiaaiYcacaWG0bGaaGykaiaaiMca cqaHipqEdaWgaaWcbaGaeqyTdu2aaSbaaeaacaaIXaaabeaaaeqaaO GaaGiyaiaaiIcacqGHsislcqaH+oaEcqaHhpWycaaIOaGaeq4WdmNa aGilaiabes8a0jaaiMcacaWGbbGaeyOeI0IaeqOVdGNaeq4XdmMaaG ikaiaadohacaaISaGaamiDaiaaiMcacaWGbbGaaGykaiaadweacaaI BbGaamOyaiaaiIcacaWGZbGaaGilaiaadQhacaaIPaGaamOyamaaCa aaleqabaGaaeOieaaakiaaiIcacqaHdpWCcaaISaGaamOEaiaaiMca caaIDbGaaGykaiaaiMcacaaIPaGaaGykaiaai2daaaa@8A24@

= F ξ 1 '( F z '( F ξ 1 ( ψ ε 2 '(iχ(σ,τ)iχ(s,t)) ψ ε 1 '(ξχ(σ,τ)Aξχ(s,t)A) F z '(E[b(s,z) b Т (σ,z)]))))= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaeyOeI0IaamOramaaDaaale aacqaH+oaEaeaacqGHsislcaaIXaaaaOGaaGiyaiaaiIcacaWGgbWa aSbaaSqaaiaadQhaaeqaaOGaaGiyaiaaiIcacaWGgbWaa0baaSqaai abe67a4bqaaiabgkHiTiaaigdaaaGccaaIOaGaeqiYdK3aaSbaaSqa aiabew7aLnaaBaaabaGaaGOmaaqabaaabeaakiaaicgacaaIOaGaey OeI0IaamyAaiabeE8aJjaaiIcacqaHdpWCcaaISaGaeqiXdqNaaGyk aiabgkHiTiaadMgacqaHhpWycaaIOaGaam4CaiaaiYcacaWG0bGaaG ykaiaaiMcacqaHipqEdaWgaaWcbaGaeqyTdu2aaSbaaeaacaaIXaaa beaaaeqaaOGaaGiyaiaaiIcacqGHsislcqaH+oaEcqaHhpWycaaIOa Gaeq4WdmNaaGilaiabes8a0jaaiMcacaWGbbGaeyOeI0IaeqOVdGNa eq4XdmMaaGikaiaadohacaaISaGaamiDaiaaiMcacaWGbbGaaGykai aadAeadaWgaaWcbaGaamOEaaqabaGccaaIGbGaaGikaiaadweacaaI BbGaamOyaiaaiIcacaWGZbGaaGilaiaadQhacaaIPaGaamOyamaaCa aaleqabaGaaeOieaaakiaaiIcacqaHdpWCcaaISaGaamOEaiaaiMca caaIDbGaaGykaiaaiMcacaaIPaGaaGykaiaai2daaaa@8A24@

= F ξ 1 '( F z '( ψ ε 2 '(iχ(σ,τ)iχ(s,t)) F ξ 1 '( ψ ε 1 '(ξχ(σ,τ)Aξχ(s,t)A))E[b(s,z) b Т (σ,z)]))= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaeyOeI0IaamOramaaDaaale aacqaH+oaEaeaacqGHsislcaaIXaaaaOGaaGiyaiaaiIcacaWGgbWa aSbaaSqaaiaadQhaaeqaaOGaaGiyaiaaiIcacqaHipqEdaWgaaWcba GaeqyTdu2aaSbaaeaacaaIYaaabeaaaeqaaOGaaGiyaiaaiIcacqGH sislcaWGPbGaeq4XdmMaaGikaiabeo8aZjaaiYcacqaHepaDcaaIPa GaeyOeI0IaamyAaiabeE8aJjaaiIcacaWGZbGaaGilaiaadshacaaI PaGaaGykaiaadAeadaqhaaWcbaGaeqOVdGhabaGaeyOeI0IaaGymaa aakiaaicgacaaIOaGaeqiYdK3aaSbaaSqaaiabew7aLnaaBaaabaGa aGymaaqabaaabeaakiaaicgacaaIOaGaeyOeI0IaeqOVdGNaeq4Xdm MaaGikaiabeo8aZjaaiYcacqaHepaDcaaIPaGaamyqaiabgkHiTiab e67a4jabeE8aJjaaiIcacaWGZbGaaGilaiaadshacaaIPaGaamyqai aaiMcacaaIPaGaey4fIOIaamyraiaaiUfacaWGIbGaaGikaiaadoha caaISaGaamOEaiaaiMcacaWGIbWaaWbaaSqabeaacaqGIqaaaOGaaG ikaiabeo8aZjaaiYcacaWG6bGaaGykaiaai2facaaIPaGaaGykaiaa i2daaaa@87AE@

= F ξ 1 '( ψ ε 2 '(iχ(σ,τ)iχ(s,t)) ψ ε 1 '(ξχ(σ,τ)Aξχ(s,t)A) F z '(E[b(s,z) b Т (σ,z)]))= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaeyOeI0IaamOramaaDaaale aacqaH+oaEaeaacqGHsislcaaIXaaaaOGaaGiyaiaaiIcacqaHipqE daWgaaWcbaGaeqyTdu2aaSbaaeaacaaIYaaabeaaaeqaaOGaaGiyai aaiIcacqGHsislcaWGPbGaeq4XdmMaaGikaiabeo8aZjaaiYcacqaH epaDcaaIPaGaeyOeI0IaamyAaiabeE8aJjaaiIcacaWGZbGaaGilai aadshacaaIPaGaaGykaiabeI8a5naaBaaaleaacqaH1oqzdaWgaaqa aiaaigdaaeqaaaqabaGccaaIGbGaaGikaiabgkHiTiabe67a4jabeE 8aJjaaiIcacqaHdpWCcaaISaGaeqiXdqNaaGykaiaadgeacqGHsisl cqaH+oaEcqaHhpWycaaIOaGaam4CaiaaiYcacaWG0bGaaGykaiaadg eacaaIPaGaamOramaaBaaaleaacaWG6baabeaakiaaicgacaaIOaGa amyraiaaiUfacaWGIbGaaGikaiaadohacaaISaGaamOEaiaaiMcaca WGIbWaaWbaaSqabeaacaqGIqaaaOGaaGikaiabeo8aZjaaiYcacaWG 6bGaaGykaiaai2facaaIPaGaaGykaiaai2daaaa@8003@

= ψ ε 2 '(iχ(σ,τ)iχ(s,t)) F ξ 1 '( ψ ε 1 '(ξχ(σ,τ)Aξχ(s,t)A))E[b(s,z) b Т (σ,z)]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaeyOeI0IaeqiYdK3aaSbaaS qaaiabew7aLnaaBaaabaGaaGOmaaqabaaabeaakiaaicgacaaIOaGa eyOeI0IaamyAaiabeE8aJjaaiIcacqaHdpWCcaaISaGaeqiXdqNaaG ykaiabgkHiTiaadMgacqaHhpWycaaIOaGaam4CaiaaiYcacaWG0bGa aGykaiaaiMcacaWGgbWaa0baaSqaaiabe67a4bqaaiabgkHiTiaaig daaaGccaaIGbGaaGikaiabeI8a5naaBaaaleaacqaH1oqzdaWgaaqa aiaaigdaaeqaaaqabaGccaaIGbGaaGikaiabgkHiTiabe67a4jabeE 8aJjaaiIcacqaHdpWCcaaISaGaeqiXdqNaaGykaiaadgeacqGHsisl cqaH+oaEcqaHhpWycaaIOaGaam4CaiaaiYcacaWG0bGaaGykaiaadg eacaaIPaGaaGykaiabgEHiQiaadweacaaIBbGaamOyaiaaiIcacaWG ZbGaaGilaiaadQhacaaIPaGaamOyamaaCaaaleqabaGaaeOieaaaki aaiIcacqaHdpWCcaaISaGaamOEaiaaiMcacaaIDbGaaGOlaaaa@7C94@

Подставляя полученные выражения в формулу (22), получаем вторую моментную функцию (27) для независимых случайных процессов ε1, ε2 и b.

Замечание 3. Отметим, что для нахождения второй моментной функции E[y(t,z) y Т (τ,z)] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaG4waiaadMhacaaIOaGaam iDaiaaiYcacaWG6bGaaGykaiaadMhadaahaaWcbeqaaiaabkcbaaGc caaIOaGaeqiXdqNaaGilaiaadQhacaaIPaGaaGyxaaaa@4025@  нужно знать характеристические функционалы процессов ε1, ε2 и только математическое ожидание и вторую моментную функцию процесса b.

6. Частные случаи.

Рассмотрим задачу (1), (2) с гауссовскими случайными процессами ε 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba aaaa@344F@ , ε 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba aaaa@3450@ , заданными характеристическими функционалами

ψ ε k ( v k )=exp i T E[ ε k (s)] v k (s)ds 1 2 T T b k ( s 1 , s 2 ) v k ( s 1 ) v k ( s 2 )d s 1 d s 2 ,k=1,2, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEdaWgaaWcbaGaeqyTdu2aaS baaeaacaWGRbaabeaaaeqaaOGaaGikaiaadAhadaWgaaWcbaGaam4A aaqabaGccaaIPaGaaGypaiGacwgacaGG4bGaaiiCamaabmaabaGaam yAamaapefabeWcbaGaamivaaqab0Gaey4kIipakiaadweacaaIBbGa eqyTdu2aaSbaaSqaaiaadUgaaeqaaOGaaGikaiaadohacaaIPaGaaG yxaiaadAhadaWgaaWcbaGaam4AaaqabaGccaaIOaGaam4CaiaaiMca caWGKbGaam4CaiabgkHiTmaalaaabaGaaGymaaqaaiaaikdaaaWaa8 quaeqaleaacaWGubaabeqdcqGHRiI8aOWaa8quaeqaleaacaWGubaa beqdcqGHRiI8aOGaamOyamaaBaaaleaacaWGRbaabeaakiaaiIcaca WGZbWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaadohadaWgaaWcbaGa aGOmaaqabaGccaaIPaGaamODamaaBaaaleaacaWGRbaabeaakiaaiI cacaWGZbWaaSbaaSqaaiaaigdaaeqaaOGaaGykaiaadAhadaWgaaWc baGaam4AaaqabaGccaaIOaGaam4CamaaBaaaleaacaaIYaaabeaaki aaiMcacaWGKbGaam4CamaaBaaaleaacaaIXaaabeaakiaadsgacaWG ZbWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaaGilaiaayw W7caWGRbGaaGypaiaaigdacaaISaGaaGOmaiaaiYcaaaa@7996@                                                        (28)

где b k ( s 1 , s 2 )=E[ ε k ( s 1 ) ε k ( s 2 )]E[ ε k ( s 1 )]E[ ε k ( s 2 )] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbWaaSbaaSqaaiaadUgaaeqaaO GaaGikaiaadohadaWgaaWcbaGaaGymaaqabaGccaaISaGaam4Camaa BaaaleaacaaIYaaabeaakiaaiMcacaaI9aGaamyraiaaiUfacqaH1o qzdaWgaaWcbaGaam4AaaqabaGccaaIOaGaam4CamaaBaaaleaacaaI XaaabeaakiaaiMcacqaH1oqzdaWgaaWcbaGaam4AaaqabaGccaaIOa Gaam4CamaaBaaaleaacaaIYaaabeaakiaaiMcacaaIDbGaeyOeI0Ia amyraiaaiUfacqaH1oqzdaWgaaWcbaGaam4AaaqabaGccaaIOaGaam 4CamaaBaaaleaacaaIXaaabeaakiaaiMcacaaIDbGaamyraiaaiUfa cqaH1oqzdaWgaaWcbaGaam4AaaqabaGccaaIOaGaam4CamaaBaaale aacaaIYaaabeaakiaaiMcacaaIDbaaaa@5BA0@ , k=1,2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaaGypaiaaigdacaaISaGaaG Omaaaa@35A5@ , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbuaqa aaaaaaaaWdbiaa=rbiaaa@3785@  ковариационные функции случайных процессов ε 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba aaaa@344F@  и ε 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba aaaa@3450@  соответственно, и независимым с ε1, ε2 и случайным процессом b.

