On two-dimensional systems of Volterra integral equations of the first kind

Cover Page

Cite item

Full Text

Abstract

In this paper, we consider two-dimensional systems of Volterra integral equations of the first kind. The case where a system of integral equations of the second kind is obtained by differentiating the equations is well studied. We examine the case where this approach leads to a system of integral equations with an degenerate matrix of the principal part. We formulate sufficient conditions for the existence of a unique smooth solution in terms of matrix pencils.

Full Text

1. Введение

В настоящей работе рассмотрены системы линейных двумерных интегральных уравнений типа Вольтерра

0t0xKt,x,τ,suτ,sdsdτ=φt,xt,xΩ0,T×0,X, (1)

где K(t,x,τ,s) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaaiI cacaWG0bGaaGilaiaadIhacaaISaGaeqiXdqNaaGilaiaadohacaaI Paaaaa@3F01@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ матрица—ядро размерности (n×n) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaad6 gacqGHxdaTcaWGUbGaaGykaaaa@3B59@ , u(t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG0bGaaGilaiaadIhacaaIPaaaaa@3B02@ — искомая, φ(t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOMaaG ikaiaadshacaaISaGaamiEaiaaiMcaaaa@3BC5@ — заданная n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@36EA@  —мерные вектор—функции. Здесь проведено исследование систем (1) c условием

 (2)

К настоящему времени системы вида (1) практически не изучены. Исключением являются некоторые частные случаи, например, K(t,x,τ,s) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaaiI cacaWG0bGaaGilaiaadIhacaaISaGaeqiXdqNaaGilaiaadohacaaI Paaaaa@3F01@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ функция, причем существуют такие минимальные целые неотрицательные числа r MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaaaa@36EE@ , q MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaaaa@36ED@ , что суперпозиция оператора q x q r t qr MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq GHciITdaahaaWcbeqaaiaadghaaaaakeaacqGHciITcaWG4bWaaWba aSqabeaacaWGXbaaaaaakmaalaaabaGaeyOaIy7aaWbaaSqabeaaca WGYbaaaaGcbaGaeyOaIyRaamiDamaaCaaaleqabaGaamyCaiaadkha aaaaaaaa@4347@  c уравнением (1) дает интегральное двумерное уравнение Вольтерра второго рода. Другой случай это когда detK(t,x,t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciizaiaacw gacaGG0bGaam4saiaaiIcacaWG0bGaaGilaiaadIhacaaISaGaamiD aiaaiYcacaWG4bGaaGykaiqbggMi6Aaawaaaaa@42EB@  при всех (t,x)Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaads hacaaISaGaamiEaiaaiMcacqGHiiIZcqqHPoWvaaa@3D1A@ .

К близким по приведенным здесь исследованиям относятся статьи, посвященные интегро—алгебраических уравнений (ИАУ). По данной тематике см., например, 1, 3, 10 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ 16, 18 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ 20] и приведенную там библиографию. В работах [13, 14] проведено исследование на предмет существования и единственности решения ИАУ и предложен метод их решения, основанный на простейшей неявной кубатурной формуле. В статье [4] рассмотрены одномерные системы линейных интегральных уравнений типа Вольтерра с тождественно вырожденной матрицей—ядром на диагонали. Для таких систем сформулированы достаточные условия существования единственного достаточно гладкого решения, предложены и обоснованы численные методы решения первого и второго порядков.

Относительно исследования системы (1) на предмет существования и единственности решения с условием (2) авторам неизвестны результаты. Этот факт и послужил мотивацией для проведения данного исследования.

2. Постановка задачи и ее свойства

Рассмотрим систему (1) c условием (2). Здесь и всюду в дальнейшем изложении предполагается, что элементы матрицы K(t,x,τ,s) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaaiI cacaWG0bGaaGilaiaadIhacaaISaGaeqiXdqNaaGilaiaadohacaaI Paaaaa@3F01@  и правой части φ(t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOMaaG ikaiaadshacaaISaGaamiEaiaaiMcaaaa@3BC5@  обладают той гладкостью, которая необходима для проведения всех выкладок.

Данные системы уравнений принципиально отличаются от уравнений Вольтерра второго и первого родов. Эти системы могут иметь множество решений, а могут и не иметь решения в классе достаточно гладких функций; кроме того, решение (при корректно заданной правой части (1)) может зависеть от высоких производных (смешанных) входных данных.

Приведем примеры. В ряде примеров двойной интеграл заменен на повторный. Отметим, что порядок интегрирования может быть изменен. Это возможно в силу гладкости входных данных и теоремы Фубини [7].

Пример 1.  Рассмотрим систему уравнений

0 t 0 x a 11 (τ,s) (tτ)(xs) 0 0 a 22 (τ,s) (tτ)(xs) (tτ)(xs) 0 0 u 1 (τ,s) u 2 (τ,s) u 3 (τ,s) dsdτ= 0 0 f(t,x) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqale aacaaIWaaabaGaamiDaaqdcqGHRiI8aOWaa8qCaeqaleaacaaIWaaa baGaamiEaaqdcqGHRiI8aOWaaeWaaeaafaqabeWadaaabaGaamyyam aaBaaaleaacaaIXaGaaGymaaqabaGccaaIOaGaeqiXdqNaaGilaiaa dohacaaIPaaabaGaaGikaiaadshacqGHsislcqaHepaDcaaIPaGaaG ikaiaadIhacqGHsislcaWGZbGaaGykaaqaaiaaicdaaeaacaaIWaaa baGaamyyamaaBaaaleaacaaIYaGaaGOmaaqabaGccaaIOaGaeqiXdq NaaGilaiaadohacaaIPaaabaGaaGikaiaadshacqGHsislcqaHepaD caaIPaGaaGikaiaadIhacqGHsislcaWGZbGaaGykaaqaaiaaiIcaca WG0bGaeyOeI0IaeqiXdqNaaGykaiaaiIcacaWG4bGaeyOeI0Iaam4C aiaaiMcaaeaacaaIWaaabaGaaGimaaaaaiaawIcacaGLPaaadaqada qaauaabeqadeaaaeaacaWG1bWaaSbaaSqaaiaaigdaaeqaaOGaaGik aiabes8a0jaaiYcacaWGZbGaaGykaaqaaiaadwhadaWgaaWcbaGaaG OmaaqabaGccaaIOaGaeqiXdqNaaGilaiaadohacaaIPaaabaGaamyD amaaBaaaleaacaaIZaaabeaakiaaiIcacqaHepaDcaaISaGaam4Cai aaiMcaaaaacaGLOaGaayzkaaGaamizaiaadohacaWGKbGaeqiXdqNa aGypamaabmaabaqbaeqabmqaaaqaaiaaicdaaeaacaaIWaaabaGaam OzaiaaiIcacaWG0bGaaGilaiaadIhacaaIPaaaaaGaayjkaiaawMca aiaai6caaaa@91A6@   (3)

Будем предполагать, что функции a 11 (t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaaIXaGaaGymaaqabaGccaaIOaGaamiDaiaaiYcacaWG4bGa aGykaaaa@3C9A@ , a 22 (t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaaIYaGaaGOmaaqabaGccaaIOaGaamiDaiaaiYcacaWG4bGa aGykaaaa@3C9C@ , f(t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG0bGaaGilaiaadIhacaaIPaaaaa@3AF3@  обладают той гладкостью, которая необходима для проведения выкладок. Кроме этого будем считать, что правая часть f(t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG0bGaaGilaiaadIhacaaIPaaaaa@3AF3@  задана корректно.

Дифференцируя дважды третье уравнение по t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@36F0@ , затем дважды по x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@36F4@ , получим

u 1 (t,x)= 2 t 2 2 x 2 f(t,x). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaaIXaaabeaakiaaiIcacaWG0bGaaGilaiaadIhacaaIPaGa aGypamaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaaGcbaGaey OaIyRaamiDamaaCaaaleqabaGaaGOmaaaaaaGcdaWcaaqaaiabgkGi 2oaaCaaaleqabaGaaGOmaaaaaOqaaiabgkGi2kaadIhadaahaaWcbe qaaiaaikdaaaaaaOGaamOzaiaaiIcacaWG0bGaaGilaiaadIhacaaI PaGaaGOlaaaa@4DE8@ . (4)

Подставляя это значение в первое уравнение (3), будем иметь

0 t 0 x a 11 (τ,s) u 1 (τ,s)+(tτ)(xs) u 2 (τ,s)=0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqale aacaaIWaaabaGaamiDaaqdcqGHRiI8aOWaa8qCaeqaleaacaaIWaaa baGaamiEaaqdcqGHRiI8aOGaamyyamaaBaaaleaacaaIXaGaaGymaa qabaGccaaIOaGaeqiXdqNaaGilaiaadohacaaIPaGaamyDamaaBaaa leaacaaIXaaabeaakiaaiIcacqaHepaDcaaISaGaam4CaiaaiMcacq GHRaWkcaaIOaGaamiDaiabgkHiTiabes8a0jaaiMcacaaIOaGaamiE aiabgkHiTiaadohacaaIPaGaamyDamaaBaaaleaacaaIYaaabeaaki aaiIcacqaHepaDcaaISaGaam4CaiaaiMcacaaI9aGaaGimaiaai6ca aaa@5FAC@ . (5)

Аналогично, дифференцируя дважды это уравнение сначала по t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@36F0@ , затем по x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@36F4@ , получим

2 t 2 2 x 2 ( a 11 (t,x) u 1 (t,x))+ u 2 (t,x)=0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq GHciITdaahaaWcbeqaaiaaikdaaaaakeaacqGHciITcaWG0bWaaWba aSqabeaacaaIYaaaaaaakmaalaaabaGaeyOaIy7aaWbaaSqabeaaca aIYaaaaaGcbaGaeyOaIyRaamiEamaaCaaaleqabaGaaGOmaaaaaaGc caaIOaGaamyyamaaBaaaleaacaaIXaGaaGymaaqabaGccaaIOaGaam iDaiaaiYcacaWG4bGaaGykaiaadwhadaWgaaWcbaGaaGymaaqabaGc caaIOaGaamiDaiaaiYcacaWG4bGaaGykaiaaiMcacqGHRaWkcaWG1b WaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadshacaaISaGaamiEaiaa iMcacaaI9aGaaGimaiaaiYcaaaa@588B@

