Асимптотическая задача о восстановлении высокочастотной правой части телеграфного уравнения

Обложка

Цитировать

Полный текст

Аннотация

В работе рассматривается задача Коши для телеграфного уравнения. Младший коэффициент и правая часть уравнения осциллируют по времени с большой частотой, причём амплитуда младшего коэффициента мала — обратно пропорциональна частоте, а правая часть не известна. Исследован вопрос о её восстановлении по заданной в некоторой точке пространства трёхчленной асимптотике решения. При решении задачи используется неклассический алгоритм решения обратных коэффициентных задач с быстро осциллирующими по времени данными.

Полный текст

1. Введение

В работе рассматривается задача Коши для телеграфного уравнения. Младший коэффициент и правая часть уравнения осциллируют по времени с большой частотой ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdChaaa@37C4@ , причём амплитуда младшего коэффициента мала — пропорциональна ω 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaW baaSqabeaacqGHsislcaaIXaaaaaaa@3999@ , а правая часть не известна. (Термин « телеграфное уравнение»  в данной работе можно заменить на «волновое уравнение с малым младшим членом».) Исследован вопрос о её восстановлении по заданной в некоторой точке пространства трёхчленной асимптотике решения (на самом деле, непосредственно задаётся принципиально меньше MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ подробнее об этом сказано в последнем абзаце введения). При решении задачи используется неклассический алгоритм решения обратных коэффициентных задач с быстро осциллирующими по времени данными (см. [1, 2, 10, 13, 14]).

В настоящее время теория обратных задач (включая задачу о восстановлении источника) разработана с большой полнотой (см., например, [3–6, 11, 15]). Однако задачи с быстро осциллирующими данными в классической теории не рассматривались. Вместе с тем обратные задачи для уравнений такого типа часто встречаются при математическом моделировании физических, химических и иных процессов, протекающих в средах с неизвестными характеристиками, подверженных высокочастотному воздействию электромагнитных, акустических, вибрационных и т. п. полей. Укажем некоторые примеры таких уравнений: уравнение теплопроводности для стержня, через который пропускается высокочастотный электрический ток, вследствие чего в стержне образуются высокочастотные тепловые источники; волновое уравнение, описывающее колебания стержня под действием высокочастотных внешних сил (вспомним знаменитую задачу В. Н. Челомея о высокочастотных сжатиях —  растяжениях стержня, стабилизирующих его прямолинейную форму); уравнение переноса вещества в несжимаемой жидкости при наличии высокочастотных источников; уравнения тепловой конвекции жидкости в сосуде при его высокочастотных вибрациях (см [7 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ 9,12]) и др.

В работах [1, 2, 10, 13, 14] и в данной работе используется новый подход к постановке и решению обратных коэффициентных высокочастотных задач, лежащий на стыке двух дисциплин  асимптотические методы и обратные задачи. В связи с этим решение обратной задачи разбито там на две части (этапы), относящиеся к соответствующим дисциплинам, и нужно следить за согласованностью (например, в смысле гладкости функций) указанных частей. В этих работах исследуются обратные задачи для эволюционных уравнений с неизвестным быстро осциллирующим источником (в [1, 2, 10, 13, 14] —  начально-краевые задачи; в данной работе —  задача Коши). Подчеркнём в заключение, что специфика используемого подхода к постановке обратной задачи состоит в следующем: здесь в условии переопределения участвует не точное решение, как в классике, а лишь его частичная асимптотика, длина которой вычисляется на первом этапе решения обратной задачи; при этом необходимая для условия переопределения информация задаётся не для всех коэффициентов этой асимптотики, а лишь для некоторых « базисных» (нужные сведения для остальных коэффициентов однозначно определяются из « базисных» ). Так, в данной работе в постановке обратной задачи (в условии переопределения) участвуют коэффициенты трёхчленной асимптотики, вычисленные в фиксированной точке пространства —  это функции q(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiaaiI cacaWG0bGaaGykaaaa@394B@ , ϕ(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaG ikaiaadshacaaIPaaaaa@3A1D@  и ψ(t)+χ(t,ωt) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdKNaaG ikaiaadshacaaIPaGaey4kaSIaeq4XdmMaaGikaiaadshacaaISaGa eqyYdCNaamiDaiaaiMcaaaa@4296@ , но непосредственно задаются лишь функции q(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiaaiI cacaWG0bGaaGykaaaa@394B@  и χ(t,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4XdmMaaG ikaiaadshacaaISaGaeqiXdqNaaGykaaaa@3C87@ . Поставленная обратная задача при этом однозначно разрешима.

2. Построение асимптотики

Пусть T>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiaai6 dacaaIWaaaaa@3852@ , Π={(x,t):x,t[0,T]} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiOdaLaaG ypaiaaiUhacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaaiQdacaWG 4bGaeyicI4SaeSyhHeQaaGilaiaaysW7caWG0bGaeyicI4SaaG4wai aaicdacaaISaGaamivaiaai2facaaI9baaaa@4BE3@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ полоса, Ω={(x,t,τ):(x,t)Π,τ[0;)} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdCLaaG ypaiaaiUhacaaIOaGaamiEaiaaiYcacaWG0bGaaGilaiabes8a0jaa iMcacaaI6aGaaGikaiaadIhacaaISaGaamiDaiaaiMcacqGHiiIZcq qHGoaucaaISaGaaGjbVlabes8a0jabgIGiolaaiUfacaaIWaGaaG4o aiabg6HiLkaaiMcacaaI9baaaa@52CF@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ бесконечный прямоугольный параллелепипед. На множестве Π MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiOdafaaa@3775@  рассмотрим задачу Коши с большим параметром ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdChaaa@37C4@  вида:

u tt (x,t) u xx (x,t)+ 1 ω a(x,t,ωt)u(x,t)=f(x,t,ωt)u(x,t )| t=0 =0 u t (x,t )| t=0 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaWG0bGaamiDaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGa aGykaiabgkHiTiaadwhadaWgaaWcbaGaamiEaiaadIhaaeqaaOGaaG ikaiaadIhacaaISaGaamiDaiaaiMcacqGHRaWkdaWcaaqaaiaaigda aeaacqaHjpWDaaGaamyyaiaaiIcacaWG4bGaaGilaiaadshacaaISa GaeqyYdCNaamiDaiaaiMcacaWG1bGaaGikaiaadIhacaaISaGaamiD aiaaiMcacaaI9aGaamOzaiaaiIcacaWG4bGaaGilaiaadshacaaISa GaeqyYdCNaamiDaiaaiMcacaWG1bGaaGikaiaadIhacaaISaGaamiD aiaaiMcacaaI8bWaaSbaaSqaaiaadshacaaI9aGaaGimaaqabaGcca aI9aGaaGimaiaadwhadaWgaaWcbaGaamiDaaqabaGccaaIOaGaamiE aiaaiYcacaWG0bGaaGykaiaaiYhadaWgaaWcbaGaamiDaiaai2daca aIWaaabeaakiaai2dacaaIWaaaaa@753C@ . (1)

Здесь f(x,t,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGilaiaadshacaaISaGaeqiXdqNaaGykaaaa@3D6E@  и a(x,t,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaaiI cacaWG4bGaaGilaiaadshacaaISaGaeqiXdqNaaGykaaaa@3D69@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ вещественные функции, определённые и непрерывные на множестве Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdCfaaa@3785@ , 2π MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiabec 8aWbaa@3870@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ периодические по τ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqhaaa@37BC@ . Символом F(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiaaiI cacaWG4bGaaGilaiaadshacaaIPaaaaa@3AD3@  обозначим среднее функции f(x,t,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGilaiaadshacaaISaGaeqiXdqNaaGykaaaa@3D6E@  по τ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqhaaa@37BC@ :

F(x,t)=f(x,t,τ) 1 2π 0 2π f(x,t,τ)dτ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaaGypaiabgMYiHlaadAgacaaI OaGaamiEaiaaiYcacaWG0bGaaGilaiabes8a0jaaiMcacqGHQms8cq GHHjIUdaWcaaqaaiaaigdaaeaacaaIYaGaeqiWdahaamaapehabeWc baGaaGimaaqaaiaaikdacqaHapaCa0Gaey4kIipakiaadAgacaaIOa GaamiEaiaaiYcacaWG0bGaaGilaiabes8a0jaaiMcacaWGKbGaeqiX dqNaaGOlaaaa@5C25@

(Всюду в работе среднее вычисляется по переменной τ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqhaaa@37BC@ , τ=ωt MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqNaaG ypaiabeM8a3jaadshaaaa@3B49@  ). Пусть функция F(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiaaiI cacaWG4bGaaGilaiaadshacaaIPaaaaa@3AD3@  непрерывна на Π MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiOdafaaa@3775@  вместе с двумя производными по x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@36F4@ . Введём в рассмотрение функцию ϕ(x,t,τ)=f(x,t,τ)F(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaG ikaiaadIhacaaISaGaamiDaiaaiYcacqaHepaDcaaIPaGaaGypaiaa dAgacaaIOaGaamiEaiaaiYcacaWG0bGaaGilaiabes8a0jaaiMcacq GHsislcaWGgbGaaGikaiaadIhacaaISaGaamiDaiaaiMcaaaa@4C52@  и будем предполагать, что она непрерывна на множестве Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdCfaaa@3785@  и вместе с производной по x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@36F4@  дифференцируема по (x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI hacaaISaGaamiDaiaaiMcaaaa@3A08@  вплоть до 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGinaaaa@36B5@  -го порядка и все указанные производные непрерывны в Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdCfaaa@3785@ . Символом A(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaaiI cacaWG4bGaaGilaiaadshacaaIPaaaaa@3ACE@  обозначим среднее функции a(x,t,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaaiI cacaWG4bGaaGilaiaadshacaaISaGaeqiXdqNaaGykaaaa@3D69@  по τ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqhaaa@37BC@ :

A(x,t)=a(x,t,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaaGypaiabgMYiHlaadggacaaI OaGaamiEaiaaiYcacaWG0bGaaGilaiabes8a0jaaiMcacqGHQms8aa a@468A@

и предположим, что функция A(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaaiI cacaWG4bGaaGilaiaadshacaaIPaaaaa@3ACE@  непрерывна на Π MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiOdafaaa@3775@  вместе с двумя производными по x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@36F4@ . Далее введём в рассмотрение функцию b(x,t,τ)=a(x,t,τ)A(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiaaiI cacaWG4bGaaGilaiaadshacaaISaGaeqiXdqNaaGykaiaai2dacaWG HbGaaGikaiaadIhacaaISaGaamiDaiaaiYcacqaHepaDcaaIPaGaey OeI0IaamyqaiaaiIcacaWG4bGaaGilaiaadshacaaIPaaaaa@4B67@  и предположим, что она три раза непрерывно дифференцируема по совокупности переменных (x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI hacaaISaGaamiDaiaaiMcaaaa@3A08@ , причём все эти производные непрерывны на Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdCfaaa@3785@ .