Теорема 14. Пусть в задаче (1), (2) случайные процессы ε1, ε2 заданы характеристическими функционалами (28) и не зависят от случайного процесса b. Тогда

E[y(t,z) ε 1 (τ)]=iexp t 0 t E[ ε 2 (s)]ds+ 1 2 t 0 t t 0 t b 2 ( s 1 , s 2 )d s 1 d s 2 × MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaG4waiaadMhacaaIOaGaam iDaiaaiYcacaWG6bGaaGykaiabew7aLnaaBaaaleaacaaIXaaabeaa kiaaiIcacqaHepaDcaaIPaGaaGyxaiaai2dacqGHsislcaWGPbGaci yzaiaacIhacaGGWbWaaeWaaeaadaWdXbqabSqaaiaadshadaWgaaqa aiaaicdaaeqaaaqaaiaadshaa0Gaey4kIipakiaadweacaaIBbGaeq yTdu2aaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadohacaaIPaGaaGyx aiaayIW7caWGKbGaam4CaiabgUcaRmaalaaabaGaaGymaaqaaiaaik daaaWaa8qCaeqaleaacaWG0bWaaSbaaeaacaaIWaaabeaaaeaacaWG 0baaniabgUIiYdGcdaWdXbqabSqaaiaadshadaWgaaqaaiaaicdaae qaaaqaaiaadshaa0Gaey4kIipakiaadkgadaWgaaWcbaGaaGOmaaqa baGccaaIOaGaam4CamaaBaaaleaacaaIXaaabeaakiaaiYcacaWGZb WaaSbaaSqaaiaaikdaaeqaaOGaaGykaiaadsgacaWGZbWaaSbaaSqa aiaaigdaaeqaaOGaamizaiaadohadaWgaaWcbaGaaGOmaaqabaaaki aawIcacaGLPaaacqGHxdaTaaa@72DD@

× F ξ 1 exp iξ t 0 t E[ ε 1 (s)]Ads 1 2 ξ 2 t 0 t t 0 t b 1 ( s 1 , s 2 ) A 2 d s 1 d s 2 × MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHxdaTcaWGgbWaa0baaSqaaiabe6 7a4bqaaiabgkHiTiaaigdaaaGcdaqabaqaaiGacwgacaGG4bGaaiiC amaabmaabaGaeyOeI0IaamyAaiabe67a4naapehabeWcbaGaamiDam aaBaaabaGaaGimaaqabaaabaGaamiDaaqdcqGHRiI8aOGaamyraiaa iUfacqaH1oqzdaWgaaWcbaGaaGymaaqabaGccaaIOaGaam4CaiaaiM cacaaIDbGaamyqaiaayIW7caWGKbGaam4CaiabgkHiTmaalaaabaGa aGymaaqaaiaaikdaaaGaeqOVdG3aaWbaaSqabeaacaaIYaaaaOWaa8 qCaeqaleaacaWG0bWaaSbaaeaacaaIWaaabeaaaeaacaWG0baaniab gUIiYdGcdaWdXbqabSqaaiaadshadaWgaaqaaiaaicdaaeqaaaqaai aadshaa0Gaey4kIipakiaadkgadaWgaaWcbaGaaGymaaqabaGccaaI OaGaam4CamaaBaaaleaacaaIXaaabeaakiaaiYcacaWGZbWaaSbaaS qaaiaaikdaaeqaaOGaaGykaiaadgeadaahaaWcbeqaaiaaikdaaaGc caWGKbGaam4CamaaBaaaleaacaaIXaaabeaakiaadsgacaWGZbWaaS baaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaey41aqlacaGLOaaa aaa@72F8@

× iE[ ε 1 (τ)]I+ξ t 0 t b 1 (τ,s)Ads E[ y 0 (z)] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqacaqaaiabgEna0oaabmaabaGaam yAaiaadweacaaIBbGaeqyTdu2aaSbaaSqaaiaaigdaaeqaaOGaaGik aiabes8a0jaaiMcacaaIDbGaamysaiabgUcaRiabe67a4naapehabe WcbaGaamiDamaaBaaabaGaaGimaaqabaaabaGaamiDaaqdcqGHRiI8 aOGaamOyamaaBaaaleaacaaIXaaabeaakiaaiIcacqaHepaDcaaISa Gaam4CaiaaiMcacaWGbbGaaGjcVlaadsgacaWGZbaacaGLOaGaayzk aaaacaGLPaaacqGHxiIkcaWGfbGaaG4waiaadMhadaWgaaWcbaGaaG imaaqabaGccaaIOaGaamOEaiaaiMcacaaIDbGaeyOeI0caaa@5BCF@

i t 0 t exp s t E[ ε 2 (σ)]dσ+ 1 2 s t s t b 2 ( s 1 , s 2 )d s 1 d s 2 × MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGPbWaa8qCaeqaleaaca WG0bWaaSbaaeaacaaIWaaabeaaaeaacaWG0baaniabgUIiYdGcdaGa baqaaiGacwgacaGG4bGaaiiCamaabmaabaWaa8qCaeqaleaacaWGZb aabaGaamiDaaqdcqGHRiI8aOGaamyraiaaiUfacqaH1oqzdaWgaaWc baGaaGOmaaqabaGccaaIOaGaeq4WdmNaaGykaiaai2facaWGKbGaeq 4WdmNaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaaaadaWdXbqabSqa aiaadohaaeaacaWG0baaniabgUIiYdGcdaWdXbqabSqaaiaadohaae aacaWG0baaniabgUIiYdGccaWGIbWaaSbaaSqaaiaaikdaaeqaaOGa aGikaiaadohadaWgaaWcbaGaaGymaaqabaGccaaISaGaam4CamaaBa aaleaacaaIYaaabeaakiaaiMcacaWGKbGaam4CamaaBaaaleaacaaI XaaabeaakiaadsgacaWGZbWaaSbaaSqaaiaaikdaaeqaaaGccaGLOa GaayzkaaGaey41aqlacaGL7baaaaa@6879@

× F ξ 1 exp iξ s t E[ ε 1 (σ)]Adσ 1 2 ξ 2 s t s t b 1 ( s 1 , s 2 ) A 2 d s 1 d s 2 × MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHxdaTcaWGgbWaa0baaSqaaiabe6 7a4bqaaiabgkHiTiaaigdaaaGcdaqabaqaaiGacwgacaGG4bGaaiiC amaabmaabaGaeyOeI0IaamyAaiabe67a4naapehabeWcbaGaam4Caa qaaiaadshaa0Gaey4kIipakiaadweacaaIBbGaeqyTdu2aaSbaaSqa aiaaigdaaeqaaOGaaGikaiabeo8aZjaaiMcacaaIDbGaamyqaiaayI W7caWGKbGaeq4WdmNaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOmaaaa cqaH+oaEdaahaaWcbeqaaiaaikdaaaGcdaWdXbqabSqaaiaadohaae aacaWG0baaniabgUIiYdGcdaWdXbqabSqaaiaadohaaeaacaWG0baa niabgUIiYdGccaWGIbWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaado hadaWgaaWcbaGaaGymaaqabaGccaaISaGaam4CamaaBaaaleaacaaI YaaabeaakiaaiMcacaWGbbWaaWbaaSqabeaacaaIYaaaaOGaamizai aadohadaWgaaWcbaGaaGymaaqabaGccaWGKbGaam4CamaaBaaaleaa caaIYaaabeaaaOGaayjkaiaawMcaaaGaayjkaaGaey41aqlaaa@71FA@

× iE[ ε 1 (τ)]I+ξ s t b 1 (τ, s 1 )Ad s 1 E[b(s,z)] ds MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaGacaqaamaabiaabaGaey41aq7aae WaaeaacaWGPbGaamyraiaaiUfacqaH1oqzdaWgaaWcbaGaaGymaaqa baGccaaIOaGaeqiXdqNaaGykaiaai2facaWGjbGaey4kaSIaeqOVdG 3aa8qCaeqaleaacaWGZbaabaGaamiDaaqdcqGHRiI8aOGaamOyamaa BaaaleaacaaIXaaabeaakiaaiIcacqaHepaDcaaISaGaam4CamaaBa aaleaacaaIXaaabeaakiaaiMcacaWGbbGaamizaiaadohadaWgaaWc baGaaGymaaqabaaakiaawIcacaGLPaaaaiaawMcaaiabgEHiQiaadw eacaaIBbGaamOyaiaaiIcacaWGZbGaaGilaiaadQhacaaIPaGaaGyx aaGaayzFaaGaamizaiaadohaaaa@5DFC@                                                                                             (29)

является смешанной моментной функцией решения этой задачи.

Доказательство. Выпишем ψ ε 1 ( v 1 Iξχ(s,t)A) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEdaWgaaWcbaGaeqyTdu2aaS baaeaacaaIXaaabeaaaeqaaOGaaGikaiaadAhadaWgaaWcbaGaaGym aaqabaGccaWGjbGaeyOeI0IaeqOVdGNaeq4XdmMaaGikaiaadohaca aISaGaamiDaiaaiMcacaWGbbGaaGykaaaa@43A0@  для гауссовского процесса, используя определение функции χ(s,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHhpWycaaIOaGaam4CaiaaiYcaca WG0bGaaGykaaaa@3784@ :

ψ ε 1 ( v 1 Iξχ(s,t)A)=exp i T E[ ε 1 (σ)] v 1 (σ)Idσiξ s t E[ ε 1 (σ)]Adσ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEdaWgaaWcbaGaeqyTdu2aaS baaeaacaaIXaaabeaaaeqaaOGaaGikaiaadAhadaWgaaWcbaGaaGym aaqabaGccaWGjbGaeyOeI0IaeqOVdGNaeq4XdmMaaGikaiaadohaca aISaGaamiDaiaaiMcacaWGbbGaaGykaiaai2daciGGLbGaaiiEaiaa cchadaqabaqaaiaadMgadaWdrbqabSqaaiaadsfaaeqaniabgUIiYd GccaWGfbGaaG4waiabew7aLnaaBaaaleaacaaIXaaabeaakiaaiIca cqaHdpWCcaaIPaGaaGyxaiaadAhadaWgaaWcbaGaaGymaaqabaGcca aIOaGaeq4WdmNaaGykaiaadMeacaaMi8Uaamizaiabeo8aZjabgkHi TiaadMgacqaH+oaEdaWdXbqabSqaaiaadohaaeaacaWG0baaniabgU IiYdGccaWGfbGaaG4waiabew7aLnaaBaaaleaacaaIXaaabeaakiaa iIcacqaHdpWCcaaIPaGaaGyxaiaadgeacaaMi8Uaamizaiabeo8aZj abgkHiTaGaayjkaaaaaa@74E2@