или, учитывая (4) и достаточную гладкость данных,

u 2 = 2 t 2 2 x 2 ( a 11 (t,x) 2 t 2 2 x 2 f(t,x)). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaaIYaaabeaakiaai2dacqGHsisldaWcaaqaaiabgkGi2oaa CaaaleqabaGaaGOmaaaaaOqaaiabgkGi2kaadshadaahaaWcbeqaai aaikdaaaaaaOWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaaa keaacqGHciITcaWG4bWaaWbaaSqabeaacaaIYaaaaaaakiaaiIcaca WGHbWaaSbaaSqaaiaaigdacaaIXaaabeaakiaaiIcacaWG0bGaaGil aiaadIhacaaIPaWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaa aakeaacqGHciITcaWG0bWaaWbaaSqabeaacaaIYaaaaaaakmaalaaa baGaeyOaIy7aaWbaaSqabeaacaaIYaaaaaGcbaGaeyOaIyRaamiEam aaCaaaleqabaGaaGOmaaaaaaGccaWGMbGaaGikaiaadshacaaISaGa amiEaiaaiMcacaaIPaGaaGOlaaaa@5E47@

Проводя такие же выкладки для второго уравнения, имеем

u 3 = 2 t 2 2 x 2 ( a 22 (t,τ)( t x a 1 (t,τ) 2 t 2 2 x 2 f(t,x))). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaaIZaaabeaakiaai2dadaWcaaqaaiabgkGi2oaaCaaaleqa baGaaGOmaaaaaOqaaiabgkGi2kaadshadaahaaWcbeqaaiaaikdaaa aaaOWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaaakeaacqGH ciITcaWG4bWaaWbaaSqabeaacaaIYaaaaaaakiaaiIcacaWGHbWaaS baaSqaaiaaikdacaaIYaaabeaakiaaiIcacaWG0bGaaGilaiabes8a 0jaaiMcacaaIOaWaaSaaaeaacqGHciITaeaacqGHciITcaWG0baaam aalaaabaGaeyOaIylabaGaeyOaIyRaamiEaaaacaWGHbWaaSbaaSqa aiaaigdaaeqaaOGaaGikaiaadshacaaISaGaeqiXdqNaaGykamaala aabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaaGcbaGaeyOaIyRaamiD amaaCaaaleqabaGaaGOmaaaaaaGcdaWcaaqaaiabgkGi2oaaCaaale qabaGaaGOmaaaaaOqaaiabgkGi2kaadIhadaahaaWcbeqaaiaaikda aaaaaOGaamOzaiaaiIcacaWG0bGaaGilaiaadIhacaaIPaGaaGykai aaiMcacaaIUaaaaa@6DE8@

У этого примера ранг K(t,x,t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaaiI cacaWG0bGaaGilaiaadIhacaaISaGaamiDaiaaiYcacaWG4bGaaGyk aaaa@3E3A@ равен [(i)]

(i) двум, если a 11 (t,x) a 22 (t,x)0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaaIXaGaaGymaaqabaGccaaIOaGaamiDaiaaiYcacaWG4bGa aGykaiaadggadaWgaaWcbaGaaGOmaiaaikdaaeqaaOGaaGikaiaads hacaaISaGaamiEaiaaiMcacqGHGjsUcaaIWaaaaa@45C0@  при всех (t,s)Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaads hacaaISaGaam4CaiaaiMcacqGHiiIZcqqHPoWvaaa@3D15@ ;

(ii) единице в тех точках (t,x)Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaads hacaaISaGaamiEaiaaiMcacqGHiiIZcqqHPoWvaaa@3D1A@ , где a 11 (t,x)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaaIXaGaaGymaaqabaGccaaIOaGaamiDaiaaiYcacaWG4bGa aGykaiaai2dacaaIWaaaaa@3E1B@  или a 22 (t,x)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaaIYaGaaGOmaaqabaGccaaIOaGaamiDaiaaiYcacaWG4bGa aGykaiaai2dacaaIWaaaaa@3E1D@ ;

 (iii) нулю, если a 11 (t,x)= a 22 (t,s)0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaaIXaGaaGymaaqabaGccaaIOaGaamiDaiaaiYcacaWG4bGa aGykaiaai2dacaWGHbWaaSbaaSqaaiaaikdacaaIYaaabeaakiaaiI cacaWG0bGaaGilaiaadohacaaIPaGaeyyyIORaaGimaaaa@4684@ .

Однако в этом случае точки перемены ранга матрицы K(t,x,t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaaiI cacaWG0bGaaGilaiaadIhacaaISaGaamiDaiaaiYcacaWG4bGaaGyk aaaa@3E3A@  не являются сингулярными. Существование единственного непрерывного решения данного примера гарантирует корректно заданная правая часть и достаточная гладкость, по совокупности аргументов, функций a 11 (t,x) a 22 (t,s) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaaIXaGaaGymaaqabaGccaaIOaGaamiDaiaaiYcacaWG4bGa aGykaiaadggadaWgaaWcbaGaaGOmaiaaikdaaeqaaOGaaGikaiaads hacaaISaGaam4CaiaaiMcaaaa@433A@  и f(t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG0bGaaGilaiaadIhacaaIPaaaaa@3AF3@ .

Следующие два примера приведены для случая, когда K(t,x,t,x)=k(t,τ)l(x,s) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaaiI cacaWG0bGaaGilaiaadIhacaaISaGaamiDaiaaiYcacaWG4bGaaGyk aiaai2dacaWGRbGaaGikaiaadshacaaISaGaeqiXdqNaaGykaiaadY gacaaIOaGaamiEaiaaiYcacaWGZbGaaGykaaaa@49CB@  и вектор—функции u(t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG0bGaaGilaiaadIhacaaIPaaaaa@3B02@ , зависящей только от одного аргумента, т.е. u(t,x)=u(x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG0bGaaGilaiaadIhacaaIPaGaaGypaiaadwhacaaIOaGaamiE aiaaiMcaaaa@3F25@ . Тогда исходную систему, с учетом гладкости входных данных, можно записать в виде

0 t 0 x K(t,x,t,x)u(τ,s)dsdτ= 0 t k(t,τ)( 0 x l(x,s)u(s)ds)dτ=φ(t,x). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqale aacaaIWaaabaGaamiDaaqdcqGHRiI8aOWaa8qCaeqaleaacaaIWaaa baGaamiEaaqdcqGHRiI8aOGaam4saiaaiIcacaWG0bGaaGilaiaadI hacaaISaGaamiDaiaaiYcacaWG4bGaaGykaiaadwhacaaIOaGaeqiX dqNaaGilaiaadohacaaIPaGaamizaiaadohacaWGKbGaeqiXdqNaaG ypamaapehabeWcbaGaaGimaaqaaiaadshaa0Gaey4kIipakiaadUga caaIOaGaamiDaiaaiYcacqaHepaDcaaIPaGaaGikamaapehabeWcba GaaGimaaqaaiaadIhaa0Gaey4kIipakiaadYgacaaIOaGaamiEaiaa iYcacaWGZbGaaGykaiaadwhacaaIOaGaam4CaiaaiMcacaWGKbGaam 4CaiaaiMcacaWGKbGaeqiXdqNaaGypaiabeA8aQjaaiIcacaWG0bGa aGilaiaadIhacaaIPaGaaGOlaaaa@7568@ . (6)

Рассмотрим однородную задачу (6), у которой внутренний интеграл равен нулю, т.е.

0 x l(x,s)u(s)=0,s[0,X]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqale aacaaIWaaabaGaamiEaaqdcqGHRiI8aOGaamiBaiaaiIcacaWG4bGa aGilaiaadohacaaIPaGaamyDaiaaiIcacaWGZbGaaGykaiaai2daca aIWaGaaGilaiaaywW7caWGZbGaeyicI4SaaG4waiaaicdacaaISaGa amiwaiaai2facaaIUaaaaa@4D8C@ .  (7)

Если данная система уравнений имеет нетривиальное решение, то и однородная система (6) имеет ненулевое решение.

Пример 2.  Легко непосредственно проверить, что система интегральных уравнений

0 x s2(xs) 1+x2s xs xs u 1 (s) u 2 (s) ds=0,s[0,1], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqale aacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaeWaaeaafaqabeGacaaa baGaam4CaiabgkHiTiaaikdacaaIOaGaamiEaiabgkHiTiaadohaca aIPaaabaGaaGymaiabgUcaRiaadIhacqGHsislcaaIYaGaam4Caaqa aiaadIhacqGHsislcaWGZbaabaGaamiEaiabgkHiTiaadohaaaaaca GLOaGaayzkaaWaaeWaaeaafaqabeGabaaabaGaamyDamaaBaaaleaa caaIXaaabeaakiaaiIcacaWGZbGaaGykaaqaaiaadwhadaWgaaWcba GaaGOmaaqabaGccaaIOaGaam4CaiaaiMcaaaaacaGLOaGaayzkaaGa amizaiaadohacaaI9aGaaGimaiaaiYcacaaMf8Uaam4CaiabgIGiol aaiUfacaaIWaGaaGilaiaaigdacaaIDbGaaGilaaaa@6498@ . (8)

имеет множество решений вида

u 1 = 0, s[0,1/2], c 2s1 , s[1/2,1], u 2 = 0, s[0,1/2], c 2s1 , s[1/2,1]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaaIXaaabeaakiaai2dadaqabaqaauaabeqaciaaaeaacaaI WaGaaGilaaqaaiaadohacqGHiiIZcaaIBbGaaGimaiaaiYcacaaIXa GaaG4laiaaikdacaaIDbGaaGilaaqaaiaadogadaGcaaqaaiaaikda caWGZbGaeyOeI0IaaGymaaWcbeaakiaaiYcaaeaacaWGZbGaeyicI4 SaaG4waiaaigdacaaIVaGaaGOmaiaaiYcacaaIXaGaaGyxaiaaiYca aaaacaGL7baacaaMf8UaaGzbVlaadwhadaWgaaWcbaGaaGOmaaqaba GccaaI9aWaaeqaaeaafaqabeGacaaabaGaaGimaiaaiYcaaeaacaWG ZbGaeyicI4SaaG4waiaaicdacaaISaGaaGymaiaai+cacaaIYaGaaG yxaiaaiYcaaeaacqGHsislcaWGJbWaaOaaaeaacaaIYaGaam4Caiab gkHiTiaaigdaaSqabaGccaaISaaabaGaam4CaiabgIGiolaaiUfaca aIXaGaaG4laiaaikdacaaISaGaaGymaiaai2facaaIUaaaaaGaay5E aaaaaa@7151@

Таким образом, и система

0 t 0 x k(t,τ)l(x,s)u(s)dsdτ=0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqale aacaaIWaaabaGaamiDaaqdcqGHRiI8aOWaa8qCaeqaleaacaaIWaaa baGaamiEaaqdcqGHRiI8aOGaam4AaiaaiIcacaWG0bGaaGilaiabes 8a0jaaiMcacaWGSbGaaGikaiaadIhacaaISaGaam4CaiaaiMcacaWG 1bGaaGikaiaadohacaaIPaGaamizaiaadohacaWGKbGaeqiXdqNaaG ypaiaaicdacaaISaaaaa@5330@

у которой матрица l(x,s) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaiaaiI cacaWG4bGaaGilaiaadohacaaIPaaaaa@3AF8@  определена из формулы (8), имеет множество решений.

