Об асимптотике решения нелинейного разностного уравнения типа свертки

Обложка

Цитировать

Полный текст

Аннотация

При решении многих задач теории вероятностей, информатики и комбинаторики появляются нелинейные разностные уравнения. Рассматривается нелинейное разностное уравнение типа свертки с параметрами. Асимптотика решений таких уравнений используется при перечислении помеченных связных графов. Для получения асимптотики применяется теорема Бендера для коэффициентов формальных степенных рядов.

Полный текст

Нелинейные разностные уравнения типа свертки возникают в теории вероятности при изучении броуновского движения (см. [12, 14]), информатике при анализе алгоритмов поиска (см. [10]) и хеширования (см. [11]) и комбинаторике при перечислении помеченных графов (см. [19]). Асимптотика решений таких уравнений исследовалась в [9, 10, 16, 17].

Рассмотрим нелинейное разностное уравнение типа свертки

a n+1 =(n+α) a n +β s=0 n a s a ns ,n0; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbWaaSbaaSqaaiaad6gacqGHRa WkcaaIXaaabeaakiaai2dacaaIOaGaamOBaiabgUcaRiabeg7aHjaa iMcacaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaey4kaSIaeqOSdi2aaa bCaeqaleaacaWGZbGaaGypaiaaicdaaeaacaWGUbaaniabggHiLdGc caWGHbWaaSbaaSqaaiaadohaaeqaaOGaamyyamaaBaaaleaacaWGUb GaeyOeI0Iaam4CaaqabaGccaaISaGaaGzbVlaad6gacqGHLjYScaaI WaGaaG4oaaaa@51D8@  (1)

a 0 =a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbWaaSbaaSqaaiaaicdaaeqaaO GaaGypaiaadggaaaa@3540@ , где α MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHXoqyaaa@335C@ , β MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGyaaa@335E@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  параметры, β0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGycqGHGjsUcaaIWaaaaa@35DF@ .

Асимптотика решений уравнений такого типа используется при перечислении помеченных связных графов (см. [1, 4, 7, 18, 19]) и в теории случайных графов (см. [13]).

Введем производящую функцию (формальный степенной ряд) для последовательности чисел { a n } MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI7bGaamyyamaaBaaaleaacaWGUb aabeaakiaai2haaaa@35D8@ , определяемой уравнением (1):

A(x)= n=0 a n x n . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbGaaGikaiaadIhacaaIPaGaaG ypamaaqahabeWcbaGaamOBaiaai2dacaaIWaaabaGaeyOhIukaniab ggHiLdGccaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaamiEamaaCaaale qabaGaamOBaaaakiaaysW7caaIUaaaaa@4259@

Теорема 1. Пусть Φ(a,b;x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHMoGrcaaIOaGaamyyaiaaiYcaca WGIbGaaG4oaiaadIhacaaIPaaaaa@38E1@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa8hfGaaa@3A93@  вырожденная гипергеометрическая функция Куммера. Тогда верна формула

A(x)= x β (lnΦ aβ,1α; 1 x ) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbGaaGikaiaadIhacaaIPaGaaG ypamaalaaabaGaamiEaaqaaiabek7aIbaacaaIOaGaciiBaiaac6ga cqqHMoGrdaqadaqaaiaadggacqaHYoGycaaISaGaaGymaiabgkHiTi abeg7aHjaaiUdacqGHsisldaWcaaqaaiaaigdaaeaacaWG4baaaaGa ayjkaiaawMcaaiqaiMcagaqbaiaai6caaaa@4968@  (2)