Пусть u ω (x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacqaHjpWDaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMca aaa@3D05@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ решение задачи (1). Его асимптотику можно строить в виде ряда:

u ω (x,t) u 0 (x,t)+ 1 ω u 1 (x,t)+ 1 ω 2 ( u 2 (x,t)+ v 2 (x,t,ωt))++ 1 ω k ( u k (x,t)+ v k (x,t,ωt))+, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacqaHjpWDaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMca rqqr1ngBPrgifHhDYfgaiuaacqWF8iIocaWG1bWaaSbaaSqaaiaaic daaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacqGHRaWkdaWc aaqaaiaaigdaaeaacqaHjpWDaaGaamyDamaaBaaaleaacaaIXaaabe aakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaey4kaSYaaSaaaeaa caaIXaaabaGaeqyYdC3aaWbaaSqabeaacaaIYaaaaaaakiaaiIcaca WG1bWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadIhacaaISaGaamiD aiaaiMcacqGHRaWkcaWG2bWaaSbaaSqaaiaaikdaaeqaaOGaaGikai aadIhacaaISaGaamiDaiaaiYcacqaHjpWDcaWG0bGaaGykaiaaiMca cqGHRaWkcqWIMaYscqGHRaWkdaWcaaqaaiaaigdaaeaacqaHjpWDda ahaaWcbeqaaiaadUgaaaaaaOGaaGikaiaadwhadaWgaaWcbaGaam4A aaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiabgUcaRiaadA hadaWgaaWcbaGaam4AaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGa aGilaiabeM8a3jaadshacaaIPaGaaGykaiabgUcaRiablAciljaaiY caaaa@83DF@                           (2)

где функции u k (x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaWGRbaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaaa aa@3C28@  и v k (x,t,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacaWGRbaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaISaGa eqiXdqNaaGykaaaa@3EA4@  определены и непрерывны в Π MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiOdafaaa@3775@  и Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdCfaaa@3785@  соответственно, а также дважды непрерывно дифференцируемы по x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@36F4@  и по (t,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaads hacaaISaGaeqiXdqNaaGykaaaa@3AD0@ , причём v k (x,t,τ)2π MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacaWGRbaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaISaGa eqiXdqNaaGykaiabgkHiTiaaikdacqaHapaCaaa@420A@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ периодические по τ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqhaaa@37BC@  с нулевым средним:

v k (x,t,τ)=0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyykJeUaam ODamaaBaaaleaacaWGRbaabeaakiaaiIcacaWG4bGaaGilaiaadsha caaISaGaeqiXdqNaaGykaiabgQYiXlaai2dacaaIWaGaaGOlaaaa@4460@

Для формулировки теоремы определим два типа линейных однозначно разрешимых задач. К первому отнесём задачу для обыкновенного дифференциального уравнения второго порядка следующего вида:

2 s(x,t,τ) τ 2 =ψ(x,t,τ),s(x,t,τ+2π)=s(x,t,τ),s(x,t,τ)=0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq GHciITdaahaaWcbeqaaiaaikdaaaGccaWGZbGaaGikaiaadIhacaaI SaGaamiDaiaaiYcacqaHepaDcaaIPaaabaGaeyOaIyRaeqiXdq3aaW baaSqabeaacaaIYaaaaaaakiaai2dacqaHipqEcaaIOaGaamiEaiaa iYcacaWG0bGaaGilaiabes8a0jaaiMcacaaISaGaam4CaiaaiIcaca WG4bGaaGilaiaadshacaaISaGaeqiXdqNaey4kaSIaaGOmaiabec8a WjaaiMcacaaI9aGaam4CaiaaiIcacaWG4bGaaGilaiaadshacaaISa GaeqiXdqNaaGykaiaaiYcacqGHPms4caWGZbGaaGikaiaadIhacaaI SaGaamiDaiaaiYcacqaHepaDcaaIPaGaeyOkJeVaaGypaiaaicdaca aISaaaaa@6EF7@ , (3)

где ψ(x,t,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdKNaaG ikaiaadIhacaaISaGaamiDaiaaiYcacqaHepaDcaaIPaaaaa@3E51@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ определённая и непрерывная на множестве Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdCfaaa@3785@  функция, 2π MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiabec 8aWbaa@3870@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ периодическая по τ[0;) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqNaey icI4SaaG4waiaaicdacaaI7aGaeyOhIuQaaGykaaaa@3DC8@  с нулевым средним. Как известно, решение задачи (3) имеет вид

sx,t,τ0τ0zψx,t,sds0τψx,t,sdsdz0τ0zψx,t,sds0τψx,t,sdsdz

Ко второму типу отнесём задачу Коши для волнового уравнения второго порядка в полосе (x,t)Π MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI hacaaISaGaamiDaiaaiMcacqGHiiIZcqqHGoauaaa@3D0A@  вида

uttx,tuxxx,tgx,tux,ttaxutx,ttbx  (4)

где функции g(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaaiI cacaWG4bGaaGilaiaadshacaaIPaaaaa@3AF4@  и a(x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaaiI cacaWG4bGaaGykaaaa@393F@ , b(x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiaaiI cacaWG4bGaaGykaaaa@3940@  определены и непрерывны в полосе Π MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiOdafaaa@3775@  и на MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHekaaa@3767@  соответственно, причём g(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaaiI cacaWG4bGaaGilaiaadshacaaIPaaaaa@3AF4@  и b(x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiaaiI cacaWG4bGaaGykaaaa@3940@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ непрерывно дифференцируемы по x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@36F4@  и g x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaBa aaleaacaWG4baabeaaaaa@380C@  непрерывна в Π MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiOdafaaa@3775@ , а a(x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaaiI cacaWG4bGaaGykaaaa@393F@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ дважды непрерывно дифференцируема. Решение задачи (4), как известно, выражается формулой Даламбера:

u(x,t)= 1 2 (a(xt)+a(x+t))+ 1 2 xt x+t b(ξ)dξ+ 1 2 0 t ds x(ts) x+(ts) g(ξ,s)dξ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaaGypamaalaaabaGaaGymaaqa aiaaikdaaaGaaGikaiaadggacaaIOaGaamiEaiabgkHiTiaadshaca aIPaGaey4kaSIaamyyaiaaiIcacaWG4bGaey4kaSIaamiDaiaaiMca caaIPaGaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaaaadaWdXbqabS qaaiaadIhacqGHsislcaWG0baabaGaamiEaiabgUcaRiaadshaa0Ga ey4kIipakiaadkgacaaIOaGaeqOVdGNaaGykaiaadsgacqaH+oaEcq GHRaWkdaWcaaqaaiaaigdaaeaacaaIYaaaamaapehabeWcbaGaaGim aaqaaiaadshaa0Gaey4kIipakiaadsgacaWGZbWaa8qCaeqaleaaca WG4bGaeyOeI0IaaGikaiaadshacqGHsislcaWGZbGaaGykaaqaaiaa dIhacqGHRaWkcaaIOaGaamiDaiabgkHiTiaadohacaaIPaaaniabgU IiYdGccaWGNbGaaGikaiabe67a4jaaiYcacaWGZbGaaGykaiaadsga cqaH+oaEcaaIUaaaaa@7B95@

Для любого положительного числа M MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaaaa@36C9@  определим прямоугольник Π M ={(x,t):|x|M MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiOda1aaS baaSqaaiaad2eaaeqaaOGaaGypaiaaiUhacaaIOaGaamiEaiaaiYca caWG0bGaaGykaiaaiQdacaaI8bGaamiEaiaaiYhacqGHKjYOcaWGnb aaaa@44AE@ , t[0;T]} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI GiolaaiUfacaaIWaGaaG4oaiaadsfacaaIDbGaaGyFaaaa@3D9F@ , а также введём в рассмотрение (k+1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadU gacqGHRaWkcaaIXaGaaGykaaaa@39E9@  =членную, k=1,2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiaai2 dacaaIXaGaaGilaiaaikdaaaa@39DB@ , асимптотику решения задачи (1) (см. (2)):

u ω k (x,t)= u 0 (x,t)+ 1 ω u 1 (x,t)++ 1 ω k ( u k (x,t)+ v k (x,t,ωt)). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbiaeaaca WG1bWaaSbaaSqaaiabeM8a3bqabaaabeqaaiaadUgaaaGccaaIOaGa amiEaiaaiYcacaWG0bGaaGykaiaai2dacaWG1bWaaSbaaSqaaiaaic daaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacqGHRaWkdaWc aaqaaiaaigdaaeaacqaHjpWDaaGaamyDamaaBaaaleaacaaIXaaabe aakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaey4kaSIaeSOjGSKa ey4kaSYaaSaaaeaacaaIXaaabaGaeqyYdC3aaWbaaSqabeaacaWGRb aaaaaakiaaiIcacaWG1bWaaSbaaSqaaiaadUgaaeqaaOGaaGikaiaa dIhacaaISaGaamiDaiaaiMcacqGHRaWkcaWG2bWaaSbaaSqaaiaadU gaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiYcacqaHjpWDcaWG 0bGaaGykaiaaiMcacaaIUaaaaa@67EE@

Теорема 1.  Для каждого M>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiaai6 dacaaIWaaaaa@384B@  справедлива асимптотическая формула

u ω (x,t) u ω 2 (x,t) C( Π M ) =O( ω 3 ),ω, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamyDamaaBaaaleaacqaHjpWDaeqaaOGa aGikaiaadIhacaaISaGaamiDaiaaiMcacqGHsislcaWG1bWaa0baaS qaaiabeM8a3bqaaiaaikdaaaGccaaIOaGaamiEaiaaiYcacaWG0bGa aGykaiab=vIiqnaaBaaaleaacaWGdbGaaGikaiabfc6aqnaaBaaaba GaamytaaqabaGaaGykaaqabaGccaaI9aGaam4taiaaiIcacqaHjpWD daahaaWcbeqaaiabgkHiTiaaiodaaaGccaaIPaGaaGilaiaaywW7cq aHjpWDcqGHsgIRcqGHEisPcaaISaaaaa@6038@

где u n (x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaWGUbaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaaa aa@3C2B@ , n=0,1,2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaai2 dacaaIWaGaaGilaiaaigdacaaISaGaaGOmaaaa@3B4E@ , и v 2 (x,t,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacaaIYaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaISaGa eqiXdqNaaGykaaaa@3E70@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ решения задач типа (4) и (3) соответственно.