1 2 T T b 1 ( s 1 , s 2 ) v 1 ( s 1 ) v 1 ( s 2 )d s 1 d s 2 I+ 1 2 ξ s t T b 1 ( s 1 , s 2 ) v 1 ( s 1 )Ad s 1 d s 2 + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaWcaaqaaiaaigdaaeaaca aIYaaaamaapefabeWcbaGaamivaaqab0Gaey4kIipakmaapefabeWc baGaamivaaqab0Gaey4kIipakiaadkgadaWgaaWcbaGaaGymaaqaba GccaaIOaGaam4CamaaBaaaleaacaaIXaaabeaakiaaiYcacaWGZbWa aSbaaSqaaiaaikdaaeqaaOGaaGykaiaadAhadaWgaaWcbaGaaGymaa qabaGccaaIOaGaam4CamaaBaaaleaacaaIXaaabeaakiaaiMcacaWG 2bWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadohadaWgaaWcbaGaaG OmaaqabaGccaaIPaGaamizaiaadohadaWgaaWcbaGaaGymaaqabaGc caWGKbGaam4CamaaBaaaleaacaaIYaaabeaakiaadMeacqGHRaWkda WcaaqaaiaaigdaaeaacaaIYaaaaiabe67a4naapehabeWcbaGaam4C aaqaaiaadshaa0Gaey4kIipakmaapefabeWcbaGaamivaaqab0Gaey 4kIipakiaadkgadaWgaaWcbaGaaGymaaqabaGccaaIOaGaam4Camaa BaaaleaacaaIXaaabeaakiaaiYcacaWGZbWaaSbaaSqaaiaaikdaae qaaOGaaGykaiaadAhadaWgaaWcbaGaaGymaaqabaGccaaIOaGaam4C amaaBaaaleaacaaIXaaabeaakiaaiMcacaWGbbGaaGjcVlaadsgaca WGZbWaaSbaaSqaaiaaigdaaeqaaOGaamizaiaadohadaWgaaWcbaGa aGOmaaqabaGccqGHRaWkaaa@74DC@

+ 1 2 ξ T s t b 1 ( s 1 , s 2 ) v 1 ( s 2 )Ad s 1 d s 2 1 2 ξ 2 s t s t b 1 ( s 1 , s 2 ) A 2 d s 1 d s 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqacaqaaiabgUcaRmaalaaabaGaaG ymaaqaaiaaikdaaaGaeqOVdG3aa8quaeqaleaacaWGubaabeqdcqGH RiI8aOWaa8qCaeqaleaacaWGZbaabaGaamiDaaqdcqGHRiI8aOGaam OyamaaBaaaleaacaaIXaaabeaakiaaiIcacaWGZbWaaSbaaSqaaiaa igdaaeqaaOGaaGilaiaadohadaWgaaWcbaGaaGOmaaqabaGccaaIPa GaamODamaaBaaaleaacaaIXaaabeaakiaaiIcacaWGZbWaaSbaaSqa aiaaikdaaeqaaOGaaGykaiaadgeacaaMi8UaamizaiaadohadaWgaa WcbaGaaGymaaqabaGccaWGKbGaam4CamaaBaaaleaacaaIYaaabeaa kiabgkHiTmaalaaabaGaaGymaaqaaiaaikdaaaGaeqOVdG3aaWbaaS qabeaacaaIYaaaaOWaa8qCaeqaleaacaWGZbaabaGaamiDaaqdcqGH RiI8aOWaa8qCaeqaleaacaWGZbaabaGaamiDaaqdcqGHRiI8aOGaam OyamaaBaaaleaacaaIXaaabeaakiaaiIcacaWGZbWaaSbaaSqaaiaa igdaaeqaaOGaaGilaiaadohadaWgaaWcbaGaaGOmaaqabaGccaaIPa GaamyqamaaCaaaleqabaGaaGOmaaaakiaadsgacaWGZbWaaSbaaSqa aiaaigdaaeqaaOGaamizaiaadohadaWgaaWcbaGaaGOmaaqabaaaki aawMcaaiaai6caaaa@7115@

Тогда

δ p ψ ε 1 ( v 1 Iξχ(s,t)A) δ v 1 (τ) | v 1 =0 =exp iξ s t E[ ε 1 (σ)]Adσ 1 2 ξ 2 s t s t b 1 ( s 1 , s 2 ) A 2 d s 1 d s 2 × MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabes7aKnaaBaaaleaaca WGWbaabeaakiabeI8a5naaBaaaleaacqaH1oqzdaWgaaqaaiaaigda aeqaaaqabaGccaaIOaGaamODamaaBaaaleaacaaIXaaabeaakiaadM eacqGHsislcqaH+oaEcqaHhpWycaaIOaGaam4CaiaaiYcacaWG0bGa aGykaiaadgeacaaIPaaabaGaeqiTdqMaamODamaaBaaaleaacaaIXa aabeaakiaaiIcacqaHepaDcaaIPaaaaiaaiYhadaWgaaWcbaGaamOD amaaBaaabaGaaGymaaqabaGaaGypaiaaicdaaeqaaOGaaGypaiGacw gacaGG4bGaaiiCamaabmaabaGaeyOeI0IaamyAaiabe67a4naapeha beWcbaGaam4Caaqaaiaadshaa0Gaey4kIipakiaadweacaaIBbGaeq yTdu2aaSbaaSqaaiaaigdaaeqaaOGaaGikaiabeo8aZjaaiMcacaaI DbGaamyqaiaayIW7caWGKbGaeq4WdmNaeyOeI0YaaSaaaeaacaaIXa aabaGaaGOmaaaacqaH+oaEdaahaaWcbeqaaiaaikdaaaGcdaWdXbqa bSqaaiaadohaaeaacaWG0baaniabgUIiYdGcdaWdXbqabSqaaiaado haaeaacaWG0baaniabgUIiYdGccaWGIbWaaSbaaSqaaiaaigdaaeqa aOGaaGikaiaadohadaWgaaWcbaGaaGymaaqabaGccaaISaGaam4Cam aaBaaaleaacaaIYaaabeaakiaaiMcacaWGbbWaaWbaaSqabeaacaaI YaaaaOGaamizaiaadohadaWgaaWcbaGaaGymaaqabaGccaWGKbGaam 4CamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiabgEna0caa @8B85@

× iE[ ε 1 (τ)]I T b 1 ( s 1 ,τ) v 1 ( s 1 )Id s 1 + 1 2 ξ s t b 1 (τ, s 2 )Ad s 2 + 1 2 ξ s t b 1 ( s 1 ,τ)Ad s 1 v 1 =0 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaabcaqaamaadiaabaGaey41aq7aam qaaeaacaWGPbGaamyraiaaiUfacqaH1oqzdaWgaaWcbaGaaGymaaqa baGccaaIOaGaeqiXdqNaaGykaiaai2facaWGjbGaaGzbVdGaay5waa GaeyOeI0Yaa8quaeqaleaacaWGubaabeqdcqGHRiI8aOGaamOyamaa BaaaleaacaaIXaaabeaakiaaiIcacaWGZbWaaSbaaSqaaiaaigdaae qaaOGaaGilaiabes8a0jaaiMcacaWG2bWaaSbaaSqaaiaaigdaaeqa aOGaaGikaiaadohadaWgaaWcbaGaaGymaaqabaGccaaIPaGaamysai aayIW7caWGKbGaam4CamaaBaaaleaacaaIXaaabeaakiabgUcaRmaa laaabaGaaGymaaqaaiaaikdaaaGaeqOVdG3aa8qCaeqaleaacaWGZb aabaGaamiDaaqdcqGHRiI8aOGaamOyamaaBaaaleaacaaIXaaabeaa kiaaiIcacqaHepaDcaaISaGaam4CamaaBaaaleaacaaIYaaabeaaki aaiMcacaWGbbGaamizaiaadohadaWgaaWcbaGaaGOmaaqabaGccqGH RaWkdaWcaaqaaiaaigdaaeaacaaIYaaaaiabe67a4naapehabeWcba Gaam4Caaqaaiaadshaa0Gaey4kIipakiaadkgadaWgaaWcbaGaaGym aaqabaGccaaIOaGaam4CamaaBaaaleaacaaIXaaabeaakiaaiYcacq aHepaDcaaIPaGaamyqaiaadsgacaWGZbWaaSbaaSqaaiaaigdaaeqa aaGccaGLDbaaaiaawIa7amaaBaaaleaacaWG2bWaaSbaaeaacaaIXa aabeaacaaI9aGaaGimaaqabaGccaaIUaaaaa@850C@

Учитывая, что функция b 1 ( s 1 , s 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadohadaWgaaWcbaGaaGymaaqabaGccaaISaGaam4Camaa BaaaleaacaaIYaaabeaakiaaiMcaaaa@3987@  симметрична, окончательно получаем выражение

exp iξ s t E[ ε 1 (σ)]Adσ 1 2 ξ 2 s t s t b 1 ( s 1 , s 2 ) A 2 d s 1 d s 2 iE[ ε 1 (τ)]I+ξ s t b 1 (τ, s 2 )Ad s 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaciGGLbGaaiiEaiaacchadaqadaqaai abgkHiTiaadMgacqaH+oaEdaWdXbqabSqaaiaadohaaeaacaWG0baa niabgUIiYdGccaaMb8UaamyraiaaiUfacqaH1oqzdaWgaaWcbaGaaG ymaaqabaGccaaIOaGaeq4WdmNaaGykaiaai2facaWGbbGaaGjcVlaa dsgacqaHdpWCcqGHsisldaWcaaqaaiaaigdaaeaacaaIYaaaaiabe6 7a4naaCaaaleqabaGaaGOmaaaakmaapehabeWcbaGaam4Caaqaaiaa dshaa0Gaey4kIipakmaapehabeWcbaGaam4Caaqaaiaadshaa0Gaey 4kIipakiaadkgadaWgaaWcbaGaaGymaaqabaGccaaIOaGaam4Camaa BaaaleaacaaIXaaabeaakiaaiYcacaWGZbWaaSbaaSqaaiaaikdaae qaaOGaaGykaiaadgeadaahaaWcbeqaaiaaikdaaaGccaWGKbGaam4C amaaBaaaleaacaaIXaaabeaakiaadsgacaWGZbWaaSbaaSqaaiaaik daaeqaaaGccaGLOaGaayzkaaWaamWaaeaacaWGPbGaamyraiaaiUfa cqaH1oqzdaWgaaWcbaGaaGymaaqabaGccaaIOaGaeqiXdqNaaGykai aai2facaWGjbGaey4kaSIaeqOVdG3aa8qCaeqaleaacaWGZbaabaGa amiDaaqdcqGHRiI8aOGaamOyamaaBaaaleaacaaIXaaabeaakiaaiI cacqaHepaDcaaISaGaam4CamaaBaaaleaacaaIYaaabeaakiaaiMca caWGbbGaamizaiaadohadaWgaaWcbaGaaGOmaaqabaaakiaawUfaca GLDbaacaaIUaaaaa@8926@

Выпишем ψ ε 2 (iχ(s,t)) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEdaWgaaWcbaGaeqyTdu2aaS baaeaacaaIYaaabeaaaeqaaOGaaGikaiabgkHiTiaadMgacqaHhpWy caaIOaGaam4CaiaaiYcacaWG0bGaaGykaiaaiMcaaaa@3F4C@  для гауссовского процесса, используя определение функции χ(s,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHhpWycaaIOaGaam4CaiaaiYcaca WG0bGaaGykaaaa@3784@ :

