Построение регуляризованной асимптотики решения сингулярно возмущенной смешанной задачи на полуоси для неоднородного уравнения типа Шрёдингера с потенциалом V(x) = x

Обложка

Цитировать

Полный текст

Аннотация

Предложен метод построения асимптотического решения сингулярно возмущенной смешанной задачи на полуоси для нестационарного и неоднородного уравнения типа Шрёдингера в координатном представлении в случае нарушения условий стабильности спектра предельного оператора. Выбранный профиль потенциальной энергии приводит к спектральной особенности предельного оператора, которую в рамках метода регуляризации С. А. Ломова принято называть сильной точкой поворота.

Полный текст

1.  Введение.

Основные принципы метода регуляризации С. А. Ломова в теории сингулярных возмущений были заложены в конце 1950-x - начале 1960-х годов. Окончательную формулировку предложенный подход при выполнении так называемых условий стабильности спектра предельного оператора получил в монографии [13], где основная проблема метода регуляризации (поиск и описание регуляризирующих функций, которые содержат всю сингулярную зависимость асимптотического решения от малого параметра) успешно решена. Для ознакомления с современным состоянием метода регуляризации отсылаем читателя к монографиям [2, 14], где также приведены подробные библиографии по другим существующим подходам в теории сингулярных возмущений. При нарушенных условиях стабильности спектра предельного оператора описание сингулярной зависимости решения от малого параметра значительно сложнее, чем в задачах со стабильным спектром. Более того, до сих пор нет законченной математической теории с позиций метода регуляризации для сингулярно возмущенных задач с нестабильным спектром, хотя с общематематических позиций их стали изучать порядка 50 лет назад. Особый интерес среди таких задач вызывают те, в которых спектральные особенности выражены в виде точечной нестабильности (см., например, [3, 9, 15]). В работах, посвященных сингулярно возмущенным задачам, в рамках метода регуляризации некоторая часть особенностей такого вида названа точками поворота и проведена их классификация:

    (i) простая точка поворота MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  собственные значения предельного оператора изолированы друг от друга и одно собственное значение в отдельных точках обращается в нуль;

    (ii) слабая точка поворота MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  хотя бы пара собственных значений пересекаются в отдельных точках, но при этом предельный оператор сохраняет диагональную структуру вплоть до точек пересечения, а базис из собственных векторов сохраняет гладкость;

    (iii) сильная точка поворота MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  хотя бы пара собственных значений пересекаются в отдельных точках, но при этом предельный оператор меняет диагональную структуру на жорданову в точках пересечения, а базис собственных векторов теряет гладкость.

Приведем ссылки на несколько последних исследований в рамках метода регуляризации сингулярно возмущенных задач с особенностями в спектре предельного оператора указанного вида: по простой точке поворота см. [5, 9, 10], по слабой точке поворота MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  [7, 8, 11], сильной точке поворота посвящены статьи [4, 6].

Типичными физическими примерами сингулярно возмущенных задач являются уравнение Навье MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A74@ Стокса с малой вязкостью и уравнение Шрёдингера, если постоянную Планка MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqWIpecAaaa@32EA@  считать малой величиной[1]. Формальный предельный переход 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqWIpecAcqGHsgIRcaaIWaaaaa@3591@  в соотношениях квантовой теории осуществляет переход от квантовой к классической механике (см., например,[12, гл. 6]), поэтому в тех случаях, когда целесообразно искать приближенные (по малому MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqWIpecAaaa@32EA@  ) решения уравнения Шрёдингера, говорят о квазиклассическом приближении (см.[12, гл. 7]). Описанный квазиклассический переход в нестационарном уравнении Шрёдингера в координатном представлении на полуоси с гамильтонианом H ^ (p,x)= p ^ 2 + x ^ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGibGbaKaacaaIOaGaamiCaiaaiY cacaWG4bGaaGykaiaai2daceWGWbGbaKaadaahaaWcbeqaaiaaikda aaGccqGHRaWkceWG4bGbaKaaaaa@3B59@  порождает сингулярно возмущенную задачу, асимптотическому интегрированию которой посвящена настоящая работа. Следует сразу отметить, что рассматриваемая нами задача содержит неоднородное уравнение, что, как станет ясно в основном тексте статьи, существенно усложняет процесс построения регуляризованного асимптотического ряда.

Во многом наши исследования по асимптотическому интегрированию смешанной задачи для нестационарного и неоднородного уравнения Шрёдингера с обозначенным выше гамильтонианом при 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqWIpecAcqGHsgIRcaaIWaaaaa@3591@  представляют собой развитие идей работы [6], где рассмотрена задача Коши для неоднородного уравнения Шрёдингера с особенностью в спектре предельного оператора в виде сильной точкой поворота. В дальнейшем всюду будем использовать обозначение ε MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzaaa@3368@  вместо MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqWIpecAaaa@32EA@ , что является более естественным в теории сингулярных возмущений.

2. Постановка задачи.

Рассмотрим смешанную задачу на полуоси для нестационарного уравнения Шрёдингера ( ε MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzcqGHHjIUcqWIpecAaaa@365A@  ) с неоднородностью h(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36BF@ :

  iε u t + ε 2 2 u x 2 xu=h(x,t),0<x<+,0<tT, u(x,0)=f(x),u(0,t)=ψ(t),ψ(0)=f(0), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaGabaqaauaabaqaciaaaeaacaWGPb GaeqyTdu2aaSaaaeaacqGHciITcaWG1baabaGaeyOaIyRaamiDaaaa cqGHRaWkcqaH1oqzdaahaaWcbeqaaiaaikdaaaGcdaWcaaqaaiabgk Gi2oaaCaaaleqabaGaaGOmaaaakiaadwhaaeaacqGHciITcaWG4bWa aWbaaSqabeaacaaIYaaaaaaakiabgkHiTiaadIhacaWG1bGaaGypai aadIgacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaaiYcacaaMf8Ua aGimaiaaiYdacaWG4bGaaGipaiabgUcaRiabg6HiLkaaiYcacaaMf8 UaaGimaiaaiYdacaWG0bGaeyizImQaamivaiaaiYcaaeaaaeaacaWG 1bGaaGikaiaadIhacaaISaGaaGimaiaaiMcacaaI9aGaamOzaiaaiI cacaWG4bGaaGykaiaaiYcacaaMf8UaamyDaiaaiIcacaaIWaGaaGil aiaadshacaaIPaGaaGypaiabeI8a5jaaiIcacaWG0bGaaGykaiaaiY cacaaMf8UaeqiYdKNaaGikaiaaicdacaaIPaGaaGypaiaadAgacaaI OaGaaGimaiaaiMcacaaISaaabaaaaaGaay5Eaaaaaa@7C9E@                                      (1)

 причём выполнены следующие условия:

    (i) h(x,t) C (×[0,T]) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObGaaGikaiaadIhacaaISaGaam iDaiaaiMcacqGHiiIZcaWGdbWaaWbaaSqabeaacqGHEisPaaGccaaI OaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFDe IucqGHxdaTcaaIBbGaaGjcVlaaicdacaaISaGaamivaiaai2facaaI Paaaaa@4E8C@ ;

    (ii) f(x) C () MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaadIhacaaIPaGaey icI4Saam4qamaaCaaaleqabaGaeyOhIukaaOGaaGikamrr1ngBPrwt HrhAYaqeguuDJXwAKbstHrhAGq1DVbaceaGae8xhHiLaaGykaaaa@451E@ , ψ(t)C[0,T] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamiDaiaaiMcacq GHiiIZcaWGdbGaaG4waiaayIW7caaIWaGaaGilaiaadsfacaaIDbaa aa@3DDF@ ;

    (iii) имеют место равномерные по t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32BA@  неравенства

  0 x 2 | u 0 (x)|dx<, 0 x 2 |h(x,t)|dx< MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiaaicdaaeaacqGHEi sPa0Gaey4kIipakiaadIhadaahaaWcbeqaaiaaikdaaaGccaaI8bGa amyDamaaBaaaleaacaaIWaaabeaakiaaiIcacaWG4bGaaGykaiaaiY hacaaMi8UaamizaiaadIhacaaI8aGaeyOhIuQaaGilaiaaywW7daWd XbqabSqaaiaaicdaaeaacqGHEisPa0Gaey4kIipakiaadIhadaahaa WcbeqaaiaaikdaaaGccaaI8bGaamiAaiaaiIcacaWG4bGaaGilaiaa dshacaaIPaGaaGiFaiaayIW7caWGKbGaamiEaiaaiYdacqGHEisPaa a@59E1@

(достаточные условия для существования и единственности решения);

    (iv) для всех натуральных k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbaaaa@32B1@ , m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGTbaaaa@32B3@ , n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B4@  имеют место равномерные по t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32BA@  неравенства

0 x m | u 0 (k) (x)|dx<, 0 x m | h (k,n) (x,t)|dx< MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiaaicdaaeaacqGHEi sPa0Gaey4kIipakiaadIhadaahaaWcbeqaaiaad2gaaaGccaaI8bGa amyDamaaDaaaleaacaaIWaaabaGaaGikaiaadUgacaaIPaaaaOGaaG ikaiaadIhacaaIPaGaaGiFaiaayIW7caWGKbGaamiEaiaaiYdacqGH EisPcaaISaGaaGzbVpaapehabeWcbaGaaGimaaqaaiabg6HiLcqdcq GHRiI8aOGaamiEamaaCaaaleqabaGaamyBaaaakiaaiYhacaWGObWa aWbaaSqabeaacaaIOaGaam4AaiaaiYcacaWGUbGaaGykaaaakiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaaGiFaiaayIW7caWGKbGaamiE aiaaiYdacqGHEisPaaa@60D8@

(достаточные условия для построения асимптотического ряда);

    (v) ε MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzaaa@3368@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  малый параметр, т.е. задача изучается при ε0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzcqGHsgIRcaaIWaaaaa@360F@ .

Существование и единственность классического решения задачи (1) при выполненных условиях (i) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A74@ (v) обосновывается стандартными методами математической физики (см., например, [16]), опираясь на фундаментальное решение, полученное в приложении 1.

Для наглядного представления о виде спектральной особенности в поставленной задаче следует перейти к матричной форме записи:

ε x u υ = 0 1 x 0 u υ iε 0 0 /t 0 u υ + 0 h ; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWcaaqaaiabgkGi2cqaai abgkGi2kaadIhaaaWaaeWaaeaafaqabeGabaaabaGaamyDaaqaaiab ew8a1baaaiaawIcacaGLPaaacaaI9aWaaeWaaeaafaqabeGacaaaba GaaGimaaqaaiaaigdaaeaacaWG4baabaGaaGimaaaaaiaawIcacaGL PaaacqGHflY1daqadaqaauaabeqaceaaaeaacaWG1baabaGaeqyXdu haaaGaayjkaiaawMcaaiabgkHiTiaadMgacqaH1oqzdaqadaqaauaa beqaciaaaeaacaaIWaaabaGaaGimaaqaaiabgkGi2kaai+cacqGHci ITcaWG0baabaGaaGimaaaaaiaawIcacaGLPaaacqGHflY1daqadaqa auaabeqaceaaaeaacaWG1baabaGaeqyXduhaaaGaayjkaiaawMcaai abgUcaRmaabmaabaqbaeqabiqaaaqaaiaaicdaaeaacaWGObaaaaGa ayjkaiaawMcaaiaaiUdaaaa@5F11@

здесь введена замена εu/x=υ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzcqGHflY1cqGHciITcaWG1b GaaG4laiabgkGi2kaadIhacaaI9aGaeqyXduhaaa@3DBC@ . Тогда матрица предельного оператора имеет вид

A(x)= 0 1 x 0 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbGaaGikaiaadIhacaaIPaGaaG ypamaabmaabaqbaeqabiGaaaqaaiaaicdaaeaacaaIXaaabaGaamiE aaqaaiaaicdaaaaacaGLOaGaayzkaaGaaGOlaaaa@3B2D@

Теперь легко заметить, что матрица A(x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbGaaGikaiaadIhacaaIPaaaaa@34E9@  диагонализируема и имеет гладкий базис из собственных векторов при x0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaeyiyIKRaaGimaaaa@353F@ , а в точке пересечения собственных значений (т.е. при x=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGypaiaaicdaaaa@343F@  ) соответствующий ей предельный оператор меняет диагональную структуру на жорданову и базис из собственных векторов теряет гладкость по x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BE@ . Согласно указанной во введении классификации, такая спектральная особенность представляет собой сильную точку поворота.

В общем случае регуляризирующие функции необходимо строить, опираясь на каноническую форму предельного оператора, к которой можно привести с помощью гладких преобразований (см., например, [1]), и соответствующий базис из собственных векторов, но в предложенной задаче оператор уже имеет каноническую форму и в соответствующих построениях нет необходимости. Более того, необходимо произвести регуляризацию правой части h(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36BF@  (это связано с тем, что предельный оператор с матрицей A(x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbGaaGikaiaadIhacaaIPaaaaa@34E9@  в точке x=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGypaiaaicdaaaa@343F@  необратим) и описать пограничный слой обусловленный точкой x=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGypaiaaicdaaaa@343F@ .

3. Формализм метода регуляризации.

Во введении было отмечено, что метод регуляризации С. А. Ломова предлагает описывать сингулярную зависимость решения от малого параметра сразу (до построения асимптотического ряда путем решения итерационных задач) и абсолютно точно с помощью введения регуляризирующих функций и/или регуляризирующих операторов. Если это удалось сделать, то оставшуюся часть асимптотического решения можно искать в виде степенных рядов по малому параметру аналогично тому, как поступают при построении асимптотики в регулярно возмущенных задачах. Поэтому считаем целесообразным повествование в этом разделе начать именно с построения необходимых здесь дополнительных конструкций, содержащих в себе всю неравномерную сингулярную зависимость от ε MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzaaa@3368@ , а затем перейти к построению асимптотического решения.

3.1  Регуляризирующая функция и дополнительные регуляризирующие операторы.

Регуляризирующую функцию задачи (1) будем искать в стандартной форме e iφ(x,t)/ε MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGLbWaaWbaaSqabeaacqGHsislca WGPbGaeqOXdOMaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaIVaGa eqyTdugaaaaa@3CE1@ , для решений линейных однородных уравнений такие сингулярности были выделены ещё Ж. Лиувиллем в [18]. Итак, осуществляя подстановку u(x,t)=υ(x,t) e iφ(x,t)/ε MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI9aGaeqyXduNaaGikaiaadIhacaaISaGaamiDaiaa iMcacqGHflY1caWGLbWaaWbaaSqabeaacqGHsislcaWGPbGaeqOXdO MaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaIVaGaeqyTdugaaaaa @4AD5@  в соответствующее однородное уравнение задачи (1) и собирая слагаемые при одинаковых степенях ε MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzaaa@3368@ , получим:

φ t φ x 2 x υ+iε υ t 2 φ x 2 υ2 φ x υ x + ε 2 2 υ x 2 =0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqadaqaamaalaaabaGaeyOaIyRaeq OXdOgabaGaeyOaIyRaamiDaaaacqGHsisldaqadaqaamaalaaabaGa eyOaIyRaeqOXdOgabaGaeyOaIyRaamiEaaaaaiaawIcacaGLPaaada ahaaWcbeqaaiaaikdaaaGccqGHsislcaWG4baacaGLOaGaayzkaaGa eqyXduNaey4kaSIaamyAaiabew7aLnaabmaabaWaaSaaaeaacqGHci ITcqaHfpqDaeaacqGHciITcaWG0baaaiabgkHiTmaalaaabaGaeyOa Iy7aaWbaaSqabeaacaaIYaaaaOGaeqOXdOgabaGaeyOaIyRaamiEam aaCaaaleqabaGaaGOmaaaaaaGccqGHflY1cqaHfpqDcqGHsislcaaI YaGaeyyXIC9aaSaaaeaacqGHciITcqaHgpGAaeaacqGHciITcaWG4b aaaiabgwSixpaalaaabaGaeyOaIyRaeqyXduhabaGaeyOaIyRaamiE aaaaaiaawIcacaGLPaaacqGHRaWkcqaH1oqzdaahaaWcbeqaaiaaik daaaGcdaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiabew8a 1bqaaiabgkGi2kaadIhadaahaaWcbeqaaiaaikdaaaaaaOGaaGypai aaicdacaaIUaaaaa@7B50@                            (2)

 Анализ последнего выражения позволяет утверждать, что для поиска υ(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHfpqDcaaIOaGaamiEaiaaiYcaca WG0bGaaGykaaaa@3799@  в виде регулярного ряда по ε MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzaaa@3368@  нужно в качестве φ(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaamiEaiaaiYcaca WG0bGaaGykaaaa@378F@  взять решение следующей задачи:

φ t φ x 2 =x,φ(x,0)=0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2kabeA8aQbqaai abgkGi2kaadshaaaGaeyOeI0YaaeWaaeaadaWcaaqaaiabgkGi2kab eA8aQbqaaiabgkGi2kaadIhaaaaacaGLOaGaayzkaaWaaWbaaSqabe aacaaIYaaaaOGaaGypaiaadIhacaaISaGaaGzbVlabeA8aQjaaiIca caWG4bGaaGilaiaaicdacaaIPaGaaGypaiaaicdacaaIUaaaaa@4C22@                                                                                                  (3)

 Выбор начального условия для φ(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaamiEaiaaiYcaca WG0bGaaGykaaaa@378F@  обусловлен нежеланием того, чтобы в дальнейшем начальное условие для υ(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHfpqDcaaIOaGaamiEaiaaiYcaca WG0bGaaGykaaaa@3799@  содержало сингулярную зависимость от ε MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzaaa@3368@ . Кроме того, при таком выборе начальное условие на υ(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHfpqDcaaIOaGaamiEaiaaiYcaca WG0bGaaGykaaaa@3799@  наследует начальное условие задачи (1).

Задача (3) представляет собой задачу для нелинейного дифференциального уравнения в частных производных первого порядка, решать которую будем методом характеристик (см. [17, гл. 5, § 4, с. 268--272]). Введя обозначения p=φ/t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbGaaGypaiabgkGi2kabeA8aQj aai+cacqGHciITcaWG0baaaa@39B8@  и q=φ/x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGypaiabgkGi2kabeA8aQj aai+cacqGHciITcaWG4baaaa@39BD@ , получим следующую характеристическую систему для уравнения задачи (3):

dt 1 = dx 2q = dp 0 = dq 1 = dφ p2 q 2 =dr, Н.:t=0,x=s,φ=0,q=0,p=s. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqabeGabaaabaWaaSaaaeaacaWGKb GaamiDaaqaaiaaigdaaaGaaGypamaalaaabaGaamizaiaadIhaaeaa cqGHsislcaaIYaGaamyCaaaacaaI9aWaaSaaaeaacaWGKbGaamiCaa qaaiaaicdaaaGaaGypamaalaaabaGaamizaiaadghaaeaacaaIXaaa aiaai2dadaWcaaqaaiaadsgacqaHgpGAaeaacaWGWbGaeyOeI0IaaG OmaiaadghadaahaaWcbeqaaiaaikdaaaaaaOGaaGypaiaadsgacaWG YbGaaGilaaqaaiaab2bbcaqGUaGaae4ieiaab6cacaqG6aGaamiDai aai2dacaaIWaGaaGilaiaaysW7caWG4bGaaGypaiaadohacaaISaGa aGjbVlabeA8aQjaai2dacaaIWaGaaGilaiaaysW7caWGXbGaaGypai aaicdacaaISaGaaGjbVlaadchacaaI9aGaam4Caiaai6caaaaaaa@66E8@                                                                                  (4)

 Начальные условия в последней системе получены параметризацией ( s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbaaaa@32B9@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  параметр) начального условия задачи (3).

