On two-dimensional systems of Volterra integral equations of the first kind

Cover Page

Cite item

Full Text

Abstract

In this paper, we consider two-dimensional systems of Volterra integral equations of the first kind. The case where a system of integral equations of the second kind is obtained by differentiating the equations is well studied. We examine the case where this approach leads to a system of integral equations with an degenerate matrix of the principal part. We formulate sufficient conditions for the existence of a unique smooth solution in terms of matrix pencils.

Full Text

1. Введение

В настоящей работе рассмотрены системы линейных двумерных интегральных уравнений типа Вольтерра

0t0xKt,x,τ,suτ,sdsdτ=φt,xt,xΩ0,T×0,X, (1)

где K(t,x,τ,s) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaaiI cacaWG0bGaaGilaiaadIhacaaISaGaeqiXdqNaaGilaiaadohacaaI Paaaaa@3F01@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ матрица—ядро размерности (n×n) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaad6 gacqGHxdaTcaWGUbGaaGykaaaa@3B59@ , u(t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG0bGaaGilaiaadIhacaaIPaaaaa@3B02@ — искомая, φ(t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOMaaG ikaiaadshacaaISaGaamiEaiaaiMcaaaa@3BC5@ — заданная n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@36EA@  —мерные вектор—функции. Здесь проведено исследование систем (1) c условием

 (2)

К настоящему времени системы вида (1) практически не изучены. Исключением являются некоторые частные случаи, например, K(t,x,τ,s) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaaiI cacaWG0bGaaGilaiaadIhacaaISaGaeqiXdqNaaGilaiaadohacaaI Paaaaa@3F01@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ функция, причем существуют такие минимальные целые неотрицательные числа r MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaaaa@36EE@ , q MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaaaa@36ED@ , что суперпозиция оператора q x q r t qr MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq GHciITdaahaaWcbeqaaiaadghaaaaakeaacqGHciITcaWG4bWaaWba aSqabeaacaWGXbaaaaaakmaalaaabaGaeyOaIy7aaWbaaSqabeaaca WGYbaaaaGcbaGaeyOaIyRaamiDamaaCaaaleqabaGaamyCaiaadkha aaaaaaaa@4347@  c уравнением (1) дает интегральное двумерное уравнение Вольтерра второго рода. Другой случай это когда detK(t,x,t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciizaiaacw gacaGG0bGaam4saiaaiIcacaWG0bGaaGilaiaadIhacaaISaGaamiD aiaaiYcacaWG4bGaaGykaiqbggMi6Aaawaaaaa@42EB@  при всех (t,x)Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaads hacaaISaGaamiEaiaaiMcacqGHiiIZcqqHPoWvaaa@3D1A@ .

К близким по приведенным здесь исследованиям относятся статьи, посвященные интегро—алгебраических уравнений (ИАУ). По данной тематике см., например, 1, 3, 10 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ 16, 18 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ 20] и приведенную там библиографию. В работах [13, 14] проведено исследование на предмет существования и единственности решения ИАУ и предложен метод их решения, основанный на простейшей неявной кубатурной формуле. В статье [4] рассмотрены одномерные системы линейных интегральных уравнений типа Вольтерра с тождественно вырожденной матрицей—ядром на диагонали. Для таких систем сформулированы достаточные условия существования единственного достаточно гладкого решения, предложены и обоснованы численные методы решения первого и второго порядков.

Относительно исследования системы (1) на предмет существования и единственности решения с условием (2) авторам неизвестны результаты. Этот факт и послужил мотивацией для проведения данного исследования.

2. Постановка задачи и ее свойства

Рассмотрим систему (1) c условием (2). Здесь и всюду в дальнейшем изложении предполагается, что элементы матрицы K(t,x,τ,s) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaaiI cacaWG0bGaaGilaiaadIhacaaISaGaeqiXdqNaaGilaiaadohacaaI Paaaaa@3F01@  и правой части φ(t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOMaaG ikaiaadshacaaISaGaamiEaiaaiMcaaaa@3BC5@  обладают той гладкостью, которая необходима для проведения всех выкладок.

Данные системы уравнений принципиально отличаются от уравнений Вольтерра второго и первого родов. Эти системы могут иметь множество решений, а могут и не иметь решения в классе достаточно гладких функций; кроме того, решение (при корректно заданной правой части (1)) может зависеть от высоких производных (смешанных) входных данных.

Приведем примеры. В ряде примеров двойной интеграл заменен на повторный. Отметим, что порядок интегрирования может быть изменен. Это возможно в силу гладкости входных данных и теоремы Фубини [7].

Пример 1.  Рассмотрим систему уравнений

0 t 0 x a 11 (τ,s) (tτ)(xs) 0 0 a 22 (τ,s) (tτ)(xs) (tτ)(xs) 0 0 u 1 (τ,s) u 2 (τ,s) u 3 (τ,s) dsdτ= 0 0 f(t,x) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqale aacaaIWaaabaGaamiDaaqdcqGHRiI8aOWaa8qCaeqaleaacaaIWaaa baGaamiEaaqdcqGHRiI8aOWaaeWaaeaafaqabeWadaaabaGaamyyam aaBaaaleaacaaIXaGaaGymaaqabaGccaaIOaGaeqiXdqNaaGilaiaa dohacaaIPaaabaGaaGikaiaadshacqGHsislcqaHepaDcaaIPaGaaG ikaiaadIhacqGHsislcaWGZbGaaGykaaqaaiaaicdaaeaacaaIWaaa baGaamyyamaaBaaaleaacaaIYaGaaGOmaaqabaGccaaIOaGaeqiXdq NaaGilaiaadohacaaIPaaabaGaaGikaiaadshacqGHsislcqaHepaD caaIPaGaaGikaiaadIhacqGHsislcaWGZbGaaGykaaqaaiaaiIcaca WG0bGaeyOeI0IaeqiXdqNaaGykaiaaiIcacaWG4bGaeyOeI0Iaam4C aiaaiMcaaeaacaaIWaaabaGaaGimaaaaaiaawIcacaGLPaaadaqada qaauaabeqadeaaaeaacaWG1bWaaSbaaSqaaiaaigdaaeqaaOGaaGik aiabes8a0jaaiYcacaWGZbGaaGykaaqaaiaadwhadaWgaaWcbaGaaG OmaaqabaGccaaIOaGaeqiXdqNaaGilaiaadohacaaIPaaabaGaamyD amaaBaaaleaacaaIZaaabeaakiaaiIcacqaHepaDcaaISaGaam4Cai aaiMcaaaaacaGLOaGaayzkaaGaamizaiaadohacaWGKbGaeqiXdqNa aGypamaabmaabaqbaeqabmqaaaqaaiaaicdaaeaacaaIWaaabaGaam OzaiaaiIcacaWG0bGaaGilaiaadIhacaaIPaaaaaGaayjkaiaawMca aiaai6caaaa@91A6@   (3)

Будем предполагать, что функции a 11 (t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaaIXaGaaGymaaqabaGccaaIOaGaamiDaiaaiYcacaWG4bGa aGykaaaa@3C9A@ , a 22 (t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaaIYaGaaGOmaaqabaGccaaIOaGaamiDaiaaiYcacaWG4bGa aGykaaaa@3C9C@ , f(t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG0bGaaGilaiaadIhacaaIPaaaaa@3AF3@  обладают той гладкостью, которая необходима для проведения выкладок. Кроме этого будем считать, что правая часть f(t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG0bGaaGilaiaadIhacaaIPaaaaa@3AF3@  задана корректно.

Дифференцируя дважды третье уравнение по t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@36F0@ , затем дважды по x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@36F4@ , получим

u 1 (t,x)= 2 t 2 2 x 2 f(t,x). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaaIXaaabeaakiaaiIcacaWG0bGaaGilaiaadIhacaaIPaGa aGypamaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaaGcbaGaey OaIyRaamiDamaaCaaaleqabaGaaGOmaaaaaaGcdaWcaaqaaiabgkGi 2oaaCaaaleqabaGaaGOmaaaaaOqaaiabgkGi2kaadIhadaahaaWcbe qaaiaaikdaaaaaaOGaamOzaiaaiIcacaWG0bGaaGilaiaadIhacaaI PaGaaGOlaaaa@4DE8@ . (4)

Подставляя это значение в первое уравнение (3), будем иметь

0 t 0 x a 11 (τ,s) u 1 (τ,s)+(tτ)(xs) u 2 (τ,s)=0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqale aacaaIWaaabaGaamiDaaqdcqGHRiI8aOWaa8qCaeqaleaacaaIWaaa baGaamiEaaqdcqGHRiI8aOGaamyyamaaBaaaleaacaaIXaGaaGymaa qabaGccaaIOaGaeqiXdqNaaGilaiaadohacaaIPaGaamyDamaaBaaa leaacaaIXaaabeaakiaaiIcacqaHepaDcaaISaGaam4CaiaaiMcacq GHRaWkcaaIOaGaamiDaiabgkHiTiabes8a0jaaiMcacaaIOaGaamiE aiabgkHiTiaadohacaaIPaGaamyDamaaBaaaleaacaaIYaaabeaaki aaiIcacqaHepaDcaaISaGaam4CaiaaiMcacaaI9aGaaGimaiaai6ca aaa@5FAC@ . (5)

Аналогично, дифференцируя дважды это уравнение сначала по t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@36F0@ , затем по x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@36F4@ , получим

2 t 2 2 x 2 ( a 11 (t,x) u 1 (t,x))+ u 2 (t,x)=0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq GHciITdaahaaWcbeqaaiaaikdaaaaakeaacqGHciITcaWG0bWaaWba aSqabeaacaaIYaaaaaaakmaalaaabaGaeyOaIy7aaWbaaSqabeaaca aIYaaaaaGcbaGaeyOaIyRaamiEamaaCaaaleqabaGaaGOmaaaaaaGc caaIOaGaamyyamaaBaaaleaacaaIXaGaaGymaaqabaGccaaIOaGaam iDaiaaiYcacaWG4bGaaGykaiaadwhadaWgaaWcbaGaaGymaaqabaGc caaIOaGaamiDaiaaiYcacaWG4bGaaGykaiaaiMcacqGHRaWkcaWG1b WaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadshacaaISaGaamiEaiaa iMcacaaI9aGaaGimaiaaiYcaaaa@588B@