Пример 3.  Однородная система интегральных уравнений вида (6) с матрицей

l(x,s)= a b(xs) c(xs) d (xs) 2 ,a0,b0,c0,d0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaiaaiI cacaWG4bGaaGilaiaadohacaaIPaGaaGypamaabmaabaqbaeqabiGa aaqaaiaadggaaeaacaWGIbGaaGikaiaadIhacqGHsislcaWGZbGaaG ykaaqaaiaadogacaaIOaGaamiEaiabgkHiTiaadohacaaIPaaabaGa amizaiaaiIcacaWG4bGaeyOeI0Iaam4CaiaaiMcadaahaaWcbeqaai aaikdaaaaaaaGccaGLOaGaayzkaaGaaGilaiaaywW7caWGHbGaeyiy IKRaaGimaiaaiYcacaaMf8UaamOyaiabgcMi5kaaicdacaaISaGaaG zbVlaadogacqGHGjsUcaaIWaGaaGilaiaaywW7caWGKbGaeyiyIKRa aGimaiaaiYcaaaa@6626@ (9)

при условии 2adcb=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaadg gacaWGKbGaeyOeI0Iaam4yaiaadkgacaaI9aGaaGimaaaa@3CBF@  имеет множество решений при любой матрице k(t,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiaaiI cacaWG0bGaaGilaiabes8a0jaaiMcaaaa@3BC0@ . В самом деле, система интегральных уравнений (внутренний интеграл)

0 x a b(xs) c(xs) d (xs) 2 u 1 (s) u 2 (s) ds= 0 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqale aacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaeWaaeaafaqabeGacaaa baGaamyyaaqaaiaadkgacaaIOaGaamiEaiabgkHiTiaadohacaaIPa aabaGaam4yaiaaiIcacaWG4bGaeyOeI0Iaam4CaiaaiMcaaeaacaWG KbGaaGikaiaadIhacqGHsislcaWGZbGaaGykamaaCaaaleqabaGaaG OmaaaaaaaakiaawIcacaGLPaaadaqadaqaauaabeqaceaaaeaacaWG 1bWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadohacaaIPaaabaGaam yDamaaBaaaleaacaaIYaaabeaakiaaiIcacaWGZbGaaGykaaaaaiaa wIcacaGLPaaacaWGKbGaam4Caiaai2dadaqadaqaauaabeqaceaaae aacaaIWaaabaGaaGimaaaaaiaawIcacaGLPaaaaaa@5CFA@

эквивалентна системе

au1x+b0xu2sds=0cu1+2d0xu2sds=0. (10)

Дифференцируя первое уравнение (10) один раз, а второе MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ дважды, находим

a u 1 '(x)+b u 2 (x)=0, c u 1 '(x)+2d u 2 (x)=0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeqaaeaafa qabeGabaaabaGaamyyaiaadwhadaWgaaWcbaGaaGymaaqabaGccaaI NaGaaGikaiaadIhacaaIPaGaey4kaSIaamOyaiaadwhadaWgaaWcba GaaGOmaaqabaGccaaIOaGaamiEaiaaiMcacaaI9aGaaGimaiaaiYca aeaacaWGJbGaamyDamaaBaaaleaacaaIXaaabeaakiaaiEcacaaIOa GaamiEaiaaiMcacqGHRaWkcaaIYaGaamizaiaadwhadaWgaaWcbaGa aGOmaaqabaGccaaIOaGaamiEaiaaiMcacaaI9aGaaGimaiaai6caaa aacaGL7baaaaa@5443@ . (11)

Учитывая условие 2adcb=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaadg gacaWGKbGaeyOeI0Iaam4yaiaadkgacaaI9aGaaGimaaaa@3CBF@ , получим, что данная система, а следовательно, и система (10), и исходные интегральные уравнения имеют множество решений.

Пример 4.  Система интегральных уравнений вида

0 t 0 x 1 K(t,x,τ,s) (tτ)(xs) (tτ)(xs) u 1 (τ,s) u 2 (τ,s) dsdτ= φ 1 (t,x) φ 2 (t,x) ,(t,x)Ω, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqale aacaaIWaaabaGaamiDaaqdcqGHRiI8aOWaa8qCaeqaleaacaaIWaaa baGaamiEaaqdcqGHRiI8aOWaaeWaaeaafaqabeGacaaabaGaaGymaa qaaiaadUeacaaIOaGaamiDaiaaiYcacaWG4bGaaGilaiabes8a0jaa iYcacaWGZbGaaGykaaqaaiaaiIcacaWG0bGaeyOeI0IaeqiXdqNaaG ykaiaaiIcacaWG4bGaeyOeI0Iaam4CaiaaiMcaaeaacaaIOaGaamiD aiabgkHiTiabes8a0jaaiMcacaaIOaGaamiEaiabgkHiTiaadohaca aIPaaaaaGaayjkaiaawMcaamaabmaabaqbaeqabiqaaaqaaiaadwha daWgaaWcbaGaaGymaaqabaGccaaIOaGaeqiXdqNaaGilaiaadohaca aIPaaabaGaamyDamaaBaaaleaacaaIYaaabeaakiaaiIcacqaHepaD caaISaGaam4CaiaaiMcaaaaacaGLOaGaayzkaaGaamizaiaadohaca WGKbGaeqiXdqNaaGypamaabmaabaqbaeqabiqaaaqaaiabeA8aQnaa BaaaleaacaaIXaaabeaakiaaiIcacaWG0bGaaGilaiaadIhacaaIPa aabaGaeqOXdO2aaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadshacaaI SaGaamiEaiaaiMcaaaaacaGLOaGaayzkaaGaaGilaiaaywW7caaIOa GaamiDaiaaiYcacaWG4bGaaGykaiabgIGiolabfM6axjaaiYcaaaa@89FA@ (12)

имеет единственное решение при корректно заданной правой части и при K(t,x,t,x)1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaaiI cacaWG0bGaaGilaiaadIhacaaISaGaamiDaiaaiYcacaWG4bGaaGyk aiabgcMi5kaaigdaaaa@40BC@  для всех (t,x)Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaads hacaaISaGaamiEaiaaiMcacqGHiiIZcqqHPoWvaaa@3D1A@ . В самом деле, дифференцируя первое уравнение (12) по t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@36F0@ , а затем по x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@36F4@ , получим

u 1 (t,x)+K(t,x,t,x) u 2 (t,x)+ 0 t K t (t,x,τ,x) u 2 (τ,x)dτ+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaaIXaaabeaakiaaiIcacaWG0bGaaGilaiaadIhacaaIPaGa ey4kaSIaam4saiaaiIcacaWG0bGaaGilaiaadIhacaaISaGaamiDai aaiYcacaWG4bGaaGykaiaadwhadaWgaaWcbaGaaGOmaaqabaGccaaI OaGaamiDaiaaiYcacaWG4bGaaGykaiabgUcaRmaapehabeWcbaGaaG imaaqaaiaadshaa0Gaey4kIipakiqadUeagaqbamaaBaaaleaacaWG 0baabeaakiaaiIcacaWG0bGaaGilaiaadIhacaaISaGaeqiXdqNaaG ilaiaadIhacaaIPaGaamyDamaaBaaaleaacaaIYaaabeaakiaaiIca cqaHepaDcaaISaGaamiEaiaaiMcacaWGKbGaeqiXdqNaey4kaScaaa@64C1@

+ 0 x K x (t,x,t,s) u 2 (t,s)ds+ 0 t 0 x K tx (t,x,τ,s) u 2 (τ,s)dsdτ= x t φ 1 (t,x). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qCaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOGabm4sayaafaWa aSbaaSqaaiaadIhaaeqaaOGaaGikaiaadshacaaISaGaamiEaiaaiY cacaWG0bGaaGilaiaadohacaaIPaGaamyDamaaBaaaleaacaaIYaaa beaakiaaiIcacaWG0bGaaGilaiaadohacaaIPaGaamizaiaadohacq GHRaWkdaWdXbqabSqaaiaaicdaaeaacaWG0baaniabgUIiYdGcdaWd XbqabSqaaiaaicdaaeaacaWG4baaniabgUIiYdGcceWGlbGbauGbau aadaWgaaWcbaGaamiDaiaadIhaaeqaaOGaaGikaiaadshacaaISaGa amiEaiaaiYcacqaHepaDcaaISaGaam4CaiaaiMcacaWG1bWaaSbaaS qaaiaaikdaaeqaaOGaaGikaiabes8a0jaaiYcacaWGZbGaaGykaiaa dsgacaWGZbGaamizaiabes8a0jaai2dadaWcaaqaaiabgkGi2cqaai abgkGi2kaadIhaaaWaaSaaaeaacqGHciITaeaacqGHciITcaWG0baa aiabeA8aQnaaBaaaleaacaaIXaaabeaakiaaiIcacaWG0bGaaGilai aadIhacaaIPaGaaGOlaaaa@7C1A@ (13)

Дифференцируя второе уравнение (12) по t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@36F0@ , а затем дважды по x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@36F4@ , получим

u 1 (t,x)+ u 2 (t,x)= 2 t 2 2 x 2 φ 2 (t,x). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaaIXaaabeaakiaaiIcacaWG0bGaaGilaiaadIhacaaIPaGa ey4kaSIaamyDamaaBaaaleaacaaIYaaabeaakiaaiIcacaWG0bGaaG ilaiaadIhacaaIPaGaaGypamaalaaabaGaeyOaIy7aaWbaaSqabeaa caaIYaaaaaGcbaGaeyOaIyRaamiDamaaCaaaleqabaGaaGOmaaaaaa GcdaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaaaOqaaiabgkGi 2kaadIhadaahaaWcbeqaaiaaikdaaaaaaOGaeqOXdO2aaSbaaSqaai aaikdaaeqaaOGaaGikaiaadshacaaISaGaamiEaiaaiMcacaaIUaaa aa@568B@ . (14)

Объединяя уравнения (13) и (14) в систему, находим

1Kt,x,t,x11u1t,xu2t,x+0t0K'tt,x,τ,x00u1τ,xu2τ,xdτ+

+0x0K'xt,x,t,s00u1t,su2t,sds+0t0x0K''txt,x,τ,s00u1τ,su2τ,sdsdτ

=xtφ1t,x2x22t2φ2t,x. (15)

В силу условия K(t,x,t,x)1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaaiI cacaWG0bGaaGilaiaadIhacaaISaGaamiDaiaaiYcacaWG4bGaaGyk aiabgcMi5kaaigdaaaa@40BC@ , (t,x)Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaads hacaaISaGaamiEaiaaiMcacqGHiiIZcqqHPoWvaaa@3D1A@ , матрица

1Kt,x,t,x11

является невырожденной, т.е. (15) является системой интегральных уравнений второго рода, которое имеет единственное решение.