Интегрируя систему (4), получаем искомую поверхность в параметрическом виде:

t=r,x= r 2 +s,φ=sr 2 3 r 3 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaaGypaiaadkhacaaISaGaaG zbVlaadIhacaaI9aGaeyOeI0IaamOCamaaCaaaleqabaGaaGOmaaaa kiabgUcaRiaadohacaaISaGaaGzbVlabeA8aQjaai2dacaWGZbGaam OCaiabgkHiTmaalaaabaGaaGOmaaqaaiaaiodaaaGaamOCamaaCaaa leqabaGaaG4maaaakiaai6caaaa@4901@

 Тогда окончательно для функции φ(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaamiEaiaaiYcaca WG0bGaaGykaaaa@378F@  в явном виде имеем:

φ(x,t)=t x+ t 2 3 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaamiEaiaaiYcaca WG0bGaaGykaiaai2dacaWG0bGaeyyXIC9aaeWaaeaacaWG4bGaey4k aSYaaSaaaeaacaWG0bWaaWbaaSqabeaacaaIYaaaaaGcbaGaaG4maa aaaiaawIcacaGLPaaacaaIUaaaaa@4272@                                                                                                         (5)

Дополнительный регуляризирующий сингулярный оператор, связанный с точечной необратимостью предельного оператора A(x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbGaaGikaiaadIhacaaIPaaaaa@34E9@ , строится с помощью фундаментального решения задачи (1) на всей прямой, которое можно получить методом интегрального преобразования Фурье для однородного уравнения с дельта-функцией в начальном условии (см. приложение 1). Выпишем здесь только окончательный результат:

Φ(x,ξ,t)= 1i 2 2πεt exp it ε ξ+ t 2 3 +i ( t 2 (xξ)) 2 4εt . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHMoGrcaaIOaGaamiEaiaaiYcacq aH+oaEcaaISaGaamiDaiaaiMcacaaI9aWaaSaaaeaacaaIXaGaeyOe I0IaamyAaaqaaiaaikdadaGcaaqaaiaaikdacqaHapaCcqaH1oqzca WG0baaleqaaaaakiGacwgacaGG4bGaaiiCamaabmaabaGaeyOeI0Ya aSaaaeaacaWGPbGaamiDaaqaaiabew7aLbaadaqadaqaaiabe67a4j abgUcaRmaalaaabaGaamiDamaaCaaaleqabaGaaGOmaaaaaOqaaiaa iodaaaaacaGLOaGaayzkaaGaey4kaSIaamyAamaalaaabaGaaGikai aadshadaahaaWcbeqaaiaaikdaaaGccqGHsislcaaIOaGaamiEaiab gkHiTiabe67a4jaaiMcacaaIPaWaaWbaaSqabeaacaaIYaaaaaGcba GaaGinaiabew7aLjaadshaaaaacaGLOaGaayzkaaGaaGOlaaaa@633B@                                                      (6)

 Построение указанного регуляризирующего оператора тесно связано с решением исходной задачи (1) при <x< MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcqGHEisPcaaI8aGaamiEai aaiYdacqGHEisPaaa@3819@  с правой частью h(x,t)=iε MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI9aGaamyAaiabew7aLbaa@3A1B@  и однородным начальным условием. Обозначив это решение σ(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHdpWCcaaIOaGaamiEaiaaiYcaca WG0bGaaGykaaaa@3795@  и используя фундаментальное решение (6), получим

σx,t0tdτdξΦxξ,tτ1i22πε0tdτtτexpitτxε×dξexpitτεxξtτ23+ixξtτ224εtτ.

 Для упрощения дальнейших вычислений обозначим внутренний интеграл по ξ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEaaa@3384@  через I 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGjbWaaSbaaSqaaiaaicdaaeqaaa aa@3375@  и положим tτα MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaeyOeI0IaeqiXdqNaeyyyIO RaeqySdegaaa@38D4@ . После замены s=xξ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbGaaGypaiaadIhacqGHsislcq aH+oaEaaa@372D@  отдельно для I 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGjbWaaSbaaSqaaiaaicdaaeqaaa aa@3375@  получим

I 0 = dsexp iα ε s α 2 3 +i (s α 2 ) 2 4εα =exp i α 3 12ε dsexp iαs 2ε + i s 2 4εα . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGjbWaaSbaaSqaaiaaicdaaeqaaO GaaGypamaapehabeWcbaGaeyOeI0IaeyOhIukabaGaeyOhIukaniab gUIiYdGccaWGKbGaam4CaiabgwSixlGacwgacaGG4bGaaiiCamaabm aabaWaaSaaaeaacaWGPbGaeqySdegabaGaeqyTdugaaiabgwSixpaa bmaabaGaam4CaiabgkHiTmaalaaabaGaeqySde2aaWbaaSqabeaaca aIYaaaaaGcbaGaaG4maaaaaiaawIcacaGLPaaacqGHRaWkcaWGPbWa aSaaaeaacaaIOaGaam4CaiabgkHiTiabeg7aHnaaCaaaleqabaGaaG OmaaaakiaaiMcadaahaaWcbeqaaiaaikdaaaaakeaacaaI0aGaeqyT duMaeqySdegaaaGaayjkaiaawMcaaiaai2daciGGLbGaaiiEaiaacc hadaqadaqaamaalaaabaGaeyOeI0IaamyAaiabeg7aHnaaCaaaleqa baGaaG4maaaaaOqaaiaaigdacaaIYaGaeqyTdugaaaGaayjkaiaawM caaiabgwSixpaapehabeWcbaGaeyOeI0IaeyOhIukabaGaeyOhIuka niabgUIiYdGccaWGKbGaam4CaiabgwSixlGacwgacaGG4bGaaiiCam aabmaabaWaaSaaaeaacaWGPbGaeqySdeMaam4CaaqaaiaaikdacqaH 1oqzaaGaey4kaSYaaSaaaeaacaWGPbGaam4CamaaCaaaleqabaGaaG OmaaaaaOqaaiaaisdacqaH1oqzcqaHXoqyaaaacaGLOaGaayzkaaGa aGOlaaaa@8988@

 Теперь выделим в показателе экспоненты подынтегрального выражения полный квадрат:

iαs 2ε + i s 2 4εα = i 4εα ( s 2 +2 α 2 s+ α 4 α 4 )= i 4εα ((s+α ) 2 α 4 )= i (s+ α 2 ) 2 4εα i α 3 4ε . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaadMgacqaHXoqycaWGZb aabaGaaGOmaiabew7aLbaacqGHRaWkdaWcaaqaaiaadMgacaWGZbWa aWbaaSqabeaacaaIYaaaaaGcbaGaaGinaiabew7aLjabeg7aHbaaca aI9aWaaSaaaeaacaWGPbaabaGaaGinaiabew7aLjabeg7aHbaacaaI OaGaam4CamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaikdacqaHXo qydaahaaWcbeqaaiaaikdaaaGccaWGZbGaey4kaSIaeqySde2aaWba aSqabeaacaaI0aaaaOGaeyOeI0IaeqySde2aaWbaaSqabeaacaaI0a aaaOGaaGykaiaai2dadaWcaaqaaiaadMgaaeaacaaI0aGaeqyTduMa eqySdegaaiaaiIcacaaIOaGaam4CaiabgUcaRiabeg7aHjaaiMcada ahaaWcbeqaaiaaikdaaaGccqGHsislcqaHXoqydaahaaWcbeqaaiaa isdaaaGccaaIPaGaaGypamaalaaabaGaamyAaiaaiIcacaWGZbGaey 4kaSIaeqySde2aaWbaaSqabeaacaaIYaaaaOGaaGykamaaCaaaleqa baGaaGOmaaaaaOqaaiaaisdacqaH1oqzcqaHXoqyaaGaeyOeI0YaaS aaaeaacaWGPbGaeqySde2aaWbaaSqabeaacaaIZaaaaaGcbaGaaGin aiabew7aLbaacaaIUaaaaa@7968@

 Сделав замену z=(s+ α 2 )/(2 εα ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGypaiaaiIcacaWGZbGaey 4kaSIaeqySde2aaWbaaSqabeaacaaIYaaaaOGaaGykaiaai+cacaaI OaGaaGOmamaakaaabaGaeqyTduMaeqySdegaleqaaOGaaGykaaaa@3F9D@ , выпишем результат для I 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGjbWaaSbaaSqaaiaaicdaaeqaaa aa@3375@ :

I 0 =exp i α 3 3ε 2 εα dz e i z 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGjbWaaSbaaSqaaiaaicdaaeqaaO GaaGypaiGacwgacaGG4bGaaiiCamaabmaabaWaaSaaaeaacqGHsisl caWGPbGaeqySde2aaWbaaSqabeaacaaIZaaaaaGcbaGaaG4maiabew 7aLbaaaiaawIcacaGLPaaacqGHflY1caaIYaWaaOaaaeaacqaH1oqz cqaHXoqyaSqabaGcdaWdXbqabSqaaiabgkHiTiabg6HiLcqaaiabg6 HiLcqdcqGHRiI8aOGaamizaiaadQhacqGHflY1caWGLbWaaWbaaSqa beaacaWGPbGaamOEamaaCaaabeqaaiaaikdaaaaaaOGaaGOlaaaa@5516@

 Получившийся интеграл вычислен в приложении 1; его значение равно π/2 (1+i) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaGcaaqaaiabec8aWjaai+cacaaIYa aaleqaaOGaaGikaiaaigdacqGHRaWkcaWGPbGaaGykaaaa@3908@ . Возвращаясь к исходным обозначения, для искомого σ(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHdpWCcaaIOaGaamiEaiaaiYcaca WG0bGaaGykaaaa@3795@  будем иметь:

σx,t1i22πε0tdτtτexpitτxεexpitτ33ε2εtτ×π2+i0tdτexpitτεx+tτ23

Полученный результат позволяет определить тот самый дополнительный регуляризирующий оператор σ ^ (x,t,ε)() MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaHdpWCgaqcaiaaiIcacaWG4bGaaG ilaiaadshacaaISaGaeqyTduMaaGykaiaaiIcacqGHflY1caaIPaaa aa@3DB1@ , основная задача которого MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  вложить правую часть уравнения задачи (1) в образ предельного оператора, в следующем виде:

σ ^ ()= 0 t dτ()exp iφ(x,tτ) ε , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaHdpWCgaqcaiaaiIcacqGHflY1ca aIPaGaaGypamaapehabeWcbaGaaGimaaqaaiaadshaa0Gaey4kIipa kiaadsgacqaHepaDcaaIOaGaeyyXICTaaGykaiGacwgacaGG4bGaai iCamaabmaabaGaeyOeI0YaaSaaaeaacaWGPbGaeqOXdOMaaGikaiaa dIhacaaISaGaamiDaiabgkHiTiabes8a0jaaiMcaaeaacqaH1oqzaa aacaGLOaGaayzkaaGaaGilaaaa@53BA@

 где функция φ(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaamiEaiaaiYcaca WG0bGaaGykaaaa@378F@  определена в (5). При этом действие этого оператора на функцию f(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaadshacaaIPaaaaa@350A@  запишется как свертка:

σ ^ (f(t))= 0 t dτf(τ)exp i (tτ) ε x+ (tτ) 3 3 f(t)*exp it ε x+ t 2 3 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaHdpWCgaqcaiaaiIcacaWGMbGaaG ikaiaadshacaaIPaGaaGykaiaai2dadaWdXbqabSqaaiaaicdaaeaa caWG0baaniabgUIiYdGccaWGKbGaeqiXdqNaeyyXICTaamOzaiaaiI cacqaHepaDcaaIPaGaeyyXICTaciyzaiaacIhacaGGWbWaaeWaaeaa cqGHsislcaWGPbWaaSaaaeaacaaIOaGaamiDaiabgkHiTiabes8a0j aaiMcaaeaacqaH1oqzaaWaaeWaaeaacaWG4bGaey4kaSYaaSaaaeaa caaIOaGaamiDaiabgkHiTiabes8a0jaaiMcadaahaaWcbeqaaiaaio daaaaakeaacaaIZaaaaaGaayjkaiaawMcaaaGaayjkaiaawMcaaiab ggMi6kaadAgacaaIOaGaamiDaiaaiMcacaaIQaGaciyzaiaacIhaca GGWbWaaeWaaeaacqGHsisldaWcaaqaaiaadMgacaWG0baabaGaeqyT dugaaiabgwSixpaabmaabaGaamiEaiabgUcaRmaalaaabaGaamiDam aaCaaaleqabaGaaGOmaaaaaOqaaiaaiodaaaaacaGLOaGaayzkaaaa caGLOaGaayzkaaGaaGOlaaaa@779E@

 Основным свойством, которое устанавливается непосредственной подстановкой, является следующее:

L ε σ ^ (f(t))=iεf(t),где L ε iε t + ε 2 2 x 2 x. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaaSbaaSqaaiabew7aLbqaba GccuaHdpWCgaqcaiaaiIcacaWGMbGaaGikaiaadshacaaIPaGaaGyk aiaai2dacaWGPbGaeqyTduMaamOzaiaaiIcacaWG0bGaaGykaiaaiY cacaaMf8Uaae4meiaabsdbcaqG1qGaaGzbVlaadYeadaWgaaWcbaGa eqyTdugabeaakiabggMi6kaadMgacqaH1oqzdaWcaaqaaiabgkGi2c qaaiabgkGi2kaadshaaaGaey4kaSIaeqyTdu2aaWbaaSqabeaacaaI YaaaaOWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaaakeaacq GHciITcaWG4bWaaWbaaSqabeaacaaIYaaaaaaakiabgkHiTiaadIha caaIUaaaaa@5E56@                                                                                         (7)

 Очевидно также, что это свойство является прямым следствием того, из каких соображений была найдена функция σ(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHdpWCcaaIOaGaamiEaiaaiYcaca WG0bGaaGykaaaa@3795@ , порождающая дополнительный регуляризирующий оператор σ ^ () MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaHdpWCgaqcaiaaiIcacqGHflY1ca aIPaaaaa@3743@ , т.е. того факта, что L ε σ(x,t)=iε MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaaSbaaSqaaiabew7aLbqaba GccqaHdpWCcaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaai2dacaWG PbGaeqyTdugaaa@3D9F@ .

Осталось выделить сингулярную зависимость от ε MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzaaa@3368@ , описывающую пограничный слой при x=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGypaiaaicdaaaa@343F@ . В основе построения соответствующего сингулярного оператора лежит решение исходной задачи для однородного уравнения с однородным начальным условием, где в качестве граничного условия выбрана функция «единичного скачка» (функция Хевисайда) θ(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH4oqCcaaIOaGaamiDaiaaiMcaaa a@35D5@ . Указанное решение χ(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHhpWycaaIOaGaamiEaiaaiYcaca WG0bGaaGykaaaa@3789@  может быть получено с помощью преобразования Лапласа или интегрального преобразования Фурье (последняя возможность реализована в приложение 2) и имеет вид:

   χ(x,t)= 1i 2 2πε 0 t dτ tτ + x (tτ) 3/2 exp i (tτ) 3 3ε + i(tτ) 4ε tτ x tτ 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHhpWycaaIOaGaamiEaiaaiYcaca WG0bGaaGykaiaai2dadaWcaaqaaiaaigdacqGHsislcaWGPbaabaGa aGOmamaakaaabaGaaGOmaiabec8aWjabew7aLbWcbeaaaaGcdaWdXb qabSqaaiaaicdaaeaacaWG0baaniabgUIiYdGccaWGKbGaeqiXdq3a aeWaaeaadaGcaaqaaiaadshacqGHsislcqaHepaDaSqabaGccqGHRa WkdaWcaaqaaiaadIhaaeaacaaIOaGaamiDaiabgkHiTiabes8a0jaa iMcadaahaaWcbeqaaiaaiodacaaIVaGaaGOmaaaaaaaakiaawIcaca GLPaaacqGHflY1ciGGLbGaaiiEaiaacchadaqadaqaaiabgkHiTmaa laaabaGaamyAaiaaiIcacaWG0bGaeyOeI0IaeqiXdqNaaGykamaaCa aaleqabaGaaG4maaaaaOqaaiaaiodacqaH1oqzaaGaey4kaSYaaSaa aeaacaWGPbGaaGikaiaadshacqGHsislcqaHepaDcaaIPaaabaGaaG inaiabew7aLbaadaqadaqaaiaadshacqGHsislcqaHepaDcqGHsisl daWcaaqaaiaadIhaaeaacaWG0bGaeyOeI0IaeqiXdqhaaaGaayjkai aawMcaamaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaaiaai6ca aaa@7C67@                                           (8)

 Последнее соотношение позволяет ввести по аналогии с оператором σ ^ (x,t,ε)() MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaHdpWCgaqcaiaaiIcacaWG4bGaaG ilaiaadshacaaISaGaeqyTduMaaGykaiaaiIcacqGHflY1caaIPaaa aa@3DB1@  регуляризирующий оператор χ ^ (x,t,ε)() MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaHhpWygaqcaiaaiIcacaWG4bGaaG ilaiaadshacaaISaGaeqyTduMaaGykaiaaiIcacqGHflY1caaIPaaa aa@3DA5@  в следующем виде:

   χ ^ ()= 1i 2 2πε 0 t dτ() tτ + x (tτ) 3/2 exp i (tτ) 3 3ε + i(tτ) 4ε tτ x tτ 2 ; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaHhpWygaqcaiaaiIcacqGHflY1ca aIPaGaaGypamaalaaabaGaaGymaiabgkHiTiaadMgaaeaacaaIYaWa aOaaaeaacaaIYaGaeqiWdaNaeqyTdugaleqaaaaakmaapehabeWcba GaaGimaaqaaiaadshaa0Gaey4kIipakiaadsgacqaHepaDcaaIOaGa eyyXICTaaGykamaabmaabaWaaOaaaeaacaWG0bGaeyOeI0IaeqiXdq haleqaaOGaey4kaSYaaSaaaeaacaWG4baabaGaaGikaiaadshacqGH sislcqaHepaDcaaIPaWaaWbaaSqabeaacaaIZaGaaG4laiaaikdaaa aaaaGccaGLOaGaayzkaaGaeyyXICTaciyzaiaacIhacaGGWbWaaeWa aeaacqGHsisldaWcaaqaaiaadMgacaaIOaGaamiDaiabgkHiTiabes 8a0jaaiMcadaahaaWcbeqaaiaaiodaaaaakeaacaaIZaGaeqyTduga aiabgUcaRmaalaaabaGaamyAaiaaiIcacaWG0bGaeyOeI0IaeqiXdq NaaGykaaqaaiaaisdacqaH1oqzaaWaaeWaaeaacaWG0bGaeyOeI0Ia eqiXdqNaeyOeI0YaaSaaaeaacaWG4baabaGaamiDaiabgkHiTiabes 8a0baaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaakiaawIca caGLPaaacaaI7aaaaa@7FD1@

 тогда его действие на функцию f(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaadshacaaIPaaaaa@350A@  запишется как свертка:

χ^ft1i22πε0tdτfτtτ+xtτ×expitτ33ε+itτ4εtτxtτ2

f(t)* 1i 2 2πε t + x t 3/2 exp i t 3 3ε + it 4ε t x t 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHHjIUcaWGMbGaaGikaiaadshaca aIPaGaaGOkamaabmaabaWaaSaaaeaacaaIXaGaeyOeI0IaamyAaaqa aiaaikdadaGcaaqaaiaaikdacqaHapaCcqaH1oqzaSqabaaaaOWaae WaaeaadaGcaaqaaiaadshaaSqabaGccqGHRaWkdaWcaaqaaiaadIha aeaacaWG0bWaaWbaaSqabeaacaaIZaGaaG4laiaaikdaaaaaaaGcca GLOaGaayzkaaGaeyyXICTaciyzaiaacIhacaGGWbWaaeWaaeaacqGH sisldaWcaaqaaiaadMgacaWG0bWaaWbaaSqabeaacaaIZaaaaaGcba GaaG4maiabew7aLbaacqGHRaWkdaWcaaqaaiaadMgacaWG0baabaGa aGinaiabew7aLbaadaqadaqaaiaadshacqGHsisldaWcaaqaaiaadI haaeaacaWG0baaaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaa aOGaayjkaiaawMcaaaGaayjkaiaawMcaaiaai6caaaa@61F7@

 Последний результат приведём к более простому виду, сделав замену

  z= x 2 ε(tτ) ,τ=t x 2 4ε z 2 ,dτ= x 2 2ε z 3 dz. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGypamaalaaabaGaamiEaa qaaiaaikdadaGcaaqaaiabew7aLjaaiIcacaWG0bGaeyOeI0IaeqiX dqNaaGykaaWcbeaaaaGccaaISaGaaGzbVlabes8a0jaai2dacaWG0b GaeyOeI0YaaSaaaeaacaWG4bWaaWbaaSqabeaacaaIYaaaaaGcbaGa aGinaiabew7aLjaadQhadaahaaWcbeqaaiaaikdaaaaaaOGaaGilai aaywW7caWGKbGaeqiXdqNaaGypamaalaaabaGaamiEamaaCaaaleqa baGaaGOmaaaaaOqaaiaaikdacqaH1oqzcaWG6bWaaWbaaSqabeaaca aIZaaaaaaakiaadsgacaWG6bGaaGOlaaaa@57E8@