Доказательство. Подставим формально ряд (2) в уравнения (1):

null

В каждом из этих трёх последних равенств поочерёдно приравняем коэффициенты при степенях ω 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaW baaSqabeaacaaIWaaaaaaa@38AB@ , ω 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaW baaSqabeaacqGHsislcaaIXaaaaaaa@3999@ , ω 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaW baaSqabeaacqGHsislcaaIYaaaaaaa@399A@ , ω 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaW baaSqabeaacqGHsislcaaIZaaaaaaa@399B@ , а затем применим к полученным уравнениям операцию усреднения. В результате придём к следующему набору задач:

2 u 0 (x,t) t 2 2 u 0 (x,t) x 2 =F(x,t), u 0 (x,t )| t=0 =0, u 0 (x,t) t t=0 =0; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabmqaaa qaamaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaamyDamaa BaaaleaacaaIWaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPa aabaGaeyOaIyRaamiDamaaCaaaleqabaGaaGOmaaaaaaGccqGHsisl daWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiaadwhadaWgaa WcbaGaaGimaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaaqa aiabgkGi2kaadIhadaahaaWcbeqaaiaaikdaaaaaaOGaaGypaiaadA eacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaaiYcaaeaacaWG1bWa aSbaaSqaaiaaicdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiM cacaaI8bWaaSbaaSqaaiaadshacaaI9aGaaGimaaqabaGccaaI9aGa aGimaiaaiYcaaeaadaabcaqaamaalaaabaGaeyOaIyRaamyDamaaBa aaleaacaaIWaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaaa baGaeyOaIyRaamiDaaaaaiaawIa7amaaBaaaleaacaWG0bGaaGypai aaicdaaeqaaOGaaGypaiaaicdacaaI7aaaaaaa@7100@ (5)

2 v 2 (x,t,τ) τ 2 =ϕ(x,t,τ), v 2 (x,t,τ+2π)= v 2 (x,t,τ), v 2 (x,t,τ)=0; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiqaaeaafa qabeWabaaabaWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGc caWG2bWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadIhacaaISaGaam iDaiaaiYcacqaHepaDcaaIPaaabaGaeyOaIyRaeqiXdq3aaWbaaSqa beaacaaIYaaaaaaakiaai2dacqaHvpGzcaaIOaGaamiEaiaaiYcaca WG0bGaaGilaiabes8a0jaaiMcacaaISaaabaGaamODamaaBaaaleaa caaIYaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaISaGaeqiXdq Naey4kaSIaaGOmaiabec8aWjaaiMcacaaI9aGaamODamaaBaaaleaa caaIYaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaISaGaeqiXdq NaaGykaiaaiYcaaeaacqGHPms4caWG2bWaaSbaaSqaaiaaikdaaeqa aOGaaGikaiaadIhacaaISaGaamiDaiaaiYcacqaHepaDcaaIPaGaey OkJeVaaGypaiaaicdacaaI7aaaaaGaay5Eaaaaaa@73FD@    (6)

2 u 1 (x,t) t 2 2 u 1 (x,t) x 2 =A(x,t) u 0 (x,t), u 1 (x,t )| t=0 =0, u 1 (x,t) t t=0 + v 2 (x,t,τ) τ t,τ=0 =0; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiqaaqaabe qaamaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaamyDamaa BaaaleaacaaIXaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPa aabaGaeyOaIyRaamiDamaaCaaaleqabaGaaGOmaaaaaaGccqGHsisl daWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiaadwhadaWgaa WcbaGaaGymaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaaqa aiabgkGi2kaadIhadaahaaWcbeqaaiaaikdaaaaaaOGaaGypaiabgk HiTiaadgeacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadwhadaWg aaWcbaGaaGimaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykai aaiYcaaeaacaWG1bWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadIha caaISaGaamiDaiaaiMcacaaI8bWaaSbaaSqaaiaadshacaaI9aGaaG imaaqabaGccaaI9aGaaGimaiaaiYcaaeaadaabcaqaamaalaaabaGa eyOaIyRaamyDamaaBaaaleaacaaIXaaabeaakiaaiIcacaWG4bGaaG ilaiaadshacaaIPaaabaGaeyOaIyRaamiDaaaaaiaawIa7amaaBaaa leaacaWG0bGaaGypaiaaicdaaeqaaOGaey4kaSYaaqGaaeaadaWcaa qaaiabgkGi2kaadAhadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiE aiaaiYcacaWG0bGaaGilaiabes8a0jaaiMcaaeaacqGHciITcqaHep aDaaaacaGLiWoadaWgaaWcbaGaamiDaiaaiYcacqaHepaDcaaI9aGa aGimaaqabaGccaaI9aGaaGimaiaaiUdaaaGaay5Eaaaaaa@8DB7@ (7)

2 v 3 (x,t,τ) τ 2 =2 2 v 2 (x,t,τ) tτ b(x,t,τ) u 0 (x,t), v 3 (x,t,τ+2π)= v 3 (x,t,τ), v 3 (x,t,τ)=0; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiqaaqaabe qaamaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaamODamaa BaaaleaacaaIZaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaISa GaeqiXdqNaaGykaaqaaiabgkGi2kabes8a0naaCaaaleqabaGaaGOm aaaaaaGccaaI9aGaeyOeI0IaaGOmamaalaaabaGaeyOaIy7aaWbaaS qabeaacaaIYaaaaOGaamODamaaBaaaleaacaaIYaaabeaakiaaiIca caWG4bGaaGilaiaadshacaaISaGaeqiXdqNaaGykaaqaaiabgkGi2k aadshacqGHciITcqaHepaDaaGaeyOeI0IaamOyaiaaiIcacaWG4bGa aGilaiaadshacaaISaGaeqiXdqNaaGykaiaadwhadaWgaaWcbaGaaG imaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaaiYcaaeaa caWG2bWaaSbaaSqaaiaaiodaaeqaaOGaaGikaiaadIhacaaISaGaam iDaiaaiYcacqaHepaDcqGHRaWkcaaIYaGaeqiWdaNaaGykaiaai2da caWG2bWaaSbaaSqaaiaaiodaaeqaaOGaaGikaiaadIhacaaISaGaam iDaiaaiYcacqaHepaDcaaIPaGaaGilaaqaaiabgMYiHlaadAhadaWg aaWcbaGaaG4maaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGilai abes8a0jaaiMcacqGHQms8caaI9aGaaGimaiaaiUdaaaGaay5Eaaaa aa@8C16@ (8)

2 u 2 (x,t) t 2 2 u 2 (x,t) x 2 =A(x,t) u 1 (x,t), u 2 (x,t )| t=0 + v 2 (x,t,τ )| t,τ=0 =0, u 2 (x,t) t t=0 + v 2 (x,t,τ) t t,τ=0 + v 3 (x,t,τ) τ t,τ=0 =0; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiqaaqaabe qaamaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaamyDamaa BaaaleaacaaIYaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPa aabaGaeyOaIyRaamiDamaaCaaaleqabaGaaGOmaaaaaaGccqGHsisl daWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiaadwhadaWgaa WcbaGaaGOmaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaaqa aiabgkGi2kaadIhadaahaaWcbeqaaiaaikdaaaaaaOGaaGypaiabgk HiTiaadgeacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadwhadaWg aaWcbaGaaGymaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykai aaiYcaaeaacaWG1bWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadIha caaISaGaamiDaiaaiMcacaaI8bWaaSbaaSqaaiaadshacaaI9aGaaG imaaqabaGccqGHRaWkcaWG2bWaaSbaaSqaaiaaikdaaeqaaOGaaGik aiaadIhacaaISaGaamiDaiaaiYcacqaHepaDcaaIPaGaaGiFamaaBa aaleaacaWG0bGaaGilaiabes8a0jaai2dacaaIWaaabeaakiaai2da caaIWaGaaGilaaqaamaaeiaabaWaaSaaaeaacqGHciITcaWG1bWaaS baaSqaaiaaikdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMca aeaacqGHciITcaWG0baaaaGaayjcSdWaaSbaaSqaaiaadshacaaI9a GaaGimaaqabaGccqGHRaWkdaabcaqaamaalaaabaGaeyOaIyRaamOD amaaBaaaleaacaaIYaaabeaakiaaiIcacaWG4bGaaGilaiaadshaca aISaGaeqiXdqNaaGykaaqaaiabgkGi2kaadshaaaaacaGLiWoadaWg aaWcbaGaamiDaiaaiYcacqaHepaDcaaI9aGaaGimaaqabaGccqGHRa WkdaabcaqaamaalaaabaGaeyOaIyRaamODamaaBaaaleaacaaIZaaa beaakiaaiIcacaWG4bGaaGilaiaadshacaaISaGaeqiXdqNaaGykaa qaaiabgkGi2kabes8a0baaaiaawIa7amaaBaaaleaacaWG0bGaaGil aiabes8a0jaai2dacaaIWaaabeaakiaai2dacaaIWaGaaG4oaaaaca GL7baaaaa@B13A@ (9)

 