Пример 5.  Однородная система

0t0x1tτxstτxsu1τ,su2τ,sdsdτ00, (16)

имеет множество решений. В самом деле, действуя на уравнения (16) операторами

2 t 2 x , 2 t 2 2 x 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq GHciITdaahaaWcbeqaaiaaikdaaaaakeaacqGHciITcaWG0bWaaWba aSqabeaacaaIYaaaaaaakmaalaaabaGaeyOaIylabaGaeyOaIyRaam iEaaaacaaISaGaaGzbVpaalaaabaGaeyOaIy7aaWbaaSqabeaacaaI YaaaaaGcbaGaeyOaIyRaamiDamaaCaaaleqabaGaaGOmaaaaaaGcda WcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaaaOqaaiabgkGi2kaa dIhadaahaaWcbeqaaiaaikdaaaaaaaaa@4D3F@

соответственно, получим систему

t u 1 (t,x)+ u 2 (t,x)=0 t u 1 (t,x)+ u 2 (t,x)=0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq GHciITaeaacqGHciITcaWG0baaaiaadwhadaWgaaWcbaGaaGymaaqa baGccaaIOaGaamiDaiaaiYcacaWG4bGaaGykaiabgUcaRiaadwhada WgaaWcbaGaaGOmaaqabaGccaaIOaGaamiDaiaaiYcacaWG4bGaaGyk aiaai2dacaaIWaWaaSaaaeaacqGHciITaeaacqGHciITcaWG0baaai aadwhadaWgaaWcbaGaaGymaaqabaGccaaIOaGaamiDaiaaiYcacaWG 4bGaaGykaiabgUcaRiaadwhadaWgaaWcbaGaaGOmaaqabaGccaaIOa GaamiDaiaaiYcacaWG4bGaaGykaiaai2dacaaIWaGaaGilaaaa@5B0F@

которая имеет множество решений. Следовательно, и первоначальная задача имеет множество решений.

Приведем заключительный пример.

Пример 6.  Система (1) с матрицей размера × вида

K(t,x,τ,s)=diag(1,tτ,xs,(tτ)(xs) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaaiI cacaWG0bGaaGilaiaadIhacaaISaGaeqiXdqNaaGilaiaadohacaaI PaGaaGypaiaadsgacaWGPbGaamyyaiaadEgacaaIOaGaaGymaiaaiY cacaWG0bGaeyOeI0IaeqiXdqNaaGilaiaadIhacqGHsislcaWGZbGa aGilaiaaiIcacaWG0bGaeyOeI0IaeqiXdqNaaGykaiaaiIcacaWG4b GaeyOeI0Iaam4CaiaaiMcaaaa@56E4@ , (17)

имеет единственное решение

u(t,x)=( t x φ 1 (t,x), 2 t 2 x φ 2 (t,x), t 2 x 2 φ 3 (t,x), 2 t 2 2 x 2 φ 4 (t,x )) Τ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG0bGaaGilaiaadIhacaaIPaGaaGypaiaaiIcadaWcaaqaaiab gkGi2cqaaiabgkGi2kaadshaaaWaaSaaaeaacqGHciITaeaacqGHci ITcaWG4baaaiabeA8aQnaaBaaaleaacaaIXaaabeaakiaaiIcacaWG 0bGaaGilaiaadIhacaaIPaGaaGilamaalaaabaGaeyOaIy7aaWbaaS qabeaacaaIYaaaaaGcbaGaeyOaIyRaamiDamaaCaaaleqabaGaaGOm aaaaaaGcdaWcaaqaaiabgkGi2cqaaiabgkGi2kaadIhaaaGaeqOXdO 2aaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadshacaaISaGaamiEaiaa iMcacaaISaWaaSaaaeaacqGHciITaeaacqGHciITcaWG0baaamaala aabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaaGcbaGaeyOaIyRaamiE amaaCaaaleqabaGaaGOmaaaaaaGccqaHgpGAdaWgaaWcbaGaaG4maa qabaGccaaIOaGaamiDaiaaiYcacaWG4bGaaGykaiaaiYcadaWcaaqa aiabgkGi2oaaCaaaleqabaGaaGOmaaaaaOqaaiabgkGi2kaadshada ahaaWcbeqaaiaaikdaaaaaaOWaaSaaaeaacqGHciITdaahaaWcbeqa aiaaikdaaaaakeaacqGHciITcaWG4bWaaWbaaSqabeaacaaIYaaaaa aakiabeA8aQnaaBaaaleaacaaI0aaabeaakiaaiIcacaWG0bGaaGil aiaadIhacaaIPaGaaGykamaaCaaaleqabaGaeyiPdqfaaaaa@8256@

при корректно заданной правой части.

Итак, данные примеры показывают принципиальное отличие уравнений (1) с условием (2) от стандартных систем интегральных уравнений Вольтерра первого рода, у которых detK(t,x,t,x)0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciizaiaacw gacaGG0bGaam4saiaaiIcacaWG0bGaaGilaiaadIhacaaISaGaamiD aiaaiYcacaWG4bGaaGykaiabgcMi5kaaicdaaaa@4386@ , (t,x)Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaads hacaaISaGaamiEaiaaiMcacqGHiiIZcqqHPoWvaaa@3D1A@ .

В дальнейшем нам потребуются некоторые факты из теории матричных пучков и матричных полиномов.

Определение 1 (см.[6]) Выражение вида λA(t,x)+B(t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaam yqaiaaiIcacaWG0bGaaGilaiaadIhacaaIPaGaey4kaSIaamOqaiaa iIcacaWG0bGaaGilaiaadIhacaaIPaaaaa@423C@ , где A(t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaaiI cacaWG0bGaaGilaiaadIhacaaIPaaaaa@3ACE@ , B(x,s) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaiaaiI cacaWG4bGaaGilaiaadohacaaIPaaaaa@3ACE@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa8hfGaaa@3A97@ (m×n) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaad2 gacqGHxdaTcaWGUbGaaGykaaaa@3B58@  —матрицы, λ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWgaaa@37AB@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa8hfGaaa@3A97@ скалярный параметр, (t,s)Ω[0,T]×[0,X] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaads hacaaISaGaam4CaiaaiMcacqGHiiIZcqqHPoWvcaaIBbGaaGimaiaa iYcacaWGubGaaGyxaiabgEna0kaaiUfacaaIWaGaaGilaiaadIfaca aIDbaaaa@475A@ , называется матричным пучком. Матричный пучок является регулярным, если m=n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiaai2 dacaWGUbaaaa@38A3@  и det(λA(t,x)+B(t,x) 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciizaiaacw gacaGG0bGaaGikaiabeU7aSjaadgeacaaIOaGaamiDaiaaiYcacaWG 4bGaaGykaiabgUcaRiaadkeacaaIOaGaamiDaiaaiYcacaWG4bGaaG ykaiqbggMi6AaawaGaaGimaaaa@4859@  при всех (t,s)Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaads hacaaISaGaam4CaiaaiMcacqGHiiIZcqqHPoWvaaa@3D15@ .

Определение 2 (см. [9]) Регулярный матричный пучок λA(t,x)+B(t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaam yqaiaaiIcacaWG0bGaaGilaiaadIhacaaIPaGaey4kaSIaamOqaiaa iIcacaWG0bGaaGilaiaadIhacaaIPaaaaa@423C@  удовлетворяет критерию "ранг—степень" (имеет индекс 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaaaa@36B2@  ), если rankA(t,x)=k= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaadg gacaWGUbGaam4AaiaadgeacaaIOaGaamiDaiaaiYcacaWG4bGaaGyk aiaai2dacaWGRbGaaGypaaaa@410C@  для всех (t,x)Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaads hacaaISaGaamiEaiaaiMcacqGHiiIZcqqHPoWvaaa@3D1A@  и det(λA(t,x)+B(t,x))= a k (t,x) λ k + a k1 (t,x) λ k1 ++ a 0 (t,x), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciizaiaacw gacaGG0bGaaGikaiabeU7aSjaadgeacaaIOaGaamiDaiaaiYcacaWG 4bGaaGykaiabgUcaRiaadkeacaaIOaGaamiDaiaaiYcacaWG4bGaaG ykaiaaiMcacaaI9aGaamyyamaaBaaaleaacaWGRbaabeaakiaaiIca caWG0bGaaGilaiaadIhacaaIPaGaeq4UdW2aaWbaaSqabeaacaWGRb aaaOGaey4kaSIaamyyamaaBaaaleaacaWGRbGaeyOeI0IaaGymaaqa baGccaaIOaGaamiDaiaaiYcacaWG4bGaaGykaiabeU7aSnaaCaaale qabaGaam4AaiabgkHiTiaaigdaaaGccqGHRaWkcqWIMaYscqGHRaWk caWGHbWaaSbaaSqaaiaaicdaaeqaaOGaaGikaiaadshacaaISaGaam iEaiaaiMcacaaISaaaaa@66D8@

где a k (t,x)0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaWGRbaabeaakiaaiIcacaWG0bGaaGilaiaadIhacaaIPaGa eyiyIKRaaGimaaaa@3E95@  при всех (t,x)Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaads hacaaISaGaamiEaiaaiMcacqGHiiIZcqqHPoWvaaa@3D1A@ .