или, учитывая (4) и достаточную гладкость данных,

u 2 = 2 t 2 2 x 2 ( a 11 (t,x) 2 t 2 2 x 2 f(t,x)). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaaIYaaabeaakiaai2dacqGHsisldaWcaaqaaiabgkGi2oaa CaaaleqabaGaaGOmaaaaaOqaaiabgkGi2kaadshadaahaaWcbeqaai aaikdaaaaaaOWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaaa keaacqGHciITcaWG4bWaaWbaaSqabeaacaaIYaaaaaaakiaaiIcaca WGHbWaaSbaaSqaaiaaigdacaaIXaaabeaakiaaiIcacaWG0bGaaGil aiaadIhacaaIPaWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaa aakeaacqGHciITcaWG0bWaaWbaaSqabeaacaaIYaaaaaaakmaalaaa baGaeyOaIy7aaWbaaSqabeaacaaIYaaaaaGcbaGaeyOaIyRaamiEam aaCaaaleqabaGaaGOmaaaaaaGccaWGMbGaaGikaiaadshacaaISaGa amiEaiaaiMcacaaIPaGaaGOlaaaa@5E47@

Проводя такие же выкладки для второго уравнения, имеем

u 3 = 2 t 2 2 x 2 ( a 22 (t,τ)( t x a 1 (t,τ) 2 t 2 2 x 2 f(t,x))). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaaIZaaabeaakiaai2dadaWcaaqaaiabgkGi2oaaCaaaleqa baGaaGOmaaaaaOqaaiabgkGi2kaadshadaahaaWcbeqaaiaaikdaaa aaaOWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaaakeaacqGH ciITcaWG4bWaaWbaaSqabeaacaaIYaaaaaaakiaaiIcacaWGHbWaaS baaSqaaiaaikdacaaIYaaabeaakiaaiIcacaWG0bGaaGilaiabes8a 0jaaiMcacaaIOaWaaSaaaeaacqGHciITaeaacqGHciITcaWG0baaam aalaaabaGaeyOaIylabaGaeyOaIyRaamiEaaaacaWGHbWaaSbaaSqa aiaaigdaaeqaaOGaaGikaiaadshacaaISaGaeqiXdqNaaGykamaala aabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaaGcbaGaeyOaIyRaamiD amaaCaaaleqabaGaaGOmaaaaaaGcdaWcaaqaaiabgkGi2oaaCaaale qabaGaaGOmaaaaaOqaaiabgkGi2kaadIhadaahaaWcbeqaaiaaikda aaaaaOGaamOzaiaaiIcacaWG0bGaaGilaiaadIhacaaIPaGaaGykai aaiMcacaaIUaaaaa@6DE8@

У этого примера ранг K(t,x,t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaaiI cacaWG0bGaaGilaiaadIhacaaISaGaamiDaiaaiYcacaWG4bGaaGyk aaaa@3E3A@ равен [(i)]

(i) двум, если a 11 (t,x) a 22 (t,x)0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaaIXaGaaGymaaqabaGccaaIOaGaamiDaiaaiYcacaWG4bGa aGykaiaadggadaWgaaWcbaGaaGOmaiaaikdaaeqaaOGaaGikaiaads hacaaISaGaamiEaiaaiMcacqGHGjsUcaaIWaaaaa@45C0@  при всех (t,s)Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaads hacaaISaGaam4CaiaaiMcacqGHiiIZcqqHPoWvaaa@3D15@ ;

(ii) единице в тех точках (t,x)Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaads hacaaISaGaamiEaiaaiMcacqGHiiIZcqqHPoWvaaa@3D1A@ , где a 11 (t,x)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaaIXaGaaGymaaqabaGccaaIOaGaamiDaiaaiYcacaWG4bGa aGykaiaai2dacaaIWaaaaa@3E1B@  или a 22 (t,x)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaaIYaGaaGOmaaqabaGccaaIOaGaamiDaiaaiYcacaWG4bGa aGykaiaai2dacaaIWaaaaa@3E1D@ ;

 (iii) нулю, если a 11 (t,x)= a 22 (t,s)0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaaIXaGaaGymaaqabaGccaaIOaGaamiDaiaaiYcacaWG4bGa aGykaiaai2dacaWGHbWaaSbaaSqaaiaaikdacaaIYaaabeaakiaaiI cacaWG0bGaaGilaiaadohacaaIPaGaeyyyIORaaGimaaaa@4684@ .

Однако в этом случае точки перемены ранга матрицы K(t,x,t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaaiI cacaWG0bGaaGilaiaadIhacaaISaGaamiDaiaaiYcacaWG4bGaaGyk aaaa@3E3A@  не являются сингулярными. Существование единственного непрерывного решения данного примера гарантирует корректно заданная правая часть и достаточная гладкость, по совокупности аргументов, функций a 11 (t,x) a 22 (t,s) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaaIXaGaaGymaaqabaGccaaIOaGaamiDaiaaiYcacaWG4bGa aGykaiaadggadaWgaaWcbaGaaGOmaiaaikdaaeqaaOGaaGikaiaads hacaaISaGaam4CaiaaiMcaaaa@433A@  и f(t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG0bGaaGilaiaadIhacaaIPaaaaa@3AF3@ .

Следующие два примера приведены для случая, когда K(t,x,t,x)=k(t,τ)l(x,s) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaaiI cacaWG0bGaaGilaiaadIhacaaISaGaamiDaiaaiYcacaWG4bGaaGyk aiaai2dacaWGRbGaaGikaiaadshacaaISaGaeqiXdqNaaGykaiaadY gacaaIOaGaamiEaiaaiYcacaWGZbGaaGykaaaa@49CB@  и вектор—функции u(t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG0bGaaGilaiaadIhacaaIPaaaaa@3B02@ , зависящей только от одного аргумента, т.е. u(t,x)=u(x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG0bGaaGilaiaadIhacaaIPaGaaGypaiaadwhacaaIOaGaamiE aiaaiMcaaaa@3F25@ . Тогда исходную систему, с учетом гладкости входных данных, можно записать в виде

0 t 0 x K(t,x,t,x)u(τ,s)dsdτ= 0 t k(t,τ)( 0 x l(x,s)u(s)ds)dτ=φ(t,x). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqale aacaaIWaaabaGaamiDaaqdcqGHRiI8aOWaa8qCaeqaleaacaaIWaaa baGaamiEaaqdcqGHRiI8aOGaam4saiaaiIcacaWG0bGaaGilaiaadI hacaaISaGaamiDaiaaiYcacaWG4bGaaGykaiaadwhacaaIOaGaeqiX dqNaaGilaiaadohacaaIPaGaamizaiaadohacaWGKbGaeqiXdqNaaG ypamaapehabeWcbaGaaGimaaqaaiaadshaa0Gaey4kIipakiaadUga caaIOaGaamiDaiaaiYcacqaHepaDcaaIPaGaaGikamaapehabeWcba GaaGimaaqaaiaadIhaa0Gaey4kIipakiaadYgacaaIOaGaamiEaiaa iYcacaWGZbGaaGykaiaadwhacaaIOaGaam4CaiaaiMcacaWGKbGaam 4CaiaaiMcacaWGKbGaeqiXdqNaaGypaiabeA8aQjaaiIcacaWG0bGa aGilaiaadIhacaaIPaGaaGOlaaaa@7568@ . (6)

Рассмотрим однородную задачу (6), у которой внутренний интеграл равен нулю, т.е.

0 x l(x,s)u(s)=0,s[0,X]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqale aacaaIWaaabaGaamiEaaqdcqGHRiI8aOGaamiBaiaaiIcacaWG4bGa aGilaiaadohacaaIPaGaamyDaiaaiIcacaWGZbGaaGykaiaai2daca aIWaGaaGilaiaaywW7caWGZbGaeyicI4SaaG4waiaaicdacaaISaGa amiwaiaai2facaaIUaaaaa@4D8C@ .  (7)

Если данная система уравнений имеет нетривиальное решение, то и однородная система (6) имеет ненулевое решение.

Пример 2.  Легко непосредственно проверить, что система интегральных уравнений

0 x s2(xs) 1+x2s xs xs u 1 (s) u 2 (s) ds=0,s[0,1], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqale aacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaeWaaeaafaqabeGacaaa baGaam4CaiabgkHiTiaaikdacaaIOaGaamiEaiabgkHiTiaadohaca aIPaaabaGaaGymaiabgUcaRiaadIhacqGHsislcaaIYaGaam4Caaqa aiaadIhacqGHsislcaWGZbaabaGaamiEaiabgkHiTiaadohaaaaaca GLOaGaayzkaaWaaeWaaeaafaqabeGabaaabaGaamyDamaaBaaaleaa caaIXaaabeaakiaaiIcacaWGZbGaaGykaaqaaiaadwhadaWgaaWcba GaaGOmaaqabaGccaaIOaGaam4CaiaaiMcaaaaacaGLOaGaayzkaaGa amizaiaadohacaaI9aGaaGimaiaaiYcacaaMf8Uaam4CaiabgIGiol aaiUfacaaIWaGaaGilaiaaigdacaaIDbGaaGilaaaa@6498@ . (8)

имеет множество решений вида

u 1 = 0, s[0,1/2], c 2s1 , s[1/2,1], u 2 = 0, s[0,1/2], c 2s1 , s[1/2,1]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaaIXaaabeaakiaai2dadaqabaqaauaabeqaciaaaeaacaaI WaGaaGilaaqaaiaadohacqGHiiIZcaaIBbGaaGimaiaaiYcacaaIXa GaaG4laiaaikdacaaIDbGaaGilaaqaaiaadogadaGcaaqaaiaaikda caWGZbGaeyOeI0IaaGymaaWcbeaakiaaiYcaaeaacaWGZbGaeyicI4 SaaG4waiaaigdacaaIVaGaaGOmaiaaiYcacaaIXaGaaGyxaiaaiYca aaaacaGL7baacaaMf8UaaGzbVlaadwhadaWgaaWcbaGaaGOmaaqaba GccaaI9aWaaeqaaeaafaqabeGacaaabaGaaGimaiaaiYcaaeaacaWG ZbGaeyicI4SaaG4waiaaicdacaaISaGaaGymaiaai+cacaaIYaGaaG yxaiaaiYcaaeaacqGHsislcaWGJbWaaOaaaeaacaaIYaGaam4Caiab gkHiTiaaigdaaSqabaGccaaISaaabaGaam4CaiabgIGiolaaiUfaca aIXaGaaG4laiaaikdacaaISaGaaGymaiaai2facaaIUaaaaaGaay5E aaaaaa@7151@

Таким образом, и система

0 t 0 x k(t,τ)l(x,s)u(s)dsdτ=0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqale aacaaIWaaabaGaamiDaaqdcqGHRiI8aOWaa8qCaeqaleaacaaIWaaa baGaamiEaaqdcqGHRiI8aOGaam4AaiaaiIcacaWG0bGaaGilaiabes 8a0jaaiMcacaWGSbGaaGikaiaadIhacaaISaGaam4CaiaaiMcacaWG 1bGaaGikaiaadohacaaIPaGaamizaiaadohacaWGKbGaeqiXdqNaaG ypaiaaicdacaaISaaaaa@5330@

у которой матрица l(x,s) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaiaaiI cacaWG4bGaaGilaiaadohacaaIPaaaaa@3AF8@  определена из формулы (8), имеет множество решений.