Доказательство. Умножим обе части уравнения (1) на x n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaWbaaSqabeaacaWGUbaaaa aa@33DA@  и просуммируем по n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B0@  от 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaaaaa@3277@  до MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHEisPaaa@332E@ :

n=0 a n+1 x n = n=0 n a n x n +α n=0 a n x n +β n=0 s=0 n a s a ns x n . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaad6gacaaI9aGaaG imaaqaaiabg6HiLcqdcqGHris5aOGaamyyamaaBaaaleaacaWGUbGa ey4kaSIaaGymaaqabaGccaWG4bWaaWbaaSqabeaacaWGUbaaaOGaaG ypamaaqahabeWcbaGaamOBaiaai2dacaaIWaaabaGaeyOhIukaniab ggHiLdGccaWGUbGaamyyamaaBaaaleaacaWGUbaabeaakiaadIhada ahaaWcbeqaaiaad6gaaaGccqGHRaWkcqaHXoqydaaeWbqabSqaaiaa d6gacaaI9aGaaGimaaqaaiabg6HiLcqdcqGHris5aOGaamyyamaaBa aaleaacaWGUbaabeaakiaadIhadaahaaWcbeqaaiaad6gaaaGccqGH RaWkcqaHYoGydaaeWbqabSqaaiaad6gacaaI9aGaaGimaaqaaiabg6 HiLcqdcqGHris5aOWaaabCaeqaleaacaWGZbGaaGypaiaaicdaaeaa caWGUbaaniabggHiLdGccaWGHbWaaSbaaSqaaiaadohaaeqaaOGaam yyamaaBaaaleaacaWGUbGaeyOeI0Iaam4CaaqabaGccaWG4bWaaWba aSqabeaacaWGUbaaaOGaaGOlaaaa@6E22@

Теперь имеем

n=0 a n+1 x n = 1 x n=0 a n+1 x n+1 = 1 x ( n=0 a n x n a 0 ), n=0 n a n x n =x( n=0 a n x n ) =x A (x), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaad6gacaaI9aGaaG imaaqaaiabg6HiLcqdcqGHris5aOGaamyyamaaBaaaleaacaWGUbGa ey4kaSIaaGymaaqabaGccaWG4bWaaWbaaSqabeaacaWGUbaaaOGaaG ypamaalaaabaGaaGymaaqaaiaadIhaaaWaaabCaeqaleaacaWGUbGa aGypaiaaicdaaeaacqGHEisPa0GaeyyeIuoakiaadggadaWgaaWcba GaamOBaiabgUcaRiaaigdaaeqaaOGaamiEamaaCaaaleqabaGaamOB aiabgUcaRiaaigdaaaGccaaI9aWaaSaaaeaacaaIXaaabaGaamiEaa aacaaIOaWaaabCaeqaleaacaWGUbGaaGypaiaaicdaaeaacqGHEisP a0GaeyyeIuoakiaadggadaWgaaWcbaGaamOBaaqabaGccaWG4bWaaW baaSqabeaacaWGUbaaaOGaeyOeI0IaamyyamaaBaaaleaacaaIWaaa beaakiaaiMcacaaISaGaaGzbVpaaqahabeWcbaGaamOBaiaai2daca aIWaaabaGaeyOhIukaniabggHiLdGccaWGUbGaamyyamaaBaaaleaa caWGUbaabeaakiaadIhadaahaaWcbeqaaiaad6gaaaGccaaI9aGaam iEaiaaiIcadaaeWbqabSqaaiaad6gacaaI9aGaaGimaaqaaiabg6Hi LcqdcqGHris5aOGaamyyamaaBaaaleaacaWGUbaabeaakiaadIhada ahaaWcbeqaaiaad6gaaaGcceaIPaGbauaacaaI9aGaamiEaiqadgea gaqbaiaaiIcacaWG4bGaaGykaiaaiYcaaaa@7FFC@