 Получим

χ^ft1i22πεxεtdzx22εz3ftx24εz2x2εz+8εz3x2×expix6192ε4z6+ix216ε2z2x24εz24εz2x2                                      

=(1i) 2 π x/(2 εt ) dzf t x 2 4ε z 2 1+ x 3 16 ε 2 z 4 exp(). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaaGikaiaaigdacqGHsislca WGPbGaaGykamaakaaabaWaaSaaaeaacaaIYaaabaGaeqiWdahaaaWc beaakmaapehabeWcbaGaamiEaiaai+cacaaIOaGaaGOmamaakaaaba GaeqyTduMaamiDaaqabaGaaGykaaqaaiabg6HiLcqdcqGHRiI8aOGa amizaiaadQhacqGHflY1caWGMbWaaeWaaeaacaWG0bGaeyOeI0YaaS aaaeaacaWG4bWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGinaiabew7a LjaadQhadaahaaWcbeqaaiaaikdaaaaaaaGccaGLOaGaayzkaaWaae WaaeaacaaIXaGaey4kaSYaaSaaaeaacaWG4bWaaWbaaSqabeaacaaI ZaaaaaGcbaGaaGymaiaaiAdacqaH1oqzdaahaaWcbeqaaiaaikdaaa GccaWG6bWaaWbaaSqabeaacaaI0aaaaaaaaOGaayjkaiaawMcaaiab gwSixlGacwgacaGG4bGaaiiCaiaaiIcacqWIMaYscaaIPaGaaGOlaa aa@6614@

 В последнем соотношении показатель экспоненты обозначен многоточием, преобразуем его отдельно с помощью несложных операций:

i x 6 192 ε 4 z 6 + i x 2 16 ε 2 z 2 x 4 16 ε 2 z 4 2x+ 16 ε 2 z 4 x 2 = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaWcaaqaaiaadMgacaWG4b WaaWbaaSqabeaacaaI2aaaaaGcbaGaaGymaiaaiMdacaaIYaGaeqyT du2aaWbaaSqabeaacaaI0aaaaOGaamOEamaaCaaaleqabaGaaGOnaa aaaaGccqGHRaWkdaWcaaqaaiaadMgacaWG4bWaaWbaaSqabeaacaaI YaaaaaGcbaGaaGymaiaaiAdacqaH1oqzdaahaaWcbeqaaiaaikdaaa GccaWG6bWaaWbaaSqabeaacaaIYaaaaaaakmaabmaabaWaaSaaaeaa caWG4bWaaWbaaSqabeaacaaI0aaaaaGcbaGaaGymaiaaiAdacqaH1o qzdaahaaWcbeqaaiaaikdaaaGccaWG6bWaaWbaaSqabeaacaaI0aaa aaaakiabgkHiTiaaikdacaWG4bGaey4kaSYaaSaaaeaacaaIXaGaaG Onaiabew7aLnaaCaaaleqabaGaaGOmaaaakiaadQhadaahaaWcbeqa aiaaisdaaaaakeaacaWG4bWaaWbaaSqabeaacaaIYaaaaaaaaOGaay jkaiaawMcaaiaai2daaaa@5C2F@

= i x 6 192 ε 4 z 6 + i x 6 256 ε 4 z 6 i x 3 8 ε 2 z 2 +i z 2 = i x 6 768 ε 4 z 6 i x 3 8 ε 2 z 2 +i z 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaeyOeI0YaaSaaaeaacaWGPb GaamiEamaaCaaaleqabaGaaGOnaaaaaOqaaiaaigdacaaI5aGaaGOm aiabew7aLnaaCaaaleqabaGaaGinaaaakiaadQhadaahaaWcbeqaai aaiAdaaaaaaOGaey4kaSYaaSaaaeaacaWGPbGaamiEamaaCaaaleqa baGaaGOnaaaaaOqaaiaaikdacaaI1aGaaGOnaiabew7aLnaaCaaale qabaGaaGinaaaakiaadQhadaahaaWcbeqaaiaaiAdaaaaaaOGaeyOe I0YaaSaaaeaacaWGPbGaamiEamaaCaaaleqabaGaaG4maaaaaOqaai aaiIdacqaH1oqzdaahaaWcbeqaaiaaikdaaaGccaWG6bWaaWbaaSqa beaacaaIYaaaaaaakiabgUcaRiaadMgacaWG6bWaaWbaaSqabeaaca aIYaaaaOGaaGypaiabgkHiTmaalaaabaGaamyAaiaadIhadaahaaWc beqaaiaaiAdaaaaakeaacaaI3aGaaGOnaiaaiIdacqaH1oqzdaahaa WcbeqaaiaaisdaaaGccaWG6bWaaWbaaSqabeaacaaI2aaaaaaakiab gkHiTmaalaaabaGaamyAaiaadIhadaahaaWcbeqaaiaaiodaaaaake aacaaI4aGaeqyTdu2aaWbaaSqabeaacaaIYaaaaOGaamOEamaaCaaa leqabaGaaGOmaaaaaaGccqGHRaWkcaWGPbGaamOEamaaCaaaleqaba GaaGOmaaaakiaai6caaaa@6DDF@

 Таким образом, окончательно получим:

χ ^ (f(t))= 1i 2 π x/(2 εt ) dzf t x 2 4ε z 2 1+ x 3 16 ε 2 z 4 exp i x 6 768 ε 4 z 6 i x 3 8 ε 2 z 2 +i z 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaHhpWygaqcaiaaiIcacaWGMbGaaG ikaiaadshacaaIPaGaaGykaiaai2dadaqadaqaaiaaigdacqGHsisl caWGPbaacaGLOaGaayzkaaWaaOaaaeaadaWcaaqaaiaaikdaaeaacq aHapaCaaaaleqaaOWaa8qCaeqaleaacaWG4bGaaG4laiaaiIcacaaI YaWaaOaaaeaacqaH1oqzcaWG0baabeaacaaIPaaabaGaeyOhIukani abgUIiYdGccaWGKbGaamOEaiabgwSixlaadAgadaqadaqaaiaadsha cqGHsisldaWcaaqaaiaadIhadaahaaWcbeqaaiaaikdaaaaakeaaca aI0aGaeqyTduMaamOEamaaCaaaleqabaGaaGOmaaaaaaaakiaawIca caGLPaaacqGHflY1daqadaqaaiaaigdacqGHRaWkdaWcaaqaaiaadI hadaahaaWcbeqaaiaaiodaaaaakeaacaaIXaGaaGOnaiabew7aLnaa CaaaleqabaGaaGOmaaaakiaadQhadaahaaWcbeqaaiaaisdaaaaaaa GccaGLOaGaayzkaaGaeyyXICTaciyzaiaacIhacaGGWbWaaeWaaeaa cqGHsisldaWcaaqaaiaadMgacaWG4bWaaWbaaSqabeaacaaI2aaaaa GcbaGaaG4naiaaiAdacaaI4aGaeqyTdu2aaWbaaSqabeaacaaI0aaa aOGaamOEamaaCaaaleqabaGaaGOnaaaaaaGccqGHsisldaWcaaqaai aadMgacaWG4bWaaWbaaSqabeaacaaIZaaaaaGcbaGaaGioaiabew7a LnaaCaaaleqabaGaaGOmaaaakiaadQhadaahaaWcbeqaaiaaikdaaa aaaOGaey4kaSIaamyAaiaadQhadaahaaWcbeqaaiaaikdaaaaakiaa wIcacaGLPaaacaaIUaaaaa@8599@                           (9)

 В таком виде нетрудно явным вычислением установить основные свойства введенного дополнительного сингулярного оператора:

L ε χ ^ (f(t))=0, χ ^ (f(t ))| x=0 =f(t). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaaSbaaSqaaiabew7aLbqaba GccuaHhpWygaqcaiaaiIcacaWGMbGaaGikaiaadshacaaIPaGaaGyk aiaai2dacaaIWaGaaGilaiaaywW7cuaHhpWygaqcaiaaiIcacaWGMb GaaGikaiaadshacaaIPaGaaGykaiaaiYhadaWgaaWcbaGaamiEaiaa i2dacaaIWaaabeaakiaai2dacaWGMbGaaGikaiaadshacaaIPaGaaG Olaaaa@4DA0@ (10)

 Эти свойства становятся очевидными, если принять во внимание, из каких соображений был построен оператор χ ^ (x,t,ε)() MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaHhpWygaqcaiaaiIcacaWG4bGaaG ilaiaadshacaaISaGaeqyTduMaaGykaiaaiIcacqGHflY1caaIPaaa aa@3DA5@ .

3.2. Построение регуляризованного асимптотического ряда.

Построенные в предыдущем разделе регуляризирующая функция e iφ/ε MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGLbWaaWbaaSqabeaacqGHsislca WGPbGaeqOXdOMaaG4laiabew7aLbaaaaa@38D0@  и дополнительные регуляризирующие операторы σ ^ (x,t,ε)() MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaHdpWCgaqcaiaaiIcacaWG4bGaaG ilaiaadshacaaISaGaeqyTduMaaGykaiaaiIcacqGHflY1caaIPaaa aa@3DB1@ , χ ^ (x,t,ε)() MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaHhpWygaqcaiaaiIcacaWG4bGaaG ilaiaadshacaaISaGaeqyTduMaaGykaiaaiIcacqGHflY1caaIPaaa aa@3DA5@  позволяют рассчитывать, что оставшуюся часть решения исходной задачи (1) можно искать в виде cтепенных рядов по ε MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzaaa@3368@ :

u(x,t,ε)= e iφ(x,t)/ε k=0 υ k (x,t) ε k + k=1 [ σ ^ ( z k (t))+ χ ^ ( y k (t))] ε k + k=0 ω k (x,t) ε k ; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiYcacqaH1oqzcaaIPaGaaGypaiaadwgadaahaaWcbeqaaiab gkHiTiaadMgacqaHgpGAcaaIOaGaamiEaiaaiYcacaWG0bGaaGykai aai+cacqaH1oqzaaGcdaaeWbqabSqaaiaadUgacaaI9aGaaGimaaqa aiabg6HiLcqdcqGHris5aOGaeqyXdu3aaSbaaSqaaiaadUgaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcacqGHflY1cqaH1oqzdaah aaWcbeqaaiaadUgaaaGccqGHRaWkdaaeWbqabSqaaiaadUgacaaI9a GaeyOeI0IaaGymaaqaaiabg6HiLcqdcqGHris5aOGaaG4waiqbeo8a ZzaajaGaaGikaiaadQhadaWgaaWcbaGaam4AaaqabaGccaaIOaGaam iDaiaaiMcacaaIPaGaey4kaSIafq4XdmMbaKaacaaIOaGaamyEamaa BaaaleaacaWGRbaabeaakiaaiIcacaWG0bGaaGykaiaaiMcacaaIDb GaeyyXICTaeqyTdu2aaWbaaSqabeaacaWGRbaaaOGaey4kaSYaaabC aeqaleaacaWGRbGaaGypaiaaicdaaeaacqGHEisPa0GaeyyeIuoaki abeM8a3naaBaaaleaacaWGRbaabeaakiaaiIcacaWG4bGaaGilaiaa dshacaaIPaGaeyyXICTaeqyTdu2aaWbaaSqabeaacaWGRbaaaOGaaG 4oaaaa@8A7F@                                                                 (11)

 здесь начало суммирования с k=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaaGypaiabgkHiTiaaigdaaa a@3520@  во втором ряде обусловлено свойством (7) и необходимостью регуляризации правой части h(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36BF@  задачи (1) на нулевом шаге по ε MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzaaa@3368@ .

Учитывая соотношения (2) и свойства построенных операторов (7), (10), подставим (11) в задачу (1). При этом получим:         

 eiφεikυ˙kεk+1+kυ''kεk+22itkυ'kεk+1+ikzk1εk+ikω˙kεk+1+kω''kεk+2xkωkεkhx,tkυkxεk+kωkxεkfxeit3εkυktεk+k10tdτzkτeitτ3εεk+k1yktεk+kωktεkψt(12)

здесь υ k = υ k (x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHfpqDdaWgaaWcbaGaam4Aaaqaba GccaaI9aGaeqyXdu3aaSbaaSqaaiaadUgaaeqaaOGaaGikaiaadIha caaISaGaamiDaiaaiMcaaaa@3C73@ , ω k = ω k (x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDdaWgaaWcbaGaam4Aaaqaba GccaaI9aGaeqyYdC3aaSbaaSqaaiaadUgaaeqaaOGaaGikaiaadIha caaISaGaamiDaiaaiMcaaaa@3C7F@ , а z k = z k (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaadUgaaeqaaO GaaGypaiaadQhadaWgaaWcbaGaam4AaaqabaGccaaIOaGaamiDaiaa iMcaaaa@3930@ , y k = y k (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5bWaaSbaaSqaaiaadUgaaeqaaO GaaGypaiaadMhadaWgaaWcbaGaam4AaaqabaGccaaIOaGaamiDaiaa iMcaaaa@392E@ , точкой обозначена частная производная по времени, штрихом MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  частная производная по координате.

Выделив в (12) группы слагаемых при регуляризирующей функции и без нее, приходим к серии итерационных задач:                

 izk1t+iω˙k1x,t+ω''k2x,txωkx,tδ0khx,tiυ˙kx,t+υ''k1x,t2itυ'kx,tυkx+ωkxδ0kfxeit3ευk1t+0tdτzk1τeitτ3ε++yk1t+ωk1tδ1kψtk0,¯.                                                              (13)

Отметим, что при отрицательных индексах у функций υ k (x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHfpqDdaWgaaWcbaGaam4Aaaqaba GccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaaaa@38BF@  и ω k (x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDdaWgaaWcbaGaam4Aaaqaba GccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaaaa@38C5@  их необходимо считать равными нулю (этих слагаемых просто нет в ряде (11)).

Для начала рассмотрим итерационную задачу на нулевом шаге (т.е. при k=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaaGypaiaaicdaaaa@3432@  в (13)):

i z 1 (t)x ω 0 (x,t)=h(x,t), i υ ˙ 0 (x,t)2it υ 0 (x,t)=0, υ 0 (x,0)+ ω 0 (x,0)=f(x), 0 t dτ z 1 (τ) e i (tτ) 3 /(3ε) + y 1 (t)=0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaGabaqaauaabaqaeiaaaaqaaiaadM gacaWG6bWaaSbaaSqaaiabgkHiTiaaigdaaeqaaOGaaGikaiaadsha caaIPaGaeyOeI0IaamiEaiabgwSixlabeM8a3naaBaaaleaacaaIWa aabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGypaiaadIga caaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaaiYcaaeaaaeaacaWGPb GafqyXduNbaiaadaWgaaWcbaGaaGimaaqabaGccaaIOaGaamiEaiaa iYcacaWG0bGaaGykaiabgkHiTiaaikdacaWGPbGaamiDaiqbew8a1z aafaWaaSbaaSqaaiaaicdaaeqaaOGaaGikaiaadIhacaaISaGaamiD aiaaiMcacaaI9aGaaGimaiaaiYcaaeaaaeaacqaHfpqDdaWgaaWcba GaaGimaaqabaGccaaIOaGaamiEaiaaiYcacaaIWaGaaGykaiabgUca RiabeM8a3naaBaaaleaacaaIWaaabeaakiaaiIcacaWG4bGaaGilai aaicdacaaIPaGaaGypaiaadAgacaaIOaGaamiEaiaaiMcacaaISaaa baaabaWaa8qCaeqaleaacaaIWaaabaGaamiDaaqdcqGHRiI8aOGaam izaiabes8a0jabgwSixlaadQhadaWgaaWcbaGaeyOeI0IaaGymaaqa baGccaaIOaGaeqiXdqNaaGykaiabgwSixlaadwgadaahaaWcbeqaai abgkHiTiaadMgacaaIOaGaamiDaiabgkHiTiabes8a0jaaiMcadaah aaqabeaacaaIZaaaaiaai+cacaaIOaGaaG4maiabew7aLjaaiMcaaa GccqGHRaWkcaWG5bWaaSbaaSqaaiabgkHiTiaaigdaaeqaaOGaaGik aiaadshacaaIPaGaaGypaiaaicdacaaIUaaabaaaaaGaay5Eaaaaaa@98E6@                                            (14)

 Для разрешимости первого уравнения из системы (14) достаточно положить

z 1 (t)ih(0,t). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiabgkHiTiaaig daaeqaaOGaaGikaiaadshacaaIPaGaeyyyIORaeyOeI0IaamyAaiaa dIgacaaIOaGaaGimaiaaiYcacaWG0bGaaGykaiaai6caaaa@4013@  (15)

 Тогда для ω 0 (x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDdaWgaaWcbaGaaGimaaqaba GccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaaaa@388F@  получим гладкое решение

ω 0 (x,t)= h(x,t)h(0,t) x , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDdaWgaaWcbaGaaGimaaqaba GccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaai2dadaWcaaqaaiaa dIgacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiabgkHiTiaadIgaca aIOaGaaGimaiaaiYcacaWG0bGaaGykaaqaaiabgkHiTiaadIhaaaGa aGilaaaa@46AC@                                                                                                                                               (16)

 что в свою очередь приводит к задаче Коши для определения функции υ 0 (x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHfpqDdaWgaaWcbaGaaGimaaqaba GccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaaaa@3889@ :

υ 0 t 2t υ 0 x =0, υ 0 (x,0)= h(x,0)h(0,0) x +f(x). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2kabew8a1naaBa aaleaacaaIWaaabeaaaOqaaiabgkGi2kaadshaaaGaeyOeI0IaaGOm aiaadshacqGHflY1daWcaaqaaiabgkGi2kabew8a1naaBaaaleaaca aIWaaabeaaaOqaaiabgkGi2kaadIhaaaGaaGypaiaaicdacaaISaGa aGzbVlabew8a1naaBaaaleaacaaIWaaabeaakiaaiIcacaWG4bGaaG ilaiaaicdacaaIPaGaaGypamaalaaabaGaamiAaiaaiIcacaWG4bGa aGilaiaaicdacaaIPaGaeyOeI0IaamiAaiaaiIcacaaIWaGaaGilai aaicdacaaIPaaabaGaamiEaaaacqGHRaWkcaWGMbGaaGikaiaadIha caaIPaGaaGOlaaaa@5EFA@

 Последняя задача легко решается обычными методами интегрирования линейных дифференциальных уравнений в частных производных первого порядка:

υ 0 (x,t)=f(x+ t 2 )+ h(x+ t 2 ,0)h(0,0) x+ t 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHfpqDdaWgaaWcbaGaaGimaaqaba GccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaai2dacaWGMbGaaGik aiaadIhacqGHRaWkcaWG0bWaaWbaaSqabeaacaaIYaaaaOGaaGykai abgUcaRmaalaaabaGaamiAaiaaiIcacaWG4bGaey4kaSIaamiDamaa CaaaleqabaGaaGOmaaaakiaaiYcacaaIWaGaaGykaiabgkHiTiaadI gacaaIOaGaaGimaiaaiYcacaaIWaGaaGykaaqaaiaadIhacqGHRaWk caWG0bWaaWbaaSqabeaacaaIYaaaaaaakiaai6caaaa@51D6@                                                                                                                                (17)

 Выражение для z 1 (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiabgkHiTiaaig daaeqaaOGaaGikaiaadshacaaIPaaaaa@36FC@  в (15) и граничное условие в системе (14) позволяют выписать соотношение для y 1 (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5bWaaSbaaSqaaiabgkHiTiaaig daaeqaaOGaaGikaiaadshacaaIPaaaaa@36FB@ :

y 1 (t)=i 0 t dτexp i (tτ) 3 3ε h(0,τ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5bWaaSbaaSqaaiabgkHiTiaaig daaeqaaOGaaGikaiaadshacaaIPaGaaGypaiaadMgadaWdXbqabSqa aiaaicdaaeaacaWG0baaniabgUIiYdGccaWGKbGaeqiXdqNaeyyXIC TaciyzaiaacIhacaGGWbWaaeWaaeaacqGHsisldaWcaaqaaiaadMga caaIOaGaamiDaiabgkHiTiabes8a0jaaiMcadaahaaWcbeqaaiaaio daaaaakeaacaaIZaGaeqyTdugaaaGaayjkaiaawMcaaiabgwSixlaa dIgacaaIOaGaaGimaiaaiYcacqaHepaDcaaIPaGaaGOlaaaa@590F@                                                                                                                           (18)

 Отметим, что функция z 0 (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaicdaaeqaaO GaaGikaiaadshacaaIPaaaaa@360E@  и y 0 (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5bWaaSbaaSqaaiaaicdaaeqaaO GaaGikaiaadshacaaIPaaaaa@360D@  на нулевом шаге не определяются, выражения для них будут получены на следующем итерационном шаге. Этот факт не позволяет нам пока выписать главный член асимптотики.