Пример 3.  Однородная система интегральных уравнений вида (6) с матрицей

l(x,s)= a b(xs) c(xs) d (xs) 2 ,a0,b0,c0,d0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaiaaiI cacaWG4bGaaGilaiaadohacaaIPaGaaGypamaabmaabaqbaeqabiGa aaqaaiaadggaaeaacaWGIbGaaGikaiaadIhacqGHsislcaWGZbGaaG ykaaqaaiaadogacaaIOaGaamiEaiabgkHiTiaadohacaaIPaaabaGa amizaiaaiIcacaWG4bGaeyOeI0Iaam4CaiaaiMcadaahaaWcbeqaai aaikdaaaaaaaGccaGLOaGaayzkaaGaaGilaiaaywW7caWGHbGaeyiy IKRaaGimaiaaiYcacaaMf8UaamOyaiabgcMi5kaaicdacaaISaGaaG zbVlaadogacqGHGjsUcaaIWaGaaGilaiaaywW7caWGKbGaeyiyIKRa aGimaiaaiYcaaaa@6626@ (9)

при условии 2adcb=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaadg gacaWGKbGaeyOeI0Iaam4yaiaadkgacaaI9aGaaGimaaaa@3CBF@  имеет множество решений при любой матрице k(t,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiaaiI cacaWG0bGaaGilaiabes8a0jaaiMcaaaa@3BC0@ . В самом деле, система интегральных уравнений (внутренний интеграл)

0 x a b(xs) c(xs) d (xs) 2 u 1 (s) u 2 (s) ds= 0 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqale aacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaeWaaeaafaqabeGacaaa baGaamyyaaqaaiaadkgacaaIOaGaamiEaiabgkHiTiaadohacaaIPa aabaGaam4yaiaaiIcacaWG4bGaeyOeI0Iaam4CaiaaiMcaaeaacaWG KbGaaGikaiaadIhacqGHsislcaWGZbGaaGykamaaCaaaleqabaGaaG OmaaaaaaaakiaawIcacaGLPaaadaqadaqaauaabeqaceaaaeaacaWG 1bWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadohacaaIPaaabaGaam yDamaaBaaaleaacaaIYaaabeaakiaaiIcacaWGZbGaaGykaaaaaiaa wIcacaGLPaaacaWGKbGaam4Caiaai2dadaqadaqaauaabeqaceaaae aacaaIWaaabaGaaGimaaaaaiaawIcacaGLPaaaaaa@5CFA@

эквивалентна системе

au1x+b0xu2sds=0cu1+2d0xu2sds=0. (10)

Дифференцируя первое уравнение (10) один раз, а второе MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ дважды, находим

a u 1 '(x)+b u 2 (x)=0, c u 1 '(x)+2d u 2 (x)=0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeqaaeaafa qabeGabaaabaGaamyyaiaadwhadaWgaaWcbaGaaGymaaqabaGccaaI NaGaaGikaiaadIhacaaIPaGaey4kaSIaamOyaiaadwhadaWgaaWcba GaaGOmaaqabaGccaaIOaGaamiEaiaaiMcacaaI9aGaaGimaiaaiYca aeaacaWGJbGaamyDamaaBaaaleaacaaIXaaabeaakiaaiEcacaaIOa GaamiEaiaaiMcacqGHRaWkcaaIYaGaamizaiaadwhadaWgaaWcbaGa aGOmaaqabaGccaaIOaGaamiEaiaaiMcacaaI9aGaaGimaiaai6caaa aacaGL7baaaaa@5443@ . (11)

Учитывая условие 2adcb=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaadg gacaWGKbGaeyOeI0Iaam4yaiaadkgacaaI9aGaaGimaaaa@3CBF@ , получим, что данная система, а следовательно, и система (10), и исходные интегральные уравнения имеют множество решений.

Пример 4.  Система интегральных уравнений вида

0 t 0 x 1 K(t,x,τ,s) (tτ)(xs) (tτ)(xs) u 1 (τ,s) u 2 (τ,s) dsdτ= φ 1 (t,x) φ 2 (t,x) ,(t,x)Ω, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqale aacaaIWaaabaGaamiDaaqdcqGHRiI8aOWaa8qCaeqaleaacaaIWaaa baGaamiEaaqdcqGHRiI8aOWaaeWaaeaafaqabeGacaaabaGaaGymaa qaaiaadUeacaaIOaGaamiDaiaaiYcacaWG4bGaaGilaiabes8a0jaa iYcacaWGZbGaaGykaaqaaiaaiIcacaWG0bGaeyOeI0IaeqiXdqNaaG ykaiaaiIcacaWG4bGaeyOeI0Iaam4CaiaaiMcaaeaacaaIOaGaamiD aiabgkHiTiabes8a0jaaiMcacaaIOaGaamiEaiabgkHiTiaadohaca aIPaaaaaGaayjkaiaawMcaamaabmaabaqbaeqabiqaaaqaaiaadwha daWgaaWcbaGaaGymaaqabaGccaaIOaGaeqiXdqNaaGilaiaadohaca aIPaaabaGaamyDamaaBaaaleaacaaIYaaabeaakiaaiIcacqaHepaD caaISaGaam4CaiaaiMcaaaaacaGLOaGaayzkaaGaamizaiaadohaca WGKbGaeqiXdqNaaGypamaabmaabaqbaeqabiqaaaqaaiabeA8aQnaa BaaaleaacaaIXaaabeaakiaaiIcacaWG0bGaaGilaiaadIhacaaIPa aabaGaeqOXdO2aaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadshacaaI SaGaamiEaiaaiMcaaaaacaGLOaGaayzkaaGaaGilaiaaywW7caaIOa GaamiDaiaaiYcacaWG4bGaaGykaiabgIGiolabfM6axjaaiYcaaaa@89FA@ (12)

имеет единственное решение при корректно заданной правой части и при K(t,x,t,x)1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaaiI cacaWG0bGaaGilaiaadIhacaaISaGaamiDaiaaiYcacaWG4bGaaGyk aiabgcMi5kaaigdaaaa@40BC@  для всех (t,x)Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaads hacaaISaGaamiEaiaaiMcacqGHiiIZcqqHPoWvaaa@3D1A@ . В самом деле, дифференцируя первое уравнение (12) по t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@36F0@ , а затем по x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@36F4@ , получим

u 1 (t,x)+K(t,x,t,x) u 2 (t,x)+ 0 t K t (t,x,τ,x) u 2 (τ,x)dτ+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaaIXaaabeaakiaaiIcacaWG0bGaaGilaiaadIhacaaIPaGa ey4kaSIaam4saiaaiIcacaWG0bGaaGilaiaadIhacaaISaGaamiDai aaiYcacaWG4bGaaGykaiaadwhadaWgaaWcbaGaaGOmaaqabaGccaaI OaGaamiDaiaaiYcacaWG4bGaaGykaiabgUcaRmaapehabeWcbaGaaG imaaqaaiaadshaa0Gaey4kIipakiqadUeagaqbamaaBaaaleaacaWG 0baabeaakiaaiIcacaWG0bGaaGilaiaadIhacaaISaGaeqiXdqNaaG ilaiaadIhacaaIPaGaamyDamaaBaaaleaacaaIYaaabeaakiaaiIca cqaHepaDcaaISaGaamiEaiaaiMcacaWGKbGaeqiXdqNaey4kaScaaa@64C1@

+ 0 x K x (t,x,t,s) u 2 (t,s)ds+ 0 t 0 x K tx (t,x,τ,s) u 2 (τ,s)dsdτ= x t φ 1 (t,x). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qCaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOGabm4sayaafaWa aSbaaSqaaiaadIhaaeqaaOGaaGikaiaadshacaaISaGaamiEaiaaiY cacaWG0bGaaGilaiaadohacaaIPaGaamyDamaaBaaaleaacaaIYaaa beaakiaaiIcacaWG0bGaaGilaiaadohacaaIPaGaamizaiaadohacq GHRaWkdaWdXbqabSqaaiaaicdaaeaacaWG0baaniabgUIiYdGcdaWd XbqabSqaaiaaicdaaeaacaWG4baaniabgUIiYdGcceWGlbGbauGbau aadaWgaaWcbaGaamiDaiaadIhaaeqaaOGaaGikaiaadshacaaISaGa amiEaiaaiYcacqaHepaDcaaISaGaam4CaiaaiMcacaWG1bWaaSbaaS qaaiaaikdaaeqaaOGaaGikaiabes8a0jaaiYcacaWGZbGaaGykaiaa dsgacaWGZbGaamizaiabes8a0jaai2dadaWcaaqaaiabgkGi2cqaai abgkGi2kaadIhaaaWaaSaaaeaacqGHciITaeaacqGHciITcaWG0baa aiabeA8aQnaaBaaaleaacaaIXaaabeaakiaaiIcacaWG0bGaaGilai aadIhacaaIPaGaaGOlaaaa@7C1A@ (13)

Дифференцируя второе уравнение (12) по t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@36F0@ , а затем дважды по x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@36F4@ , получим

u 1 (t,x)+ u 2 (t,x)= 2 t 2 2 x 2 φ 2 (t,x). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaaIXaaabeaakiaaiIcacaWG0bGaaGilaiaadIhacaaIPaGa ey4kaSIaamyDamaaBaaaleaacaaIYaaabeaakiaaiIcacaWG0bGaaG ilaiaadIhacaaIPaGaaGypamaalaaabaGaeyOaIy7aaWbaaSqabeaa caaIYaaaaaGcbaGaeyOaIyRaamiDamaaCaaaleqabaGaaGOmaaaaaa GcdaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaaaOqaaiabgkGi 2kaadIhadaahaaWcbeqaaiaaikdaaaaaaOGaeqOXdO2aaSbaaSqaai aaikdaaeqaaOGaaGikaiaadshacaaISaGaamiEaiaaiMcacaaIUaaa aa@568B@ . (14)

Объединяя уравнения (13) и (14) в систему, находим

1Kt,x,t,x11u1t,xu2t,x+0t0K'tt,x,τ,x00u1τ,xu2τ,xdτ+

+0x0K'xt,x,t,s00u1t,su2t,sds+0t0x0K''txt,x,τ,s00u1τ,su2τ,sdsdτ

=xtφ1t,x2x22t2φ2t,x. (15)

В силу условия K(t,x,t,x)1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaaiI cacaWG0bGaaGilaiaadIhacaaISaGaamiDaiaaiYcacaWG4bGaaGyk aiabgcMi5kaaigdaaaa@40BC@ , (t,x)Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaads hacaaISaGaamiEaiaaiMcacqGHiiIZcqqHPoWvaaa@3D1A@ , матрица

1Kt,x,t,x11

является невырожденной, т.е. (15) является системой интегральных уравнений второго рода, которое имеет единственное решение.