n=0 s=0 n a s a ns x n = A 2 (x), 1 x (A(x) a 0 )=x A (x)+αA(x)+β A 2 (x). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaad6gacaaI9aGaaG imaaqaaiabg6HiLcqdcqGHris5aOWaaabCaeqaleaacaWGZbGaaGyp aiaaicdaaeaacaWGUbaaniabggHiLdGccaWGHbWaaSbaaSqaaiaado haaeqaaOGaamyyamaaBaaaleaacaWGUbGaeyOeI0Iaam4CaaqabaGc caWG4bWaaWbaaSqabeaacaWGUbaaaOGaaGypaiaadgeadaahaaWcbe qaaiaaikdaaaGccaaIOaGaamiEaiaaiMcacaaISaGaaGzbVpaalaaa baGaaGymaaqaaiaadIhaaaGaaGikaiaadgeacaaIOaGaamiEaiaaiM cacqGHsislcaWGHbWaaSbaaSqaaiaaicdaaeqaaOGaaGykaiaai2da caWG4bGabmyqayaafaGaaGikaiaadIhacaaIPaGaey4kaSIaeqySde MaamyqaiaaiIcacaWG4bGaaGykaiabgUcaRiabek7aIjaadgeadaah aaWcbeqaaiaaikdaaaGccaaIOaGaamiEaiaaiMcacaaIUaaaaa@680C@

Получили для A(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbGaaGikaiaadIhacaaIPaaaaa@34E5@  общее уравнение Риккати

A (x)= β x A 2 (x)+ 1 x ( 1 x α)A(x) a x 2 ,A(0)=a. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGbbGbauaacaaIOaGaamiEaiaaiM cacaaI9aGaeyOeI0YaaSaaaeaacqaHYoGyaeaacaWG4baaaiaadgea daahaaWcbeqaaiaaikdaaaGccaaIOaGaamiEaiaaiMcacqGHRaWkda WcaaqaaiaaigdaaeaacaWG4baaaiaaiIcadaWcaaqaaiaaigdaaeaa caWG4baaaiabgkHiTiabeg7aHjaaiMcacaWGbbGaaGikaiaadIhaca aIPaGaeyOeI0YaaSaaaeaacaWGHbaabaGaamiEamaaCaaaleqabaGa aGOmaaaaaaGccaaISaGaaGzbVlaadgeacaaIOaGaaGimaiaaiMcaca aI9aGaamyyaiaai6caaaa@545A@

После замены переменной

t= 1 x ,y(t)=A 1 t , A (x)= y t x = t 2 y MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaaGypaiabgkHiTmaalaaaba GaaGymaaqaaiaadIhaaaGaaGilaiaaywW7caWG5bGaaGikaiaadsha caaIPaGaaGypaiaadgeadaqadaqaaiabgkHiTmaalaaabaGaaGymaa qaaiaadshaaaaacaGLOaGaayzkaaGaaGilaiaaywW7ceWGbbGbauaa caaIOaGaamiEaiaaiMcacaaI9aGabmyEayaafaGabmiDayaafaWaaS baaSqaaiaadIhaaeqaaOGaaGypaiaadshadaahaaWcbeqaaiaaikda aaGcceWG5bGbauaaaaa@4ED7@

оно принимает вид

y = β t y 2 +( α t +1)ya,y(t) t a. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG5bGbauaacaaI9aWaaSaaaeaacq aHYoGyaeaacaWG0baaaiaadMhadaahaaWcbeqaaiaaikdaaaGccqGH RaWkcaaIOaWaaSaaaeaacqaHXoqyaeaacaWG0baaaiabgUcaRiaaig dacaaIPaGaamyEaiabgkHiTiaadggacaaISaGaaGzbVlaadMhacaaI OaGaamiDaiaaiMcadaGdOaWcbeqaaiaaysW7caWG0bGaeyOKH4Qaey OeI0IaeyOhIuQaaGjbVdGccaGLsgcacaWGHbGaaGOlaaaa@52BE@

Известно (см. [5, с. 42]), что общее уравнение Риккати

y =f(t) y 2 +g(t)y+h(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG5bGbauaacaaI9aGaamOzaiaaiI cacaWG0bGaaGykaiaadMhadaahaaWcbeqaaiaaikdaaaGccqGHRaWk caWGNbGaaGikaiaadshacaaIPaGaamyEaiabgUcaRiaadIgacaaIOa GaamiDaiaaiMcaaaa@421F@

