Системы с пятью степенями свободы с диссипацией: анализ и интегрируемость. I. Порождающая задача из динамики многомерного твердого тела, помещенного в неконсервативное поле сил

Обложка

Цитировать

Полный текст

Аннотация

Работа является первой частью обзора по вопросам интегрируемости систем с пятью степенями свободы. Обзор состоит из трех частей. В данной первой части подробно изложена порождающая задача из динамики многомерного твердого тела, помещенного в неконсервативное поле сил. Во второй и третьей частях, которые будут опубликованы в следующем выпуске, рассмотрены более общие динамические системы на касательных расслоениях к пятимерной сфере и к достаточно обширному классу других гладких многообразий. Доказаны теоремы о достаточных условиях интегрируемости рассматриваемых динамических систем в классе трансцендентных функций.

Об авторах

Максим Владимирович Шамолин

Московский государственный университет имени М. В. Ломоносова

Автор, ответственный за переписку.
Email: shamolin.maxim@yandex.ru
Россия, Москва

Список литературы

  1. Айдагулов Р. Р., Шамолин М. В. Архимедовы равномерные структуры// Совр. мат. Фундам. напр. — 2007. — 23. — С. 46–51.
  2. Айдагулов Р. Р., Шамолин М. В. Многообразия непрерывных структур// Совр. мат. Фундам. напр. — 2007. — 23. — С. 71–86.
  3. Богоявленский О. И. Динамика твердого тела с n эллипсоидальными полостями, заполненными магнитной жидкостью// Докл. АН СССР. — 1983. — 272, № 6. — С. 1364–1367
  4. Богоявленский О. И. Некоторые интегрируемые случаи уравнений Эйлера// Докл. АН СССР. — 1986. — 287, № 5. — С. 1105–1108.
  5. Бурбаки Н. Интегрирование. Меры, интегрирование мер. — М.: Наука, 1967
  6. Бурбаки Н. Интегрирование. Меры на локально компактных пространствах. Продолжение меры. Интегрирование мер. Меры на отделимых пространствах. — М.: Наука, 1977. 7. Веселов А. П. Об условиях интегрируемости уравнений Эйлера на so(4)// Докл. АН СССР. — 1983. — 270, № 6. — С. 1298–1300.
  7. Георгиевский Д. В., Шамолин М. В. Кинематика и геометрия масс твердого тела с неподвижной точкой в ℝⁿ// Докл. РАН. — 2001. — 380, № 1. — С. 47–50
  8. Георгиевский Д. В., Шамолин М. В. Обобщенные динамические уравнения Эйлера для твердого тела с неподвижной точкой в ℝⁿ // Докл. РАН. — 2002. — 383, № 5. — С. 635–637
  9. Георгиевский Д. В., Шамолин М. В. Первые интегралы уравнений движения обобщенного гироскопа в Rn// Вестн. Моск. ун-та. Сер. 1. Мат. Мех. — 2003. — 5. — С. 37–41
  10. Георгиевский Д. В., Шамолин М. В. Символы Леви-Чивиты, обобщенные векторные произведения и новые случаи интегрируемости в механике многомерного тела// Совр. мат. прилож. — 2012. — 76. — С. 22–39.
  11. Дубровин Б. А., Новиков С. П., Фоменко А. Т. Современная геометрия. — М.: Наука, 1979
  12. Ерошин В. А., Самсонов В. А., Шамолин М. В. Модельная задача о торможении тела в сопротивляющейся среде при струйном обтекании// Изв. РАН. Мех. жидк. газа. — 1995. — № 3. — С. 23–27
  13. Иванова Т. А. Об уравнениях Эйлера в моделях теоретической физики// Мат. заметки. — 1992. — 52, № 2. — С. 43–51.
  14. Козлов В. В. Интегрируемость и неинтегрируемость в гамильтоновой механике// Усп. мат. наук. — 1983. — 38, № 1. — С. 3–67.