Переходим теперь к задаче с k=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaaGypaiaaigdaaaa@3433@  в (13):

 iz0t+iω˙0x,txω1x,tiυ˙1x,t+υ''0x,t2itυ'1x,tυ1x+ω1xeit3ευ0t+0tdτz0τexpitτ33ε+y0t+ω0tψt                                                                                    (19)

Подставляя ω 0 (x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDdaWgaaWcbaGaaGimaaqaba GccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaaaa@388F@  из (16) в первое уравнение этой системы, убеждаемся, что для его разрешимости нужно положить

z 0 (t)i h 1 (0,t),где h 1 (x,t)=i t h(x,t)h(0,t) x . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaicdaaeqaaO GaaGikaiaadshacaaIPaGaeyyyIORaeyOeI0IaamyAaiaadIgadaWg aaWcbaGaaGymaaqabaGccaaIOaGaaGimaiaaiYcacaWG0bGaaGykai aaiYcacaaMf8Uaae4meiaabsdbcaqG1qGaaGzbVlaadIgadaWgaaWc baGaaGymaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaai2 dacaWGPbWaaSaaaeaacqGHciITaeaacqGHciITcaWG0baaamaabmaa baWaaSaaaeaacaWGObGaaGikaiaadIhacaaISaGaamiDaiaaiMcacq GHsislcaWGObGaaGikaiaaicdacaaISaGaamiDaiaaiMcaaeaacaWG 4baaaaGaayjkaiaawMcaaiaai6caaaa@5ECE@                                                                                                         (20)

 Тогда аналогично предыдущему итерационному шагу для ω 1 (x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDdaWgaaWcbaGaaGymaaqaba GccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaaaa@3890@  получим гладкое решение

ω 1 (x,t)= h 1 (x,t) h 1 (0,t) x , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDdaWgaaWcbaGaaGymaaqaba GccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaai2dadaWcaaqaaiaa dIgadaWgaaWcbaGaaGymaaqabaGccaaIOaGaamiEaiaaiYcacaWG0b GaaGykaiabgkHiTiaadIgadaWgaaWcbaGaaGymaaqabaGccaaIOaGa aGimaiaaiYcacaWG0bGaaGykaaqaaiabgkHiTiaadIhaaaGaaGilaa aa@488F@

 а для υ 1 (x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHfpqDdaWgaaWcbaGaaGymaaqaba GccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaaaa@388A@  из (20) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  задачу Коши для квазилинейного неоднородного уравнения в частных производных первого порядка:

υ 1 t 2t υ 1 x = f 1 (x+ t 2 ), υ 1 (x,0)= h 1 (x,0) h 1 (0,0) x ; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2kabew8a1naaBa aaleaacaaIXaaabeaaaOqaaiabgkGi2kaadshaaaGaeyOeI0IaaGOm aiaadshacqGHflY1daWcaaqaaiabgkGi2kabew8a1naaBaaaleaaca aIXaaabeaaaOqaaiabgkGi2kaadIhaaaGaaGypaiaadAgadaWgaaWc baGaaGymaaqabaGccaaIOaGaamiEaiabgUcaRiaadshadaahaaWcbe qaaiaaikdaaaGccaaIPaGaaGilaiaaywW7cqaHfpqDdaWgaaWcbaGa aGymaaqabaGccaaIOaGaamiEaiaaiYcacaaIWaGaaGykaiaai2dada WcaaqaaiaadIgadaWgaaWcbaGaaGymaaqabaGccaaIOaGaamiEaiaa iYcacaaIWaGaaGykaiabgkHiTiaadIgadaWgaaWcbaGaaGymaaqaba GccaaIOaGaaGimaiaaiYcacaaIWaGaaGykaaqaaiaadIhaaaGaaG4o aaaa@630F@

 здесь введено обозначение

f 1 (x+ t 2 )i υ 0 (x,t)=i 2 x 2 f(x+ t 2 )+ h(x+ t 2 ,0)h(0,0) x+ t 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadIhacqGHRaWkcaWG0bWaaWbaaSqabeaacaaIYaaaaOGa aGykaiabggMi6kaadMgacqGHflY1cuaHfpqDgaqbgaqbamaaBaaale aacaaIWaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGyp aiaadMgadaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaaaOqaai abgkGi2kaadIhadaahaaWcbeqaaiaaikdaaaaaaOWaaeWaaeaacaWG MbGaaGikaiaadIhacqGHRaWkcaWG0bWaaWbaaSqabeaacaaIYaaaaO GaaGykaiabgUcaRmaalaaabaGaamiAaiaaiIcacaWG4bGaey4kaSIa amiDamaaCaaaleqabaGaaGOmaaaakiaaiYcacaaIWaGaaGykaiabgk HiTiaadIgacaaIOaGaaGimaiaaiYcacaaIWaGaaGykaaqaaiaadIha cqGHRaWkcaWG0bWaaWbaaSqabeaacaaIYaaaaaaaaOGaayjkaiaawM caaiaai6caaaa@6630@

 Выпишем здесь только окончательное решение последней задачи, опуская подробности:

υ 1 (x,t)=t f 1 (x+ t 2 )+ h 1 (x+ t 2 ,0) h 1 (0,0) x+ t 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHfpqDdaWgaaWcbaGaaGymaaqaba GccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaai2dacaWG0bGaeyyX ICTaamOzamaaBaaaleaacaaIXaaabeaakiaaiIcacaWG4bGaey4kaS IaamiDamaaCaaaleqabaGaaGOmaaaakiaaiMcacqGHRaWkdaWcaaqa aiaadIgadaWgaaWcbaGaaGymaaqabaGccaaIOaGaamiEaiabgUcaRi aadshadaahaaWcbeqaaiaaikdaaaGccaaISaGaaGimaiaaiMcacqGH sislcaWGObWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaaicdacaaISa GaaGimaiaaiMcaaeaacaWG4bGaey4kaSIaamiDamaaCaaaleqabaGa aGOmaaaaaaGccaaIUaaaaa@57ED@

 Осталось подставить ω 0 (x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDdaWgaaWcbaGaaGimaaqaba GccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaaaa@388F@  из (16), υ 0 (x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHfpqDdaWgaaWcbaGaaGimaaqaba GccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaaaa@3889@  из (17) и z 0 (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaicdaaeqaaO GaaGikaiaadshacaaIPaaaaa@360E@  из (20) в граничное условие системы (19), что приводит к возможности определить y 0 (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5bWaaSbaaSqaaiaaicdaaeqaaO GaaGikaiaadshacaaIPaaaaa@360D@ . Будем иметь

y0tψteit3εft2+ht2ht2+hx,thtxx+i0tdτexpitτ33εh1τ                                                         (21)

 Ещё раз необходимо обратить внимание на то, что полностью определить все слагаемые перед ε 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaahaaWcbeqaaiaaigdaaa aaaa@3450@  в ряде (11) удастся только на следующем итерационном шаге: осталось найти z 1 (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadshacaaIPaaaaa@360F@  и y 1 (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5bWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadshacaaIPaaaaa@360E@ . Последнее можно сделать, рассмотрев условия разрешимости первого уравнения и граничное условие в системе (13) при k=2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaaGypaiaaikdaaaa@3434@ . В результате будем иметь

z 1 (t)i h 2 (0,t), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadshacaaIPaGaeyyyIORaeyOeI0IaamyAaiaadIgadaWg aaWcbaGaaGOmaaqabaGccaaIOaGaaGimaiaaiYcacaWG0bGaaGykai aaiYcaaaa@4016@

где

h 2 (x,t)=i t h 1 (x,t) h 1 (0,t) x + 2 x 2 h(x,t)h(0,t) x , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaI9aGaamyAamaalaaa baGaeyOaIylabaGaeyOaIyRaamiDaaaadaqadaqaamaalaaabaGaam iAamaaBaaaleaacaaIXaaabeaakiaaiIcacaWG4bGaaGilaiaadsha caaIPaGaeyOeI0IaamiAamaaBaaaleaacaaIXaaabeaakiaaiIcaca aIWaGaaGilaiaadshacaaIPaaabaGaamiEaaaaaiaawIcacaGLPaaa cqGHRaWkdaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaaaOqaai abgkGi2kaadIhadaahaaWcbeqaaiaaikdaaaaaaOWaaeWaaeaadaWc aaqaaiaadIgacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiabgkHiTi aadIgacaaIOaGaaGimaiaaiYcacaWG0bGaaGykaaqaaiaadIhaaaaa caGLOaGaayzkaaGaaGilaaaa@60EC@

y1teit3εtf1t2+h1t2h1t2+h1x,th1txx+ i0tdτexpitτ33εh2τ

а функция h 1 (x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcaaaa@37B0@  определена в (20).

Продолжая по аналогии описанный процесс для k=2,3, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaaGypaiaaikdacaaISaGaaG 4maiaaiYcacqWIMaYsaaa@377F@  в (13), можно найти все члены ряда (11). В конце данного раздела, опираясь на (15), (16), (17), (18), (20) и (21), выпишем главный член асимптотики:

u гл. (x,t,ε)= 1 ε ( σ ^ z 1 (t) + χ ^ y 1 (t) )+ σ ^ ( z 0 (t))+ χ ^ ( y 0 (t))+ e iφ(x,t)/ε υ 0 (x,t)+ ω 0 (x,t)= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaabodbcaqG7q GaaeOlaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGilaiabew7a LjaaiMcacaaI9aWaaSaaaeaacaaIXaaabaGaeqyTdugaaiaaiIcacu aHdpWCgaqcamaabmaabaGaamOEamaaBaaaleaacqGHsislcaaIXaaa beaakiaaiIcacaWG0bGaaGykaaGaayjkaiaawMcaaiabgUcaRiqbeE 8aJzaajaWaaeWaaeaacaWG5bWaaSbaaSqaaiabgkHiTiaaigdaaeqa aOGaaGikaiaadshacaaIPaaacaGLOaGaayzkaaGaaGykaiabgUcaRi qbeo8aZzaajaGaaGikaiaadQhadaWgaaWcbaGaaGimaaqabaGccaaI OaGaamiDaiaaiMcacaaIPaGaey4kaSIafq4XdmMbaKaacaaIOaGaam yEamaaBaaaleaacaaIWaaabeaakiaaiIcacaWG0bGaaGykaiaaiMca cqGHRaWkcaWGLbWaaWbaaSqabeaacqGHsislcaWGPbGaeqOXdOMaaG ikaiaadIhacaaISaGaamiDaiaaiMcacaaIVaGaeqyTdugaaOGaeyyX ICTaeqyXdu3aaSbaaSqaaiaaicdaaeqaaOGaaGikaiaadIhacaaISa GaamiDaiaaiMcacqGHRaWkcqaHjpWDdaWgaaWcbaGaaGimaaqabaGc caaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaai2daaaa@8083@

1εi0tdτhτexpitτεx+tτ23+i2πxεtdz0tx2εz2dτ1+x316ε2z4×

 ×expix6768ε4z6ix38ε2z2+iz2itx2εz2τ33εhτ+0tdτh˙x,τh˙τxxexpitτεx+tτ23+

+(1i) 2 π x/(2 εt ) dz 1+ x 3 16 ε 2 z 4 exp i x 6 768 ε 4 z 6 i x 3 8 ε 2 z 2 +i z 2 × MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkcaaIOaGaaGymaiabgkHiTi aadMgacaaIPaWaaOaaaeaadaWcaaqaaiaaikdaaeaacqaHapaCaaaa leqaaOWaa8qCaeqaleaacaWG4bGaaG4laiaaiIcacaaIYaWaaOaaae aacqaH1oqzcaWG0baabeaacaaIPaaabaGaeyOhIukaniabgUIiYdGc caWGKbGaamOEamaabmaabaGaaGymaiabgUcaRmaalaaabaGaamiEam aaCaaaleqabaGaaG4maaaaaOqaaiaaigdacaaI2aGaeqyTdu2aaWba aSqabeaacaaIYaaaaOGaamOEamaaCaaaleqabaGaaGinaaaaaaaaki aawIcacaGLPaaacqGHflY1ciGGLbGaaiiEaiaacchadaqadaqaaiab gkHiTmaalaaabaGaamyAaiaadIhadaahaaWcbeqaaiaaiAdaaaaake aacaaI3aGaaGOnaiaaiIdacqaH1oqzdaahaaWcbeqaaiaaisdaaaGc caWG6bWaaWbaaSqabeaacaaI2aaaaaaakiabgkHiTmaalaaabaGaam yAaiaadIhadaahaaWcbeqaaiaaiodaaaaakeaacaaI4aGaeqyTdu2a aWbaaSqabeaacaaIYaaaaOGaamOEamaaCaaaleqabaGaaGOmaaaaaa GccqGHRaWkcaWGPbGaamOEamaaCaaaleqabaGaaGOmaaaaaOGaayjk aiaawMcaaiabgEna0caa@7135@

×ψtx24εz2expitx2εz233εftx24εz22+htx2εz22htx2εz22+hx,tx2εz2h0,tx2εz2xx

   0tx2εz2dτexpitx2εz2τ33εh˙x,τh˙τxx+expitx+t2εfx+t2+hx+t2hx+t2hx,thtx.

 Для практического использования можно учесть полученную в лемме 7 оценку (см. приложение 3). Тогда формула главного члена упрощается:

u гл. (x,t,ε)= i ε 0 t dτh(0,τ)exp i (tτ) 3 3ε [ierfc x 2 εt exp i(tτ)x ε ]+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaabodbcaqG7q GaaeOlaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGilaiabew7a LjaaiMcacaaI9aWaaSaaaeaacaWGPbaabaGaeqyTdugaamaapehabe WcbaGaaGimaaqaaiaadshaa0Gaey4kIipakiaadsgacqaHepaDcqGH flY1caWGObGaaGikaiaaicdacaaISaGaeqiXdqNaaGykaiabgwSixl GacwgacaGG4bGaaiiCamaabmaabaGaeyOeI0YaaSaaaeaacaWGPbGa aGikaiaadshacqGHsislcqaHepaDcaaIPaWaaWbaaSqabeaacaaIZa aaaaGcbaGaaG4maiabew7aLbaaaiaawIcacaGLPaaacaaIBbGaamyA aiaadwgacaWGYbGaamOzaiaadogadaqadaqaamaalaaabaGaamiEaa qaaiaaikdadaGcaaqaaiabew7aLjaadshaaSqabaaaaaGccaGLOaGa ayzkaaGaeyOeI0IaciyzaiaacIhacaGGWbWaaeWaaeaacqGHsislda WcaaqaaiaadMgacaaIOaGaamiDaiabgkHiTiabes8a0jaaiMcacaWG 4baabaGaeqyTdugaaaGaayjkaiaawMcaaiaai2facqGHRaWkaaa@7AF6@

+ 0 t dτ h ˙ (x,τ) h ˙ (0,τ) x | x=0 exp i (tτ) ε x+ (tτ) 2 3 + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWdXbqabSqaaiaaicdaae aacaWG0baaniabgUIiYdGccaWGKbGaeqiXdqNaeyyXIC9aaSaaaeaa ceWGObGbaiaacaaIOaGaamiEaiaaiYcacqaHepaDcaaIPaGaeyOeI0 IabmiAayaacaGaaGikaiaaicdacaaISaGaeqiXdqNaaGykaaqaaiaa dIhaaaGaaGiFamaaBaaaleaacaWG4bGaaGypaiaaicdaaeqaaOGaey yXICTaciyzaiaacIhacaGGWbWaaeWaaeaacqGHsislcaWGPbWaaSaa aeaacaaIOaGaamiDaiabgkHiTiabes8a0jaaiMcaaeaacqaH1oqzaa WaaeWaaeaacaWG4bGaey4kaSYaaSaaaeaacaaIOaGaamiDaiabgkHi Tiabes8a0jaaiMcadaahaaWcbeqaaiaaikdaaaaakeaacaaIZaaaaa GaayjkaiaawMcaaaGaayjkaiaawMcaaiabgUcaRaaa@6743@

+[ψ(t) e i t 3 /(3ε) f( t 2 )+ h( t 2 ,0)h(0,0) t 2 + h(x,t)h(0,t x | x=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkcaaIBbGaeqiYdKNaaGikai aadshacaaIPaGaeyOeI0IaamyzamaaCaaaleqabaGaeyOeI0IaamyA aiaadshadaahaaqabeaacaaIZaaaaiaai+cacaaIOaGaaG4maiabew 7aLjaaiMcaaaGccqGHflY1daqadaqaaiaadAgacaaIOaGaamiDamaa CaaaleqabaGaaGOmaaaakiaaiMcacqGHRaWkdaWcaaqaaiaadIgaca aIOaGaamiDamaaCaaaleqabaGaaGOmaaaakiaaiYcacaaIWaGaaGyk aiabgkHiTiaadIgacaaIOaGaaGimaiaaiYcacaaIWaGaaGykaaqaai aadshadaahaaWcbeqaaiaaikdaaaaaaaGccaGLOaGaayzkaaGaey4k aSYaaSaaaeaacaWGObGaaGikaiaadIhacaaISaGaamiDaiaaiMcacq GHsislcaWGObGaaGikaiaaicdacaaISaGaamiDaaqaaiaadIhaaaGa aGiFamaaBaaaleaacaWG4bGaaGypaiaaicdaaeqaaOGaeyOeI0caaa@6884@

0 t dτexp i tτ 3 3ε h ˙ (x,τ) h ˙ (0,τ) x | x=0 ]ierfc x 2 εt + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaWdXbqabSqaaiaaicdaae aacaWG0baaniabgUIiYdGccaWGKbGaeqiXdqNaeyyXICTaciyzaiaa cIhacaGGWbWaaeWaaeaacqGHsisldaWcaaqaaiabgkHiTiaadMgada qadaqaaiaadshacqGHsislcqaHepaDaiaawIcacaGLPaaadaahaaWc beqaaiaaiodaaaaakeaacaaIZaGaeqyTdugaaaGaayjkaiaawMcaai abgwSixpaalaaabaGabmiAayaacaGaaGikaiaadIhacaaISaGaeqiX dqNaaGykaiabgkHiTiqadIgagaGaaiaaiIcacaaIWaGaaGilaiabes 8a0jaaiMcaaeaacaWG4baaaiaaiYhadaWgaaWcbaGaamiEaiaai2da caaIWaaabeaakiaai2facqGHflY1caWGPbGaamyzaiaadkhacaWGMb Gaam4yamaabmaabaWaaSaaaeaacaWG4baabaGaaGOmamaakaaabaGa eqyTduMaamiDaaWcbeaaaaaakiaawIcacaGLPaaacqGHRaWkaaa@6DC2@

+exp it x+ t 2 /3 ε f(x+ t 2 )+ h(x+ t 2 ,0)h(0,0) x+ t 2 h(x,t)h(0,t) x +O ε x . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkciGGLbGaaiiEaiaacchada qadaqaaiabgkHiTmaalaaabaGaamyAaiaadshadaqadaqaaiaadIha cqGHRaWkcaWG0bWaaWbaaSqabeaacaaIYaaaaOGaaG4laiaaiodaai aawIcacaGLPaaaaeaacqaH1oqzaaaacaGLOaGaayzkaaGaeyyXIC9a aeWaaeaacaWGMbGaaGikaiaadIhacqGHRaWkcaWG0bWaaWbaaSqabe aacaaIYaaaaOGaaGykaiabgUcaRmaalaaabaGaamiAaiaaiIcacaWG 4bGaey4kaSIaamiDamaaCaaaleqabaGaaGOmaaaakiaaiYcacaaIWa GaaGykaiabgkHiTiaadIgacaaIOaGaaGimaiaaiYcacaaIWaGaaGyk aaqaaiaadIhacqGHRaWkcaWG0bWaaWbaaSqabeaacaaIYaaaaaaaaO GaayjkaiaawMcaaiabgkHiTmaalaaabaGaamiAaiaaiIcacaWG4bGa aGilaiaadshacaaIPaGaeyOeI0IaamiAaiaaiIcacaaIWaGaaGilai aadshacaaIPaaabaGaamiEaaaacqGHRaWkcaWGpbWaaeWaaeaadaWc aaqaamaakaaabaGaeqyTdugaleqaaaGcbaGaamiEaaaaaiaawIcaca GLPaaacaaIUaaaaa@716D@

 где введено обозначение

ierfc x 2 εt = 2 π x/(2 εt ) dz e i z 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaamyzaiaadkhacaWGMbGaam 4yamaabmaabaWaaSaaaeaacaWG4baabaGaaGOmamaakaaabaGaeqyT duMaamiDaaWcbeaaaaaakiaawIcacaGLPaaacaaI9aWaaSaaaeaaca aIYaaabaWaaOaaaeaacqaHapaCaSqabaaaaOWaa8qCaeqaleaacaWG 4bGaaG4laiaaiIcacaaIYaWaaOaaaeaacqaH1oqzcaWG0baabeaaca aIPaaabaGaeyOhIukaniabgUIiYdGccaWGKbGaamOEaiabgwSixlaa dwgadaahaaWcbeqaaiaadMgacaWG6bWaaWbaaeqabaGaaGOmaaaaaa GccaaIUaaaaa@5331@

4. Оценка остаточного члена.