заменой

u(t)=exp fydt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadshacaaIPaGaaG ypaiGacwgacaGG4bGaaiiCamaabmaabaGaeyOeI0Yaa8qaaeqaleqa beqdcqGHRiI8aOGaamOzaiaadMhacaaMi8UaamizaiaadshaaiaawI cacaGLPaaaaaa@428F@

приводится к линейному обыкновенному дифференциальному уравнению второго порядка:

u f f +g u +fhu=0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbauGbauaacqGHsisldaqada qaamaalaaabaGabmOzayaafaaabaGaamOzaaaacqGHRaWkcaWGNbaa caGLOaGaayzkaaGabmyDayaafaGaey4kaSIaamOzaiaadIgacaWG1b GaaGypaiaaicdacaaIUaaaaa@3FF7@

В нашем случае

f(t)= β t ,g(t)= α t +1,h(t)=a,u(t)=exp β t ydt ,y= t β (lnu ) , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaadshacaaIPaGaaG ypamaalaaabaGaeqOSdigabaGaamiDaaaacaaISaGaaGzbVlaadEga caaIOaGaamiDaiaaiMcacaaI9aWaaSaaaeaacqaHXoqyaeaacaWG0b aaaiabgUcaRiaaigdacaaISaGaaGzbVlaadIgacaaIOaGaamiDaiaa iMcacaaI9aGaeyOeI0IaamyyaiaaiYcacaaMf8UaamyDaiaaiIcaca WG0bGaaGykaiaai2daciGGLbGaaiiEaiaacchadaqadaqaaiabgkHi TmaapeaabeWcbeqab0Gaey4kIipakmaalaaabaGaeqOSdigabaGaam iDaaaacaWG5bGaaGjcVlaadsgacaWG0baacaGLOaGaayzkaaGaaGil aiaaywW7caWG5bGaaGypaiabgkHiTmaalaaabaGaamiDaaqaaiabek 7aIbaacaaIOaGaciiBaiaac6gacaWG1bGabGykayaafaGaaGilaaaa @6CB4@

u 1 t + α t +1 u aβ t u=0,t u +(1αt) u au=0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbauGbauaacqGHsisldaqada qaaiabgkHiTmaalaaabaGaaGymaaqaaiaadshaaaGaey4kaSYaaSaa aeaacqaHXoqyaeaacaWG0baaaiabgUcaRiaaigdaaiaawIcacaGLPa aaceWG1bGbauaacqGHsisldaWcaaqaaiaadggacqaHYoGyaeaacaWG 0baaaiaadwhacaaI9aGaaGimaiaaiYcacaaMf8UaamiDaiqadwhaga qbgaqbaiabgUcaRiaaiIcacaaIXaGaeyOeI0IaeqySdeMaeyOeI0Ia amiDaiaaiMcaceWG1bGbauaacqGHsislcaWGHbGaamyDaiaai2daca aIWaGaaGOlaaaa@56E8@

Так как одно из решений уравнения

t u +(bt) u au=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGabmyDayaafyaafaGaey4kaS IaaGikaiaadkgacqGHsislcaWG0bGaaGykaiqadwhagaqbaiabgkHi TiaadggacaWG1bGaaGypaiaaicdaaaa@3E2F@

имеет вид u(t)=Φ(a,b,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadshacaaIPaGaaG ypaiabfA6agjaaiIcacaWGHbGaaGilaiaadkgacaaISaGaamiDaiaa iMcaaaa@3CED@ , где Φ(a,b,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHMoGrcaaIOaGaamyyaiaaiYcaca WGIbGaaGilaiaadshacaaIPaaaaa@38CE@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  вырожденная гипергеометрическая функция (см. [5, с. 288]), то имеем u(t)=Φ(aβ,1α;t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadshacaaIPaGaaG ypaiabfA6agjaaiIcacaWGHbGaeqOSdiMaaGilaiaaigdacqGHsisl cqaHXoqycaaI7aGaamiDaiaaiMcaaaa@40FD@ .