Пример 5.  Однородная система

0t0x1tτxstτxsu1τ,su2τ,sdsdτ00, (16)

имеет множество решений. В самом деле, действуя на уравнения (16) операторами

2 t 2 x , 2 t 2 2 x 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq GHciITdaahaaWcbeqaaiaaikdaaaaakeaacqGHciITcaWG0bWaaWba aSqabeaacaaIYaaaaaaakmaalaaabaGaeyOaIylabaGaeyOaIyRaam iEaaaacaaISaGaaGzbVpaalaaabaGaeyOaIy7aaWbaaSqabeaacaaI YaaaaaGcbaGaeyOaIyRaamiDamaaCaaaleqabaGaaGOmaaaaaaGcda WcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaaaOqaaiabgkGi2kaa dIhadaahaaWcbeqaaiaaikdaaaaaaaaa@4D3F@

соответственно, получим систему

t u 1 (t,x)+ u 2 (t,x)=0 t u 1 (t,x)+ u 2 (t,x)=0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq GHciITaeaacqGHciITcaWG0baaaiaadwhadaWgaaWcbaGaaGymaaqa baGccaaIOaGaamiDaiaaiYcacaWG4bGaaGykaiabgUcaRiaadwhada WgaaWcbaGaaGOmaaqabaGccaaIOaGaamiDaiaaiYcacaWG4bGaaGyk aiaai2dacaaIWaWaaSaaaeaacqGHciITaeaacqGHciITcaWG0baaai aadwhadaWgaaWcbaGaaGymaaqabaGccaaIOaGaamiDaiaaiYcacaWG 4bGaaGykaiabgUcaRiaadwhadaWgaaWcbaGaaGOmaaqabaGccaaIOa GaamiDaiaaiYcacaWG4bGaaGykaiaai2dacaaIWaGaaGilaaaa@5B0F@

которая имеет множество решений. Следовательно, и первоначальная задача имеет множество решений.

Приведем заключительный пример.

Пример 6.  Система (1) с матрицей размера × вида

K(t,x,τ,s)=diag(1,tτ,xs,(tτ)(xs) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaaiI cacaWG0bGaaGilaiaadIhacaaISaGaeqiXdqNaaGilaiaadohacaaI PaGaaGypaiaadsgacaWGPbGaamyyaiaadEgacaaIOaGaaGymaiaaiY cacaWG0bGaeyOeI0IaeqiXdqNaaGilaiaadIhacqGHsislcaWGZbGa aGilaiaaiIcacaWG0bGaeyOeI0IaeqiXdqNaaGykaiaaiIcacaWG4b GaeyOeI0Iaam4CaiaaiMcaaaa@56E4@ , (17)

имеет единственное решение

u(t,x)=( t x φ 1 (t,x), 2 t 2 x φ 2 (t,x), t 2 x 2 φ 3 (t,x), 2 t 2 2 x 2 φ 4 (t,x )) Τ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG0bGaaGilaiaadIhacaaIPaGaaGypaiaaiIcadaWcaaqaaiab gkGi2cqaaiabgkGi2kaadshaaaWaaSaaaeaacqGHciITaeaacqGHci ITcaWG4baaaiabeA8aQnaaBaaaleaacaaIXaaabeaakiaaiIcacaWG 0bGaaGilaiaadIhacaaIPaGaaGilamaalaaabaGaeyOaIy7aaWbaaS qabeaacaaIYaaaaaGcbaGaeyOaIyRaamiDamaaCaaaleqabaGaaGOm aaaaaaGcdaWcaaqaaiabgkGi2cqaaiabgkGi2kaadIhaaaGaeqOXdO 2aaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadshacaaISaGaamiEaiaa iMcacaaISaWaaSaaaeaacqGHciITaeaacqGHciITcaWG0baaamaala aabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaaGcbaGaeyOaIyRaamiE amaaCaaaleqabaGaaGOmaaaaaaGccqaHgpGAdaWgaaWcbaGaaG4maa qabaGccaaIOaGaamiDaiaaiYcacaWG4bGaaGykaiaaiYcadaWcaaqa aiabgkGi2oaaCaaaleqabaGaaGOmaaaaaOqaaiabgkGi2kaadshada ahaaWcbeqaaiaaikdaaaaaaOWaaSaaaeaacqGHciITdaahaaWcbeqa aiaaikdaaaaakeaacqGHciITcaWG4bWaaWbaaSqabeaacaaIYaaaaa aakiabeA8aQnaaBaaaleaacaaI0aaabeaakiaaiIcacaWG0bGaaGil aiaadIhacaaIPaGaaGykamaaCaaaleqabaGaeyiPdqfaaaaa@8256@

при корректно заданной правой части.

Итак, данные примеры показывают принципиальное отличие уравнений (1) с условием (2) от стандартных систем интегральных уравнений Вольтерра первого рода, у которых detK(t,x,t,x)0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciizaiaacw gacaGG0bGaam4saiaaiIcacaWG0bGaaGilaiaadIhacaaISaGaamiD aiaaiYcacaWG4bGaaGykaiabgcMi5kaaicdaaaa@4386@ , (t,x)Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaads hacaaISaGaamiEaiaaiMcacqGHiiIZcqqHPoWvaaa@3D1A@ .

В дальнейшем нам потребуются некоторые факты из теории матричных пучков и матричных полиномов.

Определение 1 (см.[6]) Выражение вида λA(t,x)+B(t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaam yqaiaaiIcacaWG0bGaaGilaiaadIhacaaIPaGaey4kaSIaamOqaiaa iIcacaWG0bGaaGilaiaadIhacaaIPaaaaa@423C@ , где A(t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaaiI cacaWG0bGaaGilaiaadIhacaaIPaaaaa@3ACE@ , B(x,s) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaiaaiI cacaWG4bGaaGilaiaadohacaaIPaaaaa@3ACE@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa8hfGaaa@3A97@ (m×n) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaad2 gacqGHxdaTcaWGUbGaaGykaaaa@3B58@  —матрицы, λ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWgaaa@37AB@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa8hfGaaa@3A97@ скалярный параметр, (t,s)Ω[0,T]×[0,X] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaads hacaaISaGaam4CaiaaiMcacqGHiiIZcqqHPoWvcaaIBbGaaGimaiaa iYcacaWGubGaaGyxaiabgEna0kaaiUfacaaIWaGaaGilaiaadIfaca aIDbaaaa@475A@ , называется матричным пучком. Матричный пучок является регулярным, если m=n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiaai2 dacaWGUbaaaa@38A3@  и det(λA(t,x)+B(t,x) 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciizaiaacw gacaGG0bGaaGikaiabeU7aSjaadgeacaaIOaGaamiDaiaaiYcacaWG 4bGaaGykaiabgUcaRiaadkeacaaIOaGaamiDaiaaiYcacaWG4bGaaG ykaiqbggMi6AaawaGaaGimaaaa@4859@  при всех (t,s)Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaads hacaaISaGaam4CaiaaiMcacqGHiiIZcqqHPoWvaaa@3D15@ .

Определение 2 (см. [9]) Регулярный матричный пучок λA(t,x)+B(t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaam yqaiaaiIcacaWG0bGaaGilaiaadIhacaaIPaGaey4kaSIaamOqaiaa iIcacaWG0bGaaGilaiaadIhacaaIPaaaaa@423C@  удовлетворяет критерию "ранг—степень" (имеет индекс 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaaaa@36B2@  ), если rankA(t,x)=k= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaadg gacaWGUbGaam4AaiaadgeacaaIOaGaamiDaiaaiYcacaWG4bGaaGyk aiaai2dacaWGRbGaaGypaaaa@410C@  для всех (t,x)Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaads hacaaISaGaamiEaiaaiMcacqGHiiIZcqqHPoWvaaa@3D1A@  и det(λA(t,x)+B(t,x))= a k (t,x) λ k + a k1 (t,x) λ k1 ++ a 0 (t,x), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciizaiaacw gacaGG0bGaaGikaiabeU7aSjaadgeacaaIOaGaamiDaiaaiYcacaWG 4bGaaGykaiabgUcaRiaadkeacaaIOaGaamiDaiaaiYcacaWG4bGaaG ykaiaaiMcacaaI9aGaamyyamaaBaaaleaacaWGRbaabeaakiaaiIca caWG0bGaaGilaiaadIhacaaIPaGaeq4UdW2aaWbaaSqabeaacaWGRb aaaOGaey4kaSIaamyyamaaBaaaleaacaWGRbGaeyOeI0IaaGymaaqa baGccaaIOaGaamiDaiaaiYcacaWG4bGaaGykaiabeU7aSnaaCaaale qabaGaam4AaiabgkHiTiaaigdaaaGccqGHRaWkcqWIMaYscqGHRaWk caWGHbWaaSbaaSqaaiaaicdaaeqaaOGaaGikaiaadshacaaISaGaam iEaiaaiMcacaaISaaaaa@66D8@

где a k (t,x)0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaWGRbaabeaakiaaiIcacaWG0bGaaGilaiaadIhacaaIPaGa eyiyIKRaaGimaaaa@3E95@  при всех (t,x)Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaads hacaaISaGaamiEaiaaiMcacqGHiiIZcqqHPoWvaaa@3D1A@ .