2 v 4 (x,t,τ) τ 2 = 2 v 2 (x,t,τ) x 2 2 v 2 (x,t,τ) t 2 2 2 v 3 (x,t,τ) tτ b(x,t,τ) u 1 (x,t), v 4 (x,t,τ+2π)= v 4 (x,t,τ), v 4 (x,t,τ)=0; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiqaaqaabe qaamaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaamODamaa BaaaleaacaaI0aaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaISa GaeqiXdqNaaGykaaqaaiabgkGi2kabes8a0naaCaaaleqabaGaaGOm aaaaaaGccaaI9aWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaa GccaWG2bWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadIhacaaISaGa amiDaiaaiYcacqaHepaDcaaIPaaabaGaeyOaIyRaamiEamaaCaaale qabaGaaGOmaaaaaaGccqGHsisldaWcaaqaaiabgkGi2oaaCaaaleqa baGaaGOmaaaakiaadAhadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaam iEaiaaiYcacaWG0bGaaGilaiabes8a0jaaiMcaaeaacqGHciITcaWG 0bWaaWbaaSqabeaacaaIYaaaaaaakiabgkHiTiaaikdadaWcaaqaai abgkGi2oaaCaaaleqabaGaaGOmaaaakiaadAhadaWgaaWcbaGaaG4m aaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGilaiabes8a0jaaiM caaeaacqGHciITcaWG0bGaeyOaIyRaeqiXdqhaaiabgkHiTiaadkga caaIOaGaamiEaiaaiYcacaWG0bGaaGilaiabes8a0jaaiMcacaWG1b WaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaa iMcacaaISaaabaGaamODamaaBaaaleaacaaI0aaabeaakiaaiIcaca WG4bGaaGilaiaadshacaaISaGaeqiXdqNaey4kaSIaaGOmaiabec8a WjaaiMcacaaI9aGaamODamaaBaaaleaacaaI0aaabeaakiaaiIcaca WG4bGaaGilaiaadshacaaISaGaeqiXdqNaaGykaiaaiYcaaeaacqGH Pms4caWG2bWaaSbaaSqaaiaaisdaaeqaaOGaaGikaiaadIhacaaISa GaamiDaiaaiYcacqaHepaDcaaIPaGaeyOkJeVaaGypaiaaicdacaaI 7aaaaiaawUhaaaaa@A975@    (10)

2 u 3 (x,t) t 2 2 u 3 (x,t) x 2 =A(x,t) u 2 (x,t)b(x,t,τ) v 2 (x,t,τ), u 3 (x,t )| t=0 + v 3 (x,t,τ )| t,τ=0 =0, u 3 (x,t) t t=0 + v 3 (x,t,τ) t t,τ=0 + v 4 (x,t,τ) τ t,τ=0 =0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiqaaqaabe qaamaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaamyDamaa BaaaleaacaaIZaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPa aabaGaeyOaIyRaamiDamaaCaaaleqabaGaaGOmaaaaaaGccqGHsisl daWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiaadwhadaWgaa WcbaGaaG4maaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaaqa aiabgkGi2kaadIhadaahaaWcbeqaaiaaikdaaaaaaOGaaGypaiabgk HiTiaadgeacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadwhadaWg aaWcbaGaaGOmaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykai abgkHiTiabgMYiHlaadkgacaaIOaGaamiEaiaaiYcacaWG0bGaaGil aiabes8a0jaaiMcacaWG2bWaaSbaaSqaaiaaikdaaeqaaOGaaGikai aadIhacaaISaGaamiDaiaaiYcacqaHepaDcaaIPaGaeyOkJeVaaGil aaqaaiaadwhadaWgaaWcbaGaaG4maaqabaGccaaIOaGaamiEaiaaiY cacaWG0bGaaGykaiaaiYhadaWgaaWcbaGaamiDaiaai2dacaaIWaaa beaakiabgUcaRiaadAhadaWgaaWcbaGaaG4maaqabaGccaaIOaGaam iEaiaaiYcacaWG0bGaaGilaiabes8a0jaaiMcacaaI8bWaaSbaaSqa aiaadshacaaISaGaeqiXdqNaaGypaiaaicdaaeqaaOGaaGypaiaaic dacaaISaaabaWaaqGaaeaadaWcaaqaaiabgkGi2kaadwhadaWgaaWc baGaaG4maaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaaqaai abgkGi2kaadshaaaaacaGLiWoadaWgaaWcbaGaamiDaiaai2dacaaI WaaabeaakiabgUcaRmaaeiaabaWaaSaaaeaacqGHciITcaWG2bWaaS baaSqaaiaaiodaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiYca cqaHepaDcaaIPaaabaGaeyOaIyRaamiDaaaaaiaawIa7amaaBaaale aacaWG0bGaaGilaiabes8a0jaai2dacaaIWaaabeaakiabgUcaRmaa eiaabaWaaSaaaeaacqGHciITcaWG2bWaaSbaaSqaaiaaisdaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiYcacqaHepaDcaaIPaaabaGa eyOaIyRaeqiXdqhaaaGaayjcSdWaaSbaaSqaaiaadshacaaISaGaeq iXdqNaaGypaiaaicdaaeqaaOGaaGypaiaaicdacaaIUaaaaiaawUha aaaa@C591@ (11)

Положив

u ^ ω 3 (x,t)= u ω 3 (x,t)+ 1 ω 4 v 4 (x,t,ωt), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbiaeaace WG1bGbaKaadaWgaaWcbaGaeqyYdChabeaaaeqabaGaaG4maaaakiaa iIcacaWG4bGaaGilaiaadshacaaIPaGaaGypamaaxacabaGaamyDam aaBaaaleaacqaHjpWDaeqaaaqabeaacaaIZaaaaOGaaGikaiaadIha caaISaGaamiDaiaaiMcacqGHRaWkdaWcaaqaaiaaigdaaeaacqaHjp WDdaahaaWcbeqaaiaaisdaaaaaaOGaamODamaaBaaaleaacaaI0aaa beaakiaaiIcacaWG4bGaaGilaiaadshacaaISaGaeqyYdCNaamiDai aaiMcacaaISaaaaa@5581@

придём к задаче

u^ω3x,tttu^ω3x,txx+1ωax,t,ωtu^ω3x,tfx,t,ωt+zx,t,ωtu^ω3x,t|t=0=wxu^ω3x,tt|t=0=rx (12)

где функции z(x,t,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEaiaaiI cacaWG4bGaaGilaiaadshacaaISaGaeqiXdqNaaGykaaaa@3D82@ , w(x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DaiaaiI cacaWG4bGaaGykaaaa@3955@  и r(x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaaiI cacaWG4bGaaGykaaaa@3950@  имеют вид

z(x,t,τ)= 1 ω 3 ( 2 v 3 (x,t,τ) t 2 2 v 3 (x,t,τ) x 2 +2 2 v 4 (x,t,τ) tτ + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEaiaaiI cacaWG4bGaaGilaiaadshacaaISaGaeqiXdqNaaGykaiaai2dadaWc aaqaaiaaigdaaeaacqaHjpWDdaahaaWcbeqaaiaaiodaaaaaaOGaaG ikamaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaamODamaa BaaaleaacaaIZaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaISa GaeqiXdqNaaGykaaqaaiabgkGi2kaadshadaahaaWcbeqaaiaaikda aaaaaOGaeyOeI0YaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaa GccaWG2bWaaSbaaSqaaiaaiodaaeqaaOGaaGikaiaadIhacaaISaGa amiDaiaaiYcacqaHepaDcaaIPaaabaGaeyOaIyRaamiEamaaCaaale qabaGaaGOmaaaaaaGccqGHRaWkcaaIYaWaaSaaaeaacqGHciITdaah aaWcbeqaaiaaikdaaaGccaWG2bWaaSbaaSqaaiaaisdaaeqaaOGaaG ikaiaadIhacaaISaGaamiDaiaaiYcacqaHepaDcaaIPaaabaGaeyOa IyRaamiDaiabgkGi2kabes8a0baacqGHRaWkaaa@72D0@

+[b(x,t,τ)+A(x,t)]( u 2 (x,t)+ v 2 (x,t,τ))A(x,t) u 2 (x,t)b(x,t,τ) v 2 (x,t,τ))+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSIaaG 4waiaadkgacaaIOaGaamiEaiaaiYcacaWG0bGaaGilaiabes8a0jaa iMcacqGHRaWkcaWGbbGaaGikaiaadIhacaaISaGaamiDaiaaiMcaca aIDbGaaGikaiaadwhadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiE aiaaiYcacaWG0bGaaGykaiabgUcaRiaadAhadaWgaaWcbaGaaGOmaa qabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGilaiabes8a0jaaiMca caaIPaGaeyOeI0IaamyqaiaaiIcacaWG4bGaaGilaiaadshacaaIPa GaamyDamaaBaaaleaacaaIYaaabeaakiaaiIcacaWG4bGaaGilaiaa dshacaaIPaGaeyOeI0IaeyykJeUaamOyaiaaiIcacaWG4bGaaGilai aadshacaaISaGaeqiXdqNaaGykaiaadAhadaWgaaWcbaGaaGOmaaqa baGccaaIOaGaamiEaiaaiYcacaWG0bGaaGilaiabes8a0jaaiMcacq GHQms8caaIPaGaey4kaScaaa@7840@

+ 1 ω 4 ( 2 v 4 (x,t,τ) t 2 2 v 4 (x,t,τ) x 2 +[b(x,t,τ)+A(x,t)]( u 3 (x,t,τ)+ v 3 (x,t,τ)))+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaaS aaaeaacaaIXaaabaGaeqyYdC3aaWbaaSqabeaacaaI0aaaaaaakiaa iIcadaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiaadAhada WgaaWcbaGaaGinaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGil aiabes8a0jaaiMcaaeaacqGHciITcaWG0bWaaWbaaSqabeaacaaIYa aaaaaakiabgkHiTmaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaa aOGaamODamaaBaaaleaacaaI0aaabeaakiaaiIcacaWG4bGaaGilai aadshacaaISaGaeqiXdqNaaGykaaqaaiabgkGi2kaadIhadaahaaWc beqaaiaaikdaaaaaaOGaey4kaSIaaG4waiaadkgacaaIOaGaamiEai aaiYcacaWG0bGaaGilaiabes8a0jaaiMcacqGHRaWkcaWGbbGaaGik aiaadIhacaaISaGaamiDaiaaiMcacaaIDbGaaGikaiaadwhadaWgaa WcbaGaaG4maaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGilaiab es8a0jaaiMcacqGHRaWkcaWG2bWaaSbaaSqaaiaaiodaaeqaaOGaaG ikaiaadIhacaaISaGaamiDaiaaiYcacqaHepaDcaaIPaGaaGykaiaa iMcacqGHRaWkaaa@7D1E@