Известны формулы

Φ (a,b,t)= a b Φ(a+1,b+1,t),Φ(a,b,t) Γ(b) Γ(ba) (t) a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuqHMoGrgaqbaiaaiIcacaWGHbGaaG ilaiaadkgacaaISaGaamiDaiaaiMcacaaI9aWaaSaaaeaacaWGHbaa baGaamOyaaaacqqHMoGrcaaIOaGaamyyaiabgUcaRiaaigdacaaISa GaamOyaiabgUcaRiaaigdacaaISaGaamiDaiaaiMcacaaISaGaaGzb VlabfA6agjaaiIcacaWGHbGaaGilaiaadkgacaaISaGaamiDaiaaiM carqqr1ngBPrgifHhDYfgaiqaacqWF8iIodaWcaaqaaiabfo5ahjaa iIcacaWGIbGaaGykaaqaaiabfo5ahjaaiIcacaWGIbGaeyOeI0Iaam yyaiaaiMcaaaGaaGikaiabgkHiTiaadshacaaIPaWaaWbaaSqabeaa cqGHsislcaWGHbaaaaaa@636C@

при фиксированных значениях a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbaaaa@32A3@ , b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbaaaa@32A4@  и t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaeyOKH4QaeyOeI0IaeyOhIu kaaa@3701@  (см. [2, с. 242, 266]). Поэтому получим

y(t)= t β (lnΦ(aβ,1α;t) ) = t β Φ (aβ,1α;t) Φ(aβ,1α;t) = at 1α Φ(aβ+1,2α;t) Φ(aβ,1α;t) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5bGaaGikaiaadshacaaIPaGaaG ypaiabgkHiTmaalaaabaGaamiDaaqaaiabek7aIbaacaaIOaGaciiB aiaac6gacqqHMoGrcaaIOaGaamyyaiabek7aIjaaiYcacaaIXaGaey OeI0IaeqySdeMaaG4oaiaadshacaaIPaGabGykayaafaGaaGypaiab gkHiTmaalaaabaGaamiDaaqaaiabek7aIbaadaWcaaqaaiqbfA6agz aafaGaaGikaiaadggacqaHYoGycaaISaGaaGymaiabgkHiTiabeg7a HjaaiUdacaWG0bGaaGykaaqaaiabfA6agjaaiIcacaWGHbGaeqOSdi MaaGilaiaaigdacqGHsislcqaHXoqycaaI7aGaamiDaiaaiMcaaaGa aGypaiabgkHiTmaalaaabaGaamyyaiaadshaaeaacaaIXaGaeyOeI0 IaeqySdegaamaalaaabaGaeuOPdyKaaGikaiaadggacqaHYoGycqGH RaWkcaaIXaGaaGilaiaaikdacqGHsislcqaHXoqycaaI7aGaamiDai aaiMcaaeaacqqHMoGrcaaIOaGaamyyaiabek7aIjaaiYcacaaIXaGa eyOeI0IaeqySdeMaaG4oaiaadshacaaIPaaaaiaai6caaaa@823B@

С учетом тождества для гамма-функции Γ(z+1)=zΓ(z) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWrcaaIOaGaamOEaiabgUcaRi aaigdacaaIPaGaaGypaiaadQhacqqHtoWrcaaIOaGaamOEaiaaiMca aaa@3CB8@ , найдем