  15. Козлов В. В. Рациональные интегралы квазиоднородных динамических систем// Прикл. мат. мех. — 2015. — 79, № 3. — С. 307–316.
  16. Козлов В. В. Тензорные инварианты и интегрирование дифференциальных уравнений// Усп. мат. наук. — 2019. — 74, № 1 (445). — С. 117–148
  17. Колмогоров А. Н. О динамических системах с интегральным инвариантом на торе// Докл. АН СССР. — 1953. — 93, № 5. — С. 763–766.
  18. Локшин Б. Я., Самсонов В. А., Шамолин М. В. Маятниковые системы с динамической симметрией// Совр. мат. прилож. — 2016. — 100. — С. 76–133
  19. Манаков С. В. Замечание об интегрировании уравнений Эйлера динамики n-мерного твердого тела// Функц. анал. прилож. — 1976. — 10, № 4. — С. 93–94.
  20. Походня Н. В., Шамолин М. В. Новый случай интегрируемости в динамике многомерного тела// Вестн. СамГУ. Естественнонауч. сер. — 2012. — 9, № 100. — С. 136–150
  21. Походня Н. В., Шамолин М. В. Некоторые условия интегрируемости динамических систем в трансцендентных функциях// Вестн. СамГУ. Естественнонауч. сер. — 2013. — 9/1, № 110. — С. 35–41
  22. Походня Н. В., Шамолин М. В. Интегрируемые системы на касательном расслоении к многомерной сфере// Вестн. СамГУ. Естественнонауч. сер. — 2014. — 7, № 118. — С. 60–69
  23. Самсонов В. А., Шамолин М. В. К задаче о движении тела в сопротивляющейся среде// Вестн. Моск. ун-та. Сер. 1. Мат. мех. — 1989. — № 3. — С. 51–54. 25. Тихонов А. А. Метод управления для угловой стабилизации электродинамической тросовой системы// Автомат. телемех. — 2020. — № 2. — С. 91–114
  24. Трофимов В. В. Уравнения Эйлера на конечномерных разрешимых группах Ли// Изв. АН СССР.
  25. Сер. мат. — 1980. — 44, № 5. — С. 1191–1199
  26. Трофимов В. В., Шамолин М. В. Геометрические и динамические инварианты интегрируемых гамильтоновых и диссипативных систем// Фундам. прикл. мат. — 2010. — 16, № 4. — С. 3–229
  27. Чаплыгин С. А. О движении тяжелых тел в несжимаемой жидкости// в кн.: Полн. собр. соч. Т. 1. — Л.: Изд-во АН СССР, 1933. — С. 133–135. 29. Шабат Б. В. Введение в комплексный анализ. — М.: Наука, 1987
  28. Шамолин М. В. К задаче о движении тела в среде с сопротивлением// Вестн. Моск. ун-та. Сер. 1.
  29. Мат. Мех. — 1992. — 1. — С. 52–58
  30. Шамолин М. В. Классификация фазовых портретов в задаче о движении тела в сопротивляющейся среде при наличии линейного демпфирующего момента// Прикл. мат. мех. — 1993. — 57, № 4. — С. 40–49.
  31. Шамолин М. В. Введение в задачу о торможении тела в сопротивляющейся среде и новое двухпараметрическое семейство фазовых портретов// Вестн. Моск. ун-та. Сер. 1. Мат. Мех. — 1996. — 4. — С. 57–69.
  32. Шамолин М. В. Об интегрируемости в трансцендентных функциях// Усп. мат. наук. — 1998. — 53, № 3. — С. 209–210.
  33. Шамолин М. В. Новые интегрируемые по Якоби случаи в динамике твердого тела, взаимодействующего со средой// Докл. РАН. — 1999. — 364, № 5. — С. 627–629
  34. Шамолин М. В. Интегрируемость по Якоби в задаче о движении четырехмерного твердого тела в сопротивляющейся среде// Докл. РАН. — 2000. — 375, № 3. — С. 343–346. 36. Шамолин М. В. Об интегрировании некоторых классов неконсервативных систем// Усп. мат. наук. — 2002. — 57, № 1. — С. 169–170.