Определение 3. Будем говорить, что двупараметрический матричный полином

λξ A 0 (t,x)+λ A 1 (t,x)+ξ A 2 (t,x)+ A 3 (t,x), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaeq OVdGNaamyqamaaBaaaleaacaaIWaaabeaakiaaiIcacaWG0bGaaGil aiaadIhacaaIPaGaey4kaSIaeq4UdWMaamyqamaaBaaaleaacaaIXa aabeaakiaaiIcacaWG0bGaaGilaiaadIhacaaIPaGaey4kaSIaeqOV dGNaamyqamaaBaaaleaacaaIYaaabeaakiaaiIcacaWG0bGaaGilai aadIhacaaIPaGaey4kaSIaamyqamaaBaaaleaacaaIZaaabeaakiaa iIcacaWG0bGaaGilaiaadIhacaaIPaGaaGilaaaa@5763@

где λ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWgaaa@37AB@  и ξ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdGhaaa@37BA@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ скалярные параметры, имеет простую структуру в области Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdCfaaa@3785@ , если выполнены следующие условия:

i.            (i) rank A 0 (t,x)= r 0 = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaadg gacaWGUbGaam4AaiaadgeadaWgaaWcbaGaaGimaaqabaGccaaIOaGa amiDaiaaiYcacaWG4bGaaGykaiaai2dacaWGYbWaaSbaaSqaaiaaic daaeqaaOGaaGypaaaa@42F3@  при всех (t,x)Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaads hacaaISaGaamiEaiaaiMcacqGHiiIZcqqHPoWvaaa@3D1A@ ;

 (ii) rank( A 0 (t,x)| A 1 (t,x))= r 0 + r 1 = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaadg gacaWGUbGaam4AaiaaiIcacaWGbbWaaSbaaSqaaiaaicdaaeqaaOGa aGikaiaadshacaaISaGaamiEaiaaiMcacaaI8bGaamyqamaaBaaale aacaaIXaaabeaakiaaiIcacaWG0bGaaGilaiaadIhacaaIPaGaaGyk aiaai2dacaWGYbWaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaamOCam aaBaaaleaacaaIXaaabeaakiaai2daaaa@4DF0@  при всех (t,x)Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaads hacaaISaGaamiEaiaaiMcacqGHiiIZcqqHPoWvaaa@3D1A@ ;

(iii)  rank( A 0 (t,x)| A 1 (t,x)| A 2 (t,x))= r 0 + r 1 + r 2 = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaadg gacaWGUbGaam4AaiaaiIcacaWGbbWaaSbaaSqaaiaaicdaaeqaaOGa aGikaiaadshacaaISaGaamiEaiaaiMcacaaI8bGaamyqamaaBaaale aacaaIXaaabeaakiaaiIcacaWG0bGaaGilaiaadIhacaaIPaGaaGiF aiaadgeadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiDaiaaiYcaca WG4bGaaGykaiaaiMcacaaI9aGaamOCamaaBaaaleaacaaIWaaabeaa kiabgUcaRiaadkhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGYb WaaSbaaSqaaiaaikdaaeqaaOGaaGypaaaa@578A@  при всех (t,x)Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaads hacaaISaGaamiEaiaaiMcacqGHiiIZcqqHPoWvaaa@3D1A@ ;

(iv) det(λξ A 0 (t,x)+λ A 1 (t,x)+ξ A 2 (t,x)+ A 3 (t,x))= λ r 0 + r 1 ξ r 0 + r 2 α 0 (t,x)+ λ r 0 + r 1 1 ξ r 0 + r 2 α 1 (t,x)+ λ r 0 + r 1 ξ r 0 + r 2 1 α 2 (t,x)+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciizaiaacw gacaGG0bGaaGikaiabeU7aSjabe67a4jaadgeadaWgaaWcbaGaaGim aaqabaGccaaIOaGaamiDaiaaiYcacaWG4bGaaGykaiabgUcaRiabeU 7aSjaadgeadaWgaaWcbaGaaGymaaqabaGccaaIOaGaamiDaiaaiYca caWG4bGaaGykaiabgUcaRiabe67a4jaadgeadaWgaaWcbaGaaGOmaa qabaGccaaIOaGaamiDaiaaiYcacaWG4bGaaGykaiabgUcaRiaadgea daWgaaWcbaGaaG4maaqabaGccaaIOaGaamiDaiaaiYcacaWG4bGaaG ykaiaaiMcacaaI9aGaeq4UdW2aaWbaaSqabeaacaWGYbWaaSbaaeaa caaIWaaabeaacqGHRaWkcaWGYbWaaSbaaeaacaaIXaaabeaaaaGccq aH+oaEdaahaaWcbeqaaiaadkhadaWgaaqaaiaaicdaaeqaaiabgUca RiaadkhadaWgaaqaaiaaikdaaeqaaaaakiabeg7aHnaaBaaaleaaca aIWaaabeaakiaaiIcacaWG0bGaaGilaiaadIhacaaIPaGaey4kaSIa eq4UdW2aaWbaaSqabeaacaWGYbWaaSbaaeaacaaIWaaabeaacqGHRa WkcaWGYbWaaSbaaeaacaaIXaaabeaacqGHsislcaaIXaaaaOGaeqOV dG3aaWbaaSqabeaacaWGYbWaaSbaaeaacaaIWaaabeaacqGHRaWkca WGYbWaaSbaaeaacaaIYaaabeaaaaGccqaHXoqydaWgaaWcbaGaaGym aaqabaGccaaIOaGaamiDaiaaiYcacaWG4bGaaGykaiabgUcaRiabeU 7aSnaaCaaaleqabaGaamOCamaaBaaabaGaaGimaaqabaGaey4kaSIa amOCamaaBaaabaGaaGymaaqabaaaaOGaeqOVdG3aaWbaaSqabeaaca WGYbWaaSbaaeaacaaIWaaabeaacqGHRaWkcaWGYbWaaSbaaeaacaaI YaaabeaacqGHsislcaaIXaaaaOGaeqySde2aaSbaaSqaaiaaikdaae qaaOGaaGikaiaadshacaaISaGaamiEaiaaiMcacqGHRaWkcqWIMaYs aaa@9D7B@ , где α 0 (t,x), α 1 (t,x), α 2 (t,x), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaaicdaaeqaaOGaaGikaiaadshacaaISaGaamiEaiaaiMca caaISaGaeqySde2aaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadshaca aISaGaamiEaiaaiMcacaaISaGaeqySde2aaSbaaSqaaiaaikdaaeqa aOGaaGikaiaadshacaaISaGaamiEaiaaiMcacaaISaGaeSOjGSeaaa@4D1E@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ функции, причем α 0 (t,x)0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaaicdaaeqaaOGaaGikaiaadshacaaISaGaamiEaiaaiMca cqGHGjsUcaaIWaaaaa@3F18@  при всех (t,x)Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaads hacaaISaGaamiEaiaaiMcacqGHiiIZcqqHPoWvaaa@3D1A@ .

Если матрица A 1 (t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaaIXaaabeaakiaaiIcacaWG0bGaaGilaiaadIhacaaIPaaa aa@3BBF@  (или A 2 (t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaaIYaaabeaakiaaiIcacaWG0bGaaGilaiaadIhacaaIPaaa aa@3BC0@  ) тождественно нулевая и исходные матрицы зависят только от одного аргумента, то такой случай был исследован в [5].

Если матричный полином λξ A 0 (t,x)+λ A 1 (t,x)+ξ A 2 (t,x)+ A 3 (t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaeq OVdGNaamyqamaaBaaaleaacaaIWaaabeaakiaaiIcacaWG0bGaaGil aiaadIhacaaIPaGaey4kaSIaeq4UdWMaamyqamaaBaaaleaacaaIXa aabeaakiaaiIcacaWG0bGaaGilaiaadIhacaaIPaGaey4kaSIaeqOV dGNaamyqamaaBaaaleaacaaIYaaabeaakiaaiIcacaWG0bGaaGilai aadIhacaaIPaGaey4kaSIaamyqamaaBaaaleaacaaIZaaabeaakiaa iIcacaWG0bGaaGilaiaadIhacaaIPaaaaa@56AD@  имеет простую структуру, то имеют место следующие утверждения: [ (a)]

(a)  при A 1 (t,x)= A 2 (t,x)0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaaIXaaabeaakiaaiIcacaWG0bGaaGilaiaadIhacaaIPaGa aGypaiaadgeadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiDaiaaiY cacaWG4bGaaGykaiabggMi6kaaicdaaaa@44D2@ , или A 1 (t,x)= A 3 (t,x)0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaaIXaaabeaakiaaiIcacaWG0bGaaGilaiaadIhacaaIPaGa aGypaiaadgeadaWgaaWcbaGaaG4maaqabaGccaaIOaGaamiDaiaaiY cacaWG4bGaaGykaiabggMi6kaaicdaaaa@44D3@ , или A 2 (t,x)= A 3 (t,x)0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaaIYaaabeaakiaaiIcacaWG0bGaaGilaiaadIhacaaIPaGa aGypaiaadgeadaWgaaWcbaGaaG4maaqabaGccaaIOaGaamiDaiaaiY cacaWG4bGaaGykaiabggMi6kaaicdaaaa@44D4@ , будем иметь матричные пучки (соответственно ω A 0 (t,x)+ A 2 (t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdCNaam yqamaaBaaaleaacaaIWaaabeaakiaaiIcacaWG0bGaaGilaiaadIha caaIPaGaey4kaSIaamyqamaaBaaaleaacaaIYaaabeaakiaaiIcaca WG0bGaaGilaiaadIhacaaIPaaaaa@4436@ , (λ A 0 (t,x)+ A 2 (t,x)) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiabeU 7aSjaadgeadaWgaaWcbaGaaGimaaqabaGccaaIOaGaamiDaiaaiYca caWG4bGaaGykaiabgUcaRiaadgeadaWgaaWcbaGaaGOmaaqabaGcca aIOaGaamiDaiaaiYcacaWG4bGaaGykaiaaiMcaaaa@4582@ , λ(ξ A 0 (t,x)+ A 2 (t,x)) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaaG ikaiabe67a4jaadgeadaWgaaWcbaGaaGimaaqabaGccaaIOaGaamiD aiaaiYcacaWG4bGaaGykaiabgUcaRiaadgeadaWgaaWcbaGaaGOmaa qabaGccaaIOaGaamiDaiaaiYcacaWG4bGaaGykaiaaiMcaaaa@4745@ , где ω=λξ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdCNaaG ypaiabeU7aSjabe67a4baa@3C02@  ), удовлетворяющие критерию "ранг—степень";

(b)  при λ=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaaG ypaiaaicdaaaa@392C@  или ξ=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdGNaaG ypaiaaicdaaaa@393B@ , будем иметь матричные пучки ξ A 2 (t,x)+ A 3 (t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdGNaam yqamaaBaaaleaacaaIYaaabeaakiaaiIcacaWG0bGaaGilaiaadIha caaIPaGaey4kaSIaamyqamaaBaaaleaacaaIZaaabeaakiaaiIcaca WG0bGaaGilaiaadIhacaaIPaaaaa@442F@  или λ A 1 (t,x)+ A 3 (t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaam yqamaaBaaaleaacaaIXaaabeaakiaaiIcacaWG0bGaaGilaiaadIha caaIPaGaey4kaSIaamyqamaaBaaaleaacaaIZaaabeaakiaaiIcaca WG0bGaaGilaiaadIhacaaIPaaaaa@441F@ , которые удовлетворяют критерию "ранг—степень".