Определение 3. Будем говорить, что двупараметрический матричный полином

λξ A 0 (t,x)+λ A 1 (t,x)+ξ A 2 (t,x)+ A 3 (t,x), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaeq OVdGNaamyqamaaBaaaleaacaaIWaaabeaakiaaiIcacaWG0bGaaGil aiaadIhacaaIPaGaey4kaSIaeq4UdWMaamyqamaaBaaaleaacaaIXa aabeaakiaaiIcacaWG0bGaaGilaiaadIhacaaIPaGaey4kaSIaeqOV dGNaamyqamaaBaaaleaacaaIYaaabeaakiaaiIcacaWG0bGaaGilai aadIhacaaIPaGaey4kaSIaamyqamaaBaaaleaacaaIZaaabeaakiaa iIcacaWG0bGaaGilaiaadIhacaaIPaGaaGilaaaa@5763@

где λ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWgaaa@37AB@  и ξ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdGhaaa@37BA@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ скалярные параметры, имеет простую структуру в области Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdCfaaa@3785@ , если выполнены следующие условия:

i.            (i) rank A 0 (t,x)= r 0 = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaadg gacaWGUbGaam4AaiaadgeadaWgaaWcbaGaaGimaaqabaGccaaIOaGa amiDaiaaiYcacaWG4bGaaGykaiaai2dacaWGYbWaaSbaaSqaaiaaic daaeqaaOGaaGypaaaa@42F3@  при всех (t,x)Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaads hacaaISaGaamiEaiaaiMcacqGHiiIZcqqHPoWvaaa@3D1A@ ;

 (ii) rank( A 0 (t,x)| A 1 (t,x))= r 0 + r 1 = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaadg gacaWGUbGaam4AaiaaiIcacaWGbbWaaSbaaSqaaiaaicdaaeqaaOGa aGikaiaadshacaaISaGaamiEaiaaiMcacaaI8bGaamyqamaaBaaale aacaaIXaaabeaakiaaiIcacaWG0bGaaGilaiaadIhacaaIPaGaaGyk aiaai2dacaWGYbWaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaamOCam aaBaaaleaacaaIXaaabeaakiaai2daaaa@4DF0@  при всех (t,x)Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaads hacaaISaGaamiEaiaaiMcacqGHiiIZcqqHPoWvaaa@3D1A@ ;

(iii)  rank( A 0 (t,x)| A 1 (t,x)| A 2 (t,x))= r 0 + r 1 + r 2 = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaadg gacaWGUbGaam4AaiaaiIcacaWGbbWaaSbaaSqaaiaaicdaaeqaaOGa aGikaiaadshacaaISaGaamiEaiaaiMcacaaI8bGaamyqamaaBaaale aacaaIXaaabeaakiaaiIcacaWG0bGaaGilaiaadIhacaaIPaGaaGiF aiaadgeadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiDaiaaiYcaca WG4bGaaGykaiaaiMcacaaI9aGaamOCamaaBaaaleaacaaIWaaabeaa kiabgUcaRiaadkhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGYb WaaSbaaSqaaiaaikdaaeqaaOGaaGypaaaa@578A@  при всех (t,x)Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaads hacaaISaGaamiEaiaaiMcacqGHiiIZcqqHPoWvaaa@3D1A@ ;

(iv) det(λξ A 0 (t,x)+λ A 1 (t,x)+ξ A 2 (t,x)+ A 3 (t,x))= λ r 0 + r 1 ξ r 0 + r 2 α 0 (t,x)+ λ r 0 + r 1 1 ξ r 0 + r 2 α 1 (t,x)+ λ r 0 + r 1 ξ r 0 + r 2 1 α 2 (t,x)+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciizaiaacw gacaGG0bGaaGikaiabeU7aSjabe67a4jaadgeadaWgaaWcbaGaaGim aaqabaGccaaIOaGaamiDaiaaiYcacaWG4bGaaGykaiabgUcaRiabeU 7aSjaadgeadaWgaaWcbaGaaGymaaqabaGccaaIOaGaamiDaiaaiYca caWG4bGaaGykaiabgUcaRiabe67a4jaadgeadaWgaaWcbaGaaGOmaa qabaGccaaIOaGaamiDaiaaiYcacaWG4bGaaGykaiabgUcaRiaadgea daWgaaWcbaGaaG4maaqabaGccaaIOaGaamiDaiaaiYcacaWG4bGaaG ykaiaaiMcacaaI9aGaeq4UdW2aaWbaaSqabeaacaWGYbWaaSbaaeaa caaIWaaabeaacqGHRaWkcaWGYbWaaSbaaeaacaaIXaaabeaaaaGccq aH+oaEdaahaaWcbeqaaiaadkhadaWgaaqaaiaaicdaaeqaaiabgUca RiaadkhadaWgaaqaaiaaikdaaeqaaaaakiabeg7aHnaaBaaaleaaca aIWaaabeaakiaaiIcacaWG0bGaaGilaiaadIhacaaIPaGaey4kaSIa eq4UdW2aaWbaaSqabeaacaWGYbWaaSbaaeaacaaIWaaabeaacqGHRa WkcaWGYbWaaSbaaeaacaaIXaaabeaacqGHsislcaaIXaaaaOGaeqOV dG3aaWbaaSqabeaacaWGYbWaaSbaaeaacaaIWaaabeaacqGHRaWkca WGYbWaaSbaaeaacaaIYaaabeaaaaGccqaHXoqydaWgaaWcbaGaaGym aaqabaGccaaIOaGaamiDaiaaiYcacaWG4bGaaGykaiabgUcaRiabeU 7aSnaaCaaaleqabaGaamOCamaaBaaabaGaaGimaaqabaGaey4kaSIa amOCamaaBaaabaGaaGymaaqabaaaaOGaeqOVdG3aaWbaaSqabeaaca WGYbWaaSbaaeaacaaIWaaabeaacqGHRaWkcaWGYbWaaSbaaeaacaaI YaaabeaacqGHsislcaaIXaaaaOGaeqySde2aaSbaaSqaaiaaikdaae qaaOGaaGikaiaadshacaaISaGaamiEaiaaiMcacqGHRaWkcqWIMaYs aaa@9D7B@ , где α 0 (t,x), α 1 (t,x), α 2 (t,x), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaaicdaaeqaaOGaaGikaiaadshacaaISaGaamiEaiaaiMca caaISaGaeqySde2aaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadshaca aISaGaamiEaiaaiMcacaaISaGaeqySde2aaSbaaSqaaiaaikdaaeqa aOGaaGikaiaadshacaaISaGaamiEaiaaiMcacaaISaGaeSOjGSeaaa@4D1E@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ функции, причем α 0 (t,x)0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaaicdaaeqaaOGaaGikaiaadshacaaISaGaamiEaiaaiMca cqGHGjsUcaaIWaaaaa@3F18@  при всех (t,x)Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaads hacaaISaGaamiEaiaaiMcacqGHiiIZcqqHPoWvaaa@3D1A@ .

Если матрица A 1 (t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaaIXaaabeaakiaaiIcacaWG0bGaaGilaiaadIhacaaIPaaa aa@3BBF@  (или A 2 (t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaaIYaaabeaakiaaiIcacaWG0bGaaGilaiaadIhacaaIPaaa aa@3BC0@  ) тождественно нулевая и исходные матрицы зависят только от одного аргумента, то такой случай был исследован в [5].

Если матричный полином λξ A 0 (t,x)+λ A 1 (t,x)+ξ A 2 (t,x)+ A 3 (t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaeq OVdGNaamyqamaaBaaaleaacaaIWaaabeaakiaaiIcacaWG0bGaaGil aiaadIhacaaIPaGaey4kaSIaeq4UdWMaamyqamaaBaaaleaacaaIXa aabeaakiaaiIcacaWG0bGaaGilaiaadIhacaaIPaGaey4kaSIaeqOV dGNaamyqamaaBaaaleaacaaIYaaabeaakiaaiIcacaWG0bGaaGilai aadIhacaaIPaGaey4kaSIaamyqamaaBaaaleaacaaIZaaabeaakiaa iIcacaWG0bGaaGilaiaadIhacaaIPaaaaa@56AD@  имеет простую структуру, то имеют место следующие утверждения: [ (a)]

(a)  при A 1 (t,x)= A 2 (t,x)0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaaIXaaabeaakiaaiIcacaWG0bGaaGilaiaadIhacaaIPaGa aGypaiaadgeadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiDaiaaiY cacaWG4bGaaGykaiabggMi6kaaicdaaaa@44D2@ , или A 1 (t,x)= A 3 (t,x)0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaaIXaaabeaakiaaiIcacaWG0bGaaGilaiaadIhacaaIPaGa aGypaiaadgeadaWgaaWcbaGaaG4maaqabaGccaaIOaGaamiDaiaaiY cacaWG4bGaaGykaiabggMi6kaaicdaaaa@44D3@ , или A 2 (t,x)= A 3 (t,x)0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaaIYaaabeaakiaaiIcacaWG0bGaaGilaiaadIhacaaIPaGa aGypaiaadgeadaWgaaWcbaGaaG4maaqabaGccaaIOaGaamiDaiaaiY cacaWG4bGaaGykaiabggMi6kaaicdaaaa@44D4@ , будем иметь матричные пучки (соответственно ω A 0 (t,x)+ A 2 (t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdCNaam yqamaaBaaaleaacaaIWaaabeaakiaaiIcacaWG0bGaaGilaiaadIha caaIPaGaey4kaSIaamyqamaaBaaaleaacaaIYaaabeaakiaaiIcaca WG0bGaaGilaiaadIhacaaIPaaaaa@4436@ , (λ A 0 (t,x)+ A 2 (t,x)) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiabeU 7aSjaadgeadaWgaaWcbaGaaGimaaqabaGccaaIOaGaamiDaiaaiYca caWG4bGaaGykaiabgUcaRiaadgeadaWgaaWcbaGaaGOmaaqabaGcca aIOaGaamiDaiaaiYcacaWG4bGaaGykaiaaiMcaaaa@4582@ , λ(ξ A 0 (t,x)+ A 2 (t,x)) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaaG ikaiabe67a4jaadgeadaWgaaWcbaGaaGimaaqabaGccaaIOaGaamiD aiaaiYcacaWG4bGaaGykaiabgUcaRiaadgeadaWgaaWcbaGaaGOmaa qabaGccaaIOaGaamiDaiaaiYcacaWG4bGaaGykaiaaiMcaaaa@4745@ , где ω=λξ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdCNaaG ypaiabeU7aSjabe67a4baa@3C02@  ), удовлетворяющие критерию "ранг—степень";

(b)  при λ=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaaG ypaiaaicdaaaa@392C@  или ξ=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdGNaaG ypaiaaicdaaaa@393B@ , будем иметь матричные пучки ξ A 2 (t,x)+ A 3 (t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdGNaam yqamaaBaaaleaacaaIYaaabeaakiaaiIcacaWG0bGaaGilaiaadIha caaIPaGaey4kaSIaamyqamaaBaaaleaacaaIZaaabeaakiaaiIcaca WG0bGaaGilaiaadIhacaaIPaaaaa@442F@  или λ A 1 (t,x)+ A 3 (t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaam yqamaaBaaaleaacaaIXaaabeaakiaaiIcacaWG0bGaaGilaiaadIha caaIPaGaey4kaSIaamyqamaaBaaaleaacaaIZaaabeaakiaaiIcaca WG0bGaaGilaiaadIhacaaIPaaaaa@441F@ , которые удовлетворяют критерию "ранг—степень".