+ 1 ω 5 [b(x,t,τ)+A(x,t)] v 4 (x,t,τ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaaS aaaeaacaaIXaaabaGaeqyYdC3aaWbaaSqabeaacaaI1aaaaaaakiaa iUfacaWGIbGaaGikaiaadIhacaaISaGaamiDaiaaiYcacqaHepaDca aIPaGaey4kaSIaamyqaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGa aGyxaiaadAhadaWgaaWcbaGaaGinaaqabaGccaaIOaGaamiEaiaaiY cacaWG0bGaaGilaiabes8a0jaaiMcacaaISaaaaa@5290@

w(x)= 1 ω 4 v 4 (x,0,0),r(x)= 1 ω 4 v 4 (x,t,τ) t t,τ=0 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DaiaaiI cacaWG4bGaaGykaiaai2dadaWcaaqaaiaaigdaaeaacqaHjpWDdaah aaWcbeqaaiaaisdaaaaaaOGaamODamaaBaaaleaacaaI0aaabeaaki aaiIcacaWG4bGaaGilaiaaicdacaaISaGaaGimaiaaiMcacaaISaGa aGzbVlaadkhacaaIOaGaamiEaiaaiMcacaaI9aWaaqGaaeaadaWcaa qaaiaaigdaaeaacqaHjpWDdaahaaWcbeqaaiaaisdaaaaaaOWaaSaa aeaacqGHciITcaWG2bWaaSbaaSqaaiaaisdaaeqaaOGaaGikaiaadI hacaaISaGaamiDaiaaiYcacqaHepaDcaaIPaaabaGaeyOaIyRaamiD aaaaaiaawIa7amaaBaaaleaacaWG0bGaaGilaiabes8a0jaai2daca aIWaaabeaakiaai6caaaa@6294@

Отсюда вытекают следующие асимптотические равенства:

z(x,t,τ)=O( ω 3 ),ω, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEaiaaiI cacaWG4bGaaGilaiaadshacaaISaGaeqiXdqNaaGykaiaai2dacaWG pbGaaGikaiabeM8a3naaCaaaleqabaGaeyOeI0IaaG4maaaakiaaiM cacaaISaGaaGzbVlabeM8a3jabgkziUkabg6HiLkaaiYcaaaa@4C55@ (13)

равномерно относительно (x,t,τ),(x,t,τ) Ω M MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI hacaaISaGaamiDaiaaiYcacqaHepaDcaaIPaGaaGilaiaaiIcacaWG 4bGaaGilaiaadshacaaISaGaeqiXdqNaaGykaiabgIGiolabfM6axn aaBaaaleaacaWGnbaabeaaaaa@47D5@ , где Ω M ={(x,t,τ):(x,t) Π M ,τ[0;)} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdC1aaS baaSqaaiaad2eaaeqaaOGaaGypaiaaiUhacaaIOaGaamiEaiaaiYca caWG0bGaaGilaiabes8a0jaaiMcacaaI6aGaaGikaiaadIhacaaISa GaamiDaiaaiMcacqGHiiIZcqqHGoaudaWgaaWcbaGaamytaaqabaGc caaISaGaaGjbVlabes8a0jabgIGiolaaiUfacaaIWaGaaG4oaiabg6 HiLkaaiMcacaaI9baaaa@54DF@ ;

w(x)=O( ω 4 ),r(x)=O( ω 4 ),ω, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DaiaaiI cacaWG4bGaaGykaiaai2dacaWGpbGaaGikaiabeM8a3naaCaaaleqa baGaeyOeI0IaaGinaaaakiaaiMcacaaISaGaaGzbVlaadkhacaaIOa GaamiEaiaaiMcacaaI9aGaam4taiaaiIcacqaHjpWDdaahaaWcbeqa aiabgkHiTiaaisdaaaGccaaIPaGaaGilaiaaywW7cqaHjpWDcqGHsg IRcqGHEisPcaaISaaaaa@5475@ (14)

равномерно относительно x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@36F4@ , |x|M MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaadI hacaaI8bGaeyizImQaamytaaaa@3B87@ .

Согласно неравенству треугольника

u ω (x,t) u ω 2 (x,t) C( Π M ) u ω (x,t) u ^ ω 3 (x,t) C( Π M ) + u ^ ω 3 (x,t) u ω 2 (x,t) C( Π M ) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamyDamaaBaaaleaacqaHjpWDaeqaaOGa aGikaiaadIhacaaISaGaamiDaiaaiMcacqGHsisldaWfGaqaaiaadw hadaWgaaWcbaGaeqyYdChabeaaaeqabaGaaGOmaaaakiaaiIcacaWG 4bGaaGilaiaadshacaaIPaGae8xjIa1aaSbaaSqaaiaadoeacaaIOa GaeuiOda1aaSbaaeaacaWGnbaabeaacaaIPaaabeaakiabgsMiJkab =vIiqjaadwhadaWgaaWcbaGaeqyYdChabeaakiaaiIcacaWG4bGaaG ilaiaadshacaaIPaGaeyOeI0YaaCbiaeaaceWG1bGbaKaadaWgaaWc baGaeqyYdChabeaaaeqabaGaaG4maaaakiaaiIcacaWG4bGaaGilai aadshacaaIPaGae8xjIa1aaSbaaSqaaiaadoeacaaIOaGaeuiOda1a aSbaaeaacaWGnbaabeaacaaIPaaabeaakiabgUcaRiab=vIiqnaaxa cabaGabmyDayaajaWaaSbaaSqaaiabeM8a3bqabaaabeqaaiaaioda aaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiabgkHiTmaaxacaba GaamyDamaaBaaaleaacqaHjpWDaeqaaaqabeaacaaIYaaaaOGaaGik aiaadIhacaaISaGaamiDaiaaiMcacqWFLicudaWgaaWcbaGaam4qai aaiIcacqqHGoaudaWgaaqaaiaad2eaaeqaaiaaiMcaaeqaaOGaaGOl aaaa@842B@ (15)

Оценим каждое из слагаемых правой части (29). Очевидно, что

u ^ ω 3 (x,t) u ω 2 (x,t) C( Π M ) =O( ω 3 ),ω. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIa1aaCbiaeaaceWG1bGbaKaadaWgaaWcbaGa eqyYdChabeaaaeqabaGaaG4maaaakiaaiIcacaWG4bGaaGilaiaads hacaaIPaGaeyOeI0YaaCbiaeaacaWG1bWaaSbaaSqaaiabeM8a3bqa baaabeqaaiaaikdaaaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykai ab=vIiqnaaBaaaleaacaWGdbGaaGikaiabfc6aqnaaBaaabaGaamyt aaqabaGaaGykaaqabaGccaaI9aGaam4taiaaiIcacqaHjpWDdaahaa WcbeqaaiabgkHiTiaaiodaaaGccaaIPaGaaGilaiaaywW7cqaHjpWD cqGHsgIRcqGHEisPcaaIUaaaaa@6182@   (16)

Разность v ω (x,t) u ω (x,t) u ^ ω 3 (x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacqaHjpWDaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMca cqGHHjIUcaWG1bWaaSbaaSqaaiabeM8a3bqabaGccaaIOaGaamiEai aaiYcacaWG0bGaaGykaiabgkHiTmaaxacabaGabmyDayaajaWaaSba aSqaaiabeM8a3bqabaaabeqaaiaaiodaaaGccaaIOaGaamiEaiaaiY cacaWG0bGaaGykaaaa@4EE3@  представим следующим образом:

v ω (x,t)= 1 2 0 t ds x(ts) x+(ts) z(ξ,s)dξ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacqaHjpWDaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMca caaI9aGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOmaaaadaWdXbqabS qaaiaaicdaaeaacaWG0baaniabgUIiYdGccaWGKbGaam4Camaapeha beWcbaGaamiEaiabgkHiTiaaiIcacaWG0bGaeyOeI0Iaam4CaiaaiM caaeaacaWG4bGaey4kaSIaaGikaiaadshacqGHsislcaWGZbGaaGyk aaqdcqGHRiI8aOGaamOEaiaaiIcacqaH+oaEcaaISaGaam4CaiaaiM cacaWGKbGaeqOVdGNaeyOeI0caaa@5E7A@

1 2 (w(xt)+w(x+t)) 1 2 xt x+t r(ξ)dξ 1 2ω 0 t ds x(ts) x+(ts) a(ξ,s,ωs) v ω (ξ,s)dξ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0YaaS aaaeaacaaIXaaabaGaaGOmaaaacaaIOaGaam4DaiaaiIcacaWG4bGa eyOeI0IaamiDaiaaiMcacqGHRaWkcaWG3bGaaGikaiaadIhacqGHRa WkcaWG0bGaaGykaiaaiMcacqGHsisldaWcaaqaaiaaigdaaeaacaaI YaaaamaapehabeWcbaGaamiEaiabgkHiTiaadshaaeaacaWG4bGaey 4kaSIaamiDaaqdcqGHRiI8aOGaamOCaiaaiIcacqaH+oaEcaaIPaGa amizaiabe67a4jabgkHiTmaalaaabaGaaGymaaqaaiaaikdacqaHjp WDaaWaa8qCaeqaleaacaaIWaaabaGaamiDaaqdcqGHRiI8aOGaamiz aiaadohadaWdXbqabSqaaiaadIhacqGHsislcaaIOaGaamiDaiabgk HiTiaadohacaaIPaaabaGaamiEaiabgUcaRiaaiIcacaWG0bGaeyOe I0Iaam4CaiaaiMcaa0Gaey4kIipakiaadggacaaIOaGaeqOVdGNaaG ilaiaadohacaaISaGaeqyYdCNaam4CaiaaiMcacaWG2bWaaSbaaSqa aiabeM8a3bqabaGccaaIOaGaeqOVdGNaaGilaiaadohacaaIPaGaam izaiabe67a4jaai6caaaa@8418@

Отсюда и из (13), (14) следует, что

v ω (x,t) C( Π M ) =O( ω 3 ),ω. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamODamaaBaaaleaacqaHjpWDaeqaaOGa aGikaiaadIhacaaISaGaamiDaiaaiMcacqWFLicudaWgaaWcbaGaam 4qaiaaiIcacqqHGoaudaWgaaqaaiaad2eaaeqaaiaaiMcaaeqaaOGa aGypaiaad+eacaaIOaGaeqyYdC3aaWbaaSqabeaacqGHsislcaaIZa aaaOGaaGykaiaaiYcacaaMf8UaeqyYdCNaeyOKH4QaeyOhIuQaaGOl aaaa@5783@ (17)

Из (15) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  (17) при любом фиксированном M>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiaai6 dacaaIWaaaaa@384B@  получим:

u ω (x,t) u ω 2 (x,t) C( Π M ) =O( ω 3 ),ω. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamyDamaaBaaaleaacqaHjpWDaeqaaOGa aGikaiaadIhacaaISaGaamiDaiaaiMcacqGHsisldaWfGaqaaiaadw hadaWgaaWcbaGaeqyYdChabeaaaeqabaGaaGOmaaaakiaaiIcacaWG 4bGaaGilaiaadshacaaIPaGae8xjIa1aaSbaaSqaaiaadoeacaaIOa GaeuiOda1aaSbaaeaacaWGnbaabeaacaaIPaaabeaakiaai2dacaWG pbGaaGikaiabeM8a3naaCaaaleqabaGaeyOeI0IaaG4maaaakiaaiM cacaaISaGaaGzbVlabeM8a3jabgkziUkabg6HiLkaai6caaaa@6077@

Теорема 1 доказана.