Лемма 1. (см.9) Если матричный пучок λA(t,x)+B(t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaam yqaiaaiIcacaWG0bGaaGilaiaadIhacaaIPaGaey4kaSIaamOqaiaa iIcacaWG0bGaaGilaiaadIhacaaIPaaaaa@423C@  удовлетворяет критерию "ранг—степень", матрица A(t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaaiI cacaWG0bGaaGilaiaadIhacaaIPaaaaa@3ACE@  имеет блочный вид

A 11 (t,x) A 12 (t,x) A 21 (t,x) A 22 (t,x) , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafa qabeGacaaabaGaamyqamaaBaaaleaacaaIXaGaaGymaaqabaGccaaI OaGaamiDaiaaiYcacaWG4bGaaGykaaqaaiaadgeadaWgaaWcbaGaaG ymaiaaikdaaeqaaOGaaGikaiaadshacaaISaGaamiEaiaaiMcaaeaa caWGbbWaaSbaaSqaaiaaikdacaaIXaaabeaakiaaiIcacaWG0bGaaG ilaiaadIhacaaIPaaabaGaamyqamaaBaaaleaacaaIYaGaaGOmaaqa baGccaaIOaGaamiDaiaaiYcacaWG4bGaaGykaaaaaiaawIcacaGLPa aacaaISaaaaa@5256@

где rank( A 11 (t,x)| A 12 (t,x))=r= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaadg gacaWGUbGaam4AaiaaiIcacaWGbbWaaSbaaSqaaiaaigdacaaIXaaa beaakiaaiIcacaWG0bGaaGilaiaadIhacaaIPaGaaGiFaiaadgeada WgaaWcbaGaaGymaiaaikdaaeqaaOGaaGikaiaadshacaaISaGaamiE aiaaiMcacaaIPaGaaGypaiaadkhacaaI9aaaaa@4BAE@  в области Ω=[0,T]×[0,X] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdCLaaG ypaiaaiUfacaaIWaGaaGilaiaadsfacaaIDbGaey41aqRaaG4waiaa icdacaaISaGaamiwaiaai2faaaa@4291@ , то существует такая невырожденная (n×n) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaad6 gacqGHxdaTcaWGUbGaaGykaaaa@3B59@  —матрица P(t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiaaiI cacaWG0bGaaGilaiaadIhacaaIPaaaaa@3ADD@ , элементы которой имеют ту же гладкость, что и элементы матриц A(t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaaiI cacaWG0bGaaGilaiaadIhacaaIPaaaaa@3ACE@ , B(t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaiaaiI cacaWG0bGaaGilaiaadIhacaaIPaaaaa@3ACF@ , что

P(t,x)(λA(t,x)+B(t,x))=λ A 1 (t,x) 0 + B 1 (t,x) B 2 (t,x) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiaaiI cacaWG0bGaaGilaiaadIhacaaIPaGaaGikaiabeU7aSjaadgeacaaI OaGaamiDaiaaiYcacaWG4bGaaGykaiabgUcaRiaadkeacaaIOaGaam iDaiaaiYcacaWG4bGaaGykaiaaiMcacaaI9aGaeq4UdW2aaeWaaeaa faqabeGabaaabaGaamyqamaaBaaaleaacaaIXaaabeaakiaaiIcaca WG0bGaaGilaiaadIhacaaIPaaabaGaaGimaaaaaiaawIcacaGLPaaa cqGHRaWkdaqadaqaauaabeqaceaaaeaacaWGcbWaaSbaaSqaaiaaig daaeqaaOGaaGikaiaadshacaaISaGaamiEaiaaiMcaaeaacaWGcbWa aSbaaSqaaiaaikdaaeqaaOGaaGikaiaadshacaaISaGaamiEaiaaiM caaaaacaGLOaGaayzkaaGaaGOlaaaa@61DD@                                                                           (18)

Здесь A 1 (t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaaIXaaabeaakiaaiIcacaWG0bGaaGilaiaadIhacaaIPaaa aa@3BBF@ , B 1 (t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqamaaBa aaleaacaaIXaaabeaakiaaiIcacaWG0bGaaGilaiaadIhacaaIPaaa aa@3BC0@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ (r×n) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadk hacqGHxdaTcaWGUbGaaGykaaaa@3B5D@  —матрицы, B 2 (t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqamaaBa aaleaacaaIYaaabeaakiaaiIcacaWG0bGaaGilaiaadIhacaaIPaaa aa@3BC1@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ ((nr)×n) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaiI cacaWGUbGaeyOeI0IaamOCaiaaiMcacqGHxdaTcaWGUbGaaGykaaaa @3EA2@  —матрица и

rank A 1 (t,x)=r=,(t,x)Ω. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaadg gacaWGUbGaam4AaiaadgeadaWgaaWcbaGaaGymaaqabaGccaaIOaGa amiDaiaaiYcacaWG4bGaaGykaiaai2dacaWGYbGaaGypaiaaiYcaca aMf8UaaGikaiaadshacaaISaGaamiEaiaaiMcacqGHiiIZcqqHPoWv caaIUaaaaa@4C23@

Лемма 2. Если матричный пучок(18) удовлетворяет критерию "ранг—степень" в области Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdCfaaa@3785@  и rank A 1 (t,x)=r= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaadg gacaWGUbGaam4AaiaadgeadaWgaaWcbaGaaGymaaqabaGccaaIOaGa amiDaiaaiYcacaWG4bGaaGykaiaai2dacaWGYbGaaGypaaaa@4204@ , то

det A 1 (t,x) c B 2 (t,x) 0,(t,x)Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciizaiaacw gacaGG0bWaaeWaaeaafaqabeGabaaabaGaamyqamaaBaaaleaacaaI XaaabeaakiaaiIcacaWG0bGaaGilaiaadIhacaaIPaaabaGaam4yai aadkeadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiDaiaaiYcacaWG 4bGaaGykaaaaaiaawIcacaGLPaaacqGHGjsUcaaIWaGaaGilaiaayw W7caaIOaGaamiDaiaaiYcacaWG4bGaaGykaiabgIGiolabfM6axbaa @52BA@

для любого скаляра c0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiabgc Mi5kaaicdaaaa@3960@ .

Доказательство этой леммы аналогично доказательству в [13].

Приведем следующий факт о системах интегральных уравнений Вольтерра.

Утверждение 1. Система интегральных уравнений Вольтерра

u(t,x)+ 0 t L(t,x,τ,x)u(t,x)dτ+ 0 x M(t,x,τ,s)u(t,s)ds+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlaadw hacaaIOaGaamiDaiaaiYcacaWG4bGaaGykaiabgUcaRmaapehabeWc baGaaGimaaqaaiaadshaa0Gaey4kIipakiaadYeacaaIOaGaamiDai aaiYcacaWG4bGaaGilaiabes8a0jaaiYcacaWG4bGaaGykaiaadwha caaIOaGaamiDaiaaiYcacaWG4bGaaGykaiaadsgacqaHepaDcqGHRa WkdaWdXbqabSqaaiaaicdaaeaacaWG4baaniabgUIiYdGccaWGnbGa aGikaiaadshacaaISaGaamiEaiaaiYcacqaHepaDcaaISaGaam4Cai aaiMcacaWG1bGaaGikaiaadshacaaISaGaam4CaiaaiMcacaWGKbGa am4CaiabgUcaRaaa@6844@

+ 0 t 0 x N(t,x,τ,s)u(t,s)dsdτ=Ψ(t,x), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qCaeqaleaacaaIWaaabaGaamiDaaqdcqGHRiI8aOWaa8qCaeqaleaa caaIWaaabaGaamiEaaqdcqGHRiI8aOGaamOtaiaaiIcacaWG0bGaaG ilaiaadIhacaaISaGaeqiXdqNaaGilaiaadohacaaIPaGaamyDaiaa iIcacaWG0bGaaGilaiaadohacaaIPaGaamizaiaadohacaWGKbGaeq iXdqNaaGypaiabfI6azjaaiIcacaWG0bGaaGilaiaadIhacaaIPaGa aGilaiaaywW7aaa@5A78@ , (19)

где L() MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaaiI cacqGHflY1caaIPaaaaa@3A77@ , M() MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiaaiI cacqGHflY1caaIPaaaaa@3A78@ , N() MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaiaaiI cacqGHflY1caaIPaaaaa@3A79@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ (n×n) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaad6 gacqGHxdaTcaWGUbGaaGykaaaa@3B59@  —матрицы с непрерывными элементами, Ψ(t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiQdKLaaG ikaiaadshacaaISaGaamiEaiaaiMcaaaa@3B97@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@36EA@  —мерная вектор—функция с непрерывными элементами, имеет единственное непрерывное решение.

Доказательство этого утверждения вытекает из принципа сжатых отображений (см. [7, 8]).

Вернемся к исходной системе (1) с условием (2). Приведем достаточные условия существования единственного непрерывного решения данной задачи.

Утверждение 2.  Предположим, что для однородной задачи (1) с условием (2) выполнены следующие условия:

(i) элементы матриц K() MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaaiI cacqGHflY1caaIPaaaaa@3A76@  и φ() MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOMaaG ikaiabgwSixlaaiMcaaaa@3B63@ обладают достаточной гладкостью по совокупности элементов;

(ii) φ(0,x)=φ(t,0) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOMaaG ikaiaaicdacaaISaGaamiEaiaaiMcacaaI9aGaeqOXdOMaaGikaiaa dshacaaISaGaaGimaiaaiMcaaaa@41D8@ ;

(iii) матричный полином

R(λ,ξ,t,x)=λξK(t,x,t,x)+ξ K t (t,x,t,x )| τ=t +λ K x (t,x,t,s )| s=x + K tx (t,x,τ,s )| τ=t,s=x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuaiaaiI cacqaH7oaBcaaISaGaeqOVdGNaaGilaiaadshacaaISaGaamiEaiaa iMcacaaI9aGaeq4UdWMaeqOVdGNaam4saiaaiIcacaWG0bGaaGilai aadIhacaaISaGaamiDaiaaiYcacaWG4bGaaGykaiabgUcaRiabe67a 4jqadUeagaqbamaaBaaaleaacaWG0baabeaakiaaiIcacaWG0bGaaG ilaiaadIhacaaISaGaamiDaiaaiYcacaWG4bGaaGykaiaaiYhadaWg aaWcbaGaeqiXdqNaaGypaiaadshaaeqaaOGaey4kaSIaeq4UdWMabm 4sayaafaWaaSbaaSqaaiaadIhaaeqaaOGaaGikaiaadshacaaISaGa amiEaiaaiYcacaWG0bGaaGilaiaadohacaaIPaGaaGiFamaaBaaale aacaWGZbGaaGypaiaadIhaaeqaaOGaey4kaSIabm4sayaafyaafaWa aSbaaSqaaiaadshacaWG4baabeaakiaaiIcacaWG0bGaaGilaiaadI hacaaISaGaeqiXdqNaaGilaiaadohacaaIPaGaaGiFamaaBaaaleaa cqaHepaDcaaI9aGaamiDaiaaiYcacaWGZbGaaGypaiaadIhaaeqaaa aa@818A@