Лемма 1. (см.9) Если матричный пучок λA(t,x)+B(t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaam yqaiaaiIcacaWG0bGaaGilaiaadIhacaaIPaGaey4kaSIaamOqaiaa iIcacaWG0bGaaGilaiaadIhacaaIPaaaaa@423C@  удовлетворяет критерию "ранг—степень", матрица A(t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaaiI cacaWG0bGaaGilaiaadIhacaaIPaaaaa@3ACE@  имеет блочный вид

A 11 (t,x) A 12 (t,x) A 21 (t,x) A 22 (t,x) , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafa qabeGacaaabaGaamyqamaaBaaaleaacaaIXaGaaGymaaqabaGccaaI OaGaamiDaiaaiYcacaWG4bGaaGykaaqaaiaadgeadaWgaaWcbaGaaG ymaiaaikdaaeqaaOGaaGikaiaadshacaaISaGaamiEaiaaiMcaaeaa caWGbbWaaSbaaSqaaiaaikdacaaIXaaabeaakiaaiIcacaWG0bGaaG ilaiaadIhacaaIPaaabaGaamyqamaaBaaaleaacaaIYaGaaGOmaaqa baGccaaIOaGaamiDaiaaiYcacaWG4bGaaGykaaaaaiaawIcacaGLPa aacaaISaaaaa@5256@

где rank( A 11 (t,x)| A 12 (t,x))=r= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaadg gacaWGUbGaam4AaiaaiIcacaWGbbWaaSbaaSqaaiaaigdacaaIXaaa beaakiaaiIcacaWG0bGaaGilaiaadIhacaaIPaGaaGiFaiaadgeada WgaaWcbaGaaGymaiaaikdaaeqaaOGaaGikaiaadshacaaISaGaamiE aiaaiMcacaaIPaGaaGypaiaadkhacaaI9aaaaa@4BAE@  в области Ω=[0,T]×[0,X] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdCLaaG ypaiaaiUfacaaIWaGaaGilaiaadsfacaaIDbGaey41aqRaaG4waiaa icdacaaISaGaamiwaiaai2faaaa@4291@ , то существует такая невырожденная (n×n) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaad6 gacqGHxdaTcaWGUbGaaGykaaaa@3B59@  —матрица P(t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiaaiI cacaWG0bGaaGilaiaadIhacaaIPaaaaa@3ADD@ , элементы которой имеют ту же гладкость, что и элементы матриц A(t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaaiI cacaWG0bGaaGilaiaadIhacaaIPaaaaa@3ACE@ , B(t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaiaaiI cacaWG0bGaaGilaiaadIhacaaIPaaaaa@3ACF@ , что

P(t,x)(λA(t,x)+B(t,x))=λ A 1 (t,x) 0 + B 1 (t,x) B 2 (t,x) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiaaiI cacaWG0bGaaGilaiaadIhacaaIPaGaaGikaiabeU7aSjaadgeacaaI OaGaamiDaiaaiYcacaWG4bGaaGykaiabgUcaRiaadkeacaaIOaGaam iDaiaaiYcacaWG4bGaaGykaiaaiMcacaaI9aGaeq4UdW2aaeWaaeaa faqabeGabaaabaGaamyqamaaBaaaleaacaaIXaaabeaakiaaiIcaca WG0bGaaGilaiaadIhacaaIPaaabaGaaGimaaaaaiaawIcacaGLPaaa cqGHRaWkdaqadaqaauaabeqaceaaaeaacaWGcbWaaSbaaSqaaiaaig daaeqaaOGaaGikaiaadshacaaISaGaamiEaiaaiMcaaeaacaWGcbWa aSbaaSqaaiaaikdaaeqaaOGaaGikaiaadshacaaISaGaamiEaiaaiM caaaaacaGLOaGaayzkaaGaaGOlaaaa@61DD@                                                                           (18)

Здесь A 1 (t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaaIXaaabeaakiaaiIcacaWG0bGaaGilaiaadIhacaaIPaaa aa@3BBF@ , B 1 (t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqamaaBa aaleaacaaIXaaabeaakiaaiIcacaWG0bGaaGilaiaadIhacaaIPaaa aa@3BC0@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ (r×n) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadk hacqGHxdaTcaWGUbGaaGykaaaa@3B5D@  —матрицы, B 2 (t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqamaaBa aaleaacaaIYaaabeaakiaaiIcacaWG0bGaaGilaiaadIhacaaIPaaa aa@3BC1@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ ((nr)×n) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaiI cacaWGUbGaeyOeI0IaamOCaiaaiMcacqGHxdaTcaWGUbGaaGykaaaa @3EA2@  —матрица и

rank A 1 (t,x)=r=,(t,x)Ω. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaadg gacaWGUbGaam4AaiaadgeadaWgaaWcbaGaaGymaaqabaGccaaIOaGa amiDaiaaiYcacaWG4bGaaGykaiaai2dacaWGYbGaaGypaiaaiYcaca aMf8UaaGikaiaadshacaaISaGaamiEaiaaiMcacqGHiiIZcqqHPoWv caaIUaaaaa@4C23@

Лемма 2. Если матричный пучок(18) удовлетворяет критерию "ранг—степень" в области Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdCfaaa@3785@  и rank A 1 (t,x)=r= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaadg gacaWGUbGaam4AaiaadgeadaWgaaWcbaGaaGymaaqabaGccaaIOaGa amiDaiaaiYcacaWG4bGaaGykaiaai2dacaWGYbGaaGypaaaa@4204@ , то

det A 1 (t,x) c B 2 (t,x) 0,(t,x)Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciizaiaacw gacaGG0bWaaeWaaeaafaqabeGabaaabaGaamyqamaaBaaaleaacaaI XaaabeaakiaaiIcacaWG0bGaaGilaiaadIhacaaIPaaabaGaam4yai aadkeadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiDaiaaiYcacaWG 4bGaaGykaaaaaiaawIcacaGLPaaacqGHGjsUcaaIWaGaaGilaiaayw W7caaIOaGaamiDaiaaiYcacaWG4bGaaGykaiabgIGiolabfM6axbaa @52BA@

для любого скаляра c0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiabgc Mi5kaaicdaaaa@3960@ .

Доказательство этой леммы аналогично доказательству в [13].

Приведем следующий факт о системах интегральных уравнений Вольтерра.

Утверждение 1. Система интегральных уравнений Вольтерра

u(t,x)+ 0 t L(t,x,τ,x)u(t,x)dτ+ 0 x M(t,x,τ,s)u(t,s)ds+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlaadw hacaaIOaGaamiDaiaaiYcacaWG4bGaaGykaiabgUcaRmaapehabeWc baGaaGimaaqaaiaadshaa0Gaey4kIipakiaadYeacaaIOaGaamiDai aaiYcacaWG4bGaaGilaiabes8a0jaaiYcacaWG4bGaaGykaiaadwha caaIOaGaamiDaiaaiYcacaWG4bGaaGykaiaadsgacqaHepaDcqGHRa WkdaWdXbqabSqaaiaaicdaaeaacaWG4baaniabgUIiYdGccaWGnbGa aGikaiaadshacaaISaGaamiEaiaaiYcacqaHepaDcaaISaGaam4Cai aaiMcacaWG1bGaaGikaiaadshacaaISaGaam4CaiaaiMcacaWGKbGa am4CaiabgUcaRaaa@6844@

+ 0 t 0 x N(t,x,τ,s)u(t,s)dsdτ=Ψ(t,x), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qCaeqaleaacaaIWaaabaGaamiDaaqdcqGHRiI8aOWaa8qCaeqaleaa caaIWaaabaGaamiEaaqdcqGHRiI8aOGaamOtaiaaiIcacaWG0bGaaG ilaiaadIhacaaISaGaeqiXdqNaaGilaiaadohacaaIPaGaamyDaiaa iIcacaWG0bGaaGilaiaadohacaaIPaGaamizaiaadohacaWGKbGaeq iXdqNaaGypaiabfI6azjaaiIcacaWG0bGaaGilaiaadIhacaaIPaGa aGilaiaaywW7aaa@5A78@ , (19)

где L() MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaaiI cacqGHflY1caaIPaaaaa@3A77@ , M() MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiaaiI cacqGHflY1caaIPaaaaa@3A78@ , N() MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaiaaiI cacqGHflY1caaIPaaaaa@3A79@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ (n×n) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaad6 gacqGHxdaTcaWGUbGaaGykaaaa@3B59@  —матрицы с непрерывными элементами, Ψ(t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiQdKLaaG ikaiaadshacaaISaGaamiEaiaaiMcaaaa@3B97@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@36EA@  —мерная вектор—функция с непрерывными элементами, имеет единственное непрерывное решение.

Доказательство этого утверждения вытекает из принципа сжатых отображений (см. [7, 8]).

Вернемся к исходной системе (1) с условием (2). Приведем достаточные условия существования единственного непрерывного решения данной задачи.

Утверждение 2.  Предположим, что для однородной задачи (1) с условием (2) выполнены следующие условия:

(i) элементы матриц K() MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaaiI cacqGHflY1caaIPaaaaa@3A76@  и φ() MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOMaaG ikaiabgwSixlaaiMcaaaa@3B63@ обладают достаточной гладкостью по совокупности элементов;

(ii) φ(0,x)=φ(t,0) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOMaaG ikaiaaicdacaaISaGaamiEaiaaiMcacaaI9aGaeqOXdOMaaGikaiaa dshacaaISaGaaGimaiaaiMcaaaa@41D8@ ;

(iii) матричный полином

R(λ,ξ,t,x)=λξK(t,x,t,x)+ξ K t (t,x,t,x )| τ=t +λ K x (t,x,t,s )| s=x + K tx (t,x,τ,s )| τ=t,s=x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuaiaaiI cacqaH7oaBcaaISaGaeqOVdGNaaGilaiaadshacaaISaGaamiEaiaa iMcacaaI9aGaeq4UdWMaeqOVdGNaam4saiaaiIcacaWG0bGaaGilai aadIhacaaISaGaamiDaiaaiYcacaWG4bGaaGykaiabgUcaRiabe67a 4jqadUeagaqbamaaBaaaleaacaWG0baabeaakiaaiIcacaWG0bGaaG ilaiaadIhacaaISaGaamiDaiaaiYcacaWG4bGaaGykaiaaiYhadaWg aaWcbaGaeqiXdqNaaGypaiaadshaaeqaaOGaey4kaSIaeq4UdWMabm 4sayaafaWaaSbaaSqaaiaadIhaaeqaaOGaaGikaiaadshacaaISaGa amiEaiaaiYcacaWG0bGaaGilaiaadohacaaIPaGaaGiFamaaBaaale aacaWGZbGaaGypaiaadIhaaeqaaOGaey4kaSIabm4sayaafyaafaWa aSbaaSqaaiaadshacaWG4baabeaakiaaiIcacaWG0bGaaGilaiaadI hacaaISaGaeqiXdqNaaGilaiaadohacaaIPaGaaGiFamaaBaaaleaa cqaHepaDcaaI9aGaamiDaiaaiYcacaWGZbGaaGypaiaadIhaaeqaaa aa@818A@