Пусть члены ряда (11) определены в результате решения итерационных задач (13) для 0kn+1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaeyizImQaam4AaiabgsMiJk aad6gacqGHRaWkcaaIXaaaaa@3965@ . Запишем соотношение для остатка:

ux,t,εeiφx,tεknυkx,tεk+k1nσ^zkt+χ^yktεk+knωkx,tεk+εn+1Rnx,t,ε                                     (22)

 Подставим (22) в задачу (1). Учитывая решения итерационных задач и сокращая на ε n+1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaahaaWcbeqaaiaad6gacq GHRaWkcaaIXaaaaaaa@3625@ , для остаточного члена получим задачу:

iεRnt+ε22Rnx2xRnHx,t,εRnx,0,εRnt,ε                                                                                                        (23)

 где

H(x,t,ε)= e iφ(x,t)/ε υ n (x,t)ε+x ω n+1 (x,t)+ε ω n (x,t),x>0,0<tT. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGibGaaGikaiaadIhacaaISaGaam iDaiaaiYcacqaH1oqzcaaIPaGaaGypaiaadwgadaahaaWcbeqaaiab gkHiTiaadMgacqaHgpGAcaaIOaGaamiEaiaaiYcacaWG0bGaaGykai aai+cacqaH1oqzaaGccqGHflY1cuaHfpqDgaqbgaqbamaaBaaaleaa caWGUbaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaeyyXIC TaeqyTduMaey4kaSIaamiEaiabgwSixlabeM8a3naaBaaaleaacaWG UbGaey4kaSIaaGymaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaG ykaiabgUcaRiabew7aLjabgwSixlqbeM8a3zaafyaafaWaaSbaaSqa aiaad6gaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaISa GaaGzbVlaadIhacaaI+aGaaGimaiaaiYcacaaMf8UaaGimaiaaiYda caWG0bGaeyizImQaamivaiaai6caaaa@77C4@

Доопределим эту функцию тождественным нулём при x0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaeyizImQaaGimaaaa@352D@ . Тогда, используя фундаментальное решение (6), для R n (x,t,ε) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGsbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiYcacqaH1oqzcaaIPaaaaa@3A2F@  в (23) получим:

R n = 1i 2iε 2πε 0 t dτ tτ dξexp i(tτ) ε ξ+ (tτ) 2 3 +i (xξ (tτ) 2 ) 2 4ε(tτ) H(ξ,τ,ε). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGsbWaaSbaaSqaaiaad6gaaeqaaO GaaGypaiabgkHiTmaalaaabaGaaGymaiabgkHiTiaadMgaaeaacaaI YaGaamyAaiabew7aLnaakaaabaGaaGOmaiabec8aWjabew7aLbWcbe aaaaGcdaWdXbqabSqaaiaaicdaaeaacaWG0baaniabgUIiYdGcdaWc aaqaaiaadsgacqaHepaDaeaadaGcaaqaaiaadshacqGHsislcqaHep aDaSqabaaaaOWaa8qCaeqaleaacqGHsislcqGHEisPaeaacqGHEisP a0Gaey4kIipakiaadsgacqaH+oaEcqGHflY1ciGGLbGaaiiEaiaacc hadaqadaqaaiabgkHiTmaalaaabaGaamyAaiaaiIcacaWG0bGaeyOe I0IaeqiXdqNaaGykaaqaaiabew7aLbaadaqadaqaaiabe67a4jabgU caRmaalaaabaGaaGikaiaadshacqGHsislcqaHepaDcaaIPaWaaWba aSqabeaacaaIYaaaaaGcbaGaaG4maaaaaiaawIcacaGLPaaacqGHRa WkcaWGPbWaaSaaaeaacaaIOaGaamiEaiabgkHiTiabe67a4jabgkHi TiaaiIcacaWG0bGaeyOeI0IaeqiXdqNaaGykamaaCaaaleqabaGaaG OmaaaakiaaiMcadaahaaWcbeqaaiaaikdaaaaakeaacaaI0aGaeqyT duMaaGikaiaadshacqGHsislcqaHepaDcaaIPaaaaaGaayjkaiaawM caaiabgwSixlaadIeacaaIOaGaeqOVdGNaaGilaiabes8a0jaaiYca cqaH1oqzcaaIPaGaaGOlaaaa@8FBC@

 Выделив во внутреннем интеграле полный квадрат в показателе экспоненты, сделаем замену переменной интегрирования ξ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEaaa@3384@  на переменную

  y= ξx+(tτ) 2 ε(tτ) i (tτ) 3 ε . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5bGaaGypamaalaaabaGaeqOVdG NaeyOeI0IaamiEaiabgUcaRiaaiIcacaWG0bGaeyOeI0IaeqiXdqNa aGykaaqaaiaaikdadaGcaaqaaiabew7aLjaaiIcacaWG0bGaeyOeI0 IaeqiXdqNaaGykaaWcbeaaaaGccqGHsislcaWGPbWaaOaaaeaadaWc aaqaaiaaiIcacaWG0bGaeyOeI0IaeqiXdqNaaGykamaaCaaaleqaba GaaG4maaaaaOqaaiabew7aLbaaaSqabaGccaaIUaaaaa@4F40@

 Тогда последнее выражение для остаточного члена перепишется в виде:

R n = i+1 ε 2π 0 t dτexp i (tτ) ε (x(tτ)) dy e i y 2 H(y,τ,ε). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGsbWaaSbaaSqaaiaad6gaaeqaaO GaaGypamaalaaabaGaamyAaiabgUcaRiaaigdaaeaacqaH1oqzdaGc aaqaaiaaikdacqaHapaCaSqabaaaaOWaa8qCaeqaleaacaaIWaaaba GaamiDaaqdcqGHRiI8aOGaamizaiabes8a0jabgwSixlGacwgacaGG 4bGaaiiCamaabmaabaGaeyOeI0IaamyAamaalaaabaGaaGikaiaads hacqGHsislcqaHepaDcaaIPaaabaGaeqyTdugaaiaaiIcacaWG4bGa eyOeI0IaaGikaiaadshacqGHsislcqaHepaDcaaIPaGaaGykaaGaay jkaiaawMcaamaapehabeWcbaGaeyOeI0IaeyOhIukabaGaeyOhIuka niabgUIiYdGccaWGKbGaamyEaiabgwSixlaadwgadaahaaWcbeqaai aadMgacaWG5bWaaWbaaeqabaGaaGOmaaaaaaGccqGHflY1caWGibGa aGikaiaadMhacaaISaGaeqiXdqNaaGilaiabew7aLjaaiMcacaaIUa aaaa@7355@

 Теперь, учитывая условия (i) и (ii) в постановке задачи (1) и тот факт, что итерационные задачи решены вплоть до шага k=n+1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaaGypaiaad6gacqGHRaWkca aIXaaaaa@3608@ , легко построить оценку по модулю для остатка: | R n |= 1 ε π 0 t dτ dy|H(y,τ,ε)| TM ε π = C ε ,(x,t)(×[0,T]). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaMe8UaaGiFaiaadkfadaWgaaWcba GaamOBaaqabaGccaaI8bGaaGypamaalaaabaGaaGymaaqaaiabew7a LnaakaaabaGaeqiWdahaleqaaaaakmaapehabeWcbaGaaGimaaqaai aadshaa0Gaey4kIipakiaadsgacqaHepaDcqGHflY1daWdXbqabSqa aiabgkHiTiabg6HiLcqaaiabg6HiLcqdcqGHRiI8aOGaamizaiaadM hacqGHflY1caaI8bGaamisaiaaiIcacaWG5bGaaGilaiabes8a0jaa iYcacqaH1oqzcaaIPaGaaGiFaiabgsMiJoaalaaabaGaamivaiabgw Sixlaad2eaaeaacqaH1oqzcqGHflY1daGcaaqaaiabec8aWbWcbeaa aaGccaaI9aWaaSaaaeaacaWGdbaabaGaeqyTdugaaiaaiYcacaaMf8 UaaGikaiaadIhacaaISaGaamiDaiaaiMcacqGHiiIZcaaIOaWefv3y SLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFDeIucqGHxd aTcaaIBbGaaGimaiaaiYcacaWGubGaaGyxaiaaiMcacaaIUaaaaa@83C8@

 Осталось представить остаточный член в виде     R n = u n+1 +ε R n+1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGsbWaaSbaaSqaaiaad6gaaeqaaO GaaGypaiaadwhadaWgaaWcbaGaamOBaiabgUcaRiaaigdaaeqaaOGa ey4kaSIaeqyTduMaeyyXICTaamOuamaaBaaaleaacaWGUbGaey4kaS IaaGymaaqabaGccaaIUaaaaa@4170@

 Окончательно получим     | R n || u n+1 |+ε C ε . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI8bGaamOuamaaBaaaleaacaWGUb aabeaakiaaiYhacqGHKjYOcaaI8bGaamyDamaaBaaaleaacaWGUbGa ey4kaSIaaGymaaqabaGccaaI8bGaey4kaSIaeqyTduMaeyyXIC9aaS aaaeaacaWGdbaabaGaeqyTdugaaiabgsMiJorr1ngBPrwtHrhAYaqe guuDJXwAKbstHrhAGq1DVbaceaGae8NaHmKaaGOlaaaa@519A@

 Тем самым доказана следующая теорема.

Теорема (об оценке остатка (асимтотическая сходимость)). Пусть дана смешанная задача на полуоси (1) и выполнены условия (i) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugybabaaaaaaaaapeGaa83eGaaa@3A76@ (ii). Тогда существует единственное решение этой задачи u(x,t,ε) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiYcacqaH1oqzcaaIPaaaaa@3929@  и справедлива оценка

ux,t,εeiφx,tεknυkx,tεkk1nσ^zkt+χ^yktεkknωkx,tεkC+×0,Tεn+1,                      

 где 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=jqidjabgwMiZkaaicdaaaa@3ECE@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  константа, не зависящая от ε MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzaaa@3368@ , а υ k (x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHfpqDdaWgaaWcbaGaam4Aaaqaba GccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaaaa@38BF@ , z k (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaadUgaaeqaaO GaaGikaiaadshacaaIPaaaaa@3644@ , y k (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5bWaaSbaaSqaaiaadUgaaeqaaO GaaGikaiaadshacaaIPaaaaa@3643@ , ω k (x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDdaWgaaWcbaGaam4Aaaqaba GccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaaaa@38C5@  получены из решения итерационных задач при 0kn+1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaeyizImQaam4AaiabgsMiJk aad6gacqGHRaWkcaaIXaaaaa@3965@ .

5. Приложение 1.

Поставим задачу для поиска фундаментального решения задачи (1):

iε u t + ε 2 2 u x 2 xu=0,u(x,0)=δ(x x 0 ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaeqyTdu2aaSaaaeaacqGHci ITcaWG1baabaGaeyOaIyRaamiDaaaacqGHRaWkcqaH1oqzdaahaaWc beqaaiaaikdaaaGcdaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaa aakiaadwhaaeaacqGHciITcaWG4bWaaWbaaSqabeaacaaIYaaaaaaa kiabgkHiTiaadIhacqGHflY1caWG1bGaaGypaiaaicdacaaISaGaaG zbVlaadwhacaaIOaGaamiEaiaaiYcacaaIWaGaaGykaiaai2dacqaH 0oazcaaIOaGaamiEaiabgkHiTiaadIhadaWgaaWcbaGaaGimaaqaba GccaaIPaGaaGOlaaaa@5979@ (24)

 Для решения этой задачи применим метод интегрального преобразования Фурье с ядром e iλx MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGLbWaaWbaaSqabeaacqGHsislca WGPbGaeq4UdWMaamiEaaaaaaa@3764@ . Обозначим через U ˜ (λ,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadwfaaiaawoWaaiaaiI cacqaH7oaBcaaISaGaamiDaiaaiMcaaaa@3825@  образ Фурье искомого решения u(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36CC@ :

  U ˜ (λ,t)= u(ξ,t) e iλξ dξ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadwfaaiaawoWaaiaaiI cacqaH7oaBcaaISaGaamiDaiaaiMcacaaI9aWaa8qCaeqaleaacqGH sislcqGHEisPaeaacqGHEisPa0Gaey4kIipakiaadwhacaaIOaGaeq OVdGNaaGilaiaadshacaaIPaGaeyyXICTaamyzamaaCaaaleqabaGa eyOeI0IaamyAaiabeU7aSjabe67a4baakiaadsgacqaH+oaEcaaIUa aaaa@5121@

 Будем предполагать, что выполняются условия существования интеграла Фурье и что функция u(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36CC@  со своими частными производными достаточно быстро стремится к нулю при x± MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaeyOKH4QaeyySaeRaeyOhIu kaaa@380A@ . Также предположим, что интеграл для U ˜ (λ,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadwfaaiaawoWaaiaaiI cacqaH7oaBcaaISaGaamiDaiaaiMcaaaa@3825@  можно дифференцировать по переменным t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32BA@  и λ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH7oaBaaa@3375@  под знаком интеграла.

Умножим уравнение и начальное условие задачи (24) на e iλx MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGLbWaaWbaaSqabeaacqGHsislca WGPbGaeq4UdWMaamiEaaaaaaa@3764@  и проинтегрируем по x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BE@  от MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcqGHEisPaaa@341F@  до + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkcqGHEisPaaa@3414@ . При этом для второго интеграла в левой части уравнения после двукратного интегрирования по частям, учитывая обращения в ноль подстановок на ± MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHXcqScqGHEisPaaa@3520@ , получим

2 u x 2 (x,t) e iλx dx= λ 2 U ˜ (λ,t), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiabgkHiTiabg6HiLc qaaiabg6HiLcqdcqGHRiI8aOWaaSaaaeaacqGHciITdaahaaWcbeqa aiaaikdaaaGccaWG1baabaGaeyOaIyRaamiEamaaCaaaleqabaGaaG OmaaaaaaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiabgwSixlaa dwgadaahaaWcbeqaaiabgkHiTiaadMgacqaH7oaBcaWG4baaaOGaam izaiaadIhacaaI9aGaeyOeI0Iaeq4UdW2aaWbaaSqabeaacaaIYaaa aOGaeyyXIC9aaacaaeaacaWGvbaacaGLdmaacaaIOaGaeq4UdWMaaG ilaiaadshacaaIPaGaaGilaaaa@5A6A@

 а для третьего интеграла, учитывая возможность дифференцировать по λ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH7oaBaaa@3375@  под знаком интеграла, будем иметь

xu(x,t) e iλx dx=i U ˜ λ (λ,t). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiabgkHiTiabg6HiLc qaaiabg6HiLcqdcqGHRiI8aOGaamiEaiabgwSixlaadwhacaaIOaGa amiEaiaaiYcacaWG0bGaaGykaiabgwSixlaadwgadaahaaWcbeqaai abgkHiTiaadMgacqaH7oaBcaWG4baaaOGaamizaiaadIhacaaI9aGa amyAamaalaaabaGaeyOaIy7aaacaaeaacaWGvbaacaGLdmaaaeaacq GHciITcqaH7oaBaaGaaGikaiabeU7aSjaaiYcacaWG0bGaaGykaiaa i6caaaa@5794@

 Тогда в пространстве образов получим следующую задачу Коши:

iε U ˜ t i U ˜ λ = ε 2 λ 2 U ˜ , U ˜ (λ,0)= e iλ x 0 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaeqyTdu2aaSaaaeaacqGHci ITdaaiaaqaaiaadwfaaiaawoWaaaqaaiabgkGi2kaadshaaaGaeyOe I0IaamyAaiabgwSixpaalaaabaGaeyOaIy7aaacaaeaacaWGvbaaca GLdmaaaeaacqGHciITcqaH7oaBaaGaaGypaiabew7aLnaaCaaaleqa baGaaGOmaaaakiabgwSixlabeU7aSnaaCaaaleqabaGaaGOmaaaaki abgwSixpaaGaaabaGaamyvaaGaay5adaGaaGilaiaaywW7daaiaaqa aiaadwfaaiaawoWaaiaaiIcacqaH7oaBcaaISaGaaGimaiaaiMcaca aI9aGaamyzamaaCaaaleqabaGaeyOeI0IaamyAaiabeU7aSjaadIha daWgaaqaaiaaicdaaeqaaaaakiaai6caaaa@60C0@  (25)

Задача (25) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  задача для квазилинейного дифференциального уравнения в частных производных первого порядка, интегрирование которой проводится обычными методами. Выпишем сперва соответствующую характеристическую систему

dt iε = dλ i = d U ˜ ε 2 λ 2 U ˜ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaadsgacaWG0baabaGaam yAaiabew7aLbaacaaI9aWaaSaaaeaacaWGKbGaeq4UdWgabaGaeyOe I0IaamyAaaaacaaI9aWaaSaaaeaacaWGKbWaaacaaeaacaWGvbaaca GLdmaaaeaacqaH1oqzdaahaaWcbeqaaiaaikdaaaGccqaH7oaBdaah aaWcbeqaaiaaikdaaaGcdaaiaaqaaiaadwfaaiaawoWaaaaacaaISa aaaa@4686@  (26)

 и начальное условие в параметрическом виде    t=0,λ=s, U ˜ = e is x 0 ,sпараметр. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaaGypaiaaicdacaaISaGaaG zbVlabeU7aSjaai2dacaWGZbGaaGilaiaaywW7daaiaaqaaiaadwfa aiaawoWaaiaai2dacaWGLbWaaWbaaSqabeaacqGHsislcaWGPbGaam 4CaiaadIhadaWgaaqaaiaaicdaaeqaaaaakiaaiYcacaaMf8Uaae4C aiabgkHiTiaab+dbcaqGWqGaaeiqeiaabcdbcaqG8qGaaeyneiaabk ebcaqGarGaaGOlaaaa@4F4E@  (27)

 Находим первые интегралы для (26):

  dt=εdλ,t+ελ= C 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGKbGaamiDaiaai2dacqGHsislcq aH1oqzcaWGKbGaeq4UdWMaaGilaiaaywW7caWG0bGaey4kaSIaeqyT duMaeq4UdWMaaGypaiaadoeadaWgaaWcbaGaaGymaaqabaGccaaISa aaaa@444B@

i ε 2 λ 2 dλ= d U ˜ U ˜ , U ˜ exp i ε 2 λ 3 3 = C 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaeqyTdu2aaWbaaSqabeaaca aIYaaaaOGaeq4UdW2aaWbaaSqabeaacaaIYaaaaOGaamizaiabeU7a Sjaai2dadaWcaaqaaiaadsgadaaiaaqaaiaadwfaaiaawoWaaaqaam aaGaaabaGaamyvaaGaay5adaaaaiaaiYcacaaMf8+aaacaaeaacaWG vbaacaGLdmaacqGHflY1ciGGLbGaaiiEaiaacchadaqadaqaaiabgk HiTiaadMgacqaH1oqzdaahaaWcbeqaaiaaikdaaaGcdaWcaaqaaiab eU7aSnaaCaaaleqabaGaaG4maaaaaOqaaiaaiodaaaaacaGLOaGaay zkaaGaaGypaiaadoeadaWgaaWcbaGaaGOmaaqabaGccaaISaaaaa@5534@

 и, учитывая начальное условие (27), связь между ними:

εs= C 1 , e is x 0 e i ε 2 s 3 /3 = C 2 , exp i ε C 1 x 0 + C 1 3 3 = C 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaGabaqaauaabeqaceaaaeaacqaH1o qzcaWGZbGaaGypaiaadoeadaWgaaWcbaGaaGymaaqabaGccaaISaaa baGaamyzamaaCaaaleqabaGaeyOeI0IaamyAaiaadohacaWG4bWaaS baaeaacaaIWaaabeaaaaGccqGHflY1caWGLbWaaWbaaSqabeaacqGH sislcaWGPbGaeqyTdu2aaWbaaeqabaGaaGOmaaaacaWGZbWaaWbaae qabaGaaG4maaaacaaIVaGaaG4maaaakiaai2dacaWGdbWaaSbaaSqa aiaaikdaaeqaaOGaaGilaaaaaiaawUhaaiaaywW7cqGHsgIRcaaMf8 UaciyzaiaacIhacaGGWbWaaeWaaeaacqGHsisldaWcaaqaaiaadMga aeaacqaH1oqzaaWaaeWaaeaacaWGdbWaaSbaaSqaaiaaigdaaeqaaO GaamiEamaaBaaaleaacaaIWaaabeaakiabgUcaRmaalaaabaGaam4q amaaDaaaleaacaaIXaaabaGaaG4maaaaaOqaaiaaiodaaaaacaGLOa GaayzkaaaacaGLOaGaayzkaaGaaGypaiaadoeadaWgaaWcbaGaaGOm aaqabaGccaaIUaaaaa@6665@

 Подставляя в последнее соотношение найденные выше первые интегралы, получим интегральную поверхность для задачи (25) в неявном виде:

exp i ε x 0 (t+ελ)+ 1 3 (t+ελ) 3 = U ˜ exp i 3 ε 2 λ 3 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaciGGLbGaaiiEaiaacchadaqadaqaai abgkHiTmaalaaabaGaamyAaaqaaiabew7aLbaadaqadaqaaiaadIha daWgaaWcbaGaaGimaaqabaGccaaIOaGaamiDaiabgUcaRiabew7aLj abeU7aSjaaiMcacqGHRaWkdaWcaaqaaiaaigdaaeaacaaIZaaaaiaa iIcacaWG0bGaey4kaSIaeqyTduMaeq4UdWMaaGykamaaCaaaleqaba GaaG4maaaaaOGaayjkaiaawMcaaaGaayjkaiaawMcaaiaai2dadaai aaqaaiaadwfaaiaawoWaaiabgwSixlGacwgacaGG4bGaaiiCamaabm aabaGaeyOeI0YaaSaaaeaacaWGPbaabaGaaG4maaaacqaH1oqzdaah aaWcbeqaaiaaikdaaaGccqaH7oaBdaahaaWcbeqaaiaaiodaaaaaki aawIcacaGLPaaacaaISaaaaa@5F72@

 или, выражая U ˜ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadwfaaiaawoWaaaaa@335D@  и приводя подобные слагаемые в показателе экспоненты, решение искомой задачи в пространстве образов явно:

U ˜ (λ,t)=exp iεt λ 2 i( x 0 + t 2 )λ i x 0 t ε i t 3 3ε . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadwfaaiaawoWaaiaaiI cacqaH7oaBcaaISaGaamiDaiaaiMcacaaI9aGaciyzaiaacIhacaGG WbWaaeWaaeaacqGHsislcaWGPbGaeqyTduMaamiDaiabeU7aSnaaCa aaleqabaGaaGOmaaaakiabgkHiTiaadMgacaaIOaGaamiEamaaBaaa leaacaaIWaaabeaakiabgUcaRiaadshadaahaaWcbeqaaiaaikdaaa GccaaIPaGaeq4UdWMaeyOeI0YaaSaaaeaacaWGPbGaamiEamaaBaaa leaacaaIWaaabeaakiaadshaaeaacqaH1oqzaaGaeyOeI0YaaSaaae aacaWGPbGaamiDamaaCaaaleqabaGaaG4maaaaaOqaaiaaiodacqaH 1oqzaaaacaGLOaGaayzkaaGaaGOlaaaa@5B8D@

 Теперь, используя формулу обратного преобразования Фурье, для оригинала будем иметь:

u(x,t)= 1 2π dλ U ˜ (λ,t) e iλx = 1 2π exp i t( x 0 + t 2 /3) ε dλexp(iλ(x x 0 t 2 )iεt λ 2 ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI9aWaaSaaaeaacaaIXaaabaGaaGOmaiabec8aWbaa daWdXbqabSqaaiabgkHiTiabg6HiLcqaaiabg6HiLcqdcqGHRiI8aO GaamizaiabeU7aSjabgwSixpaaGaaabaGaamyvaaGaay5adaGaaGik aiabeU7aSjaaiYcacaWG0bGaaGykaiabgwSixlaadwgadaahaaWcbe qaaiaadMgacqaH7oaBcaWG4baaaOGaaGypamaalaaabaGaaGymaaqa aiaaikdacqaHapaCaaGaciyzaiaacIhacaGGWbWaaeWaaeaacqGHsi slcaWGPbWaaSaaaeaacaWG0bGaaGikaiaadIhadaWgaaWcbaGaaGim aaqabaGccqGHRaWkcaWG0bWaaWbaaSqabeaacaaIYaaaaOGaaG4lai aaiodacaaIPaaabaGaeqyTdugaaaGaayjkaiaawMcaamaapehabeWc baGaeyOeI0IaeyOhIukabaGaeyOhIukaniabgUIiYdGccaWGKbGaeq 4UdWMaeyyXICTaciyzaiaacIhacaGGWbGaaGikaiaadMgacqaH7oaB caaIOaGaamiEaiabgkHiTiaadIhadaWgaaWcbaGaaGimaaqabaGccq GHsislcaWG0bWaaWbaaSqabeaacaaIYaaaaOGaaGykaiabgkHiTiaa dMgacqaH1oqzcaWG0bGaeq4UdW2aaWbaaSqabeaacaaIYaaaaOGaaG ykaiaai6caaaa@89FA@

 Для вычисления получившегося интеграла выделим полный квадрат в показателе экспоненты

iεt λ 2 +2 t 2 (x x 0 ) 2εt λ+ ( t 2 (x x 0 )) 2 4 ε 2 t 2 ( t 2 (x x 0 )) 2 4 ε 2 t 2 = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGPbGaeqyTduMaamiDam aabmaabaGaeq4UdW2aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGOm amaalaaabaGaamiDamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaiI cacaWG4bGaeyOeI0IaamiEamaaBaaaleaacaaIWaaabeaakiaaiMca aeaacaaIYaGaeqyTduMaamiDaaaacqGHflY1cqaH7oaBcqGHRaWkda WcaaqaaiaaiIcacaWG0bWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0Ia aGikaiaadIhacqGHsislcaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaaG ykaiaaiMcadaahaaWcbeqaaiaaikdaaaaakeaacaaI0aGaeqyTdu2a aWbaaSqabeaacaaIYaaaaOGaamiDamaaCaaaleqabaGaaGOmaaaaaa GccqGHsisldaWcaaqaaiaaiIcacaWG0bWaaWbaaSqabeaacaaIYaaa aOGaeyOeI0IaaGikaiaadIhacqGHsislcaWG4bWaaSbaaSqaaiaaic daaeqaaOGaaGykaiaaiMcadaahaaWcbeqaaiaaikdaaaaakeaacaaI 0aGaeqyTdu2aaWbaaSqabeaacaaIYaaaaOGaamiDamaaCaaaleqaba GaaGOmaaaaaaaakiaawIcacaGLPaaacaaI9aaaaa@6DA1@

=iεt λ+ t 2 (x x 0 ) 2εt 2 +i ( t 2 (x x 0 )) 2 4εt MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaeyOeI0IaamyAaiabew7aLj aadshadaqadaqaaiabeU7aSjabgUcaRmaalaaabaGaamiDamaaCaaa leqabaGaaGOmaaaakiabgkHiTiaaiIcacaWG4bGaeyOeI0IaamiEam aaBaaaleaacaaIWaaabeaakiaaiMcaaeaacaaIYaGaeqyTduMaamiD aaaaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccqGHRaWkca WGPbWaaSaaaeaacaaIOaGaamiDamaaCaaaleqabaGaaGOmaaaakiab gkHiTiaaiIcacaWG4bGaeyOeI0IaamiEamaaBaaaleaacaaIWaaabe aakiaaiMcacaaIPaWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGinaiab ew7aLjaadshaaaaaaa@5741@

 и сделаем замену:

z= εt λ+ t 2 (x x 0 ) 2εt . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGypamaakaaabaGaeqyTdu MaamiDaaWcbeaakmaabmaabaGaeq4UdWMaey4kaSYaaSaaaeaacaWG 0bWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGikaiaadIhacqGHsi slcaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaaGykaaqaaiaaikdacqaH 1oqzcaWG0baaaaGaayjkaiaawMcaaiaai6caaaa@46A4@

 В результате получим:

u(x,t)= 1 2π εt exp i t( x 0 + t 2 /3) ε +i ( t 2 (x x 0 )) 2 4εt dz e i z 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI9aWaaSaaaeaacaaIXaaabaGaaGOmaiabec8aWnaa kaaabaGaeqyTduMaamiDaaWcbeaaaaGcciGGLbGaaiiEaiaacchada qadaqaaiabgkHiTiaadMgadaWcaaqaaiaadshacaaIOaGaamiEamaa BaaaleaacaaIWaaabeaakiabgUcaRiaadshadaahaaWcbeqaaiaaik daaaGccaaIVaGaaG4maiaaiMcaaeaacqaH1oqzaaGaey4kaSIaamyA amaalaaabaGaaGikaiaadshadaahaaWcbeqaaiaaikdaaaGccqGHsi slcaaIOaGaamiEaiabgkHiTiaadIhadaWgaaWcbaGaaGimaaqabaGc caaIPaGaaGykamaaCaaaleqabaGaaGOmaaaaaOqaaiaaisdacqaH1o qzcaWG0baaaaGaayjkaiaawMcaamaapehabeWcbaGaeyOeI0IaeyOh IukabaGaeyOhIukaniabgUIiYdGccaWGKbGaamOEaiabgwSixlaadw gadaahaaWcbeqaaiabgkHiTiaadMgacaWG6bWaaWbaaeqabaGaaGOm aaaaaaGccaaIUaaaaa@6DD2@ (28)

 Оставшийся интеграл может быть вычислен различными способами. Кратко остановимся на одном из них. Обозначив этот интеграл через I MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGjbaaaa@328F@ , воспользуемся чётностью подынтегральной функции и перейдём к переменной интегрирования ξ= z 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEcaaI9aGaamOEamaaCaaale qabaGaaGOmaaaaaaa@3633@ . В результате получим:

I= dz e i z 2 =2 0 dz e i z 2 = 0 dξ e iξ ξ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGjbGaaGypamaapehabeWcbaGaey OeI0IaeyOhIukabaGaeyOhIukaniabgUIiYdGccaWGKbGaamOEaiab gwSixlaadwgadaahaaWcbeqaaiabgkHiTiaadMgacaWG6bWaaWbaae qabaGaaGOmaaaaaaGccaaI9aGaaGOmaiabgwSixpaapehabeWcbaGa aGimaaqaaiabg6HiLcqdcqGHRiI8aOGaamizaiaadQhacqGHflY1ca WGLbWaaWbaaSqabeaacqGHsislcaWGPbGaamOEamaaCaaabeqaaiaa ikdaaaaaaOGaaGypamaapehabeWcbaGaaGimaaqaaiabg6HiLcqdcq GHRiI8aOGaamizaiabe67a4jabgwSixpaalaaabaGaamyzamaaCaaa leqabaGaeyOeI0IaamyAaiabe67a4baaaOqaamaakaaabaGaeqOVdG haleqaaaaakiaai6caaaa@65E6@

 Теперь воспользуемся «интегральным представлением» функции 1/ ξ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIXaGaaG4lamaakaaabaGaeqOVdG haleqaaaaa@3513@ , в данном случае в роли такого представления будет выступать интеграл Гаусса:

1 ξ = 2 π 0 dx e ξ x 2 I= 2 π 0 dξ 0 dx e ξ( x 2 +i) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaaigdaaeaadaGcaaqaai abe67a4bWcbeaaaaGccaaI9aWaaSaaaeaacaaIYaaabaWaaOaaaeaa cqaHapaCaSqabaaaaOWaa8qCaeqaleaacaaIWaaabaGaeyOhIukani abgUIiYdGccaWGKbGaamiEaiabgwSixlaadwgadaahaaWcbeqaaiab gkHiTiabe67a4jaadIhadaahaaqabeaacaaIYaaaaaaakiaaywW7cq GHshI3caaMf8Uaamysaiaai2dadaWcaaqaaiaaikdaaeaadaGcaaqa aiabec8aWbWcbeaaaaGcdaWdXbqabSqaaiaaicdaaeaacqGHEisPa0 Gaey4kIipakiaadsgacqaH+oaEdaWdXbqabSqaaiaaicdaaeaacqGH EisPa0Gaey4kIipakiaadsgacaWG4bGaeyyXICTaamyzamaaCaaale qabaGaeyOeI0IaeqOVdGNaaGikaiaadIhadaahaaqabeaacaaIYaaa aiabgUcaRiaadMgacaaIPaaaaOGaaGOlaaaa@69D3@

 Изменим порядок интегрирования в получившемся повторном интеграле и берём интеграл по ξ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEaaa@3384@ :

I= 2 π 0 dx 0 dξ e ξ( x 2 +i) = 2 π 0 dx x 2 +i . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGjbGaaGypamaalaaabaGaaGOmaa qaamaakaaabaGaeqiWdahaleqaaaaakmaapehabeWcbaGaaGimaaqa aiabg6HiLcqdcqGHRiI8aOGaamizaiaadIhadaWdXbqabSqaaiaaic daaeaacqGHEisPa0Gaey4kIipakiaadsgacqaH+oaEcqGHflY1caWG LbWaaWbaaSqabeaacqGHsislcqaH+oaEcaaIOaGaamiEamaaCaaabe qaaiaaikdaaaGaey4kaSIaamyAaiaaiMcaaaGccaaI9aWaaSaaaeaa caaIYaaabaWaaOaaaeaacqaHapaCaSqabaaaaOWaa8qCaeqaleaaca aIWaaabaGaeyOhIukaniabgUIiYdGcdaWcaaqaaiaadsgacaWG4baa baGaamiEamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadMgaaaGaaG Olaaaa@5D81@

 Теперь можно воспользоваться теорией вычетов для вычисления интеграла по x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BE@ :

I= 1 π dx x 2 +i = 2πi π res 1 z 2 +i , 1 2 (1+i) = 2πi π 1 2z | z=(1+i)/ 2 = π 2 (1i). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGjbGaaGypamaalaaabaGaaGymaa qaamaakaaabaGaeqiWdahaleqaaaaakmaapehabeWcbaGaeyOeI0Ia eyOhIukabaGaeyOhIukaniabgUIiYdGcdaWcaaqaaiaadsgacaWG4b aabaGaamiEamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadMgaaaGa aGypamaalaaabaGaaGOmaiabec8aWjaadMgaaeaadaGcaaqaaiabec 8aWbWcbeaaaaGccqGHflY1caWGYbGaamyzaiaadohadaWadaqaamaa laaabaGaaGymaaqaaiaadQhadaahaaWcbeqaaiaaikdaaaGccqGHRa WkcaWGPbaaaiaaiYcadaWcaaqaaiaaigdaaeaadaGcaaqaaiaaikda aSqabaaaaOGaaGikaiabgkHiTiaaigdacqGHRaWkcaWGPbGaaGykaa Gaay5waiaaw2faaiaai2dadaWcaaqaaiaaikdacqaHapaCcaWGPbaa baWaaOaaaeaacqaHapaCaSqabaaaaOGaeyyXIC9aaSaaaeaacaaIXa aabaGaaGOmaiaadQhaaaGaaGiFamaaBaaaleaacaWG6bGaaGypaiaa iIcacqGHsislcaaIXaGaey4kaSIaamyAaiaaiMcacaaIVaWaaOaaae aacaaIYaaabeaaaeqaaOGaaGypamaakaaabaWaaSaaaeaacqaHapaC aeaacaaIYaaaaaWcbeaakiabgwSixlaaiIcacaaIXaGaeyOeI0Iaam yAaiaaiMcacaaIUaaaaa@79C3@

 Подставим полученный результат в (28). Окончательно для фундаментального решения задачи (1) получаем:

u(x,t)= 1i 2 2πεt exp i t ε ( x 0 + t 2 3 )+i ( t 2 (x x 0 )) 2 4εt , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI9aWaaSaaaeaacaaIXaGaeyOeI0IaamyAaaqaaiaa ikdadaGcaaqaaiaaikdacqaHapaCcqaH1oqzcaWG0baaleqaaaaaki GacwgacaGG4bGaaiiCamaabmaabaGaeyOeI0IaamyAamaalaaabaGa amiDaaqaaiabew7aLbaacaaIOaGaamiEamaaBaaaleaacaaIWaaabe aakiabgUcaRmaalaaabaGaamiDamaaCaaaleqabaGaaGOmaaaaaOqa aiaaiodaaaGaaGykaiabgUcaRiaadMgadaWcaaqaaiaaiIcacaWG0b WaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGikaiaadIhacqGHsisl caWG4bWaaSbaaSqaaiaaicdaaeqaaOGaaGykaiaaiMcadaahaaWcbe qaaiaaikdaaaaakeaacaaI0aGaeqyTduMaamiDaaaaaiaawIcacaGL PaaacaaISaaaaa@6070@

 что с точностью до обозначений совпадает с (6).

6. Приложение 2.