ψ ε 2 (iχ(s,t))=exp i T E[ ε 2 (σ)](iχ(s,t))dσ 1 2 T T b 2 ( s 1 , s 2 )(iχ(s,t))(iχ(s,t))d s 1 d s 2 = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEdaWgaaWcbaGaeqyTdu2aaS baaeaacaaIYaaabeaaaeqaaOGaaGikaiabgkHiTiaadMgacqaHhpWy caaIOaGaam4CaiaaiYcacaWG0bGaaGykaiaaiMcacaaI9aGaciyzai aacIhacaGGWbWaaeWaaeaacaWGPbWaa8quaeqaleaacaWGubaabeqd cqGHRiI8aOGaaGzaVlaadweacaaIBbGaeqyTdu2aaSbaaSqaaiaaik daaeqaaOGaaGikaiabeo8aZjaaiMcacaaIDbGaaGikaiabgkHiTiaa dMgacqaHhpWycaaIOaGaam4CaiaaiYcacaWG0bGaaGykaiaaiMcaca WGKbGaeq4WdmNaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOmaaaadaWd rbqabSqaaiaadsfaaeqaniabgUIiYdGcdaWdrbqabSqaaiaadsfaae qaniabgUIiYdGccaWGIbWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaa dohadaWgaaWcbaGaaGymaaqabaGccaaISaGaam4CamaaBaaaleaaca aIYaaabeaakiaaiMcacaaIOaGaeyOeI0IaamyAaiabeE8aJjaaiIca caWGZbGaaGilaiaadshacaaIPaGaaGykaiaaiIcacqGHsislcaWGPb Gaeq4XdmMaaGikaiaadohacaaISaGaamiDaiaaiMcacaaIPaGaamiz aiaadohadaWgaaWcbaGaaGymaaqabaGccaWGKbGaam4CamaaBaaale aacaaIYaaabeaaaOGaayjkaiaawMcaaiaai2daaaa@872C@

=exp s t E[ ε 2 (σ)]dσ+ 1 2 s t s t b 2 ( s 1 , s 2 )d s 1 d s 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaciyzaiaacIhacaGGWbWaae WaaeaadaWdXbqabSqaaiaadohaaeaacaWG0baaniabgUIiYdGccaaM b8UaamyraiaaiUfacqaH1oqzdaWgaaWcbaGaaGOmaaqabaGccaaIOa Gaeq4WdmNaaGykaiaai2facaWGKbGaeq4WdmNaey4kaSYaaSaaaeaa caaIXaaabaGaaGOmaaaadaWdXbqabSqaaiaadohaaeaacaWG0baani abgUIiYdGcdaWdXbqabSqaaiaadohaaeaacaWG0baaniabgUIiYdGc caWGIbWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadohadaWgaaWcba GaaGymaaqabaGccaaISaGaam4CamaaBaaaleaacaaIYaaabeaakiaa iMcacaWGKbGaam4CamaaBaaaleaacaaIXaaabeaakiaadsgacaWGZb WaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaaGOlaaaa@6135@

Подставим эти выражения в (24), получаем формулу (29).

Теорема 15. Пусть в задаче (1), (2) случайные процессы ε1, ε2 и заданы характеристическими функционалами (28) и не зависят от случайного процесса b. Тогда

E[y(t,z) ε 2 (τ)]=iexp t 0 t E[ ε 2 (s)]ds+ 1 2 t 0 t t 0 t b 2 ( s 1 , s 2 )d s 1 d s 2 iE[ ε 2 (τ)]+i t 0 t b 2 (τ,s)ds × MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaG4waiaadMhacaaIOaGaam iDaiaaiYcacaWG6bGaaGykaiabew7aLnaaBaaaleaacaaIYaaabeaa kiaaiIcacqaHepaDcaaIPaGaaGyxaiaai2dacqGHsislcaWGPbGaci yzaiaacIhacaGGWbWaaeWaaeaadaWdXbqabSqaaiaadshadaWgaaqa aiaaicdaaeqaaaqaaiaadshaa0Gaey4kIipakiaadweacaaIBbGaeq yTdu2aaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadohacaaIPaGaaGyx aiaayIW7caWGKbGaam4CaiabgUcaRmaalaaabaGaaGymaaqaaiaaik daaaWaa8qCaeqaleaacaWG0bWaaSbaaeaacaaIWaaabeaaaeaacaWG 0baaniabgUIiYdGcdaWdXbqabSqaaiaadshadaWgaaqaaiaaicdaae qaaaqaaiaadshaa0Gaey4kIipakiaadkgadaWgaaWcbaGaaGOmaaqa baGccaaIOaGaam4CamaaBaaaleaacaaIXaaabeaakiaaiYcacaWGZb WaaSbaaSqaaiaaikdaaeqaaOGaaGykaiaadsgacaWGZbWaaSbaaSqa aiaaigdaaeqaaOGaamizaiaadohadaWgaaWcbaGaaGOmaaqabaaaki aawIcacaGLPaaadaGadaqaaiaadMgacaWGfbGaaG4waiabew7aLnaa BaaaleaacaaIYaaabeaakiaaiIcacqaHepaDcaaIPaGaaGyxaiabgU caRiaadMgadaWdXbqabSqaaiaadshadaWgaaqaaiaaicdaaeqaaaqa aiaadshaa0Gaey4kIipakiaadkgadaWgaaWcbaGaaGOmaaqabaGcca aIOaGaeqiXdqNaaGilaiaadohacaaIPaGaamizaiaadohaaiaawUha caGL9baacqGHxdaTaaa@8DF9@

× F ξ 1 exp iξ t 0 t E[ ε 1 (s)]Ads 1 2 ξ 2 t 0 t t 0 t b 1 ( s 1 , s 2 ) A 2 d s 1 d s 2 E[ y 0 (z)] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHxdaTcaWGgbWaa0baaSqaaiabe6 7a4bqaaiabgkHiTiaaigdaaaGcdaqadaqaaiGacwgacaGG4bGaaiiC amaabmaabaGaeyOeI0IaamyAaiabe67a4naapehabeWcbaGaamiDam aaBaaabaGaaGimaaqabaaabaGaamiDaaqdcqGHRiI8aOGaamyraiaa iUfacqaH1oqzdaWgaaWcbaGaaGymaaqabaGccaaIOaGaam4CaiaaiM cacaaIDbGaamyqaiaayIW7caWGKbGaam4CaiabgkHiTmaalaaabaGa aGymaaqaaiaaikdaaaGaeqOVdG3aaWbaaSqabeaacaaIYaaaaOWaa8 qCaeqaleaacaWG0bWaaSbaaeaacaaIWaaabeaaaeaacaWG0baaniab gUIiYdGcdaWdXbqabSqaaiaadshadaWgaaqaaiaaicdaaeqaaaqaai aadshaa0Gaey4kIipakiaadkgadaWgaaWcbaGaaGymaaqabaGccaaI OaGaam4CamaaBaaaleaacaaIXaaabeaakiaaiYcacaWGZbWaaSbaaS qaaiaaikdaaeqaaOGaaGykaiaadgeadaahaaWcbeqaaiaaikdaaaGc caWGKbGaam4CamaaBaaaleaacaaIXaaabeaakiaadsgacaWGZbWaaS baaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaacaGLOaGaayzkaaGa ey4fIOIaamyraiaaiUfacaWG5bWaaSbaaSqaaiaaicdaaeqaaOGaaG ikaiaadQhacaaIPaGaaGyxaiabgkHiTaaa@7A68@

i t 0 t exp s t E[ ε 2 (σ)]dσ+ 1 2 s t s t b 2 ( s 1 , s 2 )d s 1 d s 2 iE[ ε 2 (τ)]+i s t b 2 (τ, s 2 )d s 2 × MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGPbWaa8qCaeqaleaaca WG0bWaaSbaaeaacaaIWaaabeaaaeaacaWG0baaniabgUIiYdGcdaGa baqaaiGacwgacaGG4bGaaiiCamaabmaabaWaa8qCaeqaleaacaWGZb aabaGaamiDaaqdcqGHRiI8aOGaamyraiaaiUfacqaH1oqzdaWgaaWc baGaaGOmaaqabaGccaaIOaGaeq4WdmNaaGykaiaai2facaWGKbGaeq 4WdmNaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaaaadaWdXbqabSqa aiaadohaaeaacaWG0baaniabgUIiYdGcdaWdXbqabSqaaiaadohaae aacaWG0baaniabgUIiYdGccaWGIbWaaSbaaSqaaiaaikdaaeqaaOGa aGikaiaadohadaWgaaWcbaGaaGymaaqabaGccaaISaGaam4CamaaBa aaleaacaaIYaaabeaakiaaiMcacaWGKbGaam4CamaaBaaaleaacaaI XaaabeaakiaadsgacaWGZbWaaSbaaSqaaiaaikdaaeqaaaGccaGLOa GaayzkaaWaamWaaeaacaWGPbGaamyraiaaiUfacqaH1oqzdaWgaaWc baGaaGOmaaqabaGccaaIOaGaeqiXdqNaaGykaiaai2facqGHRaWkca WGPbWaa8qCaeqaleaacaWGZbaabaGaamiDaaqdcqGHRiI8aOGaamOy amaaBaaaleaacaaIYaaabeaakiaaiIcacqaHepaDcaaISaGaam4Cam aaBaaaleaacaaIYaaabeaakiaaiMcacaWGKbGaam4CamaaBaaaleaa caaIYaaabeaaaOGaay5waiaaw2faaiabgEna0cGaay5Eaaaaaa@845D@

× F ξ 1 exp iξ s t E[ ε 1 (σ)]Adσ 1 2 ξ 2 s t s t b 1 ( s 1 , s 2 ) A 2 d s 1 d s 2 E[b(s,z)] ds MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHxdaTdaGacaqaaiaadAeadaqhaa WcbaGaeqOVdGhabaGaeyOeI0IaaGymaaaakmaabmaabaGaciyzaiaa cIhacaGGWbWaaeWaaeaacqGHsislcaWGPbGaeqOVdG3aa8qCaeqale aacaWGZbaabaGaamiDaaqdcqGHRiI8aOGaamyraiaaiUfacqaH1oqz daWgaaWcbaGaaGymaaqabaGccaaIOaGaeq4WdmNaaGykaiaai2faca WGbbGaaGjcVlaadsgacqaHdpWCcqGHsisldaWcaaqaaiaaigdaaeaa caaIYaaaaiabe67a4naaCaaaleqabaGaaGOmaaaakmaapehabeWcba Gaam4Caaqaaiaadshaa0Gaey4kIipakmaapehabeWcbaGaam4Caaqa aiaadshaa0Gaey4kIipakiaadkgadaWgaaWcbaGaaGymaaqabaGcca aIOaGaam4CamaaBaaaleaacaaIXaaabeaakiaaiYcacaWGZbWaaSba aSqaaiaaikdaaeqaaOGaaGykaiaadgeadaahaaWcbeqaaiaaikdaaa GccaWGKbGaam4CamaaBaaaleaacaaIXaaabeaakiaadsgacaWGZbWa aSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaacaGLOaGaayzkaa Gaey4fIOIaamyraiaaiUfacaWGIbGaaGikaiaadohacaaISaGaamOE aiaaiMcacaaIDbaacaGL9baacaWGKbGaam4Caaaa@7C22@                                                                (30)

является смешанной моментной функций решения этой задачи.