имеет простую структуру:

K t (t,x,t,x )| τ=t 0; K x (t,x,t,s )| s=x 0; K t (t,x,t,x )| τ=t = K x (t,x,t,s )| s=x 0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4sayaafa WaaSbaaSqaaiaadshaaeqaaOGaaGikaiaadshacaaISaGaamiEaiaa iYcacaWG0bGaaGilaiaadIhacaaIPaGaaGiFamaaBaaaleaacqaHep aDcaaI9aGaamiDaaqabaGccqGHHjIUcaaIWaGaaG4oaiaaywW7ceWG lbGbauaadaWgaaWcbaGaamiEaaqabaGccaaIOaGaamiDaiaaiYcaca WG4bGaaGilaiaadshacaaISaGaam4CaiaaiMcacaaI8bWaaSbaaSqa aiaadohacaaI9aGaamiEaaqabaGccqGHHjIUcaaIWaGaaG4oaiaayw W7ceWGlbGbauaadaWgaaWcbaGaamiDaaqabaGccaaIOaGaamiDaiaa iYcacaWG4bGaaGilaiaadshacaaISaGaamiEaiaaiMcacaaI8bWaaS baaSqaaiabes8a0jaai2dacaWG0baabeaakiaai2daceWGlbGbauaa daWgaaWcbaGaamiEaaqabaGccaaIOaGaamiDaiaaiYcacaWG4bGaaG ilaiaadshacaaISaGaam4CaiaaiMcacaaI8bWaaSbaaSqaaiaadoha caaI9aGaamiEaaqabaGccqGHHjIUcaaIWaGaaGOlaaaa@7B0D@

Тогда исходная система имеет единственное непрерывное решение.

Доказательство этого факта основано на блочном представлении исходных матриц, которое обобщает результаты [13].

Для неоднородной задачи (1) с условием (2) справедливо следующее утверждение.

Утверждение 3. Пусть для задачи (1) выполнены условия утверждения 2. Если правая часть задана корректно, т.е. задача имеет решение, то это решение единственно в области Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdCfaaa@3785@ .

Доказательства этих утверждений основаны на построении дифференциального оператора

D= D 0 (t,x) t x + D 1 (t,x) 2 t 2 x + D 2 (t,x) t 2 x 2 + D 2 (t,x) 2 t 2 2 x 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiaai2 dacaWGebWaaSbaaSqaaiaaicdaaeqaaOGaaGikaiaadshacaaISaGa amiEaiaaiMcadaWcaaqaaiabgkGi2cqaaiabgkGi2kaadshaaaWaaS aaaeaacqGHciITaeaacqGHciITcaWG4baaaiabgUcaRiaadseadaWg aaWcbaGaaGymaaqabaGccaaIOaGaamiDaiaaiYcacaWG4bGaaGykam aalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaaGcbaGaeyOaIyRa amiDamaaCaaaleqabaGaaGOmaaaaaaGcdaWcaaqaaiabgkGi2cqaai abgkGi2kaadIhaaaGaey4kaSIaamiramaaBaaaleaacaaIYaaabeaa kiaaiIcacaWG0bGaaGilaiaadIhacaaIPaWaaSaaaeaacqGHciITae aacqGHciITcaWG0baaamaalaaabaGaeyOaIy7aaWbaaSqabeaacaaI YaaaaaGcbaGaeyOaIyRaamiEamaaCaaaleqabaGaaGOmaaaaaaGccq GHRaWkcaWGebWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadshacaaI SaGaamiEaiaaiMcadaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaa aaaOqaaiabgkGi2kaadshadaahaaWcbeqaaiaaikdaaaaaaOWaaSaa aeaacqGHciITdaahaaWcbeqaaiaaikdaaaaakeaacqGHciITcaWG4b WaaWbaaSqabeaacaaIYaaaaaaakiaaiYcaaaa@7860@ (20)

суперпозиция которого с исходной системой (1) дает систему интегральных уравнений Вольтерра второго рода вида (19). При конструировании оператора (20) использованы результаты их теории проекторов и обобщенных обратных матриц [?, ?, ?].

Приведем анализ примеров. В примере 1 матричный полином

R(λ,ξ,t,x)=λξK(t,x,t,x)+ξ K t (t,x,t,x )| τ=t +λ K x (t,x,t,s )| s=x + K tx (t,x,τ,s )| τ=t,s=x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuaiaaiI cacqaH7oaBcaaISaGaeqOVdGNaaGilaiaadshacaaISaGaamiEaiaa iMcacaaI9aGaeq4UdWMaeqOVdGNaam4saiaaiIcacaWG0bGaaGilai aadIhacaaISaGaamiDaiaaiYcacaWG4bGaaGykaiabgUcaRiabe67a 4jqadUeagaqbamaaBaaaleaacaWG0baabeaakiaaiIcacaWG0bGaaG ilaiaadIhacaaISaGaamiDaiaaiYcacaWG4bGaaGykaiaaiYhadaWg aaWcbaGaeqiXdqNaaGypaiaadshaaeqaaOGaey4kaSIaeq4UdWMabm 4sayaafaWaaSbaaSqaaiaadIhaaeqaaOGaaGikaiaadshacaaISaGa amiEaiaaiYcacaWG0bGaaGilaiaadohacaaIPaGaaGiFamaaBaaale aacaWGZbGaaGypaiaadIhaaeqaaOGaey4kaSIabm4sayaafyaafaWa aSbaaSqaaiaadshacaWG4baabeaakiaaiIcacaWG0bGaaGilaiaadI hacaaISaGaeqiXdqNaaGilaiaadohacaaIPaGaaGiFamaaBaaaleaa cqaHepaDcaaI9aGaamiDaiaaiYcacaWGZbGaaGypaiaadIhaaeqaaa aa@818A@

не имеет простой структуры. В самом деле, ранг матрицы K(t,x,t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaaiI cacaWG0bGaaGilaiaadIhacaaISaGaamiDaiaaiYcacaWG4bGaaGyk aaaa@3E3A@  может равняться либо нулю, либо единице, либо двум, в то время как определитель матрицы R(λ,ξ,t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuaiaaiI cacqaH7oaBcaaISaGaeqOVdGNaaGilaiaadshacaaISaGaamiEaiaa iMcaaaa@3FC2@  не зависит от λ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWgaaa@37AB@  и ξ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdGhaaa@37BA@ , он всегда равен единице.

Пример 2 является одномерной системой интегральных уравнений. В этом случае мы имеем не матричный полином R(λ,ξ,t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuaiaaiI cacqaH7oaBcaaISaGaeqOVdGNaaGilaiaadshacaaISaGaamiEaiaa iMcaaaa@3FC2@ , а матричный пучок λK(x,x)+ K x (x,s )| s=x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaam 4saiaaiIcacaWG4bGaaGilaiaadIhacaaIPaGaey4kaSIabm4sayaa faWaaSbaaSqaaiaadIhaaeqaaOGaaGikaiaadIhacaaISaGaam4Cai aaiMcacaaI8bWaaSbaaSqaaiaadohacaaI9aGaamiEaaqabaaaaa@477F@ . У данного пучка ранг матрицы K(x,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaaiI cacaWG4bGaaGilaiaadIhacaaIPaaaaa@3ADC@  равен 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaaaa@36B2@  при всех x[0,1] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI GiolaaiUfacaaIWaGaaGilaiaaigdacaaIDbaaaa@3C6F@ ,

detλK(x,x)+ K x (x,s )| s=x =λ(2x1)3. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciizaiaacw gacaGG0bGaeq4UdWMaam4saiaaiIcacaWG4bGaaGilaiaadIhacaaI PaGaey4kaSIabm4sayaafaWaaSbaaSqaaiaadIhaaeqaaOGaaGikai aadIhacaaISaGaam4CaiaaiMcacaaI8bWaaSbaaSqaaiaadohacaaI 9aGaamiEaaqabaGccaaI9aGaeq4UdWMaaGikaiaaikdacaWG4bGaey OeI0IaaGymaiaaiMcacqGHsislcaaIZaGaaGOlaaaa@53F7@

При x=1/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaai2 dacaaIXaGaaG4laiaaikdaaaa@39EB@  имеем 2x1=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaadI hacqGHsislcaaIXaGaaGypaiaaicdaaaa@3AD9@ ; таким образом, в точке x=1/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaai2 dacaaIXaGaaG4laiaaikdaaaa@39EB@  нарушено условие

det(λK(x,x)+ K x (x,s ))| s=x = a 1 (x) λ k + a 0 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciizaiaacw gacaGG0bGaaGikaiabeU7aSjaadUeacaaIOaGaamiEaiaaiYcacaWG 4bGaaGykaiabgUcaRiqadUeagaqbamaaBaaaleaacaWG4baabeaaki aaiIcacaWG4bGaaGilaiaadohacaaIPaGaaGykaiaaiYhadaWgaaWc baGaam4Caiaai2dacaWG4baabeaakiaai2dacaWGHbWaaSbaaSqaai aaigdaaeqaaOGaaGikaiaadIhacaaIPaGaeq4UdW2aaWbaaSqabeaa caWGRbaaaOGaey4kaSIaamyyamaaBaaaleaacaaIWaaabeaakiaaiY caaaa@5702@

где a 1 (x)0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaaIXaaabeaakiaaiIcacaWG4bGaaGykaiabgcMi5kaaicda aaa@3CB1@ . Точка x=1/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaai2 dacaaIXaGaaG4laiaaikdaaaa@39EB@  является для данного примера сингулярной.