имеет простую структуру:

K t (t,x,t,x )| τ=t 0; K x (t,x,t,s )| s=x 0; K t (t,x,t,x )| τ=t = K x (t,x,t,s )| s=x 0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4sayaafa WaaSbaaSqaaiaadshaaeqaaOGaaGikaiaadshacaaISaGaamiEaiaa iYcacaWG0bGaaGilaiaadIhacaaIPaGaaGiFamaaBaaaleaacqaHep aDcaaI9aGaamiDaaqabaGccqGHHjIUcaaIWaGaaG4oaiaaywW7ceWG lbGbauaadaWgaaWcbaGaamiEaaqabaGccaaIOaGaamiDaiaaiYcaca WG4bGaaGilaiaadshacaaISaGaam4CaiaaiMcacaaI8bWaaSbaaSqa aiaadohacaaI9aGaamiEaaqabaGccqGHHjIUcaaIWaGaaG4oaiaayw W7ceWGlbGbauaadaWgaaWcbaGaamiDaaqabaGccaaIOaGaamiDaiaa iYcacaWG4bGaaGilaiaadshacaaISaGaamiEaiaaiMcacaaI8bWaaS baaSqaaiabes8a0jaai2dacaWG0baabeaakiaai2daceWGlbGbauaa daWgaaWcbaGaamiEaaqabaGccaaIOaGaamiDaiaaiYcacaWG4bGaaG ilaiaadshacaaISaGaam4CaiaaiMcacaaI8bWaaSbaaSqaaiaadoha caaI9aGaamiEaaqabaGccqGHHjIUcaaIWaGaaGOlaaaa@7B0D@

Тогда исходная система имеет единственное непрерывное решение.

Доказательство этого факта основано на блочном представлении исходных матриц, которое обобщает результаты [13].

Для неоднородной задачи (1) с условием (2) справедливо следующее утверждение.

Утверждение 3. Пусть для задачи (1) выполнены условия утверждения 2. Если правая часть задана корректно, т.е. задача имеет решение, то это решение единственно в области Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdCfaaa@3785@ .

Доказательства этих утверждений основаны на построении дифференциального оператора

D= D 0 (t,x) t x + D 1 (t,x) 2 t 2 x + D 2 (t,x) t 2 x 2 + D 2 (t,x) 2 t 2 2 x 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiaai2 dacaWGebWaaSbaaSqaaiaaicdaaeqaaOGaaGikaiaadshacaaISaGa amiEaiaaiMcadaWcaaqaaiabgkGi2cqaaiabgkGi2kaadshaaaWaaS aaaeaacqGHciITaeaacqGHciITcaWG4baaaiabgUcaRiaadseadaWg aaWcbaGaaGymaaqabaGccaaIOaGaamiDaiaaiYcacaWG4bGaaGykam aalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaaGcbaGaeyOaIyRa amiDamaaCaaaleqabaGaaGOmaaaaaaGcdaWcaaqaaiabgkGi2cqaai abgkGi2kaadIhaaaGaey4kaSIaamiramaaBaaaleaacaaIYaaabeaa kiaaiIcacaWG0bGaaGilaiaadIhacaaIPaWaaSaaaeaacqGHciITae aacqGHciITcaWG0baaamaalaaabaGaeyOaIy7aaWbaaSqabeaacaaI YaaaaaGcbaGaeyOaIyRaamiEamaaCaaaleqabaGaaGOmaaaaaaGccq GHRaWkcaWGebWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadshacaaI SaGaamiEaiaaiMcadaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaa aaaOqaaiabgkGi2kaadshadaahaaWcbeqaaiaaikdaaaaaaOWaaSaa aeaacqGHciITdaahaaWcbeqaaiaaikdaaaaakeaacqGHciITcaWG4b WaaWbaaSqabeaacaaIYaaaaaaakiaaiYcaaaa@7860@ (20)

суперпозиция которого с исходной системой (1) дает систему интегральных уравнений Вольтерра второго рода вида (19). При конструировании оператора (20) использованы результаты их теории проекторов и обобщенных обратных матриц [?, ?, ?].

Приведем анализ примеров. В примере 1 матричный полином

R(λ,ξ,t,x)=λξK(t,x,t,x)+ξ K t (t,x,t,x )| τ=t +λ K x (t,x,t,s )| s=x + K tx (t,x,τ,s )| τ=t,s=x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuaiaaiI cacqaH7oaBcaaISaGaeqOVdGNaaGilaiaadshacaaISaGaamiEaiaa iMcacaaI9aGaeq4UdWMaeqOVdGNaam4saiaaiIcacaWG0bGaaGilai aadIhacaaISaGaamiDaiaaiYcacaWG4bGaaGykaiabgUcaRiabe67a 4jqadUeagaqbamaaBaaaleaacaWG0baabeaakiaaiIcacaWG0bGaaG ilaiaadIhacaaISaGaamiDaiaaiYcacaWG4bGaaGykaiaaiYhadaWg aaWcbaGaeqiXdqNaaGypaiaadshaaeqaaOGaey4kaSIaeq4UdWMabm 4sayaafaWaaSbaaSqaaiaadIhaaeqaaOGaaGikaiaadshacaaISaGa amiEaiaaiYcacaWG0bGaaGilaiaadohacaaIPaGaaGiFamaaBaaale aacaWGZbGaaGypaiaadIhaaeqaaOGaey4kaSIabm4sayaafyaafaWa aSbaaSqaaiaadshacaWG4baabeaakiaaiIcacaWG0bGaaGilaiaadI hacaaISaGaeqiXdqNaaGilaiaadohacaaIPaGaaGiFamaaBaaaleaa cqaHepaDcaaI9aGaamiDaiaaiYcacaWGZbGaaGypaiaadIhaaeqaaa aa@818A@

не имеет простой структуры. В самом деле, ранг матрицы K(t,x,t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaaiI cacaWG0bGaaGilaiaadIhacaaISaGaamiDaiaaiYcacaWG4bGaaGyk aaaa@3E3A@  может равняться либо нулю, либо единице, либо двум, в то время как определитель матрицы R(λ,ξ,t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuaiaaiI cacqaH7oaBcaaISaGaeqOVdGNaaGilaiaadshacaaISaGaamiEaiaa iMcaaaa@3FC2@  не зависит от λ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWgaaa@37AB@  и ξ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdGhaaa@37BA@ , он всегда равен единице.

Пример 2 является одномерной системой интегральных уравнений. В этом случае мы имеем не матричный полином R(λ,ξ,t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuaiaaiI cacqaH7oaBcaaISaGaeqOVdGNaaGilaiaadshacaaISaGaamiEaiaa iMcaaaa@3FC2@ , а матричный пучок λK(x,x)+ K x (x,s )| s=x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaam 4saiaaiIcacaWG4bGaaGilaiaadIhacaaIPaGaey4kaSIabm4sayaa faWaaSbaaSqaaiaadIhaaeqaaOGaaGikaiaadIhacaaISaGaam4Cai aaiMcacaaI8bWaaSbaaSqaaiaadohacaaI9aGaamiEaaqabaaaaa@477F@ . У данного пучка ранг матрицы K(x,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaaiI cacaWG4bGaaGilaiaadIhacaaIPaaaaa@3ADC@  равен 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaaaa@36B2@  при всех x[0,1] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI GiolaaiUfacaaIWaGaaGilaiaaigdacaaIDbaaaa@3C6F@ ,

detλK(x,x)+ K x (x,s )| s=x =λ(2x1)3. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciizaiaacw gacaGG0bGaeq4UdWMaam4saiaaiIcacaWG4bGaaGilaiaadIhacaaI PaGaey4kaSIabm4sayaafaWaaSbaaSqaaiaadIhaaeqaaOGaaGikai aadIhacaaISaGaam4CaiaaiMcacaaI8bWaaSbaaSqaaiaadohacaaI 9aGaamiEaaqabaGccaaI9aGaeq4UdWMaaGikaiaaikdacaWG4bGaey OeI0IaaGymaiaaiMcacqGHsislcaaIZaGaaGOlaaaa@53F7@

При x=1/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaai2 dacaaIXaGaaG4laiaaikdaaaa@39EB@  имеем 2x1=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaadI hacqGHsislcaaIXaGaaGypaiaaicdaaaa@3AD9@ ; таким образом, в точке x=1/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaai2 dacaaIXaGaaG4laiaaikdaaaa@39EB@  нарушено условие

det(λK(x,x)+ K x (x,s ))| s=x = a 1 (x) λ k + a 0 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciizaiaacw gacaGG0bGaaGikaiabeU7aSjaadUeacaaIOaGaamiEaiaaiYcacaWG 4bGaaGykaiabgUcaRiqadUeagaqbamaaBaaaleaacaWG4baabeaaki aaiIcacaWG4bGaaGilaiaadohacaaIPaGaaGykaiaaiYhadaWgaaWc baGaam4Caiaai2dacaWG4baabeaakiaai2dacaWGHbWaaSbaaSqaai aaigdaaeqaaOGaaGikaiaadIhacaaIPaGaeq4UdW2aaWbaaSqabeaa caWGRbaaaOGaey4kaSIaamyyamaaBaaaleaacaaIWaaabeaakiaaiY caaaa@5702@

где a 1 (x)0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaaIXaaabeaakiaaiIcacaWG4bGaaGykaiabgcMi5kaaicda aaa@3CB1@ . Точка x=1/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaai2 dacaaIXaGaaG4laiaaikdaaaa@39EB@  является для данного примера сингулярной.