Поставим задачу для поиска решения χ(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHhpWycaaIOaGaamiEaiaaiYcaca WG0bGaaGykaaaa@3789@ , позволяющего выписывать интегральное соотношение для решения однородного уравнения задачи (1) с произвольным граничным условием ψ(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamiDaiaaiMcaaa a@35ED@ . Имеем:

iε u t + ε 2 2 u x 2 xu=0,u(x,0)=0,u(0,t)=θ(t); MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaeqyTdu2aaSaaaeaacqGHci ITcaWG1baabaGaeyOaIyRaamiDaaaacqGHRaWkcqaH1oqzdaahaaWc beqaaiaaikdaaaGcdaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaa aakiaadwhaaeaacqGHciITcaWG4bWaaWbaaSqabeaacaaIYaaaaaaa kiabgkHiTiaadIhacqGHflY1caWG1bGaaGypaiaaicdacaaISaGaaG zbVlaadwhacaaIOaGaamiEaiaaiYcacaaIWaGaaGykaiaai2dacaaI WaGaaGilaiaaywW7caWG1bGaaGikaiaaicdacaaISaGaamiDaiaaiM cacaaI9aGaeqiUdeNaaGikaiaadshacaaIPaGaaG4oaaaa@5F46@

 здесь в граничном условии стоит функция Хевисайда и при t>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaaGOpaiaaicdaaaa@343C@   θ(t)=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH4oqCcaaIOaGaamiDaiaaiMcaca aI9aGaaGymaaaa@3757@ . Доопределим неизвестную функцию u(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36CC@  при x<0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGipaiaaicdaaaa@343E@  тождественным нулём и при аналогичных приложению 1 предположениях перейдём к задаче Коши в пространстве образов Фурье:

iε F t i F λ = ε 2 λ 2 F+i ε 2 λ,F(λ,0)=0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaeqyTdu2aaSaaaeaacqGHci ITcaWGgbaabaGaeyOaIyRaamiDaaaacqGHsislcaWGPbGaeyyXIC9a aSaaaeaacqGHciITcaWGgbaabaGaeyOaIyRaeq4UdWgaaiaai2dacq aH1oqzdaahaaWcbeqaaiaaikdaaaGccqGHflY1cqaH7oaBdaahaaWc beqaaiaaikdaaaGccqGHflY1caWGgbGaey4kaSIaamyAaiabew7aLn aaCaaaleqabaGaaGOmaaaakiabeU7aSjaaiYcacaaMf8UaamOraiaa iIcacqaH7oaBcaaISaGaaGimaiaaiMcacaaI9aGaaGimaiaaiYcaaa a@5DCA@                                                                                            (29)

 где введено обозначение

F(λ,t)= 0 dx e iλx u(x,t). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbGaaGikaiabeU7aSjaaiYcaca WG0bGaaGykaiaai2dadaWdXbqabSqaaiaaicdaaeaacqGHEisPa0Ga ey4kIipakiaadsgacaWG4bGaeyyXICTaamyzamaaCaaaleqabaGaey OeI0IaamyAaiabeU7aSjaadIhaaaGccaWG1bGaaGikaiaadIhacaaI SaGaamiDaiaaiMcacaaIUaaaaa@4C5A@

Запишем характеристическую систему для квазилинейного уравнения в задаче (29):

dt iε = dλ i = dF ε 2 λ 2 F+i ε 2 λ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaadsgacaWG0baabaGaam yAaiabew7aLbaacaaI9aWaaSaaaeaacaWGKbGaeq4UdWgabaGaeyOe I0IaamyAaaaacaaI9aWaaSaaaeaacaWGKbGaamOraaqaaiabew7aLn aaCaaaleqabaGaaGOmaaaakiabgwSixlabeU7aSnaaCaaaleqabaGa aGOmaaaakiabgwSixlaadAeacqGHRaWkcaWGPbGaeqyTdu2aaWbaaS qabeaacaaIYaaaaOGaeq4UdWgaaiaai6caaaa@4F98@

 Система первых интегралов для нее имеет вид:

λ+ t ε = C 1 ,F e i ε 2 λ 3 /3 ε 2 λ dqq e i ε 2 q 3 /3 = C 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH7oaBcqGHRaWkdaWcaaqaaiaads haaeaacqaH1oqzaaGaaGypaiaadoeadaWgaaWcbaGaaGymaaqabaGc caaISaGaaGzbVlaadAeacqGHflY1caWGLbWaaWbaaSqabeaacqGHsi slcaWGPbGaeqyTdu2aaWbaaeqabaGaaGOmaaaacqaH7oaBdaahaaqa beaacaaIZaaaaiaai+cacaaIZaaaaOGaeyOeI0IaeqyTdu2aaWbaaS qabeaacaaIYaaaaOWaa8qCaeqaleaacqaH7oaBaeaacqGHEisPa0Ga ey4kIipakiaadsgacaWGXbGaeyyXICTaamyCaiabgwSixlaadwgada ahaaWcbeqaaiabgkHiTiaadMgacqaH1oqzdaahaaqabeaacaaIYaaa aiaadghadaahaaqabeaacaaIZaaaaiaai+cacaaIZaaaaOGaaGypai aadoeadaWgaaWcbaGaaGOmaaqabaGccaaIUaaaaa@64F8@

 Теперь уже несложно, учитывая начальное условие в (29), получить решение исходной задачи в пространстве образов:

F(λ,t)= ε 2 λ λ+t/ε dqq e ε 2 ( λ 3 q 3 )/3 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbGaaGikaiabeU7aSjaaiYcaca WG0bGaaGykaiaai2dacqaH1oqzdaahaaWcbeqaaiaaikdaaaGcdaWd XbqabSqaaiabeU7aSbqaaiabeU7aSjabgUcaRiaadshacaaIVaGaeq yTduganiabgUIiYdGccaWGKbGaamyCaiabgwSixlaadghacqGHflY1 caWGLbWaaWbaaSqabeaacqaH1oqzdaahaaqabeaacaaIYaaaaiaaiI cacqaH7oaBdaahaaqabeaacaaIZaaaaiabgkHiTiaadghadaahaaqa beaacaaIZaaaaiaaiMcacaaIVaGaaG4maaaakiaai6caaaa@58C3@

 Замена переменной λq=(st)/ε MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH7oaBcqGHsislcaWGXbGaaGypai aaiIcacaWGZbGaeyOeI0IaamiDaiaaiMcacaaIVaGaeqyTdugaaa@3CC2@  в последнем интеграле приведёт к более удобному в дальнейшем соотношению:

F(λ,t)=ε 0 t ds λ+ ts ε exp i (ts) 3 3ε iε(ts) λ 2 +λ ts ε . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbGaaGikaiabeU7aSjaaiYcaca WG0bGaaGykaiaai2dacqaH1oqzdaWdXbqabSqaaiaaicdaaeaacaWG 0baaniabgUIiYdGccaWGKbGaam4CaiabgwSixpaabmaabaGaeq4UdW Maey4kaSYaaSaaaeaacaWG0bGaeyOeI0Iaam4Caaqaaiabew7aLbaa aiaawIcacaGLPaaacqGHflY1ciGGLbGaaiiEaiaacchadaqadaqaai abgkHiTmaalaaabaGaamyAaiaaiIcacaWG0bGaeyOeI0Iaam4Caiaa iMcadaahaaWcbeqaaiaaiodaaaaakeaacaaIZaGaeqyTdugaaiabgk HiTiaadMgacqaH1oqzcaaIOaGaamiDaiabgkHiTiaadohacaaIPaWa aeWaaeaacqaH7oaBdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcqaH7o aBdaWcaaqaaiaadshacqGHsislcaWGZbaabaGaeqyTdugaaaGaayjk aiaawMcaaaGaayjkaiaawMcaaiaai6caaaa@6ED4@

 Осталось осуществить обратное преобразование Фурье, что в итоге позволит получить решение интересующей нас задачи. Будем иметь:

u(x,t)= 1 2π dλF(λ,t) e iλx = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI9aWaaSaaaeaacaaIXaaabaGaaGOmaiabec8aWbaa daWdXbqabSqaaiabgkHiTiabg6HiLcqaaiabg6HiLcqdcqGHRiI8aO GaamizaiabeU7aSjabgwSixlaadAeacaaIOaGaeq4UdWMaaGilaiaa dshacaaIPaGaeyyXICTaamyzamaaCaaaleqabaGaamyAaiabeU7aSj aadIhaaaGccaaI9aaaaa@5365@

= ε 2π dλ 0 t ds λ+ ts ε exp i (ts) 3 3ε iε(ts) λ 2 +λ ts ε +iλx . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaaSaaaeaacqaH1oqzaeaaca aIYaGaeqiWdahaamaapehabeWcbaGaeyOeI0IaeyOhIukabaGaeyOh IukaniabgUIiYdGccaWGKbGaeq4UdW2aa8qCaeqaleaacaaIWaaaba GaamiDaaqdcqGHRiI8aOGaamizaiaadohacqGHflY1daqadaqaaiab eU7aSjabgUcaRmaalaaabaGaamiDaiabgkHiTiaadohaaeaacqaH1o qzaaaacaGLOaGaayzkaaGaciyzaiaacIhacaGGWbWaaeWaaeaacqGH sisldaWcaaqaaiaadMgacaaIOaGaamiDaiabgkHiTiaadohacaaIPa WaaWbaaSqabeaacaaIZaaaaaGcbaGaaG4maiabew7aLbaacqGHsisl caWGPbGaeqyTduMaaGikaiaadshacqGHsislcaWGZbGaaGykamaabm aabaGaeq4UdW2aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaeq4UdW2a aSaaaeaacaWG0bGaeyOeI0Iaam4Caaqaaiabew7aLbaaaiaawIcaca GLPaaacqGHRaWkcaWGPbGaeq4UdWMaamiEaaGaayjkaiaawMcaaiaa i6caaaa@76E1@

 Поменяем порядок интегрирования в получившемся повторном интеграле и выделим во внутреннем интеграле по λ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH7oaBaaa@3375@  полный квадрат, после чего произведем замену

μ=λ+ 1 2ε ts x ts . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBcaaI9aGaeq4UdWMaey4kaS YaaSaaaeaacaaIXaaabaGaaGOmaiabew7aLbaadaqadaqaaiaadsha cqGHsislcaWGZbGaeyOeI0YaaSaaaeaacaWG4baabaGaamiDaiabgk HiTiaadohaaaaacaGLOaGaayzkaaGaaGOlaaaa@43F9@

После описанных преобразований получим:

ux,tε2π0tdsexpits33εits4εtsxts2×dμμ+12εts+xtsexpiεtsμ2.     (30)

 Обозначим внутренний интеграл I 0 (x,ts) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGjbWaaSbaaSqaaiaaicdaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiabgkHiTiaadohacaaIPaaaaa@3975@  и вычислим его отдельно:

I 0 (x,ts)= dμμ e iε(ts) μ 2 + 1 2ε ts+ x ts dμ e iε(ts) μ 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGjbWaaSbaaSqaaiaaicdaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiabgkHiTiaadohacaaIPaGaaGyp amaapehabeWcbaGaeyOeI0IaeyOhIukabaGaeyOhIukaniabgUIiYd GccaWGKbGaeqiVd0MaeyyXICTaeqiVd0MaeyyXICTaamyzamaaCaaa leqabaGaeyOeI0IaamyAaiabew7aLjaaiIcacaWG0bGaeyOeI0Iaam 4CaiaaiMcacqaH8oqBdaahaaqabeaacaaIYaaaaaaakiabgUcaRmaa laaabaGaaGymaaqaaiaaikdacqaH1oqzaaWaaeWaaeaacaWG0bGaey OeI0Iaam4CaiabgUcaRmaalaaabaGaamiEaaqaaiaadshacqGHsisl caWGZbaaaaGaayjkaiaawMcaaiabgwSixpaapehabeWcbaGaeyOeI0 IaeyOhIukabaGaeyOhIukaniabgUIiYdGccaWGKbGaeqiVd0MaeyyX ICTaamyzamaaCaaaleqabaGaeyOeI0IaamyAaiabew7aLjaaiIcaca WG0bGaeyOeI0Iaam4CaiaaiMcacqaH8oqBdaahaaqabeaacaaIYaaa aaaakiaai6caaaa@7BCE@

 В силу того, что в обратном преобразовании Фурье интеграл понимается в смысле главного значения, первое слагаемое в последнем соотношении равно нулю из-за нечетности подынтегральной функции. Второе слагаемое легко свести к интегралу

e z 2 dz= π 2 (1i), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiabgkHiTiabg6HiLc qaaiabg6HiLcqdcqGHRiI8aOGaamyzamaaCaaaleqabaGaeyOeI0Ia amOEamaaCaaabeqaaiaaikdaaaaaaOGaamizaiaadQhacaaI9aWaaO aaaeaadaWcaaqaaiabec8aWbqaaiaaikdaaaaaleqaaOGaeyyXICTa aGikaiaaigdacqGHsislcaWGPbGaaGykaiaaiYcaaaa@4847@

о вычислении которого было сказано в приложении 1. В результате для I 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGjbWaaSbaaSqaaiaaicdaaeqaaa aa@3375@  получим:

I 0 (x,ts)= 1 2ε π 2 1i ε ts + x (ts) 3/2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGjbWaaSbaaSqaaiaaicdaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiabgkHiTiaadohacaaIPaGaaGyp amaalaaabaGaaGymaaqaaiaaikdacqaH1oqzaaWaaOaaaeaadaWcaa qaaiabec8aWbqaaiaaikdaaaaaleqaaOWaaSaaaeaacaaIXaGaeyOe I0IaamyAaaqaamaakaaabaGaeqyTdugaleqaaaaakmaabmaabaWaaO aaaeaacaWG0bGaeyOeI0Iaam4CaaWcbeaakiabgUcaRmaalaaabaGa amiEaaqaaiaaiIcacaWG0bGaeyOeI0Iaam4CaiaaiMcadaahaaWcbe qaaiaaiodacaaIVaGaaGOmaaaaaaaakiaawIcacaGLPaaacaaIUaaa aa@5269@

 Подставляя полученное выражение в (30), будем иметь:

u(x,t)= 1i 4 2επ 0 t ds ts + x (ts) 3/2 exp i (ts) 3 3ε i(ts) 4ε ts x ts 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI9aWaaSaaaeaacaaIXaGaeyOeI0IaamyAaaqaaiaa isdadaGcaaqaaiaaikdacqaH1oqzcqaHapaCaSqabaaaaOWaa8qCae qaleaacaaIWaaabaGaamiDaaqdcqGHRiI8aOGaamizaiaadohadaqa daqaamaakaaabaGaamiDaiabgkHiTiaadohaaSqabaGccqGHRaWkda WcaaqaaiaadIhaaeaacaaIOaGaamiDaiabgkHiTiaadohacaaIPaWa aWbaaSqabeaacaaIZaGaaG4laiaaikdaaaaaaaGccaGLOaGaayzkaa GaeyyXICTaciyzaiaacIhacaGGWbWaaeWaaeaacqGHsisldaWcaaqa aiaadMgacaaIOaGaamiDaiabgkHiTiaadohacaaIPaWaaWbaaSqabe aacaaIZaaaaaGcbaGaaG4maiabew7aLbaacqGHsisldaWcaaqaaiaa dMgacaaIOaGaamiDaiabgkHiTiaadohacaaIPaaabaGaaGinaiabew 7aLbaadaqadaqaaiaadshacqGHsislcaWGZbGaeyOeI0YaaSaaaeaa caWG4baabaGaamiDaiabgkHiTiaadohaaaaacaGLOaGaayzkaaWaaW baaSqabeaacaaIYaaaaaGccaGLOaGaayzkaaGaaGOlaaaa@761C@

 Осталось учесть известное свойство интегралов Фурье о сходимости в точке разрыва к полусумме левого и правого пределов разлагаемой в этот интеграл функции. Учитывая этот факт, последнее соотношение в точке x=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGypaiaaicdaaaa@343F@ , t=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaaGypaiaaicdaaaa@343B@  будет давать (θ(00)+θ(0+0))/2=1/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaeqiUdeNaaGikaiaaicdacq GHsislcaaIWaGaaGykaiabgUcaRiabeI7aXjaaiIcacaaIWaGaey4k aSIaaGimaiaaiMcacaaIPaGaaG4laiaaikdacaaI9aGaaGymaiaai+ cacaaIYaaaaa@4361@ , а для получения с помощью u(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36CC@  решение поставленной задачи с произвольным краевым условием требуется 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIXaaaaa@327C@ . Поэтому последнее соотношение необходимо умножить на два. Окончательно получаем ( χ(x,t)2u(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHhpWycaaIOaGaamiEaiaaiYcaca WG0bGaaGykaiabggMi6kaaikdacqGHflY1caWG1bGaaGikaiaadIha caaISaGaamiDaiaaiMcaaaa@4163@  ):

χ(x,t)= 1i 2 2επ 0 t ds ts + x (ts) 3/2 exp i (ts) 3 3ε i(ts) 4ε ts x ts 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHhpWycaaIOaGaamiEaiaaiYcaca WG0bGaaGykaiaai2dadaWcaaqaaiaaigdacqGHsislcaWGPbaabaGa aGOmamaakaaabaGaaGOmaiabew7aLjabec8aWbWcbeaaaaGcdaWdXb qabSqaaiaaicdaaeaacaWG0baaniabgUIiYdGccaWGKbGaam4Camaa bmaabaWaaOaaaeaacaWG0bGaeyOeI0Iaam4CaaWcbeaakiabgUcaRm aalaaabaGaamiEaaqaaiaaiIcacaWG0bGaeyOeI0Iaam4CaiaaiMca daahaaWcbeqaaiaaiodacaaIVaGaaGOmaaaaaaaakiaawIcacaGLPa aacqGHflY1ciGGLbGaaiiEaiaacchadaqadaqaaiabgkHiTmaalaaa baGaamyAaiaaiIcacaWG0bGaeyOeI0Iaam4CaiaaiMcadaahaaWcbe qaaiaaiodaaaaakeaacaaIZaGaeqyTdugaaiabgkHiTmaalaaabaGa amyAaiaaiIcacaWG0bGaeyOeI0Iaam4CaiaaiMcaaeaacaaI0aGaeq yTdugaamaabmaabaGaamiDaiabgkHiTiaadohacqGHsisldaWcaaqa aiaadIhaaeaacaWG0bGaeyOeI0Iaam4CaaaaaiaawIcacaGLPaaada ahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaacaaISaaaaa@76D5@

 что с точностью до обозначения переменной интегрирования совпадает с (8).

7. Приложение 3.

Лемма.   Для соотношения (9), описывающего действие оператора χ ^ () MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaHhpWygaqcaiaaiIcacqGHflY1ca aIPaaaaa@3737@  на функцию f(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaadshacaaIPaaaaa@350A@ , справедлива оценка ( δ>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH0oazcaaI+aGaaGimaaaa@34E8@ , t[0,T] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaeyicI4SaaG4waiaaicdaca aISaGaamivaiaai2faaaa@3853@  ):

χ ^ (f(t))=f(t) 2 π x/(2 εt ) dz e i z 2 +O ε x при qx[δ,+). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaHhpWygaqcaiaaiIcacaWGMbGaaG ikaiaadshacaaIPaGaaGykaiaai2dacaWGMbGaaGikaiaadshacaaI PaGaeyyXIC9aaSaaaeaacaaIYaaabaWaaOaaaeaacqaHapaCaSqaba aaaOWaa8qCaeqaleaacaWG4bGaaG4laiaaiIcacaaIYaWaaOaaaeaa cqaH1oqzcaWG0baabeaacaaIPaaabaGaeyOhIukaniabgUIiYdGcca WGKbGaamOEaiabgwSixlaadwgadaahaaWcbeqaaiaadMgacaWG6bWa aWbaaeqabaGaaGOmaaaaaaGccqGHRaWkcaWGpbWaaeWaaeaadaWcaa qaamaakaaabaGaeqyTdugaleqaaaGcbaGaamiEaaaaaiaawIcacaGL PaaacaaMf8Uaae4peiaabcebcaqG4qGaaeiiaiaadghacaaMf8Uaam iEaiabgIGiolaaiUfacqaH0oazcaaISaGaey4kaSIaeyOhIuQaaGyk aiaai6caaaa@6A60@

 Последнее соотношение можно переписать в виде

χ ^ (f(t))=f(t)ierfc x 2 εt +O ε x . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaHhpWygaqcaiaaiIcacaWGMbGaaG ikaiaadshacaaIPaGaaGykaiaai2dacaWGMbGaaGikaiaadshacaaI PaGaeyyXICTaamyAaiaadwgacaWGYbGaamOzaiaadogadaqadaqaam aalaaabaGaamiEaaqaaiaaikdadaGcaaqaaiabew7aLjaadshaaSqa baaaaaGccaGLOaGaayzkaaGaey4kaSIaam4tamaabmaabaWaaSaaae aadaGcaaqaaiabew7aLbWcbeaaaOqaaiaadIhaaaaacaGLOaGaayzk aaGaaGOlaaaa@5019@

Доказательство. Отметим, что

x/(2 εt ) dzf t x 2 4ε z 2 1+ x 3 16 ε 2 z 4 exp i x 6 768 ε 4 z 6 i x 3 8 ε 2 z 2 +i z 2 = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiaadIhacaaIVaGaaG ikaiaaikdadaGcaaqaaiabew7aLjaadshaaeqaaiaaiMcaaeaacqGH EisPa0Gaey4kIipakiaadsgacaWG6bGaeyyXICTaamOzamaabmaaba GaamiDaiabgkHiTmaalaaabaGaamiEamaaCaaaleqabaGaaGOmaaaa aOqaaiaaisdacqaH1oqzcaWG6bWaaWbaaSqabeaacaaIYaaaaaaaaO GaayjkaiaawMcaamaabmaabaGaaGymaiabgUcaRmaalaaabaGaamiE amaaCaaaleqabaGaaG4maaaaaOqaaiaaigdacaaI2aGaeqyTdu2aaW baaSqabeaacaaIYaaaaOGaamOEamaaCaaaleqabaGaaGinaaaaaaaa kiaawIcacaGLPaaaciGGLbGaaiiEaiaacchadaqadaqaaiabgkHiTm aalaaabaGaamyAaiaadIhadaahaaWcbeqaaiaaiAdaaaaakeaacaaI 3aGaaGOnaiaaiIdacqaH1oqzdaahaaWcbeqaaiaaisdaaaGccaWG6b WaaWbaaSqabeaacaaI2aaaaaaakiabgkHiTmaalaaabaGaamyAaiaa dIhadaahaaWcbeqaaiaaiodaaaaakeaacaaI4aGaeqyTdu2aaWbaaS qabeaacaaIYaaaaOGaamOEamaaCaaaleqabaGaaGOmaaaaaaGccqGH RaWkcaWGPbGaamOEamaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawM caaiaai2daaaa@730B@