В примере 3 матричный пучок λK(x,x)+ K x (x,s )| s=x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaam 4saiaaiIcacaWG4bGaaGilaiaadIhacaaIPaGaey4kaSIabm4sayaa faWaaSbaaSqaaiaadIhaaeqaaOGaaGikaiaadIhacaaISaGaam4Cai aaiMcacaaI8bWaaSbaaSqaaiaadohacaaI9aGaamiEaaqabaaaaa@477F@  не обладает свойством "ранг—степень". В самом деле, ранг матрицы K(x,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaaiI cacaWG4bGaaGilaiaadIhacaaIPaaaaa@3ADC@  равен 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaaaa@36B2@  при всех x[0,1] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI GiolaaiUfacaaIWaGaaGilaiaaigdacaaIDbaaaa@3C6F@  и a0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgc Mi5kaaicdaaaa@395E@ , detλK(x,x)+ K x (x,s )| s=x =bc MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciizaiaacw gacaGG0bGaeq4UdWMaam4saiaaiIcacaWG4bGaaGilaiaadIhacaaI PaGaey4kaSIabm4sayaafaWaaSbaaSqaaiaadIhaaeqaaOGaaGikai aadIhacaaISaGaam4CaiaaiMcacaaI8bWaaSbaaSqaaiaadohacaaI 9aGaamiEaaqabaGccaaI9aGaamOyaiaadogaaaa@4CEA@ , поэтому, как и в предыдущем случае, гарантировать существование единственного решения нельзя.

В примере 4 матричный полином имеет вид

R(λ,ξ,t,x)=λξK(t,x,t,x)+ξ K t (t,x,t,x )| τ=t +λ K x (t,x,t,s )| s=x + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuaiaaiI cacqaH7oaBcaaISaGaeqOVdGNaaGilaiaadshacaaISaGaamiEaiaa iMcacaaI9aGaeq4UdWMaeqOVdGNaam4saiaaiIcacaWG0bGaaGilai aadIhacaaISaGaamiDaiaaiYcacaWG4bGaaGykaiabgUcaRiabe67a 4jqadUeagaqbamaaBaaaleaacaWG0baabeaakiaaiIcacaWG0bGaaG ilaiaadIhacaaISaGaamiDaiaaiYcacaWG4bGaaGykaiaaiYhadaWg aaWcbaGaeqiXdqNaaGypaiaadshaaeqaaOGaey4kaSIaeq4UdWMabm 4sayaafaWaaSbaaSqaaiaadIhaaeqaaOGaaGikaiaadshacaaISaGa amiEaiaaiYcacaWG0bGaaGilaiaadohacaaIPaGaaGiFamaaBaaale aacaWGZbGaaGypaiaadIhaaeqaaOGaey4kaScaaa@6E14@

+K''txt,x,τ,sτt,sxλξ1Kt,x,t,x00+λ0K'tt,x,τ,xτt00+

+ξ0K'xt,x,t,ξξx00+λξ0K''t,x,τ,ξτt,ξx00.

Если K(t,x,t,x)1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaaiI cacaWG0bGaaGilaiaadIhacaaISaGaamiDaiaaiYcacaWG4bGaaGyk aiabgcMi5kaaigdaaaa@40BC@  при всех (t,x)Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaads hacaaISaGaamiEaiaaiMcacqGHiiIZcqqHPoWvaaa@3D1A@ , то данный матричный полином имеет простую структуру, а при K(t,x,t,x)=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaaiI cacaWG0bGaaGilaiaadIhacaaISaGaamiDaiaaiYcacaWG4bGaaGyk aiaai2dacaaIXaaaaa@3FBC@  матрица R(λ,ξ,t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuaiaaiI cacqaH7oaBcaaISaGaeqOVdGNaaGilaiaadshacaaISaGaamiEaiaa iMcaaaa@3FC2@  будет тождественно вырожденной.

Точно так же можно показать, что в примере 5 матричный полином R(λ,ξ,t,x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuaiaaiI cacqaH7oaBcaaISaGaeqOVdGNaaGilaiaadshacaaISaGaamiEaiaa iMcaaaa@3FC2@  не имеет простой структуры, так как матрица

λξK(t,x,t,x)+ξ K t (t,x,t,x )| τ=t +λ K x (t,x,t,s )| s=x + K tx (t,x,τ,s )| τ=t,s=x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaeq OVdGNaam4saiaaiIcacaWG0bGaaGilaiaadIhacaaISaGaamiDaiaa iYcacaWG4bGaaGykaiabgUcaRiabe67a4jqadUeagaqbamaaBaaale aacaWG0baabeaakiaaiIcacaWG0bGaaGilaiaadIhacaaISaGaamiD aiaaiYcacaWG4bGaaGykaiaaiYhadaWgaaWcbaGaeqiXdqNaaGypai aadshaaeqaaOGaey4kaSIaeq4UdWMabm4sayaafaWaaSbaaSqaaiaa dIhaaeqaaOGaaGikaiaadshacaaISaGaamiEaiaaiYcacaWG0bGaaG ilaiaadohacaaIPaGaaGiFamaaBaaaleaacaWGZbGaaGypaiaadIha aeqaaOGaey4kaSIabm4sayaafyaafaWaaSbaaSqaaiaadshacaWG4b aabeaakiaaiIcacaWG0bGaaGilaiaadIhacaaISaGaeqiXdqNaaGil aiaadohacaaIPaGaaGiFamaaBaaaleaacqaHepaDcaaI9aGaamiDai aaiYcacaWGZbGaaGypaiaadIhaaeqaaaaa@76F8@

является тождественно вырожденной. Аналогично можно показать, что в примере 6 матричный полином будет иметь простую структуру.

3. Заключение.

В работе сформулированы достаточные условия существования решения двумерных интегральных уравнений Вольтерра первого рода в терминах матричных пучков. В дальнейшем планируется получить обобщение этих результатов (формулировка достаточных условий) на многомерные системы интегральных уравнений, а также на системы со слабой особенностью

0 t 0 x (tτ) α (xs) β K(t,x,τ,s)u(τ,s)dsdτ=φ(t,x),0α<1,0β<1. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqale aacaaIWaaabaGaamiDaaqdcqGHRiI8aOWaa8qCaeqaleaacaaIWaaa baGaamiEaaqdcqGHRiI8aOGaaGikaiaadshacqGHsislcqaHepaDca aIPaWaaWbaaSqabeaacqGHsislcqaHXoqyaaGccaaIOaGaamiEaiab gkHiTiaadohacaaIPaWaaWbaaSqabeaacqGHsislcqaHYoGyaaGcca WGlbGaaGikaiaadshacaaISaGaamiEaiaaiYcacqaHepaDcaaISaGa am4CaiaaiMcacaWG1bGaaGikaiabes8a0jaaiYcacaWGZbGaaGykai aadsgacaWGZbGaamizaiabes8a0jaai2dacqaHgpGAcaaIOaGaamiD aiaaiYcacaWG4bGaaGykaiaaiYcacaaMf8UaaGimaiabgsMiJkabeg 7aHjaaiYdacaaIXaGaaGilaiaaywW7caaIWaGaeyizImQaeqOSdiMa aGipaiaaigdacaaIUaaaaa@7788@

Также планируется разработка и обоснование численных методов решения задачи (1), основанных на кубатурных формулах средних прямоугольников.

×

About the authors

Mikhail V. Bulatov

Институт динамики систем и теории управления им. В. М. Матросова СО РАН

Author for correspondence.
Email: mvbul@icc.ru
Russian Federation, Иркутск

Lyubov S. Solovarova

Институт динамики систем и теории управления им. В. М. Матросова СО РАН

Email: soleilu@mail.ru
Russian Federation, Иркутск

References

  1. Ботороева М. Н. Моделирование развивающихся систем на основе интегральных уравнений Вольтерра/ Дисс. на соиск. уч. степ. канд. физ.-мат. наук — Бурят. гос. ун-т, 2019.
  2. Бояринцев Ю. Е. Регулярные и сингулярные системы линейных обыкновенных дифференциальных уравнений. — Новосибирск: Наука, 1980.
  3. Будникова О. С. Численное решение интегро-алгебраических уравнений многошаговыми методами/ Дисс. на соиск. уч. степ. канд. физ.-мат. наук — МГУ, 2015.
  4. Булатов М. В. Численное решение систем интегральных уравнений Вольтерра первого рода I рода// Ж. вычисл. мат. мат. физ. — 1998. — 38, № 4. — С. 607-611.
  5. Булатов М. В. Применение матричных полиномов к исследованию линейных дифференциально-алгебраических уравнений высокого порядка// Диффер. уравн. — 2008. — 44, № 10. — С. 1299-1306.
  6. Гантмахер Ф. Р. Теория матриц. — М.: Наука, 1966.
  7. Колмогоров А. Н. Элементы теории функций и функционального анализа. — М.: Физматлит, 2004.
  8. Краснов М. Л. Интегральные уравнения. Введение в теорию. — М.: Наука, 1975.
  9. Чистяков В. Ф. Алгебро-дифференциальные операторы с конечномерным ядром. — Новосибирск: Наука, 1996.
  10. Balakumar V. Numerical solution of Volterra integral-algebraic equations using block pulse functions// Appl. Math. Comp. — 2015. — 263. — P. 165-170.
  11. Brunner H. Collocation Methods for Volterra Integral and Related Functioal Equations. — Cambridge: Cambridge 'Univ. Press, 2004.
  12. Brunner H. Volterra Integral Equations: An Introduction to Theory and Applications. — Cambridge: Cambridge 'Univ. Press, 2017.
  13. Bulatov M. V. Two-dimensional integral-algebraic systems: Analysis and computational methods// J. Comput. Appl. Math. — 2011. — 236, № 2. — P. 132-140.
  14. Bulatov M. U. Existence and uniqueness of solutions to weakly singular integral, algebraic and integrodifferential equations// Centr. Eur. J. Math. — 2014. — 12, № 2. — P. 308-321.
  15. Bulatov M. V. Construction of implicit multistep methods for solving integral algebraic equations// Вестн. С.-Петербург. ун-та. Сер. 10. Прикл. мат. Информ. Процессы управл. — 2019. — 1, № 3. — С. 310-322.
  16. Hadizadeh M. Jacobi spectral solution for integral-algebraic equations of index 2// Appl. Numer. Math. — 2011. — 61. — P. 131-148.
  17. Lamour R., Marz R.., Tischendorf C. Differential-Algebraic Equations: A ProjectorBased Analysis. — Berlin-Heidelberg: Springer-Verlag, 2013.
  18. Pishbin S. The semi-explicit Volterra integral algebraic equations with weakly singular kernels: the numerical treatments// J. Comput. Appl. Math. — 2013. — 245. — P. 121-132.
  19. Pishbin S. Optimal convergence results of piecewise polynomial collocation solutions for integral-algebraic equations of index 3// J. Comput. Appl. Math. — 2015. — 279. — P. 209-224.
  20. Pishbin S. Numerical solution and structural analysis of two-dimensional integral-algebraic equations// Numer. Algorithms. — 2016. — 73, № 2. — P. 305-322.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Bulatov M.V., Solovarova L.S.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».