В примере 3 матричный пучок λK(x,x)+ K x (x,s )| s=x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaam 4saiaaiIcacaWG4bGaaGilaiaadIhacaaIPaGaey4kaSIabm4sayaa faWaaSbaaSqaaiaadIhaaeqaaOGaaGikaiaadIhacaaISaGaam4Cai aaiMcacaaI8bWaaSbaaSqaaiaadohacaaI9aGaamiEaaqabaaaaa@477F@  не обладает свойством "ранг—степень". В самом деле, ранг матрицы K(x,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaaiI cacaWG4bGaaGilaiaadIhacaaIPaaaaa@3ADC@  равен 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaaaa@36B2@  при всех x[0,1] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI GiolaaiUfacaaIWaGaaGilaiaaigdacaaIDbaaaa@3C6F@  и a0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgc Mi5kaaicdaaaa@395E@ , detλK(x,x)+ K x (x,s )| s=x =bc MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciizaiaacw gacaGG0bGaeq4UdWMaam4saiaaiIcacaWG4bGaaGilaiaadIhacaaI PaGaey4kaSIabm4sayaafaWaaSbaaSqaaiaadIhaaeqaaOGaaGikai aadIhacaaISaGaam4CaiaaiMcacaaI8bWaaSbaaSqaaiaadohacaaI 9aGaamiEaaqabaGccaaI9aGaamOyaiaadogaaaa@4CEA@ , поэтому, как и в предыдущем случае, гарантировать существование единственного решения нельзя.

В примере 4 матричный полином имеет вид

R(λ,ξ,t,x)=λξK(t,x,t,x)+ξ K t (t,x,t,x )| τ=t +λ K x (t,x,t,s )| s=x + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuaiaaiI cacqaH7oaBcaaISaGaeqOVdGNaaGilaiaadshacaaISaGaamiEaiaa iMcacaaI9aGaeq4UdWMaeqOVdGNaam4saiaaiIcacaWG0bGaaGilai aadIhacaaISaGaamiDaiaaiYcacaWG4bGaaGykaiabgUcaRiabe67a 4jqadUeagaqbamaaBaaaleaacaWG0baabeaakiaaiIcacaWG0bGaaG ilaiaadIhacaaISaGaamiDaiaaiYcacaWG4bGaaGykaiaaiYhadaWg aaWcbaGaeqiXdqNaaGypaiaadshaaeqaaOGaey4kaSIaeq4UdWMabm 4sayaafaWaaSbaaSqaaiaadIhaaeqaaOGaaGikaiaadshacaaISaGa amiEaiaaiYcacaWG0bGaaGilaiaadohacaaIPaGaaGiFamaaBaaale aacaWGZbGaaGypaiaadIhaaeqaaOGaey4kaScaaa@6E14@

+K''txt,x,τ,sτt,sxλξ1Kt,x,t,x00+λ0K'tt,x,τ,xτt00+

+ξ0K'xt,x,t,ξξx00+λξ0K''t,x,τ,ξτt,ξx00.

Если K(t,x,t,x)1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaaiI cacaWG0bGaaGilaiaadIhacaaISaGaamiDaiaaiYcacaWG4bGaaGyk aiabgcMi5kaaigdaaaa@40BC@  при всех (t,x)Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaads hacaaISaGaamiEaiaaiMcacqGHiiIZcqqHPoWvaaa@3D1A@ , то данный матричный полином имеет простую структуру, а при K(t,x,t,x)=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaaiI cacaWG0bGaaGilaiaadIhacaaISaGaamiDaiaaiYcacaWG4bGaaGyk aiaai2dacaaIXaaaaa@3FBC@  матрица R(λ,ξ,t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuaiaaiI cacqaH7oaBcaaISaGaeqOVdGNaaGilaiaadshacaaISaGaamiEaiaa iMcaaaa@3FC2@  будет тождественно вырожденной.

Точно так же можно показать, что в примере 5 матричный полином R(λ,ξ,t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuaiaaiI cacqaH7oaBcaaISaGaeqOVdGNaaGilaiaadshacaaISaGaamiEaiaa iMcaaaa@3FC2@  не имеет простой структуры, так как матрица

λξK(t,x,t,x)+ξ K t (t,x,t,x )| τ=t +λ K x (t,x,t,s )| s=x + K tx (t,x,τ,s )| τ=t,s=x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaeq OVdGNaam4saiaaiIcacaWG0bGaaGilaiaadIhacaaISaGaamiDaiaa iYcacaWG4bGaaGykaiabgUcaRiabe67a4jqadUeagaqbamaaBaaale aacaWG0baabeaakiaaiIcacaWG0bGaaGilaiaadIhacaaISaGaamiD aiaaiYcacaWG4bGaaGykaiaaiYhadaWgaaWcbaGaeqiXdqNaaGypai aadshaaeqaaOGaey4kaSIaeq4UdWMabm4sayaafaWaaSbaaSqaaiaa dIhaaeqaaOGaaGikaiaadshacaaISaGaamiEaiaaiYcacaWG0bGaaG ilaiaadohacaaIPaGaaGiFamaaBaaaleaacaWGZbGaaGypaiaadIha aeqaaOGaey4kaSIabm4sayaafyaafaWaaSbaaSqaaiaadshacaWG4b aabeaakiaaiIcacaWG0bGaaGilaiaadIhacaaISaGaeqiXdqNaaGil aiaadohacaaIPaGaaGiFamaaBaaaleaacqaHepaDcaaI9aGaamiDai aaiYcacaWGZbGaaGypaiaadIhaaeqaaaaa@76F8@

является тождественно вырожденной. Аналогично можно показать, что в примере 6 матричный полином будет иметь простую структуру.

3. Заключение.

В работе сформулированы достаточные условия существования решения двумерных интегральных уравнений Вольтерра первого рода в терминах матричных пучков. В дальнейшем планируется получить обобщение этих результатов (формулировка достаточных условий) на многомерные системы интегральных уравнений, а также на системы со слабой особенностью

0 t 0 x (tτ) α (xs) β K(t,x,τ,s)u(τ,s)dsdτ=φ(t,x),0α<1,0β<1. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqale aacaaIWaaabaGaamiDaaqdcqGHRiI8aOWaa8qCaeqaleaacaaIWaaa baGaamiEaaqdcqGHRiI8aOGaaGikaiaadshacqGHsislcqaHepaDca aIPaWaaWbaaSqabeaacqGHsislcqaHXoqyaaGccaaIOaGaamiEaiab gkHiTiaadohacaaIPaWaaWbaaSqabeaacqGHsislcqaHYoGyaaGcca WGlbGaaGikaiaadshacaaISaGaamiEaiaaiYcacqaHepaDcaaISaGa am4CaiaaiMcacaWG1bGaaGikaiabes8a0jaaiYcacaWGZbGaaGykai aadsgacaWGZbGaamizaiabes8a0jaai2dacqaHgpGAcaaIOaGaamiD aiaaiYcacaWG4bGaaGykaiaaiYcacaaMf8UaaGimaiabgsMiJkabeg 7aHjaaiYdacaaIXaGaaGilaiaaywW7caaIWaGaeyizImQaeqOSdiMa aGipaiaaigdacaaIUaaaaa@7788@

Также планируется разработка и обоснование численных методов решения задачи (1), основанных на кубатурных формулах средних прямоугольников.

×

About the authors

Mikhail V. Bulatov

Институт динамики систем и теории управления им. В. М. Матросова СО РАН

Author for correspondence.
Email: mvbul@icc.ru
Russian Federation, Иркутск

Lyubov S. Solovarova

Институт динамики систем и теории управления им. В. М. Матросова СО РАН

Email: soleilu@mail.ru
Russian Federation, Иркутск

References

  1. Ботороева М. Н. Моделирование развивающихся систем на основе интегральных уравнений Вольтерра/ Дисс. на соиск. уч. степ. канд. физ.-мат. наук — Бурят. гос. ун-т, 2019.
  2. Бояринцев Ю. Е. Регулярные и сингулярные системы линейных обыкновенных дифференциальных уравнений. — Новосибирск: Наука, 1980.
  3. Будникова О. С. Численное решение интегро-алгебраических уравнений многошаговыми методами/ Дисс. на соиск. уч. степ. канд. физ.-мат. наук — МГУ, 2015.
  4. Булатов М. В. Численное решение систем интегральных уравнений Вольтерра первого рода I рода// Ж. вычисл. мат. мат. физ. — 1998. — 38, № 4. — С. 607-611.
  5. Булатов М. В. Применение матричных полиномов к исследованию линейных дифференциально-алгебраических уравнений высокого порядка// Диффер. уравн. — 2008. — 44, № 10. — С. 1299-1306.
  6. Гантмахер Ф. Р. Теория матриц. — М.: Наука, 1966.
  7. Колмогоров А. Н. Элементы теории функций и функционального анализа. — М.: Физматлит, 2004.
  8. Краснов М. Л. Интегральные уравнения. Введение в теорию. — М.: Наука, 1975.
  9. Чистяков В. Ф. Алгебро-дифференциальные операторы с конечномерным ядром. — Новосибирск: Наука, 1996.
  10. Balakumar V. Numerical solution of Volterra integral-algebraic equations using block pulse functions// Appl. Math. Comp. — 2015. — 263. — P. 165-170.
  11. Brunner H. Collocation Methods for Volterra Integral and Related Functioal Equations. — Cambridge: Cambridge 'Univ. Press, 2004.
  12. Brunner H. Volterra Integral Equations: An Introduction to Theory and Applications. — Cambridge: Cambridge 'Univ. Press, 2017.
  13. Bulatov M. V. Two-dimensional integral-algebraic systems: Analysis and computational methods// J. Comput. Appl. Math. — 2011. — 236, № 2. — P. 132-140.
  14. Bulatov M. U. Existence and uniqueness of solutions to weakly singular integral, algebraic and integrodifferential equations// Centr. Eur. J. Math. — 2014. — 12, № 2. — P. 308-321.
  15. Bulatov M. V. Construction of implicit multistep methods for solving integral algebraic equations// Вестн. С.-Петербург. ун-та. Сер. 10. Прикл. мат. Информ. Процессы управл. — 2019. — 1, № 3. — С. 310-322.
  16. Hadizadeh M. Jacobi spectral solution for integral-algebraic equations of index 2// Appl. Numer. Math. — 2011. — 61. — P. 131-148.
  17. Lamour R., Marz R.., Tischendorf C. Differential-Algebraic Equations: A ProjectorBased Analysis. — Berlin-Heidelberg: Springer-Verlag, 2013.
  18. Pishbin S. The semi-explicit Volterra integral algebraic equations with weakly singular kernels: the numerical treatments// J. Comput. Appl. Math. — 2013. — 245. — P. 121-132.
  19. Pishbin S. Optimal convergence results of piecewise polynomial collocation solutions for integral-algebraic equations of index 3// J. Comput. Appl. Math. — 2015. — 279. — P. 209-224.
  20. Pishbin S. Numerical solution and structural analysis of two-dimensional integral-algebraic equations// Numer. Algorithms. — 2016. — 73, № 2. — P. 305-322.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Bulatov M.V., Solovarova L.S.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).