Доказательство. Выпишем ψ ε 2 ( v 2 iχ(s,t)) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEdaWgaaWcbaGaeqyTdu2aaS baaeaacaaIYaaabeaaaeqaaOGaaGikaiaadAhadaWgaaWcbaGaaGOm aaqabaGccqGHsislcaWGPbGaeq4XdmMaaGikaiaadohacaaISaGaam iDaiaaiMcacaaIPaaaaa@4139@  для гауссовского процесса, используя определение функции χ(s,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHhpWycaaIOaGaam4CaiaaiYcaca WG0bGaaGykaaaa@3784@ :

ψ ε 2 ( v 2 iχ(s,t))=exp i T E[ ε 2 (σ)] v 2 (σ)dσ+ s t E[ ε 2 (σ)]dσ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEdaWgaaWcbaGaeqyTdu2aaS baaeaacaaIYaaabeaaaeqaaOGaaGikaiaadAhadaWgaaWcbaGaaGOm aaqabaGccqGHsislcaWGPbGaeq4XdmMaaGikaiaadohacaaISaGaam iDaiaaiMcacaaIPaGaaGypaiGacwgacaGG4bGaaiiCamaabeaabaGa amyAamaapefabeWcbaGaamivaaqab0Gaey4kIipakiaadweacaaIBb GaeqyTdu2aaSbaaSqaaiaaikdaaeqaaOGaaGikaiabeo8aZjaaiMca caaIDbGaamODamaaBaaaleaacaaIYaaabeaakiaaiIcacqaHdpWCca aIPaGaamizaiabeo8aZjabgUcaRmaapehabeWcbaGaam4Caaqaaiaa dshaa0Gaey4kIipakiaaygW7caWGfbGaaG4waiabew7aLnaaBaaale aacaaIYaaabeaakiaaiIcacqaHdpWCcaaIPaGaaGyxaiaadsgacqaH dpWCcqGHsislaiaawIcaaaaa@6C96@

1 2 T T b 2 ( s 1 , s 2 ) v 2 ( s 1 ) v 2 ( s 2 )d s 1 d s 2 + i 2 s t T b 2 ( s 1 , s 2 ) v 2 ( s 1 )d s 1 d s 2 + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaWcaaqaaiaaigdaaeaaca aIYaaaamaapefabeWcbaGaamivaaqab0Gaey4kIipakmaapefabeWc baGaamivaaqab0Gaey4kIipakiaadkgadaWgaaWcbaGaaGOmaaqaba GccaaIOaGaam4CamaaBaaaleaacaaIXaaabeaakiaaiYcacaWGZbWa aSbaaSqaaiaaikdaaeqaaOGaaGykaiaadAhadaWgaaWcbaGaaGOmaa qabaGccaaIOaGaam4CamaaBaaaleaacaaIXaaabeaakiaaiMcacaWG 2bWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadohadaWgaaWcbaGaaG OmaaqabaGccaaIPaGaamizaiaadohadaWgaaWcbaGaaGymaaqabaGc caWGKbGaam4CamaaBaaaleaacaaIYaaabeaakiabgUcaRmaalaaaba GaamyAaaqaaiaaikdaaaWaa8qCaeqaleaacaWGZbaabaGaamiDaaqd cqGHRiI8aOWaa8quaeqaleaacaWGubaabeqdcqGHRiI8aOGaamOyam aaBaaaleaacaaIYaaabeaakiaaiIcacaWGZbWaaSbaaSqaaiaaigda aeqaaOGaaGilaiaadohadaWgaaWcbaGaaGOmaaqabaGccaaIPaGaam ODamaaBaaaleaacaaIYaaabeaakiaaiIcacaWGZbWaaSbaaSqaaiaa igdaaeqaaOGaaGykaiaadsgacaWGZbWaaSbaaSqaaiaaigdaaeqaaO GaamizaiaadohadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkaaa@702C@

+ i 2 T s t b 2 ( s 1 , s 2 ) v 2 ( s 2 )d s 1 d s 2 + 1 2 s t s t b 2 ( s 1 , s 2 )d s 1 d s 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaqacaqaamaalaaabaGaam yAaaqaaiaaikdaaaWaa8quaeqaleaacaWGubaabeqdcqGHRiI8aOWa a8qCaeqaleaacaWGZbaabaGaamiDaaqdcqGHRiI8aOGaamOyamaaBa aaleaacaaIYaaabeaakiaaiIcacaWGZbWaaSbaaSqaaiaaigdaaeqa aOGaaGilaiaadohadaWgaaWcbaGaaGOmaaqabaGccaaIPaGaamODam aaBaaaleaacaaIYaaabeaakiaaiIcacaWGZbWaaSbaaSqaaiaaikda aeqaaOGaaGykaiaadsgacaWGZbWaaSbaaSqaaiaaigdaaeqaaOGaam izaiaadohadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkdaWcaaqaaiaa igdaaeaacaaIYaaaamaapehabeWcbaGaam4Caaqaaiaadshaa0Gaey 4kIipakmaapehabeWcbaGaam4Caaqaaiaadshaa0Gaey4kIipakiaa dkgadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaam4CamaaBaaaleaaca aIXaaabeaakiaaiYcacaWGZbWaaSbaaSqaaiaaikdaaeqaaOGaaGyk aiaadsgacaWGZbWaaSbaaSqaaiaaigdaaeqaaOGaamizaiaadohada WgaaWcbaGaaGOmaaqabaaakiaawMcaaiaai6caaaa@68B7@

Тогда

δ p ψ ε 2 ( v 2 iχ(s,t)) δ v 2 (τ) | v 2 =0 =exp s t E[ ε 2 (σ)]dσ+ 1 2 s t s t b 2 ( s 1 , s 2 )d s 1 d s 2 × MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabes7aKnaaBaaaleaaca WGWbaabeaakiabeI8a5naaBaaaleaacqaH1oqzdaWgaaqaaiaaikda aeqaaaqabaGccaaIOaGaamODamaaBaaaleaacaaIYaaabeaakiabgk HiTiaadMgacqaHhpWycaaIOaGaam4CaiaaiYcacaWG0bGaaGykaiaa iMcaaeaacqaH0oazcaWG2bWaaSbaaSqaaiaaikdaaeqaaOGaaGikai abes8a0jaaiMcaaaGaaGiFamaaBaaaleaacaWG2bWaaSbaaeaacaaI YaaabeaacaaI9aGaaGimaaqabaGccaaI9aGaciyzaiaacIhacaGGWb WaaeWaaeaadaWdXbqabSqaaiaadohaaeaacaWG0baaniabgUIiYdGc caWGfbGaaG4waiabew7aLnaaBaaaleaacaaIYaaabeaakiaaiIcacq aHdpWCcaaIPaGaaGyxaiaadsgacqaHdpWCcqGHRaWkdaWcaaqaaiaa igdaaeaacaaIYaaaamaapehabeWcbaGaam4Caaqaaiaadshaa0Gaey 4kIipakmaapehabeWcbaGaam4Caaqaaiaadshaa0Gaey4kIipakiaa dkgadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaam4CamaaBaaaleaaca aIXaaabeaakiaaiYcacaWGZbWaaSbaaSqaaiaaikdaaeqaaOGaaGyk aiaadsgacaWGZbWaaSbaaSqaaiaaigdaaeqaaOGaamizaiaadohada WgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaacqGHxdaTaaa@7EB3@

× iE[ ε 2 (τ)] T b 2 ( s 1 ,τ) v 2 ( s 1 )d s 1 + i 2 s t b 2 (τ, s 2 )d s 2 + i 2 s t b 2 ( s 1 ,τ)d s 1 | v 2 =0 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHxdaTdaWadaqaaiaadMgacaWGfb GaaG4waiabew7aLnaaBaaaleaacaaIYaaabeaakiaaiIcacqaHepaD caaIPaGaaGyxaiabgkHiTmaapefabeWcbaGaamivaaqab0Gaey4kIi pakiaadkgadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaam4CamaaBaaa leaacaaIXaaabeaakiaaiYcacqaHepaDcaaIPaGaamODamaaBaaale aacaaIYaaabeaakiaaiIcacaWGZbWaaSbaaSqaaiaaigdaaeqaaOGa aGykaiaadsgacaWGZbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSYaaS aaaeaacaWGPbaabaGaaGOmaaaadaWdXbqabSqaaiaadohaaeaacaWG 0baaniabgUIiYdGccaWGIbWaaSbaaSqaaiaaikdaaeqaaOGaaGikai abes8a0jaaiYcacaWGZbWaaSbaaSqaaiaaikdaaeqaaOGaaGykaiaa dsgacaWGZbWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSYaaSaaaeaaca WGPbaabaGaaGOmaaaadaWdXbqabSqaaiaadohaaeaacaWG0baaniab gUIiYdGccaWGIbWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadohada WgaaWcbaGaaGymaaqabaGccaaISaGaeqiXdqNaaGykaiaadsgacaWG ZbWaaSbaaSqaaiaaigdaaeqaaaGccaGLBbGaayzxaaGaaGiFamaaBa aaleaacaWG2bWaaSbaaeaacaaIYaaabeaacaaI9aGaaGimaaqabaGc caaIUaaaaa@7B14@

Учитывая, что функция b 2 ( s 1 , s 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiaadohadaWgaaWcbaGaaGymaaqabaGccaaISaGaam4Camaa BaaaleaacaaIYaaabeaakiaaiMcaaaa@3988@  симметрична, окончательно получаем выражение

exp s t E[ ε 2 (σ)]dσ+ 1 2 s t s t b 2 ( s 1 , s 2 )d s 1 d s 2 iE[ ε 2 (τ)]+i s t b 2 (τ, s 2 )d s 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaciGGLbGaaiiEaiaacchadaqadaqaam aapehabeWcbaGaam4Caaqaaiaadshaa0Gaey4kIipakiaadweacaaI BbGaeqyTdu2aaSbaaSqaaiaaikdaaeqaaOGaaGikaiabeo8aZjaaiM cacaaIDbGaamizaiabeo8aZjabgUcaRmaalaaabaGaaGymaaqaaiaa ikdaaaWaa8qCaeqaleaacaWGZbaabaGaamiDaaqdcqGHRiI8aOWaa8 qCaeqaleaacaWGZbaabaGaamiDaaqdcqGHRiI8aOGaamOyamaaBaaa leaacaaIYaaabeaakiaaiIcacaWGZbWaaSbaaSqaaiaaigdaaeqaaO GaaGilaiaadohadaWgaaWcbaGaaGOmaaqabaGccaaIPaGaamizaiaa dohadaWgaaWcbaGaaGymaaqabaGccaWGKbGaam4CamaaBaaaleaaca aIYaaabeaaaOGaayjkaiaawMcaamaadmaabaGaamyAaiaadweacaaI BbGaeqyTdu2aaSbaaSqaaiaaikdaaeqaaOGaaGikaiabes8a0jaaiM cacaaIDbGaey4kaSIaamyAamaapehabeWcbaGaam4Caaqaaiaadsha a0Gaey4kIipakiaadkgadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaeq iXdqNaaGilaiaadohadaWgaaWcbaGaaGOmaaqabaGccaaIPaGaamiz aiaadohadaWgaaWcbaGaaGOmaaqabaaakiaawUfacaGLDbaacaaIUa aaaa@7AC8@

Характеристический функционал ψ ε 1 (ξχ(s,t)A) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEdaWgaaWcbaGaeqyTdu2aaS baaeaacaaIXaaabeaaaeqaaOGaaGikaiabgkHiTiabe67a4jabeE8a JjaaiIcacaWGZbGaaGilaiaadshacaaIPaGaamyqaiaaiMcaaaa@40E6@  для гауссовского процесса имеет вид

ψ ε 1 (ξχ(s,t)A)=exp iξ s t E[ ε 1 (σ)]Adσ 1 2 ξ 2 s t s t b 1 ( s 1 , s 2 ) A 2 d s 1 d s 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEdaWgaaWcbaGaeqyTdu2aaS baaeaacaaIXaaabeaaaeqaaOGaaGikaiabgkHiTiabe67a4jabeE8a JjaaiIcacaWGZbGaaGilaiaadshacaaIPaGaamyqaiaaiMcacaaI9a GaciyzaiaacIhacaGGWbWaaeWaaeaacqGHsislcaWGPbGaeqOVdG3a a8qCaeqaleaacaWGZbaabaGaamiDaaqdcqGHRiI8aOGaamyraiaaiU facqaH1oqzdaWgaaWcbaGaaGymaaqabaGccaaIOaGaeq4WdmNaaGyk aiaai2facaWGbbGaamizaiabeo8aZjabgkHiTmaalaaabaGaaGymaa qaaiaaikdaaaGaeqOVdG3aaWbaaSqabeaacaaIYaaaaOWaa8qCaeqa leaacaWGZbaabaGaamiDaaqdcqGHRiI8aOWaa8qCaeqaleaacaWGZb aabaGaamiDaaqdcqGHRiI8aOGaamOyamaaBaaaleaacaaIXaaabeaa kiaaiIcacaWGZbWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaadohada WgaaWcbaGaaGOmaaqabaGccaaIPaGaamyqamaaCaaaleqabaGaaGOm aaaakiaadsgacaWGZbWaaSbaaSqaaiaaigdaaeqaaOGaamizaiaado hadaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaacaaIUaaaaa@77AC@

Подставляя эти выражения в (25), получаем формулу (30).