  35. Шамолин М. В. Об одном интегрируемом случае уравнений динамики на so(4)×R4// Усп. мат. наук. — 2005. — 60, № 6. — С. 233–234.
  36. Шамолин М. В. Сопоставление интегрируемых по Якоби случаев плоского и пространственного движения тела в среде при струйном обтекании// Прикл. мат. мех. — 2005. — 69, № 6. — С. 1003–1010
  37. Шамолин М. В. Случай полной интегрируемости в динамике на касательном расслоении двумерной сферы// Усп. мат. наук. — 2007. — 62, № 5. — С. 169–170
  38. Шамолин М. В. Динамические системы с переменной диссипацией: подходы, методы, приложения// Фундам. прикл. мат. — 2008. — 14, № 3. — С. 3–237. 41. Шамолин М. В. Новые случаи полной интегрируемости в динамике динамически симметричного четырехмерного твердого тела в неконсервативном поле// Докл. РАН. — 2009. — 425, № 3. — С. 338–342
  39. Шамолин М. В. Случай полной интегрируемости в динамике четырехмерного твердого тела в неконсервативном поле// Усп. мат. наук. — 2010. — 65, № 1. — С. 189–190. 43. Шамолин М. В. Новый случай интегрируемости в динамике четырехмерного твердого тела в неконсервативном поле// Докл. РАН. — 2011. — 437, № 2. — С. 190–193
  40. Шамолин М. В. Полный список первых интегралов в задаче о движении четырехмерного твердого тела в неконсервативном поле при наличии линейного демпфирования// Докл. РАН. — 2011. — 440, № 2. — С. 187–190.
  41. Шамолин М. В. Новый случай интегрируемости в динамике четырехмерного твердого тела в неконсервативном поле при наличии линейного демпфирования// Докл. РАН. — 2012. — 444, № 5. — С. 506–509
  42. Шамолин М. В. Новый случай интегрируемости в динамике многомерного твердого тела в неконсервативном поле// Докл. РАН. — 2013. — 453, № 1. — С. 46–49.
  43. Шамолин М. В. Новый случай интегрируемости уравнений динамики на касательном расслоении к трехмерной сфере// Усп. мат. наук. — 2013. — 68, № 5 (413). — С. 185–186
  44. Шамолин М. В. Полный список первых интегралов динамических уравнений движения четырехмерного твердого тела в неконсервативном поле при наличии линейного демпфирования// Докл. РАН. — 2013. — 449, № 4. — С. 416–419.
  45. Шамолин М. В. Новый случай интегрируемости в динамике многомерного твердого тела в неконсервативном поле при учете линейного демпфирования// Докл. РАН. — 2014. — 457, № 5. — С. 542–545
  46. Шамолин М. В. Интегрируемые системы с переменной диссипацией на касательном расслоении к многомерной сфере и приложения// Фундам. прикл. мат. — 2015. — 20, № 4. — С. 3–231
  47. Шамолин М. В. Полный список первых интегралов динамических уравнений движения многомерного твердого тела в неконсервативном поле// Докл. РАН. — 2015. — 461, № 5. — С. 533–536
  48. Шамолин М. В. Полный список первых интегралов уравнений движения многомерного твердого тела в неконсервативном поле при наличии линейного демпфирования// Докл. РАН. — 2015. — 464, № 6. — С. 688–692.
  49. Шамолин М. В. Интегрируемые неконсервативные динамические системы на касательном расслоении к многомерной сфере// Диффер. уравн. — 2016. — 52, № 6. — С. 743–759
  50. Шамолин М. В. Новые случаи интегрируемых систем с диссипацией на касательном расслоении двумерного многообразия// Докл. РАН. — 2017. — 475, № 5. — С. 519–523. 55. Шамолин М. В. Новые случаи интегрируемых систем с диссипацией на касательном расслоении к многомерной сфере// Докл. РАН. — 2017. — 474, № 2. — С. 177–181