3. Обратная задача

Пусть T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36D0@ , Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdCfaaa@3785@  и Π MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiOdafaaa@3775@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ те же, что в пункте 2. В полосе Π MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiOdafaaa@3775@  рассмотрим задачу Коши:

u tt (x,t) u xx (x,t)+ 1 ω a(x,t,ωt)u(x,t)=f(x,t)r(t,ωt), u(x,t )| t=0 =0, u t (x,t )| t=0 =0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiqaaqaabe qaaiaadwhadaWgaaWcbaGaamiDaiaadshaaeqaaOGaaGikaiaadIha caaISaGaamiDaiaaiMcacqGHsislcaWG1bWaaSbaaSqaaiaadIhaca WG4baabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaey4kaSYa aSaaaeaacaaIXaaabaGaeqyYdChaaiaadggacaaIOaGaamiEaiaaiY cacaWG0bGaaGilaiabeM8a3jaadshacaaIPaGaamyDaiaaiIcacaWG 4bGaaGilaiaadshacaaIPaGaaGypaiaadAgacaaIOaGaamiEaiaaiY cacaWG0bGaaGykaiaadkhacaaIOaGaamiDaiaaiYcacqaHjpWDcaWG 0bGaaGykaiaacYcaaeaacaWG1bGaaGikaiaadIhacaaISaGaamiDai aaiMcacaaI8bWaaSbaaSqaaiaadshacaaI9aGaaGimaaqabaGccaaI 9aGaaGimaiaaiYcaaeaacaWG1bWaaSbaaSqaaiaadshaaeqaaOGaaG ikaiaadIhacaaISaGaamiDaiaaiMcacaaI8bWaaSbaaSqaaiaadsha caaI9aGaaGimaaqabaGccaaI9aGaaGimaiaai6caaaGaay5Eaaaaaa@7BD1@ (18)

Относительно функций a(x,t,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaaiI cacaWG4bGaaGilaiaadshacaaISaGaeqiXdqNaaGykaaaa@3D69@ , f(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGilaiaadshacaaIPaaaaa@3AF3@  и r(t,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaaiI cacaWG0bGaaGilaiabes8a0jaaiMcaaaa@3BC7@  сделаем следующие предположения. Функция f(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGilaiaadshacaaIPaaaaa@3AF3@  определена на Π MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiOdafaaa@3775@  и вместе с производной по x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@36F4@  непрерывно дифференцируема по (x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI hacaaISaGaamiDaiaaiMcaaaa@3A08@  вплоть до 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGinaaaa@36B5@  -го порядка. Функция a(x,t,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaaiI cacaWG4bGaaGilaiaadshacaaISaGaeqiXdqNaaGykaaaa@3D69@  определена и непрерывна на множестве Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdCfaaa@3785@  и 2π MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiabec 8aWbaa@3870@  =периодична по τ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqhaaa@37BC@ . Функция A(x,t)=a(x,t,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaaGypaiabgMYiHlaadggacaaI OaGaamiEaiaaiYcacaWG0bGaaGilaiabes8a0jaaiMcacqGHQms8aa a@468A@  непрерывна на Π MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiOdafaaa@3775@  вместе с двумя производными по x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@36F4@ . Функция b(x,t,τ)=a(x,t,τ)A(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiaaiI cacaWG4bGaaGilaiaadshacaaISaGaeqiXdqNaaGykaiaai2dacaWG HbGaaGikaiaadIhacaaISaGaamiDaiaaiYcacqaHepaDcaaIPaGaey OeI0IaamyqaiaaiIcacaWG4bGaaGilaiaadshacaaIPaaaaa@4B67@  определена на множестве Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdCfaaa@3785@ , три раза непрерывно дифференцируема по совокупности переменных (x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI hacaaISaGaamiDaiaaiMcaaaa@3A08@  и все эти производные непрерывны на Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdCfaaa@3785@ . Функция r(t,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaaiI cacaWG0bGaaGilaiabes8a0jaaiMcaaaa@3BC7@  определена и непрерывна на множестве Q={(t,τ):t[0,T],τ[0;)} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaiaai2 dacaaI7bGaaGikaiaadshacaaISaGaeqiXdqNaaGykaiaaiQdacaWG 0bGaeyicI4SaaG4waiaaicdacaaISaGaamivaiaai2facaaISaGaaG jbVlabes8a0jabgIGiolaaiUfacaaIWaGaaG4oaiabg6HiLkaaiMca caaI9baaaa@4FE3@  и 2π MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiabec 8aWbaa@3870@  =периодична по τ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqhaaa@37BC@ . Положим r(t,τ)= r 0 (t)+ r 1 (t,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaaiI cacaWG0bGaaGilaiabes8a0jaaiMcacaaI9aGaamOCamaaBaaaleaa caaIWaaabeaakiaaiIcacaWG0bGaaGykaiabgUcaRiaadkhadaWgaa WcbaGaaGymaaqabaGccaaIOaGaamiDaiaaiYcacqaHepaDcaaIPaaa aa@4876@ , где r 0 (t)=r(t,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCamaaBa aaleaacaaIWaaabeaakiaaiIcacaWG0bGaaGykaiaai2dacqGHPms4 caWGYbGaaGikaiaadshacaaISaGaeqiXdqNaaGykaiabgQYiXdaa@4456@ . Пусть функция r 0 (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCamaaBa aaleaacaaIWaaabeaakiaaiIcacaWG0bGaaGykaaaa@3A3C@  непрерывна на отрезке [0;T] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaaic dacaaI7aGaamivaiaai2faaaa@3A1B@ , а r 1 (t,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCamaaBa aaleaacaaIXaaabeaakiaaiIcacaWG0bGaaGilaiabes8a0jaaiMca aaa@3CB8@  имеет на Q MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaaaa@36CD@  непрерывные производные по переменной t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@36F0@  вплоть до четвертого порядка. Функцию r(t,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaaiI cacaWG0bGaaGilaiabes8a0jaaiMcaaaa@3BC7@ , удовлетворяющую указанным выше условиям, будем называть функцией класса (I). В этом пункте будем считать её неизвестной.

Пусть заданы следующие объекты: точка x 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIWaaabeaaaaa@37DA@ , для которой f( x 0 ,t)0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiaadshacaaIPaGa eyiyIKRaaGimaaaa@3E64@ , t[0,T] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI GiolaaiUfacaaIWaGaaGilaiaadsfacaaIDbaaaa@3C89@ ; функция q C 2 ([0;T]) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiabgI GiolaadoeadaahaaWcbeqaaiaaikdaaaGccaaIOaGaaG4waiaaicda caaI7aGaamivaiaai2facaaIPaaaaa@3FB5@  и удовлетворяющая условию q(0)= q (0)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiaaiI cacaaIWaGaaGykaiaai2daceWGXbGbauaacaaIOaGaaGimaiaaiMca caaI9aGaaGimaaaa@3E75@ ; функция χ(t,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4XdmMaaG ikaiaadshacaaISaGaeqiXdqNaaGykaaaa@3C87@ , непрерывная на множестве Q MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaaaa@36CD@ , 2π MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiabec 8aWbaa@3870@  =периодическая по τ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqhaaa@37BC@  с нулевым средним и дважды непрерывно дифференцируемая по переменной τ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqhaaa@37BC@ , причём χ τ 2 (t,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4XdmMbau GbauaadaWgaaWcbaGaeqiXdq3aaWbaaeqabaGaaGOmaaaaaeqaaOGa aGikaiaadshacaaISaGaeqiXdqNaaGykaaaa@3F77@  имеет непрерывные на Q MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaaaa@36CD@  производные по переменной t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@36F0@  вплоть до четвёртого порядка. Отметим следующий факт, который докажем позже: задача (5) с F=f r 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiaai2 dacaWGMbGaamOCamaaBaaaleaacaaIWaaabeaaaaa@3A51@  при дополнительном условии u 0 ( x 0 ,t)=q(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaaIWaaabeaakiaaiIcacaWG4bWaaSbaaSqaaiaaicdaaeqa aOGaaGilaiaadshacaaIPaGaaGypaiaadghacaaIOaGaamiDaiaaiM caaaa@40FD@  имеет единственное решение r 0 (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCamaaBa aaleaacaaIWaaabeaakiaaiIcacaWG0bGaaGykaaaa@3A3C@ . Теперь введём в рассмотрение ещё две функции

ϕ(t)= u ˜ 1 ( x 0 ,t),ψ(t)= u ˜ 2 ( x 0 ,t), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaG ikaiaadshacaaIPaGaaGypaiqadwhagaacamaaBaaaleaacaaIXaaa beaakiaaiIcacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiaads hacaaIPaGaaGilaiaaywW7cqaHipqEcaaIOaGaamiDaiaaiMcacaaI 9aGabmyDayaaiaWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadIhada WgaaWcbaGaaGimaaqabaGccaaISaGaamiDaiaaiMcacaaISaaaaa@50C8@