Теорема 16. Пусть в задачe (1), (2) случайные процессы ε1, ε2 и заданы характеристическими функционалами (28) и не зависят от случайного процесса b. Тогда

E[y(t,z) b Т (τ,z)]=exp t 0 t E[ ε 2 (s)]ds+ 1 2 t 0 t t 0 t b 2 ( s 1 , s 2 )d s 1 d s 2 × MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaG4waiaadMhacaaIOaGaam iDaiaaiYcacaWG6bGaaGykaiaadkgadaahaaWcbeqaaiaabkcbaaGc caaIOaGaeqiXdqNaaGilaiaadQhacaaIPaGaaGyxaiaai2daciGGLb GaaiiEaiaacchadaqadaqaamaapehabeWcbaGaamiDamaaBaaabaGa aGimaaqabaaabaGaamiDaaqdcqGHRiI8aOGaamyraiaaiUfacqaH1o qzdaWgaaWcbaGaaGOmaaqabaGccaaIOaGaam4CaiaaiMcacaaIDbGa aGjcVlaadsgacaWGZbGaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaa aadaWdXbqabSqaaiaadshadaWgaaqaaiaaicdaaeqaaaqaaiaadsha a0Gaey4kIipakmaapehabeWcbaGaamiDamaaBaaabaGaaGimaaqaba aabaGaamiDaaqdcqGHRiI8aOGaamOyamaaBaaaleaacaaIYaaabeaa kiaaiIcacaWGZbWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaadohada WgaaWcbaGaaGOmaaqabaGccaaIPaGaamizaiaadohadaWgaaWcbaGa aGymaaqabaGccaWGKbGaam4CamaaBaaaleaacaaIYaaabeaaaOGaay jkaiaawMcaaiabgEna0caa@71E6@

× F ξ 1 exp iξ t 0 t E[ ε 1 (s)]Ads 1 2 ξ 2 t 0 t t 0 t b 1 ( s 1 , s 2 ) A 2 d s 1 d s 2 E[b(τ,z)]E[ y 0 Т (z)]+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHxdaTcaWGgbWaa0baaSqaaiabe6 7a4bqaaiabgkHiTiaaigdaaaGcdaqadaqaaiGacwgacaGG4bGaaiiC amaabmaabaGaeyOeI0IaamyAaiabe67a4naapehabeWcbaGaamiDam aaBaaabaGaaGimaaqabaaabaGaamiDaaqdcqGHRiI8aOGaamyraiaa iUfacqaH1oqzdaWgaaWcbaGaaGymaaqabaGccaaIOaGaam4CaiaaiM cacaaIDbGaamyqaiaayIW7caWGKbGaam4CaiabgkHiTmaalaaabaGa aGymaaqaaiaaikdaaaGaeqOVdG3aaWbaaSqabeaacaaIYaaaaOWaa8 qCaeqaleaacaWG0bWaaSbaaeaacaaIWaaabeaaaeaacaWG0baaniab gUIiYdGcdaWdXbqabSqaaiaadshadaWgaaqaaiaaicdaaeqaaaqaai aadshaa0Gaey4kIipakiaadkgadaWgaaWcbaGaaGymaaqabaGccaaI OaGaam4CamaaBaaaleaacaaIXaaabeaakiaaiYcacaWGZbWaaSbaaS qaaiaaikdaaeqaaOGaaGykaiaadgeadaahaaWcbeqaaiaaikdaaaGc caWGKbGaam4CamaaBaaaleaacaaIXaaabeaakiaadsgacaWGZbWaaS baaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaacaGLOaGaayzkaaGa amyraiaaiUfacaWGIbGaaGikaiabes8a0jaaiYcacaWG6bGaaGykai aai2facqGHxiIkcaWGfbGaaG4waiaadMhadaqhaaWcbaGaaGimaaqa aiaabkcbaaGccaaIOaGaamOEaiaaiMcacaaIDbGaey4kaScaaa@8363@

+ t 0 t exp s t E[ ε 2 (σ)]dσ+ 1 2 s t s t b 2 ( s 1 , s 2 )d s 1 d s 2 × MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWdXbqabSqaaiaadshada Wgaaqaaiaaicdaaeqaaaqaaiaadshaa0Gaey4kIipakmaaceaabaGa ciyzaiaacIhacaGGWbWaaeWaaeaadaWdXbqabSqaaiaadohaaeaaca WG0baaniabgUIiYdGccaWGfbGaaG4waiabew7aLnaaBaaaleaacaaI YaaabeaakiaaiIcacqaHdpWCcaaIPaGaaGyxaiaadsgacqaHdpWCcq GHRaWkdaWcaaqaaiaaigdaaeaacaaIYaaaamaapehabeWcbaGaam4C aaqaaiaadshaa0Gaey4kIipakmaapehabeWcbaGaam4Caaqaaiaads haa0Gaey4kIipakiaadkgadaWgaaWcbaGaaGOmaaqabaGccaaIOaGa am4CamaaBaaaleaacaaIXaaabeaakiaaiYcacaWGZbWaaSbaaSqaai aaikdaaeqaaOGaaGykaiaadsgacaWGZbWaaSbaaSqaaiaaigdaaeqa aOGaamizaiaadohadaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPa aacqGHxdaTaiaawUhaaaaa@6780@

× F ξ 1 exp iξ s t E[ ε 1 (σ)]Adσ 1 2 ξ 2 s t s t b 1 ( s 1 , s 2 ) A 2 d s 1 d s 2 E[b(s,z) b Т (τ,z)] ds MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaGacaqaaiabgEna0kaadAeadaqhaa WcbaGaeqOVdGhabaGaeyOeI0IaaGymaaaakmaabmaabaGaciyzaiaa cIhacaGGWbWaaeWaaeaacqGHsislcaWGPbGaeqOVdG3aa8qCaeqale aacaWGZbaabaGaamiDaaqdcqGHRiI8aOGaamyraiaaiUfacqaH1oqz daWgaaWcbaGaaGymaaqabaGccaaIOaGaeq4WdmNaaGykaiaai2faca WGbbGaaGjcVlaadsgacqaHdpWCcqGHsisldaWcaaqaaiaaigdaaeaa caaIYaaaaiabe67a4naaCaaaleqabaGaaGOmaaaakmaapehabeWcba Gaam4Caaqaaiaadshaa0Gaey4kIipakmaapehabeWcbaGaam4Caaqa aiaadshaa0Gaey4kIipakiaadkgadaWgaaWcbaGaaGymaaqabaGcca aIOaGaam4CamaaBaaaleaacaaIXaaabeaakiaaiYcacaWGZbWaaSba aSqaaiaaikdaaeqaaOGaaGykaiaadgeadaahaaWcbeqaaiaaikdaaa GccaWGKbGaam4CamaaBaaaleaacaaIXaaabeaakiaadsgacaWGZbWa aSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaacaGLOaGaayzkaa Gaey4fIOIaamyraiaaiUfacaWGIbGaaGikaiaadohacaaISaGaamOE aiaaiMcacaWGIbWaaWbaaSqabeaacaqGIqaaaOGaaGikaiabes8a0j aaiYcacaWG6bGaaGykaiaai2faaiaaw2haaiaadsgacaWGZbaaaa@82C8@

является смешанной моментной функций решения этой задачи.

Теорема 16 доказывается по аналогии с предыдущей теоремой.

Теорема 17. Пусть в задаче (1), (2) случайные процессы ε1, ε2 и заданы характеристическими функционалами (28) и не зависят от случайного процесса b. Тогда

E[y(t,z) y Т (τ,z)]= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaG4waiaadMhacaaIOaGaam iDaiaaiYcacaWG6bGaaGykaiaadMhadaahaaWcbeqaaiaabkcbaaGc caaIOaGaeqiXdqNaaGilaiaadQhacaaIPaGaaGyxaiaai2daaaa@40EC@

=exp t 0 t E[ ε 2 (s)]ds+ t 0 τ E[ ε 2 (s)]ds+ 1 2 t 0 t t 0 t b 2 ( s 1 , s 2 )d s 1 d s 2 + 1 2 t 0 τ t 0 τ b 2 ( s 1 , s 2 )d s 1 d s 2 × MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaciyzaiaacIhacaGGWbWaae WaaeaadaWdXbqabSqaaiaadshadaWgaaqaaiaaicdaaeqaaaqaaiaa dshaa0Gaey4kIipakiaadweacaaIBbGaeqyTdu2aaSbaaSqaaiaaik daaeqaaOGaaGikaiaadohacaaIPaGaaGyxaiaadsgacaWGZbGaey4k aSYaa8qCaeqaleaacaWG0bWaaSbaaeaacaaIWaaabeaaaeaacqaHep aDa0Gaey4kIipakiaadweacaaIBbGaeqyTdu2aaSbaaSqaaiaaikda aeqaaOGaaGikaiaadohacaaIPaGaaGyxaiaadsgacaWGZbGaey4kaS YaaSaaaeaacaaIXaaabaGaaGOmaaaadaWdXbqabSqaaiaadshadaWg aaqaaiaaicdaaeqaaaqaaiaadshaa0Gaey4kIipakmaapehabeWcba GaamiDamaaBaaabaGaaGimaaqabaaabaGaamiDaaqdcqGHRiI8aOGa amOyamaaBaaaleaacaaIYaaabeaakiaaiIcacaWGZbWaaSbaaSqaai aaigdaaeqaaOGaaGilaiaadohadaWgaaWcbaGaaGOmaaqabaGccaaI PaGaamizaiaadohadaWgaaWcbaGaaGymaaqabaGccaWGKbGaam4Cam aaBaaaleaacaaIYaaabeaakiabgUcaRmaalaaabaGaaGymaaqaaiaa ikdaaaWaa8qCaeqaleaacaWG0bWaaSbaaeaacaaIWaaabeaaaeaacq aHepaDa0Gaey4kIipakmaapehabeWcbaGaamiDamaaBaaabaGaaGim aaqabaaabaGaeqiXdqhaniabgUIiYdGccaWGIbWaaSbaaSqaaiaaik daaeqaaOGaaGikaiaadohadaWgaaWcbaGaaGymaaqabaGccaaISaGa am4CamaaBaaaleaacaaIYaaabeaakiaaiMcacaWGKbGaam4CamaaBa aaleaacaaIXaaabeaakiaadsgacaWGZbWaaSbaaSqaaiaaikdaaeqa aaGccaGLOaGaayzkaaGaey41aqlaaa@8E53@