=f(t) x/(2 εt ) dz e i z 2 + x/(2 εt ) dz f t x 2 4ε z 2 f(t) e i z 2 + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaamOzaiaaiIcacaWG0bGaaG ykaiabgwSixpaapehabeWcbaGaamiEaiaai+cacaaIOaGaaGOmamaa kaaabaGaeqyTduMaamiDaaqabaGaaGykaaqaaiabg6HiLcqdcqGHRi I8aOGaamizaiaadQhacqGHflY1caWGLbWaaWbaaSqabeaacaWGPbGa amOEamaaCaaabeqaaiaaikdaaaaaaOGaey4kaSYaa8qCaeqaleaaca WG4bGaaG4laiaaiIcacaaIYaWaaOaaaeaacqaH1oqzcaWG0baabeaa caaIPaaabaGaeyOhIukaniabgUIiYdGccaWGKbGaamOEaiabgwSixp aadmaabaGaamOzamaabmaabaGaamiDaiabgkHiTmaalaaabaGaamiE amaaCaaaleqabaGaaGOmaaaaaOqaaiaaisdacqaH1oqzcaWG6bWaaW baaSqabeaacaaIYaaaaaaaaOGaayjkaiaawMcaaiabgkHiTiaadAga caaIOaGaamiDaiaaiMcaaiaawUfacaGLDbaacaWGLbWaaWbaaSqabe aacaWGPbGaamOEamaaCaaabeqaaiaaikdaaaaaaOGaey4kaScaaa@6FCC@

+ x/(2 εt ) dzf t x 2 4ε z 2 1+ x 3 16 ε 2 z 4 1 e i z 2 + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWdXbqabSqaaiaadIhaca aIVaGaaGikaiaaikdadaGcaaqaaiabew7aLjaadshaaeqaaiaaiMca aeaacqGHEisPa0Gaey4kIipakiaadsgacaWG6bGaeyyXICTaamOzam aabmaabaGaamiDaiabgkHiTmaalaaabaGaamiEamaaCaaaleqabaGa aGOmaaaaaOqaaiaaisdacqaH1oqzcaWG6bWaaWbaaSqabeaacaaIYa aaaaaaaOGaayjkaiaawMcaamaadmaabaWaaeWaaeaacaaIXaGaey4k aSYaaSaaaeaacaWG4bWaaWbaaSqabeaacaaIZaaaaaGcbaGaaGymai aaiAdacqaH1oqzdaahaaWcbeqaaiaaikdaaaGccaWG6bWaaWbaaSqa beaacaaI0aaaaaaaaOGaayjkaiaawMcaaiabgkHiTiaaigdaaiaawU facaGLDbaacaWGLbWaaWbaaSqabeaacaWGPbGaamOEamaaCaaabeqa aiaaikdaaaaaaOGaey4kaScaaa@5F8A@

+ x/(2 εt ) dzf t x 2 4ε z 2 1+ x 3 16 ε 2 z 4 exp i x 6 768 ε 4 z 6 i x 3 8 ε 2 z 2 1 e i z 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWdXbqabSqaaiaadIhaca aIVaGaaGikaiaaikdadaGcaaqaaiabew7aLjaadshaaeqaaiaaiMca aeaacqGHEisPa0Gaey4kIipakiaadsgacaWG6bGaeyyXICTaamOzam aabmaabaGaamiDaiabgkHiTmaalaaabaGaamiEamaaCaaaleqabaGa aGOmaaaaaOqaaiaaisdacqaH1oqzcaWG6bWaaWbaaSqabeaacaaIYa aaaaaaaOGaayjkaiaawMcaamaabmaabaGaaGymaiabgUcaRmaalaaa baGaamiEamaaCaaaleqabaGaaG4maaaaaOqaaiaaigdacaaI2aGaeq yTdu2aaWbaaSqabeaacaaIYaaaaOGaamOEamaaCaaaleqabaGaaGin aaaaaaaakiaawIcacaGLPaaadaWadaqaaiGacwgacaGG4bGaaiiCam aabmaabaGaeyOeI0YaaSaaaeaacaWGPbGaamiEamaaCaaaleqabaGa aGOnaaaaaOqaaiaaiEdacaaI2aGaaGioaiabew7aLnaaCaaaleqaba GaaGinaaaakiaadQhadaahaaWcbeqaaiaaiAdaaaaaaOGaeyOeI0Ya aSaaaeaacaWGPbGaamiEamaaCaaaleqabaGaaG4maaaaaOqaaiaaiI dacqaH1oqzdaahaaWcbeqaaiaaikdaaaGccaWG6bWaaWbaaSqabeaa caaIYaaaaaaaaOGaayjkaiaawMcaaiabgkHiTiaaigdaaiaawUfaca GLDbaacaWGLbWaaWbaaSqabeaacaWGPbGaamOEamaaCaaabeqaaiaa ikdaaaaaaOGaaGOlaaaa@77A2@

 Оценим три последних слагаемых, учитывая неравенство 0 x 2 4ε z 2 tT MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaeyizIm6aaSaaaeaacaWG4b WaaWbaaSqabeaacaaIYaaaaaGcbaGaaGinaiabew7aLjaadQhadaah aaWcbeqaaiaaikdaaaaaaOGaeyizImQaamiDaiabgsMiJkaadsfaaa a@3FC3@ . Будем иметь при x[δ,+) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaeyicI4SaaG4waiabes7aKj aaiYcacqGHRaWkcqGHEisPcaaIPaaaaa@3A88@ , δ>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH0oazcaaI+aGaaGimaaaa@34E8@ :

x/(2 εt ) dz f t x 2 4ε z 2 f(t) e i z 2 = f(t)f(0) εt ix e i x 2 ( 4εt) +O εt x 2 =O ε x ; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiaadIhacaaIVaGaaG ikaiaaikdadaGcaaqaaiabew7aLjaadshaaeqaaiaaiMcaaeaacqGH EisPa0Gaey4kIipakiaadsgacaWG6bGaeyyXIC9aamWaaeaacaWGMb WaaeWaaeaacaWG0bGaeyOeI0YaaSaaaeaacaWG4bWaaWbaaSqabeaa caaIYaaaaaGcbaGaaGinaiabew7aLjaadQhadaahaaWcbeqaaiaaik daaaaaaaGccaGLOaGaayzkaaGaeyOeI0IaamOzaiaaiIcacaWG0bGa aGykaaGaay5waiaaw2faaiabgwSixlaadwgadaahaaWcbeqaaiaadM gacaWG6bWaaWbaaeqabaGaaGOmaaaaaaGccaaI9aWaaSaaaeaadaqa daqaaiaadAgacaaIOaGaamiDaiaaiMcacqGHsislcaWGMbGaaGikai aaicdacaaIPaaacaGLOaGaayzkaaWaaOaaaeaacqaH1oqzcaWG0baa leqaaaGcbaGaamyAaiaadIhaaaGaamyzamaaCaaaleqabaGaamyAam aalaaabaGaamiEamaaCaaabeqaaiaaikdaaaaabaGaaGikaaaacaaI 0aGaeqyTduMaamiDaiaaiMcaaaGccqGHRaWkcaWGpbWaaeWaaeaada Wcaaqaaiabew7aLjaadshaaeaacaWG4bWaaWbaaSqabeaacaaIYaaa aaaaaOGaayjkaiaawMcaaiaai2dacaWGpbWaaeWaaeaadaWcaaqaam aakaaabaGaeqyTdugaleqaaaGcbaGaamiEaaaaaiaawIcacaGLPaaa caaI7aaaaa@7D1C@

x/(2 εt ) dzf t x 2 4ε z 2 1+ x 3 16 ε 2 z 4 1 e i z 2 = x/(2 εt ) dzf t x 2 4ε z 2 x 3 16 ε 2 z 4 e i z 2 = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiaadIhacaaIVaGaaG ikaiaaikdadaGcaaqaaiabew7aLjaadshaaeqaaiaaiMcaaeaacqGH EisPa0Gaey4kIipakiaadsgacaWG6bGaeyyXICTaamOzamaabmaaba GaamiDaiabgkHiTmaalaaabaGaamiEamaaCaaaleqabaGaaGOmaaaa aOqaaiaaisdacqaH1oqzcaWG6bWaaWbaaSqabeaacaaIYaaaaaaaaO GaayjkaiaawMcaamaadmaabaWaaeWaaeaacaaIXaGaey4kaSYaaSaa aeaacaWG4bWaaWbaaSqabeaacaaIZaaaaaGcbaGaaGymaiaaiAdacq aH1oqzdaahaaWcbeqaaiaaikdaaaGccaWG6bWaaWbaaSqabeaacaaI 0aaaaaaaaOGaayjkaiaawMcaaiabgkHiTiaaigdaaiaawUfacaGLDb aacaWGLbWaaWbaaSqabeaacaWGPbGaamOEamaaCaaabeqaaiaaikda aaaaaOGaaGypamaapehabeWcbaGaamiEaiaai+cacaaIOaGaaGOmam aakaaabaGaeqyTduMaamiDaaqabaGaaGykaaqaaiabg6HiLcqdcqGH RiI8aOGaamizaiaadQhacqGHflY1caWGMbWaaeWaaeaacaWG0bGaey OeI0YaaSaaaeaacaWG4bWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGin aiabew7aLjaadQhadaahaaWcbeqaaiaaikdaaaaaaaGccaGLOaGaay zkaaWaaSaaaeaacaWG4bWaaWbaaSqabeaacaaIZaaaaaGcbaGaaGym aiaaiAdacqaH1oqzdaahaaWcbeqaaiaaikdaaaGccaWG6bWaaWbaaS qabeaacaaI0aaaaaaakiaadwgadaahaaWcbeqaaiaadMgacaWG6bWa aWbaaeqabaGaaGOmaaaaaaGccaaI9aaaaa@8499@

= x 3 16 ε 2 x/(2 εt ) dzf t x 2 4ε z 2 1 z 4 e i z 2 =O ε x ; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaaSaaaeaacaWG4bWaaWbaaS qabeaacaaIZaaaaaGcbaGaaGymaiaaiAdacqaH1oqzdaahaaWcbeqa aiaaikdaaaaaaOWaa8qCaeqaleaacaWG4bGaaG4laiaaiIcacaaIYa WaaOaaaeaacqaH1oqzcaWG0baabeaacaaIPaaabaGaeyOhIukaniab gUIiYdGccaWGKbGaamOEaiabgwSixlaadAgadaqadaqaaiaadshacq GHsisldaWcaaqaaiaadIhadaahaaWcbeqaaiaaikdaaaaakeaacaaI 0aGaeqyTduMaamOEamaaCaaaleqabaGaaGOmaaaaaaaakiaawIcaca GLPaaadaWcaaqaaiaaigdaaeaacaWG6bWaaWbaaSqabeaacaaI0aaa aaaakiaadwgadaahaaWcbeqaaiaadMgacaWG6bWaaWbaaeqabaGaaG OmaaaaaaGccaaI9aGaam4tamaabmaabaWaaSaaaeaadaGcaaqaaiab ew7aLbWcbeaaaOqaaiaadIhaaaaacaGLOaGaayzkaaGaaG4oaaaa@5F5A@

x/(2 εt ) dzf t x 2 4ε z 2 1+ x 3 16 ε 2 z 4 exp i x 6 768 ε 4 z 6 i x 3 8 ε 2 z 2 1 e i z 2 = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiaadIhacaaIVaGaaG ikaiaaikdadaGcaaqaaiabew7aLjaadshaaeqaaiaaiMcaaeaacqGH EisPa0Gaey4kIipakiaadsgacaWG6bGaeyyXICTaamOzamaabmaaba GaamiDaiabgkHiTmaalaaabaGaamiEamaaCaaaleqabaGaaGOmaaaa aOqaaiaaisdacqaH1oqzcaWG6bWaaWbaaSqabeaacaaIYaaaaaaaaO GaayjkaiaawMcaamaabmaabaGaaGymaiabgUcaRmaalaaabaGaamiE amaaCaaaleqabaGaaG4maaaaaOqaaiaaigdacaaI2aGaeqyTdu2aaW baaSqabeaacaaIYaaaaOGaamOEamaaCaaaleqabaGaaGinaaaaaaaa kiaawIcacaGLPaaadaWadaqaaiGacwgacaGG4bGaaiiCamaabmaaba GaeyOeI0YaaSaaaeaacaWGPbGaamiEamaaCaaaleqabaGaaGOnaaaa aOqaaiaaiEdacaaI2aGaaGioaiabew7aLnaaCaaaleqabaGaaGinaa aakiaadQhadaahaaWcbeqaaiaaiAdaaaaaaOGaeyOeI0YaaSaaaeaa caWGPbGaamiEamaaCaaaleqabaGaaG4maaaaaOqaaiaaiIdacqaH1o qzdaahaaWcbeqaaiaaikdaaaGccaWG6bWaaWbaaSqabeaacaaIYaaa aaaaaOGaayjkaiaawMcaaiabgkHiTiaaigdaaiaawUfacaGLDbaaca WGLbWaaWbaaSqabeaacaWGPbGaamOEamaaCaaabeqaaiaaikdaaaaa aOGaaGypaaaa@76CF@

=f(0) 1+ t 16x exp i t 3 12ε + xt 2ε 1 εt ix e i x 2 /(4εt) +O( ε x 2 )=O ε x . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaamOzaiaaiIcacaaIWaGaaG ykamaabmaabaGaaGymaiabgUcaRmaalaaabaGaamiDaaqaaiaaigda caaI2aGaamiEaaaaaiaawIcacaGLPaaadaWadaqaaiGacwgacaGG4b GaaiiCamaabmaabaGaeyOeI0IaamyAamaabmaabaWaaSaaaeaacaWG 0bWaaWbaaSqabeaacaaIZaaaaaGcbaGaaGymaiaaikdacqaH1oqzaa Gaey4kaSYaaSaaaeaacaWG4bGaamiDaaqaaiaaikdacqaH1oqzaaaa caGLOaGaayzkaaaacaGLOaGaayzkaaGaeyOeI0IaaGymaaGaay5wai aaw2faamaalaaabaWaaOaaaeaacqaH1oqzcaWG0baaleqaaaGcbaGa amyAaiaadIhaaaGaamyzamaaCaaaleqabaGaamyAaiaadIhadaahaa qabeaacaaIYaaaaiaai+cacaaIOaGaaGinaiabew7aLjaadshacaaI PaaaaOGaey4kaSIaam4taiaaiIcadaWcaaqaaiabew7aLbqaaiaadI hadaahaaWcbeqaaiaaikdaaaaaaOGaaGykaiaai2dacaWGpbWaaeWa aeaadaWcaaqaamaakaaabaGaeqyTdugaleqaaaGcbaGaamiEaaaaai aawIcacaGLPaaacaaIUaaaaa@6D9E@

 Складывая все три оценки, получим

χ ^ (f(t))=f(t)ierfc x 2 εt +O ε x . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaHhpWygaqcaiaaiIcacaWGMbGaaG ikaiaadshacaaIPaGaaGykaiaai2dacaWGMbGaaGikaiaadshacaaI PaGaeyyXICTaamyAaiaadwgacaWGYbGaamOzaiaadogadaqadaqaam aalaaabaGaamiEaaqaaiaaikdadaGcaaqaaiabew7aLjaadshaaSqa baaaaaGccaGLOaGaayzkaaGaey4kaSIaam4tamaabmaabaWaaSaaae aadaGcaaqaaiabew7aLbWcbeaaaOqaaiaadIhaaaaacaGLOaGaayzk aaGaaGOlaaaa@5019@

 Лемма доказана.

8. Заключение.

Как отмечено во введении, основной проблемой метода регуляризации С. А. Ломова является поиск регуляризирующих функций. В случае спектральных особенностей у предельного оператора выделение сингулярной зависимости решения от малого параметра достаточно трудная задача. В предложенной работе для смешанной задачи на полуоси для неоднородного уравнения Шрёдингера со спектральной особенностью в виде сильной точки поворота регуляризация, как выяснилось, состоит из трёх частей:

  1. описание пограничного слоя, обусловленного точкой t=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaaGypaiaaicdaaaa@343B@ ;
  2. выделение сингулярностей, связанных с точечной необратимостью предельного оператора;
  3. описание пограничного слоя обусловленного точкой x=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGypaiaaicdaaaa@343F@ .

 В статье описанные проблемы успешно разрешены путем введения регуляризирующей функции и двух дополнительных сингулярных операторов. Тем самым основные трудности метода регуляризации для поставленной задачи успешно преодолены, что подтверждается результатами наших исследований. Продолжением этих исследований является обобщение предложенного в статье подхода для построения асимптотического ряда на другие задачи математической физики с подобного рода спектральными особенностями у предельного оператора.

 

[1] Строго говоря, постоянная Планка MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqWIpecAaaa@32EA@  является размерной величиной и имеет вполне конкретное значение, и утверждение о малости MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqWIpecAaaa@32EA@  следует понимать в том смысле, что можно выделить безразмерную комбинацию параметров, содержащую MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqWIpecAaaa@32EA@  в некоторой степени, малую по сравнению с другими безразмерными параметрами, не содержащими MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqWIpecAaaa@32EA@ .

×

Об авторах

Александр Георгиевич Елисеев

Национальный исследовательский университет «Московский энергетический институт»

Автор, ответственный за переписку.
Email: yeliseevag@mpei.ru
Россия, Москва

Павел Владимирович Кириченко

Национальный исследовательский университет «Московский энергетический институт»

Email: kirichenkopv@mpei.ru
Россия, Москва

Список литературы

  1. Арнольд В. И. О матрицах, зависящих от параметров// Усп. мат. наук. — 1971. — 26, № 2 (158). — С. 101–114.
  2. Бободжанов А. А., Сафонов В. Ф. Курс высшей математики. Сингулярно возмущенные уравнения и метод регуляризации. — М.: МЭИ, 2012
  3. Бободжанов А. А., Сафонов В. Ф. Регуляризованная асимптотика решений интегродифференциальных уравнений с частными производными с быстро изменяющимися ядрами// Уфим. мат. ж. — 2018. — 10, № 2. — С. 3–12.
  4. Елисеев А. Г. Пример решения сингулярно возмущенной задачи Коши для параболического уравнения при наличии «сильной» точки поворота// Диффер. уравн. процессы управл. — 2022. — № 3. — С. 46– 58.
  5. Елисеев А. Г. Регуляризованное решение сингулярно возмущенной задачи Коши при наличии иррациональной «простой» точки поворота// Диффер. уравн. процессы управл. — 2020. — № 2. — С. 15–32.
  6. Елисеев А. Г., Кириченко П. В. Регуляризованное асимптотическое решение задачи Коши для неоднородного уравнения Шрёдингера в квазиклассическом приближении в присутствии «сильной» точки поворота у предельного оператора// Диффер. уравн. процессы управл. — 2023. — № 1. — С. 110–124.
  7. Елисеев А. Г., Кириченко П. В. Решение сингулярно возмущенной задача Коши при наличии «слабой» точки поворота у предельного оператора// Сиб. электрон. мат. изв. — 2020. — 17. — С. 51–60.
  8. Елисеев А. Г., Кириченко П. В. Cингулярно возмущенная задача Коши при наличии «слабой» точки поворота первого порядка у предельного оператора с кратным спектром// Диффер. уравн. — 2022. — 58, № 6. — С. 733–746.
  9. Елисеев А. Г., Ломов С. А. Теория сингулярных возмущений в случае спектральных особенностей предельного оператора// Мат. сб. — 1986. — 131, № 173. — С. 544–557.
  10. Елисеев А. Г., Ратникова Т. А. Сингулярно возмущенная задача Коши при наличии рациональной «простой» точки поворота// Диффер. уравн. процессы управл. — 2019. — № 3. — С. 63–73. 11. Кириченко П. В. 2020// Мат. заметки СВФУ. — № 3. — С. 3–15
  11. Ландау Л. Д., Лифшиц Е. М. Курс теоретической физики. Т. 3. Квантовая механика (нерелятивистская теория). — М.: Наука, 2008
  12. Ломов С. А. Введение в общую теорию сингулярных возмущений. — М.: Наука, 1981
  13. Ломов С. А., Ломов И. С. Основы математической теории пограничного слоя. — М.: МГУ, 2011
  14. Ломов С. А., Сафонов В. Ф. Регуляризации и асимптотические решения для сингулярно возмущенных задач с точечными особенностями спектра предельного оператора// Укр. мат. ж. — 1984. — 36, № 2. — С. 172–180.
  15. Тихонов А. Н., Самарский А. А. Уравнения математической физики. — М.: Наука, 1977.
  16. Эльсгольц Л. Э. Дифференциальные уравнения и вариационное исчисление. — М.: Наука, 1969.
  17. Liouville J. Second mémoire sur le développement des fonctions ou parties de functions en séries dont les divers termes sont assujétis á satisfaire á une même équation diff´erentielle du second ordre, contenant un paramétre variable// J. Math. Pures Appl. — 1837. — P. 16–35.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Елисеев А.Г., Кириченко П.В., 2024

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).