On the exact solution of the evolution equations for two interacting narrow wave packets propagating in a non-Abelian plasma

Cover Page

Cite item

Full Text

Abstract

In this paper, we present and discuss a self-consistent system of kinetic equations of the Boltzmann type, which takes into account the time evolution of soft non-Abelian plasma excitations and the mean value of the color charge in the interaction of a high-energy color-charged particle with a plasma. Based on these equations, we examine a model problem of interaction of two infinitely narrow wave packets and obtain a system of first-order nonlinear ordinary differential equations, which governs the dynamics of interacting the colorless Nkl and color Wkl components of the density of the number collective bosonic excitations. Due to the autonomy of the right-hand sides, we reduce this system to a single nonlinear Abel differential equation of the second kind. Finally, we show that at a certain ratio between the constants involved in this nonlinear equation, one can obtain an exact solution in the parametric form.

About the authors

Yurii A. Markov

V. M. Matrosov Institute of System Dynamics and Control Theory of the Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: markov@icc.ru
Russian Federation, Irkutsk

Margarita A. Markova

V. M. Matrosov Institute of System Dynamics and Control Theory of the Siberian Branch of the Russian Academy of Sciences

Email: markova@icc.ru
Russian Federation, Irkutsk

Nikita Yu. Markov

V. M. Matrosov Institute of System Dynamics and Control Theory of the Siberian Branch of the Russian Academy of Sciences

Email: NYumarkov@gmail.com
Russian Federation, Irkutsk

References

  1. Дубинов А. Е., Дубинова И. Д., Сайков С. К.W-Функция Ламберта и её применение в математических задачах физики. — Саров: РФЯЦ-ВНИИЭФ, 2006.
  2. Зайцев В. Ф., Полянин А. Д. Справочник по нелинейным дифференциальным уравнениям: Приложения в механике, точные решения. — М.: Наука, 1993.
  3. Марков Ю. А., Маркова М. А., Марков Н. Ю. Гамильтонов формализм для жестких и мягких возбуждений в плазме с неабелевым взаимодействием// Итоги науки техн. Совр. мат. прилож. Темат. обз. — 2024. — 234. — С. 143–158.
  4. Blaizot J.-P., Iancu E. The quark-gluon plasma: collective dynamics and hard thermal loops// Phys. Rep. — 2002. — 359. — P. 355–528.
  5. Corless R. M., Gonnet G. H., Hare D .E. G. et al. On the Lambert W function// Adv. Comput. Math. — 1996. — 5. — P. 329–359.
  6. Corless R. M., Jeffrey D. J., Knuth D. E. A sequence series for the Lambert W function// Proc. Int. Symp. on Symbolic and Algebraic Computation (ISSAC, 1997). — New York, 1997. — P. 197–204.
  7. Ghiglieri J., Kurkela A., Strickland M., Vuorinen A. Perturbative thermal QCD: Formalism and applications// Phys. Rep. — 2020. — 880. — P. 1–73.
  8. Kalugin G. A., Jeffrey D. J., Corless R. M. Stieltjes, Poisson and other integral representations for functions of Lambert W/ arXiv: math.CV/:1103.5640v1.
  9. Markov Yu. A., Markova M. A. Nonlinear plasmon damping in the quark-gluon plasma// J. Phys. G: Nucl. Part. Phys. — 2000. — 26. — P. 1581–1619.
  10. Markov Yu. A., Markova M. A. Nonlinear Landau damping of a plasmino in the quark-gluon plasma// Phys. Rev. D. — 2001. — 64. — 105009.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Markov Y.A., Markova M.A., Markov N.Y.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).