y(t) at 1α Γ(2α)(t ) aβ1 Γ(1αaβ) Γ(1αaβ)Γ(1α)(t ) aβ = aΓ(2α) (1α)Γ(1α) =a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5bGaaGikaiaadshacaaIPaqeeu uDJXwAKbsr4rNCHbaceaGae8hpIOJaeyOeI0YaaSaaaeaacaWGHbGa amiDaaqaaiaaigdacqGHsislcqaHXoqyaaWaaSaaaeaacqqHtoWrca aIOaGaaGOmaiabgkHiTiabeg7aHjaaiMcacaaIOaGaeyOeI0IaamiD aiaaiMcadaahaaWcbeqaaiabgkHiTiaadggacqaHYoGycqGHsislca aIXaaaaOGaeu4KdCKaaGikaiaaigdacqGHsislcqaHXoqycqGHsisl caWGHbGaeqOSdiMaaGykaaqaaiabfo5ahjaaiIcacaaIXaGaeyOeI0 IaeqySdeMaeyOeI0Iaamyyaiabek7aIjaaiMcacqqHtoWrcaaIOaGa aGymaiabgkHiTiabeg7aHjaaiMcacaaIOaGaeyOeI0IaamiDaiaaiM cadaahaaWcbeqaaiabgkHiTiaadggacqaHYoGyaaaaaOGaaGypamaa laaabaGaamyyaiabfo5ahjaaiIcacaaIYaGaeyOeI0IaeqySdeMaaG ykaaqaaiaaiIcacaaIXaGaeyOeI0IaeqySdeMaaGykaiabfo5ahjaa iIcacaaIXaGaeyOeI0IaeqySdeMaaGykaaaacaaI9aGaamyyaaaa@8410@

при t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaeyOKH4QaeyOeI0IaeyOhIu kaaa@3701@ , т.е. начальное условие выполнено. Возвращаясь к переменной x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@ , имеем

y(t)= t β (lnΦ(aβ,1α;t) ) ,t= 1 x ,x= 1 t , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5bGaaGikaiaadshacaaIPaGaaG ypaiabgkHiTmaalaaabaGaamiDaaqaaiabek7aIbaacaaIOaGaciiB aiaac6gacqqHMoGrcaaIOaGaamyyaiabek7aIjaaiYcacaaIXaGaey OeI0IaeqySdeMaaG4oaiaadshacaaIPaGabGykayaafaGaaGilaiaa ywW7caWG0bGaaGypaiabgkHiTmaalaaabaGaaGymaaqaaiaadIhaaa GaaGilaiaaywW7caWG4bGaaGypaiabgkHiTmaalaaabaGaaGymaaqa aiaadshaaaGaaGilaaaa@5615@

A(x)=y 1 x = 1 xβ lnΦ aβ,1α; 1 x x x t = x β lnΦ aβ,1α; 1 x . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbGaaGikaiaadIhacaaIPaGaaG ypaiaadMhadaqadaqaaiabgkHiTmaalaaabaGaaGymaaqaaiaadIha aaaacaGLOaGaayzkaaGaaGypamaalaaabaGaaGymaaqaaiaadIhacq aHYoGyaaWaaeWaaeaaciGGSbGaaiOBaiabfA6agnaabmaabaGaamyy aiabek7aIjaaiYcacaaIXaGaeyOeI0IaeqySdeMaaG4oaiabgkHiTm aalaaabaGaaGymaaqaaiaadIhaaaaacaGLOaGaayzkaaaacaGLOaGa ayzkaaWaaSbaaSqaaiaadIhaaeqaaOGabmiEayaafaWaaSbaaSqaai aadshaaeqaaOGaaGypamaalaaabaGaamiEaaqaaiabek7aIbaadaqa daqaaiGacYgacaGGUbGaeuOPdy0aaeWaaeaacaWGHbGaeqOSdiMaaG ilaiaaigdacqGHsislcqaHXoqycaaI7aGaeyOeI0YaaSaaaeaacaaI XaaabaGaamiEaaaaaiaawIcacaGLPaaaaiaawIcacaGLPaaacaaIUa aaaa@678C@

Лемма 1. Пусть

T n = 1 Γ(n+δ+1) k=0 n Γ(k+δ+1)Γ(nk+δ+1). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubWaaSbaaSqaaiaad6gaaeqaaO GaaGypamaalaaabaGaaGymaaqaaiabfo5ahjaaiIcacaWGUbGaey4k aSIaeqiTdqMaey4kaSIaaGymaiaaiMcaaaWaaabCaeqaleaacaWGRb GaaGypaiaaicdaaeaacaWGUbaaniabggHiLdGccqqHtoWrcaaIOaGa am4AaiabgUcaRiabes7aKjabgUcaRiaaigdacaaIPaGaeu4KdCKaaG ikaiaad6gacqGHsislcaWGRbGaey4kaSIaeqiTdqMaey4kaSIaaGym aiaaiMcacaaIUaaaaa@5540@