× F ξ 1 exp iξ t 0 t E[ ε 1 (s)]Adsiξ t 0 τ E[ ε 1 (s)]Ads MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHxdaTcaWGgbWaa0baaSqaaiabe6 7a4bqaaiabgkHiTiaaigdaaaGcdaqabaqaaiGacwgacaGG4bGaaiiC amaabeaabaGaeyOeI0IaamyAaiabe67a4naapehabeWcbaGaamiDam aaBaaabaGaaGimaaqabaaabaGaamiDaaqdcqGHRiI8aOGaamyraiaa iUfacqaH1oqzdaWgaaWcbaGaaGymaaqabaGccaaIOaGaam4CaiaaiM cacaaIDbGaamyqaiaayIW7caWGKbGaam4CaiabgkHiTiaadMgacqaH +oaEdaWdXbqabSqaaiaadshadaWgaaqaaiaaicdaaeqaaaqaaiabes 8a0bqdcqGHRiI8aOGaamyraiaaiUfacqaH1oqzdaWgaaWcbaGaaGym aaqabaGccaaIOaGaam4CaiaaiMcacaaIDbGaamyqaiaayIW7caWGKb Gaam4CaiabgkHiTaGaayjkaaaacaGLOaaaaaa@67A9@

1 2 ξ 2 t 0 t t 0 t b 1 ( s 1 , s 2 ) A 2 d s 1 d s 2 1 2 ξ 2 t 0 τ t 0 τ b 1 ( s 1 , s 2 ) A 2 d s 1 d s 2 E[ y 0 (z) y 0 Т (z)]+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqacaqaamaabiaabaGaeyOeI0YaaS aaaeaacaaIXaaabaGaaGOmaaaacqaH+oaEdaahaaWcbeqaaiaaikda aaGcdaWdXbqabSqaaiaadshadaWgaaqaaiaaicdaaeqaaaqaaiaads haa0Gaey4kIipakmaapehabeWcbaGaamiDamaaBaaabaGaaGimaaqa baaabaGaamiDaaqdcqGHRiI8aOGaamOyamaaBaaaleaacaaIXaaabe aakiaaiIcacaWGZbWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaadoha daWgaaWcbaGaaGOmaaqabaGccaaIPaGaamyqamaaCaaaleqabaGaaG OmaaaakiaadsgacaWGZbWaaSbaaSqaaiaaigdaaeqaaOGaamizaiaa dohadaWgaaWcbaGaaGOmaaqabaGccqGHsisldaWcaaqaaiaaigdaae aacaaIYaaaaiabe67a4naaCaaaleqabaGaaGOmaaaakmaapehabeWc baGaamiDamaaBaaabaGaaGimaaqabaaabaGaeqiXdqhaniabgUIiYd GcdaWdXbqabSqaaiaadshadaWgaaqaaiaaicdaaeqaaaqaaiabes8a 0bqdcqGHRiI8aOGaamOyamaaBaaaleaacaaIXaaabeaakiaaiIcaca WGZbWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaadohadaWgaaWcbaGa aGOmaaqabaGccaaIPaGaamyqamaaCaaaleqabaGaaGOmaaaakiaads gacaWGZbWaaSbaaSqaaiaaigdaaeqaaOGaamizaiaadohadaWgaaWc baGaaGOmaaqabaaakiaawMcaaaGaayzkaaGaey4fIOIaamyraiaaiU facaWG5bWaaSbaaSqaaiaaicdaaeqaaOGaaGikaiaadQhacaaIPaGa amyEamaaDaaaleaacaaIWaaabaGaaeOieaaakiaaiIcacaWG6bGaaG ykaiaai2facqGHRaWkaaa@803E@

+ t 0 τ exp t 0 t E[ ε 2 (σ)]dσ+ s τ E[ ε 2 (σ)]dσ+ 1 2 t 0 t t 0 t b 2 ( s 1 , s 2 )d s 1 d s 2 + 1 2 s τ s τ b 2 ( s 1 , s 2 )d s 1 d s 2 × MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWdXbqabSqaaiaadshada Wgaaqaaiaaicdaaeqaaaqaaiabes8a0bqdcqGHRiI8aOWaaiqaaeaa ciGGLbGaaiiEaiaacchadaqadaqaamaapehabeWcbaGaamiDamaaBa aabaGaaGimaaqabaaabaGaamiDaaqdcqGHRiI8aOGaamyraiaaiUfa cqaH1oqzdaWgaaWcbaGaaGOmaaqabaGccaaIOaGaeq4WdmNaaGykai aai2facaWGKbGaeq4WdmNaey4kaSYaa8qCaeqaleaacaWGZbaabaGa eqiXdqhaniabgUIiYdGccaWGfbGaaG4waiabew7aLnaaBaaaleaaca aIYaaabeaakiaaiIcacqaHdpWCcaaIPaGaaGyxaiaadsgacqaHdpWC cqGHRaWkdaWcaaqaaiaaigdaaeaacaaIYaaaamaapehabeWcbaGaam iDamaaBaaabaGaaGimaaqabaaabaGaamiDaaqdcqGHRiI8aOWaa8qC aeqaleaacaWG0bWaaSbaaeaacaaIWaaabeaaaeaacaWG0baaniabgU IiYdGccaWGIbWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadohadaWg aaWcbaGaaGymaaqabaGccaaISaGaam4CamaaBaaaleaacaaIYaaabe aakiaaiMcacaWGKbGaam4CamaaBaaaleaacaaIXaaabeaakiaadsga caWGZbWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSYaaSaaaeaacaaIXa aabaGaaGOmaaaadaWdXbqabSqaaiaadohaaeaacqaHepaDa0Gaey4k IipakmaapehabeWcbaGaam4Caaqaaiabes8a0bqdcqGHRiI8aOGaam OyamaaBaaaleaacaaIYaaabeaakiaaiIcacaWGZbWaaSbaaSqaaiaa igdaaeqaaOGaaGilaiaadohadaWgaaWcbaGaaGOmaaqabaGccaaIPa GaamizaiaadohadaWgaaWcbaGaaGymaaqabaGccaWGKbGaam4Camaa BaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiabgEna0cGaay5Eaa aaaa@962D@

× F ξ 1 exp iξ t 0 t E[ ε 1 (σ)]Adσiξ s τ E[ ε 1 (σ)]Adσ 1 2 ξ 2 t 0 t t 0 t b 1 ( s 1 , s 2 ) A 2 d s 1 d s 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHxdaTcaWGgbWaa0baaSqaaiabe6 7a4bqaaiabgkHiTiaaigdaaaGcdaqabaqaaiGacwgacaGG4bGaaiiC amaabeaabaGaeyOeI0IaamyAaiabe67a4naapehabeWcbaGaamiDam aaBaaabaGaaGimaaqabaaabaGaamiDaaqdcqGHRiI8aOGaamyraiaa iUfacqaH1oqzdaWgaaWcbaGaaGymaaqabaGccaaIOaGaeq4WdmNaaG ykaiaai2facaWGbbGaaGjcVlaadsgacqaHdpWCcqGHsislcaWGPbGa eqOVdG3aa8qCaeqaleaacaWGZbaabaGaeqiXdqhaniabgUIiYdGcca WGfbGaaG4waiabew7aLnaaBaaaleaacaaIXaaabeaakiaaiIcacqaH dpWCcaaIPaGaaGyxaiaadgeacaaMi8Uaamizaiabeo8aZjabgkHiTm aalaaabaGaaGymaaqaaiaaikdaaaGaeqOVdG3aaWbaaSqabeaacaaI YaaaaOWaa8qCaeqaleaacaWG0bWaaSbaaeaacaaIWaaabeaaaeaaca WG0baaniabgUIiYdGcdaWdXbqabSqaaiaadshadaWgaaqaaiaaicda aeqaaaqaaiaadshaa0Gaey4kIipakiaadkgadaWgaaWcbaGaaGymaa qabaGccaaIOaGaam4CamaaBaaaleaacaaIXaaabeaakiaaiYcacaWG ZbWaaSbaaSqaaiaaikdaaeqaaOGaaGykaiaadgeadaahaaWcbeqaai aaikdaaaGccaWGKbGaam4CamaaBaaaleaacaaIXaaabeaakiaadsga caWGZbWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0cacaGLOaaaaiaawI caaaaa@88C9@

1 2 ξ 2 s τ s τ b 1 ( s 1 , s 2 ) A 2 d s 1 d s 2 E[b(s,z)]E[ y 0 (z)] ds+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaGacaqaamaabiaabaWaaeGaaeaacq GHsisldaWcaaqaaiaaigdaaeaacaaIYaaaaiabe67a4naaCaaaleqa baGaaGOmaaaakmaapehabeWcbaGaam4Caaqaaiabes8a0bqdcqGHRi I8aOWaa8qCaeqaleaacaWGZbaabaGaeqiXdqhaniabgUIiYdGccaWG IbWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadohadaWgaaWcbaGaaG ymaaqabaGccaaISaGaam4CamaaBaaaleaacaaIYaaabeaakiaaiMca caWGbbWaaWbaaSqabeaacaaIYaaaaOGaamizaiaadohadaWgaaWcba GaaGymaaqabaGccaWGKbGaam4CamaaBaaaleaacaaIYaaabeaaaOGa ayzkaaaacaGLPaaacaWGfbGaaG4waiaadkgacaaIOaGaam4CaiaaiY cacaWG6bGaaGykaiaai2facqGHxiIkcaWGfbGaaG4waiaadMhadaWg aaWcbaGaaGimaaqabaGccaaIOaGaamOEaiaaiMcacaaIDbaacaGL9b aacaWGKbGaam4CaiabgUcaRaaa@6547@

+ t 0 t exp t 0 τ E[ ε 2 (σ)]dσ+ s t E[ ε 2 (σ)]dσ+ 1 2 t 0 τ t 0 τ b 2 ( s 1 , s 2 )d s 1 d s 2 + 1 2 s t s t b 2 ( s 1 , s 2 )d s 1 d s 2 × MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWdXbqabSqaaiaadshada Wgaaqaaiaaicdaaeqaaaqaaiaadshaa0Gaey4kIipakmaaceaabaGa ciyzaiaacIhacaGGWbWaaeWaaeaadaWdXbqabSqaaiaadshadaWgaa qaaiaaicdaaeqaaaqaaiabes8a0bqdcqGHRiI8aOGaamyraiaaiUfa cqaH1oqzdaWgaaWcbaGaaGOmaaqabaGccaaIOaGaeq4WdmNaaGykai aai2facaWGKbGaeq4WdmNaey4kaSYaa8qCaeqaleaacaWGZbaabaGa amiDaaqdcqGHRiI8aOGaamyraiaaiUfacqaH1oqzdaWgaaWcbaGaaG OmaaqabaGccaaIOaGaeq4WdmNaaGykaiaai2facaWGKbGaeq4WdmNa ey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaaaadaWdXbqabSqaaiaads hadaWgaaqaaiaaicdaaeqaaaqaaiabes8a0bqdcqGHRiI8aOWaa8qC aeqaleaacaWG0bWaaSbaaeaacaaIWaaabeaaaeaacqaHepaDa0Gaey 4kIipakiaadkgadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaam4Camaa BaaaleaacaaIXaaabeaakiaaiYcacaWGZbWaaSbaaSqaaiaaikdaae qaaOGaaGykaiaadsgacaWGZbWaaSbaaSqaaiaaigdaaeqaaOGaamiz aiaadohadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkdaWcaaqaaiaaig daaeaacaaIYaaaamaapehabeWcbaGaam4Caaqaaiaadshaa0Gaey4k IipakmaapehabeWcbaGaam4Caaqaaiaadshaa0Gaey4kIipakiaadk gadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaam4CamaaBaaaleaacaaI XaaabeaakiaaiYcacaWGZbWaaSbaaSqaaiaaikdaaeqaaOGaaGykai aadsgacaWGZbWaaSbaaSqaaiaaigdaaeqaaOGaamizaiaadohadaWg aaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaacqGHxdaTaiaawUhaaa aa@9561@