где u ˜ 1 (x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyDayaaia WaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaa iMcaaaa@3C02@ , u ˜ 2 (x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyDayaaia WaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaa iMcaaaa@3C03@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ решения задач (7) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  (9), в которых положено

v 2 (x,t,τ)= f(x,t)χ(t,τ) f( x 0 ,t) , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacaaIYaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaISaGa eqiXdqNaaGykaiaai2dadaWcaaqaaiaadAgacaaIOaGaamiEaiaaiY cacaWG0bGaaGykaiabeE8aJjaaiIcacaWG0bGaaGilaiabes8a0jaa iMcaaeaacaWGMbGaaGikaiaadIhadaWgaaWcbaGaaGimaaqabaGcca aISaGaamiDaiaaiMcaaaGaaGilaaaa@5175@

v 3 (x,t,τ)= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacaaIZaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaISaGa eqiXdqNaaGykaiaai2daaaa@3F38@

= 0 τ 0 z 2 2 v 2 (x,t,s) tτ +b(x,t,s) u 0 (x,t) ds+ 0 τ 2 2 v 2 (x,t,s) tτ +b(x,t,s) u 0 (x,t) ds dz+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiabgk HiTmaapehabeWcbaGaaGimaaqaaiabes8a0bqdcqGHRiI8aOWaaeWa aeaadaWdXbqabSqaaiaaicdaaeaacaWG6baaniabgUIiYdGcdaWada qaaiaaikdadaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiaa dAhadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiEaiaaiYcacaWG0b GaaGilaiaadohacaaIPaaabaGaeyOaIyRaamiDaiabgkGi2kabes8a 0baacqGHRaWkcaWGIbGaaGikaiaadIhacaaISaGaamiDaiaaiYcaca WGZbGaaGykaiaadwhadaWgaaWcbaGaaGimaaqabaGccaaIOaGaamiE aiaaiYcacaWG0bGaaGykaaGaay5waiaaw2faaiaadsgacaWGZbGaey 4kaSYaaaWaaeaadaWdXbqabSqaaiaaicdaaeaacqaHepaDa0Gaey4k IipakmaadmaabaGaaGOmamaalaaabaGaeyOaIy7aaWbaaSqabeaaca aIYaaaaOGaamODamaaBaaaleaacaaIYaaabeaakiaaiIcacaWG4bGa aGilaiaadshacaaISaGaam4CaiaaiMcaaeaacqGHciITcaWG0bGaey OaIyRaeqiXdqhaaiabgUcaRiaadkgacaaIOaGaamiEaiaaiYcacaWG 0bGaaGilaiaadohacaaIPaGaamyDamaaBaaaleaacaaIWaaabeaaki aaiIcacaWG4bGaaGilaiaadshacaaIPaaacaGLBbGaayzxaaGaamiz aiaadohaaiaawMYicaGLQmcaaiaawIcacaGLPaaacaWGKbGaamOEai abgUcaRaaa@9025@

+ 0 τ 0 z 2 2 v 2 (x,t,s) ts +b(x,t,τ) u 0 (x,t) ds+ 0 τ 2 2 v 2 (x,t,s) tτ +b(x,t,s) u 0 (x,t) ds dz , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaaa WaaeaadaWdXbqabSqaaiaaicdaaeaacqaHepaDa0Gaey4kIipakmaa bmaabaWaa8qCaeqaleaacaaIWaaabaGaamOEaaqdcqGHRiI8aOWaam WaaeaacaaIYaWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGc caWG2bWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadIhacaaISaGaam iDaiaaiYcacaWGZbGaaGykaaqaaiabgkGi2kaadshacqGHciITcaWG ZbaaaiabgUcaRiaadkgacaaIOaGaamiEaiaaiYcacaWG0bGaaGilai abes8a0jaaiMcacaWG1bWaaSbaaSqaaiaaicdaaeqaaOGaaGikaiaa dIhacaaISaGaamiDaiaaiMcaaiaawUfacaGLDbaacaWGKbGaam4Cai abgUcaRmaaamaabaWaa8qCaeqaleaacaaIWaaabaGaeqiXdqhaniab gUIiYdGcdaWadaqaaiaaikdadaWcaaqaaiabgkGi2oaaCaaaleqaba GaaGOmaaaakiaadAhadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiE aiaaiYcacaWG0bGaaGilaiaadohacaaIPaaabaGaeyOaIyRaamiDai abgkGi2kabes8a0baacqGHRaWkcaWGIbGaaGikaiaadIhacaaISaGa amiDaiaaiYcacaWGZbGaaGykaiaadwhadaWgaaWcbaGaaGimaaqaba GccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaaGaay5waiaaw2faaiaa dsgacaWGZbaacaGLPmIaayPkJaaacaGLOaGaayzkaaGaamizaiaadQ haaiaawMYicaGLQmcacaaISaaaaa@90F7@

где u 0 (x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaaIWaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaaa aa@3BF2@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ решение задачи (5) с правой частью f(x,t) r 0 (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaamOCamaaBaaaleaacaaIWaaa beaakiaaiIcacaWG0bGaaGykaaaa@3F38@ .

Определение.  Задачу о нахождении функции r(t,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaaiI cacaWG0bGaaGilaiabes8a0jaaiMcaaaa@3BC7@ класса (I), при которой решение задачи (18) на отрезке ( x 0 ,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI hadaWgaaWcbaGaaGimaaqabaGccaaISaGaamiDaiaaiMcaaaa@3AF8@ , t[0,T] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI GiolaaiUfacaaIWaGaaGilaiaadsfacaaIDbaaaa@3C89@ , удовлетворяет условию

u ω ( x 0 ,t)q(t) 1 ω ϕ(t) 1 ω 2 (ψ(t)+χ(t,ωt)) C([0,T]) =O( ω 3 ),ω, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaauWaaeaaca WG1bWaaSbaaSqaaiabeM8a3bqabaGccaaIOaGaamiEamaaBaaaleaa caaIWaaabeaakiaaiYcacaWG0bGaaGykaiabgkHiTiaadghacaaIOa GaamiDaiaaiMcacqGHsisldaWcaaqaaiaaigdaaeaacqaHjpWDaaGa eqy1dyMaaGikaiaadshacaaIPaGaeyOeI0YaaSaaaeaacaaIXaaaba GaeqyYdC3aaWbaaSqabeaacaaIYaaaaaaakiaaiIcacqaHipqEcaaI OaGaamiDaiaaiMcacqGHRaWkcqaHhpWycaaIOaGaamiDaiaaiYcacq aHjpWDcaWG0bGaaGykaiaaiMcaaiaawMa7caGLkWoadaWgaaWcbaGa am4qaiaaiIcacaaIBbGaaGimaiaaiYcacaWGubGaaGyxaiaaiMcaae qaaOGaaGypaiaad+eacaaIOaGaeqyYdC3aaWbaaSqabeaacqGHsisl caaIZaaaaOGaaGykaiaaiYcacaaMf8UaeqyYdCNaeyOKH4QaeyOhIu QaaGilaaaa@74CF@ (19)

будем называть обратной задачей.

Теорема 2.  Обратная задача имеет единственное решение.

Доказательство. Согласно теореме 1 решение задачи Коши (18) при известной функции r MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaaaa@36EE@  класса (I) удовлетворяет условию

u ω (x,t) u 0 (x,t) 1 ω u 1 (x,t) 1 ω 2 ( u 2 (x,t)+ v 2 (x,t,ωt)) C( Π M ) =O( ω 3 ),ω, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaauWaaeaaca WG1bWaaSbaaSqaaiabeM8a3bqabaGccaaIOaGaamiEaiaaiYcacaWG 0bGaaGykaiabgkHiTiaadwhadaWgaaWcbaGaaGimaaqabaGccaaIOa GaamiEaiaaiYcacaWG0bGaaGykaiabgkHiTmaalaaabaGaaGymaaqa aiabeM8a3baacaWG1bWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadI hacaaISaGaamiDaiaaiMcacqGHsisldaWcaaqaaiaaigdaaeaacqaH jpWDdaahaaWcbeqaaiaaikdaaaaaaOGaaGikaiaadwhadaWgaaWcba GaaGOmaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiabgUca RiaadAhadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiEaiaaiYcaca WG0bGaaGilaiabeM8a3jaadshacaaIPaGaaGykaaGaayzcSlaawQa7 amaaBaaaleaacaWGdbGaaGikaiabfc6aqnaaBaaabaGaamytaaqaba GaaGykaaqabaGccaaI9aGaam4taiaaiIcacqaHjpWDdaahaaWcbeqa aiabgkHiTiaaiodaaaGccaaIPaGaaGilaiaaywW7cqaHjpWDcqGHsg IRcqGHEisPcaaISaaaaa@7A72@

где u i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaWGPbaabeaaaaa@380B@ , v i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacaWGPbaabeaaaaa@380C@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ те же, что в п. 0.2. Отсюда, с учётом (19), следует асимптотическая формула

u 0 ( x 0 ,t)+ 1 ω u 1 ( x 0 ,t)+ 1 ω 2 ( u 2 ( x 0 ,t)+ v 2 ( x 0 ,t,ωt))= =q(t)+ 1 ω ϕ(t)+ 1 ω 2 (ψ(t)+χ(t,ωt))+O( ω 3 ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaiaadwhadaWgaaWcbaGaaGimaaqabaGccaaIOaGaamiEamaaBaaa leaacaaIWaaabeaakiaaiYcacaWG0bGaaGykaiabgUcaRmaalaaaba GaaGymaaqaaiabeM8a3baacaWG1bWaaSbaaSqaaiaaigdaaeqaaOGa aGikaiaadIhadaWgaaWcbaGaaGimaaqabaGccaaISaGaamiDaiaaiM cacqGHRaWkdaWcaaqaaiaaigdaaeaacqaHjpWDdaahaaWcbeqaaiaa ikdaaaaaaOGaaGikaiaadwhadaWgaaWcbaGaaGOmaaqabaGccaaIOa GaamiEamaaBaaaleaacaaIWaaabeaakiaaiYcacaWG0bGaaGykaiab gUcaRiaadAhadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiEamaaBa aaleaacaaIWaaabeaakiaaiYcacaWG0bGaaGilaiabeM8a3jaadsha caaIPaGaaGykaiaai2daaeaacaaI9aGaamyCaiaaiIcacaWG0bGaaG ykaiabgUcaRmaalaaabaGaaGymaaqaaiabeM8a3baacqaHvpGzcaaI OaGaamiDaiaaiMcacqGHRaWkdaWcaaqaaiaaigdaaeaacqaHjpWDda ahaaWcbeqaaiaaikdaaaaaaOGaaGikaiabeI8a5jaaiIcacaWG0bGa aGykaiabgUcaRiabeE8aJjaaiIcacaWG0bGaaGilaiabeM8a3jaads hacaaIPaGaaGykaiabgUcaRiaad+eacaaIOaGaeqyYdC3aaWbaaSqa beaacqGHsislcaaIZaaaaOGaaGykaiaai6caaaaaaa@85D4@ (20)