  51. Шамолин М. В. Новые случаи интегрируемых систем с диссипацией на касательном расслоении трехмерного многообразия// Докл. РАН. — 2017. — 477, № 2. — С. 168–172
  52. Шамолин М. В. Интегрируемые динамические системы с конечным числом степеней свободы с диссипацией// Пробл. мат. анал. — 2018. — № 95. — С. 79–101
  53. Шамолин М. В. Новые случаи интегрируемых систем с диссипацией на касательном расслоении многомерного многообразия// Докл. РАН. — 2018. — 482, № 5. — С. 527–533
  54. Шамолин М. В. Новые случаи интегрируемых систем с диссипацией на касательном расслоении четырехмерного многообразия// Докл. РАН. — 2018. — 479, № 3. — С. 270–276
  55. Шамолин М. В. Интегрируемые динамические системы с диссипацией. Кн. 1. Твердое тело в неконсервативном поле. — М.: ЛЕНАНД, 2019
  56. Шамолин М. В. Новые случаи интегрируемых систем девятого порядка с диссипацией// Докл. РАН. — 2019. — 489, № 6. — С. 592–598.
  57. Шамолин М. В. Новые случаи интегрируемых систем пятого порядка с диссипацией// Докл. РАН. — 2019. — 485, № 5. — С. 583–587.
  58. Шамолин М. В. Новые случаи интегрируемых систем седьмого порядка с диссипацией// Докл. РАН. — 2019. — 487, № 4. — С. 381–386.
  59. Шамолин М. В. Интегрируемые динамические системы с диссипацией. Кн. 2: Закрепленные маятники разной размерности. — М.: ЛЕНАНД, 2021
  60. Шамолин М. В. Новые случаи интегрируемых систем нечетного порядка с диссипацией// Докл. РАН.
  61. Мат. информ. процессы управл. — 2020. — 491, № 1. — С. 95–101
  62. Шамолин М. В. Новые случаи однородных интегрируемых систем с диссипацией на касательном расслоении двумерного многообразия// Докл. РАН. Мат. информ. процессы управл. — 2020. — 494, № 1. — С. 105–111.
  63. Шамолин М. В. Новые случаи однородных интегрируемых систем с диссипацией на касательном расслоении трехмерного многообразия// Докл. РАН. Мат. информ. процессы управл. — 2020. — 495, № 1. — С. 84–90.
  64. Шамолин М. В. Новые случаи однородных интегрируемых систем с диссипацией на касательном расслоении четырехмерного многообразия// Докл. РАН. Мат. информ. процессы управл. — 2021. — 497, № 1. — С. 23–30.
  65. Шамолин М. В. Новые случаи интегрируемости геодезических, потенциальных и диссипативных систем на касательном расслоении конечномерного многообразия// Докл. РАН. Мат. информ. процессы управл. — 2021. — 500, № 1. — С. 78–86.
  66. Aleksandrov A. Y., Aleksandrova E. B., Tikhonov A. A. On the monoaxial stabilization of a rigid body under vanishing restoring torque// AIP Conf. Proc. — 2018. — 1959. — 080001
  67. Poincar´e H. Calcul des probabilit´es. — Paris: Gauthier-Villars, 1912.
  68. Shamolin M. V. Some questions of the qualitative theory of ordinary differential equations and dynamics of a rigid body interacting with a medium// J. Math. Sci. — 2002. — 110, № 2. — P. 2528–2557
  69. Tikhonov A. A., Yakovlev A. B. On dependence of equilibrium characteristics of the space tethered system on environmental parameters// Int. J. Plasma Env. Sci. Techn.. — 13, № 1. — P. 49–52.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Шамолин М.В., 2022

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).