× F ξ 1 exp iξ t 0 τ E[ ε 1 (σ)]Adσiξ s t E[ ε 1 (σ)]Adσ 1 2 ξ 2 t 0 τ t 0 τ b 1 ( s 1 , s 2 ) A 2 d s 1 d s 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHxdaTcaWGgbWaa0baaSqaaiabe6 7a4bqaaiabgkHiTiaaigdaaaGcdaqabaqaaiGacwgacaGG4bGaaiiC amaabeaabaGaeyOeI0IaamyAaiabe67a4naapehabeWcbaGaamiDam aaBaaabaGaaGimaaqabaaabaGaeqiXdqhaniabgUIiYdGccaWGfbGa aG4waiabew7aLnaaBaaaleaacaaIXaaabeaakiaaiIcacqaHdpWCca aIPaGaaGyxaiaadgeacaWGKbGaeq4WdmNaeyOeI0IaamyAaiabe67a 4naapehabeWcbaGaam4Caaqaaiaadshaa0Gaey4kIipakiaadweaca aIBbGaeqyTdu2aaSbaaSqaaiaaigdaaeqaaOGaaGikaiabeo8aZjaa iMcacaaIDbGaamyqaiaadsgacqaHdpWCcqGHsisldaWcaaqaaiaaig daaeaacaaIYaaaaiabe67a4naaCaaaleqabaGaaGOmaaaakmaapeha beWcbaGaamiDamaaBaaabaGaaGimaaqabaaabaGaeqiXdqhaniabgU IiYdGcdaWdXbqabSqaaiaadshadaWgaaqaaiaaicdaaeqaaaqaaiab es8a0bqdcqGHRiI8aOGaamOyamaaBaaaleaacaaIXaaabeaakiaaiI cacaWGZbWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaadohadaWgaaWc baGaaGOmaaqabaGccaaIPaGaamyqamaaCaaaleqabaGaaGOmaaaaki aadsgacaWGZbWaaSbaaSqaaiaaigdaaeqaaOGaamizaiaadohadaWg aaWcbaGaaGOmaaqabaGccqGHsislaiaawIcaaaGaayjkaaaaaa@873F@

1 2 ξ 2 s t s t b 1 ( s 1 , s 2 ) A 2 d s 1 d s 2 E[b(s,z)]E[ y 0 (z)] ds+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaGacaqaamaabiaabaWaaeGaaeaacq GHsisldaWcaaqaaiaaigdaaeaacaaIYaaaaiabe67a4naaCaaaleqa baGaaGOmaaaakmaapehabeWcbaGaam4Caaqaaiaadshaa0Gaey4kIi pakmaapehabeWcbaGaam4Caaqaaiaadshaa0Gaey4kIipakiaadkga daWgaaWcbaGaaGymaaqabaGccaaIOaGaam4CamaaBaaaleaacaaIXa aabeaakiaaiYcacaWGZbWaaSbaaSqaaiaaikdaaeqaaOGaaGykaiaa dgeadaahaaWcbeqaaiaaikdaaaGccaWGKbGaam4CamaaBaaaleaaca aIXaaabeaakiaadsgacaWGZbWaaSbaaSqaaiaaikdaaeqaaaGccaGL PaaaaiaawMcaaiaadweacaaIBbGaamOyaiaaiIcacaWGZbGaaGilai aadQhacaaIPaGaaGyxaiabgEHiQiaadweacaaIBbGaamyEamaaBaaa leaacaaIWaaabeaakiaaiIcacaWG6bGaaGykaiaai2faaiaaw2haai aadsgacaWGZbGaey4kaScaaa@63AF@

+ t 0 t t 0 τ exp σ τ E[ ε 2 ( s 2 )]d s 2 + s t E[ ε 2 ( s 2 )]d s 2 + 1 2 σ τ σ τ b 2 ( s 1 , s 2 )d s 1 d s 2 + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWdXbqabSqaaiaadshada Wgaaqaaiaaicdaaeqaaaqaaiaadshaa0Gaey4kIipakmaapehabeWc baGaamiDamaaBaaabaGaaGimaaqabaaabaGaeqiXdqhaniabgUIiYd GcdaGabaqaaiGacwgacaGG4bGaaiiCamaabeaabaWaa8qCaeqaleaa cqaHdpWCaeaacqaHepaDa0Gaey4kIipakiaadweacaaIBbGaeqyTdu 2aaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadohadaWgaaWcbaGaaGOm aaqabaGccaaIPaGaaGyxaiaadsgacaWGZbWaaSbaaSqaaiaaikdaae qaaOGaey4kaSYaa8qCaeqaleaacaWGZbaabaGaamiDaaqdcqGHRiI8 aOGaamyraiaaiUfacqaH1oqzdaWgaaWcbaGaaGOmaaqabaGccaaIOa Gaam4CamaaBaaaleaacaaIYaaabeaakiaaiMcacaaIDbGaamizaiaa dohadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkdaWcaaqaaiaaigdaae aacaaIYaaaamaapehabeWcbaGaeq4WdmhabaGaeqiXdqhaniabgUIi YdGcdaWdXbqabSqaaiabeo8aZbqaaiabes8a0bqdcqGHRiI8aOGaam OyamaaBaaaleaacaaIYaaabeaakiaaiIcacaWGZbWaaSbaaSqaaiaa igdaaeqaaOGaaGilaiaadohadaWgaaWcbaGaaGOmaaqabaGccaaIPa GaamizaiaadohadaWgaaWcbaGaaGymaaqabaGccaWGKbGaam4Camaa BaaaleaacaaIYaaabeaakiabgUcaRaGaayjkaaaacaGL7baaaaa@8140@

+ 1 2 s t s t b 2 ( s 1 , s 2 )d s 1 d s 2 F ξ 1 exp iξ σ τ E[ ε 1 ( s 1 )]Ad s 1 iξ s t E[ ε 1 ( s 1 )]Ad s 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqacaqaaiabgUcaRmaalaaabaGaaG ymaaqaaiaaikdaaaWaa8qCaeqaleaacaWGZbaabaGaamiDaaqdcqGH RiI8aOWaa8qCaeqaleaacaWGZbaabaGaamiDaaqdcqGHRiI8aOGaam OyamaaBaaaleaacaaIYaaabeaakiaaiIcacaWGZbWaaSbaaSqaaiaa igdaaeqaaOGaaGilaiaadohadaWgaaWcbaGaaGOmaaqabaGccaaIPa GaamizaiaadohadaWgaaWcbaGaaGymaaqabaGccaWGKbGaam4Camaa BaaaleaacaaIYaaabeaaaOGaayzkaaGaamOramaaDaaaleaacqaH+o aEaeaacqGHsislcaaIXaaaaOWaaeqaaeaaciGGLbGaaiiEaiaaccha daqabaqaaiabgkHiTiaadMgacqaH+oaEdaWdXbqabSqaaiabeo8aZb qaaiabes8a0bqdcqGHRiI8aOGaamyraiaaiUfacqaH1oqzdaWgaaWc baGaaGymaaqabaGccaaIOaGaam4CamaaBaaaleaacaaIXaaabeaaki aaiMcacaaIDbGaamyqaiaayIW7caWGKbGaam4CamaaBaaaleaacaaI XaaabeaakiabgkHiTiaadMgacqaH+oaEdaWdXbqabSqaaiaadohaae aacaWG0baaniabgUIiYdGccaWGfbGaaG4waiabew7aLnaaBaaaleaa caaIXaaabeaakiaaiIcacaWGZbWaaSbaaSqaaiaaigdaaeqaaOGaaG ykaiaai2facaWGbbGaaGjcVlaadsgacaWGZbWaaSbaaSqaaiaaigda aeqaaOGaeyOeI0cacaGLOaaaaiaawIcaaaaa@81D0@

1 2 ξ 2 σ τ σ τ b 1 ( s 1 , s 2 ) A 2 d s 1 d s 2 1 2 ξ 2 s t s t b 1 ( s 1 , s 2 ) A 2 d s 1 d s 2 E[b(s,z) b Т (σ,z)] dσds MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaGacaqaamaabiaabaWaaeGaaeaacq GHsisldaWcaaqaaiaaigdaaeaacaaIYaaaaiabe67a4naaCaaaleqa baGaaGOmaaaakmaapehabeWcbaGaeq4WdmhabaGaeqiXdqhaniabgU IiYdGcdaWdXbqabSqaaiabeo8aZbqaaiabes8a0bqdcqGHRiI8aOGa amOyamaaBaaaleaacaaIXaaabeaakiaaiIcacaWGZbWaaSbaaSqaai aaigdaaeqaaOGaaGilaiaadohadaWgaaWcbaGaaGOmaaqabaGccaaI PaGaamyqamaaCaaaleqabaGaaGOmaaaakiaadsgacaWGZbWaaSbaaS qaaiaaigdaaeqaaOGaamizaiaadohadaWgaaWcbaGaaGOmaaqabaGc cqGHsisldaWcaaqaaiaaigdaaeaacaaIYaaaaiabe67a4naaCaaale qabaGaaGOmaaaakmaapehabeWcbaGaam4Caaqaaiaadshaa0Gaey4k IipakmaapehabeWcbaGaam4Caaqaaiaadshaa0Gaey4kIipakiaadk gadaWgaaWcbaGaaGymaaqabaGccaaIOaGaam4CamaaBaaaleaacaaI XaaabeaakiaaiYcacaWGZbWaaSbaaSqaaiaaikdaaeqaaOGaaGykai aadgeadaahaaWcbeqaaiaaikdaaaGccaWGKbGaam4CamaaBaaaleaa caaIXaaabeaakiaadsgacaWGZbWaaSbaaSqaaiaaikdaaeqaaaGcca GLPaaaaiaawMcaaiabgEHiQiaadweacaaIBbGaamOyaiaaiIcacaWG ZbGaaGilaiaadQhacaaIPaGaamOyamaaCaaaleqabaGaaeOieaaaki aaiIcacqaHdpWCcaaISaGaamOEaiaaiMcacaaIDbaacaGL9baacaWG KbGaeq4WdmNaamizaiaadohaaaa@857B@

является второй моментной функцией решения этой задачи.

×

Об авторах

Лариса Юрьевна Кабанцова

Воронежский государственный университет

Автор, ответственный за переписку.
Email: dljuv@yandex.ru
Россия, Воронеж

Список литературы

  1. Задорожний В. Г. Методы вариационного анализа. — М.—Ижевск: РХД, 2006.
  2. Задорожний В. Г., Кабанцова Л. Ю. О решении линейных систем дифференциальных уравнений в частных производных первого порядка// Совр. мат. Фундам. напр. — 2021. — 67, № 3. — С. 549–563.
  3. Задорожний В. Г., Коновалова М. А. Мультипликативно возмущенное случайным шумом дифференциальное уравнение в банаховом пространстве// Совр. мат. Фундам. напр. — 2017. — 63, № 4. — С. 599–614.
  4. Задорожний В. Г., Тихомиров Г. С. О системе дифференциальных уравнений со случайными параметрами// Совр. мат. Фундам. напр. — 2022. — 68, № 4. — С. 621–634.
  5. Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления. Т. 2. — М.: Наука, 1970.
  6. Шилов Г. Е. Математический анализ. Второй специальный курс. — М.: Физматлит, 1965.
  7. Zadorozhniy V. G., Semenov M. E., Selavesyuk N. T., Ulshin I. I., Nozhkin V. S. Statistical characteristics of solutions of the system of the stochastic transfer model// Math. Mod. Comp. Simul. — 2021. — 13, № 1. — P. 11–25.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Кабанцова Л.Ю., 2024

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).