Приравняем коэффициенты при степенях ω 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaW baaSqabeaacaaIWaaaaaaa@38AB@ , ω 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaW baaSqabeaacqGHsislcaaIXaaaaaaa@3999@ , ω 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaW baaSqabeaacqGHsislcaaIYaaaaaaa@399A@  в равенстве (20). Отсюда, используя операцию усреднения по τ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqhaaa@37BC@ , τ=ωt MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqNaaG ypaiabeM8a3jaadshaaaa@3B49@ , получим равенства:

(a)u0x0,tqt(b)u1x0,tϕt(c)u2x0,tψt(d)v2x0,t,τχt,τ (21)

В силу п. 2

u 0 ( x 0 ,t)= 1 2 0 t r 0 (s) x 0 (ts) x 0 +(ts) f(ξ,s)dξds. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaaIWaaabeaakiaaiIcacaWG4bWaaSbaaSqaaiaaicdaaeqa aOGaaGilaiaadshacaaIPaGaaGypamaalaaabaGaaGymaaqaaiaaik daaaWaa8qCaeqaleaacaaIWaaabaGaamiDaaqdcqGHRiI8aOGaamOC amaaBaaaleaacaaIWaaabeaakiaaiIcacaWGZbGaaGykamaapehabe WcbaGaamiEamaaBaaabaGaaGimaaqabaGaeyOeI0IaaGikaiaadsha cqGHsislcaWGZbGaaGykaaqaaiaadIhadaWgaaqaaiaaicdaaeqaai abgUcaRiaaiIcacaWG0bGaeyOeI0Iaam4CaiaaiMcaa0Gaey4kIipa kiaadAgacaaIOaGaeqOVdGNaaGilaiaadohacaaIPaGaamizaiabe6 7a4jaadsgacaWGZbGaaGOlaaaa@631A@

Отсюда и из (21)(a) следует равенство

q(t)= 1 2 0 t r 0 (s) x 0 (ts) x 0 +(ts) f(ξ,s)dξds. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiaaiI cacaWG0bGaaGykaiaai2dadaWcaaqaaiaaigdaaeaacaaIYaaaamaa pehabeWcbaGaaGimaaqaaiaadshaa0Gaey4kIipakiaadkhadaWgaa WcbaGaaGimaaqabaGccaaIOaGaam4CaiaaiMcadaWdXbqabSqaaiaa dIhadaWgaaqaaiaaicdaaeqaaiabgkHiTiaaiIcacaWG0bGaeyOeI0 Iaam4CaiaaiMcaaeaacaWG4bWaaSbaaeaacaaIWaaabeaacqGHRaWk caaIOaGaamiDaiabgkHiTiaadohacaaIPaaaniabgUIiYdGccaWGMb GaaGikaiabe67a4jaaiYcacaWGZbGaaGykaiaadsgacqaH+oaEcaWG KbGaam4Caiaai6caaaa@5F83@

Продифференцировав его дважды по t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@36F0@ , получим уравнение Вольтерра второго рода

q (t)= r 0 (t)f( x 0 ,t)+ 1 2 0 t r 0 (s)[ f x ( x 0 +(ts),s) f x ( x 0 (ts),s)]ds, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyCayaafy aafaGaaGikaiaadshacaaIPaGaaGypaiaadkhadaWgaaWcbaGaaGim aaqabaGccaaIOaGaamiDaiaaiMcacaWGMbGaaGikaiaadIhadaWgaa WcbaGaaGimaaqabaGccaaISaGaamiDaiaaiMcacqGHRaWkdaWcaaqa aiaaigdaaeaacaaIYaaaamaapehabeWcbaGaaGimaaqaaiaadshaa0 Gaey4kIipakiaadkhadaWgaaWcbaGaaGimaaqabaGccaaIOaGaam4C aiaaiMcacaaIBbGabmOzayaafaWaaSbaaSqaaiaadIhaaeqaaOGaaG ikaiaadIhadaWgaaWcbaGaaGimaaqabaGccqGHRaWkcaaIOaGaamiD aiabgkHiTiaadohacaaIPaGaaGilaiaadohacaaIPaGaeyOeI0Iabm OzayaafaWaaSbaaSqaaiaadIhaaeqaaOGaaGikaiaadIhadaWgaaWc baGaaGimaaqabaGccqGHsislcaaIOaGaamiDaiabgkHiTiaadohaca aIPaGaaGilaiaadohacaaIPaGaaGyxaiaadsgacaWGZbGaaGilaaaa @6D27@

из которого следует существование и единственность решения r 0 C([0,T]) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCamaaBa aaleaacaaIWaaabeaakiabgIGiolaadoeacaaIOaGaaG4waiaaicda caaISaGaamivaiaai2facaaIPaaaaa@3FA4@ . Теперь продифференцируем (21)(d) по переменной τ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqhaaa@37BC@  дважды. В силу (8) получим

f( x 0 ,t) r 1 (t,τ)= 2 χ(t,τ) τ 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiaadshacaaIPaGa amOCamaaBaaaleaacaaIXaaabeaakiaaiIcacaWG0bGaaGilaiabes 8a0jaaiMcacaaI9aWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikda aaGccqaHhpWycaaIOaGaamiDaiaaiYcacqaHepaDcaaIPaaabaGaey OaIyRaeqiXdq3aaWbaaSqabeaacaaIYaaaaaaakiaai6caaaa@513A@

Таким образом, функция r 1 (t,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCamaaBa aaleaacaaIXaaabeaakiaaiIcacaWG0bGaaGilaiabes8a0jaaiMca aaa@3CB8@  также определяется единственным образом. В силу условий, наложенных на функции q(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiaaiI cacaWG0bGaaGykaaaa@394B@  и χ(t,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4XdmMaaG ikaiaadshacaaISaGaeqiXdqNaaGykaaaa@3C87@ , полученная функция r(t,τ)= r 0 (t)+ r 1 (t,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaaiI cacaWG0bGaaGilaiabes8a0jaaiMcacaaI9aGaamOCamaaBaaaleaa caaIWaaabeaakiaaiIcacaWG0bGaaGykaiabgUcaRiaadkhadaWgaa WcbaGaaGymaaqabaGccaaIOaGaamiDaiaaiYcacqaHepaDcaaIPaaa aa@4876@  принадлежит классу (I).

Нетрудно показать, что при найденной функции r(t,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaaiI cacaWG0bGaaGilaiabes8a0jaaiMcaaaa@3BC7@ решение задачи Коши (18) удовлетворяет требуемой асимптотической формуле (19). Теорема 2 доказана.

×

Об авторах

Элла Викторовна Кораблина

Математический институт им. В. А. Стеклова РАН; Южный федеральный университет

Автор, ответственный за переписку.
Email: ellakorablina1998@gmail.com
Россия, Москва; Ростов-на-Дону

Валерий Борисович Левенштам

Математический институт им. В. А. Стеклова РАН; Южный федеральный университет

Email: vlevenshtam@yandex.ru
Россия, Москва; Ростов-на-Дону

Список литературы

  1. Бабич П. В., Левенштам В. Б. Восстановление быстро осциллирующего свободного члена в многомерном гиперболическом уравнении// Мат. заметки. — 2018. — 104, № 4. — С. 489-497.
  2. БабичП. В., Лсвснштам В. Б., При-ка С. П. Восстановление быстро осциллирующего источника в уравнении теплопроводности по асимптотике решения// Ж. вычисл. мат. мат. физ. — 2017. — 57, № 12. — С. 1955-1965.
  3. Ватульяп А. О. Обратные задачи в механике деформируемого твердого тела. — М.: Физматлит, 2007.
  4. Денисов А. М. Введение в теорию обратных задач. — М.: Наука, 1994.
  5. Кабапихип С. И. Обратные и некорректные задачи. — Новосибирск, 2008.
  6. Лавретьев М. М., Резницкая К. Г., Яхно В. Г. Одномерные обратные задачи математической физики. Новосибирск: Наука, 1982.
  7. Левенштам В. Б. Метод усреднения в задаче конвекции при высокочастотных наклонных вибрациях// Сиб. мат. ж. — 1996. — 37, № 5. — С. 1103-1116.
  8. Левенштам В. Б. Асимптотическое интегрирование задачи о вибрационной конвекции// Диффер. уравн. — 1998. — 34, № 4. — С. 523-532.
  9. Левенштам В. Б. Асимптотическое разложение решения задачи о вибрационной конвекции// Ж. вычисл. мат. мат. физ. — 2000. — 40, № 9. — С. 1416-1424.
  10. Левенштам В. Б. Параболические уравнения с большим параметром. Обратные задачи// Мат. заметки. — 2020. — 107, № 3. — С. 412-425.
  11. Романов В. Г. Обратные задачи математической физики. — М.: Наука, 1984.
  12. Симоненко И. Б. Обоснование метода усреднения для задачи конвекции в поле быстро осциллирующих сил и для других параболических уранений// Мат. сб. — 1972. — 87, № 2. — С. 236-253.
  13. Babich P. V., Levenshtam V. B. Direct and inverse asymptotic problems high-frequency terms// Asympt.
  14. Anal. 2016. 97. P. 329 336.
  15. Babich P. V.. Leiemshtani V. B. Inverse problem in the multidimensional hyperbolic equation with rapidly oscillating absolute term// in: Operator Theory and Differential Equations (Kusraev A. G, Totieva Zh. D., eds.). — Birkhauser, 2021. — P. 7-25.
  16. Prilepko A. U.. Orlovsky D. G.. Vasin 1. A. Methods for Solving Inverse Problems in Mathematical Physics. — New York: Marsel Dekker, 2000.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Кораблина Э.В., Левенштам В.Б., 2022

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).