Тогда для любых δ0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH0oazcqGHLjYScaaIWaaaaa@35E2@  и любых целых n0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaeyyzImRaaGimaaaa@3530@  верно неравенство

T n 2(δ+2)Γ(δ+1). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubWaaSbaaSqaaiaad6gaaeqaaO GaeyizImQaaGOmaiaaiIcacqaH0oazcqGHRaWkcaaIYaGaaGykaiab fo5ahjaaiIcacqaH0oazcqGHRaWkcaaIXaGaaGykaiaai6caaaa@419F@  (3)

Доказательство. Введем обозначение

S n = T n Γ(n+δ+1)= k=0 n Γ(k+δ+1)Γ(nk+δ+1). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGtbWaaSbaaSqaaiaad6gaaeqaaO GaaGypaiaadsfadaWgaaWcbaGaamOBaaqabaGccqqHtoWrcaaIOaGa amOBaiabgUcaRiabes7aKjabgUcaRiaaigdacaaIPaGaaGypamaaqa habeWcbaGaam4Aaiaai2dacaaIWaaabaGaamOBaaqdcqGHris5aOGa eu4KdCKaaGikaiaadUgacqGHRaWkcqaH0oazcqGHRaWkcaaIXaGaaG ykaiabfo5ahjaaiIcacaWGUbGaeyOeI0Iaam4AaiabgUcaRiabes7a KjabgUcaRiaaigdacaaIPaGaaGOlaaaa@573D@

С помощью тождества Γ(z+1)=zΓ(z) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWrcaaIOaGaamOEaiabgUcaRi aaigdacaaIPaGaaGypaiaadQhacqqHtoWrcaaIOaGaamOEaiaaiMca aaa@3CB8@  получим

(n+2δ+1) S n1 = k=0 n1 Γ(k+δ+1)Γ(nk+δ)(k+δ+1+nk+δ)= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamOBaiabgUcaRiaaikdacq aH0oazcqGHRaWkcaaIXaGaaGykaiaadofadaWgaaWcbaGaamOBaiab gkHiTiaaigdaaeqaaOGaaGypamaaqahabeWcbaGaam4Aaiaai2daca aIWaaabaGaamOBaiabgkHiTiaaigdaa0GaeyyeIuoakiabfo5ahjaa iIcacaWGRbGaey4kaSIaeqiTdqMaey4kaSIaaGymaiaaiMcacqqHto WrcaaIOaGaamOBaiabgkHiTiaadUgacqGHRaWkcqaH0oazcaaIPaGa aGikaiaadUgacqGHRaWkcqaH0oazcqGHRaWkcaaIXaGaey4kaSIaam OBaiabgkHiTiaadUgacqGHRaWkcqaH0oazcaaIPaGaaGypaaaa@623C@

= k=0 n1 Γ(k+δ+2)Γ(nk+δ)+ k=0 n1 Γ(k+δ+1)Γ(nk+δ+1)= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaaabCaeqaleaacaWGRbGaaG ypaiaaicdaaeaacaWGUbGaeyOeI0IaaGymaaqdcqGHris5aOGaeu4K dCKaaGikaiaadUgacqGHRaWkcqaH0oazcqGHRaWkcaaIYaGaaGykai abfo5ahjaaiIcacaWGUbGaeyOeI0Iaam4AaiabgUcaRiabes7aKjaa iMcacqGHRaWkdaaeWbqabSqaaiaadUgacaaI9aGaaGimaaqaaiaad6 gacqGHsislcaaIXaaaniabggHiLdGccqqHtoWrcaaIOaGaam4Aaiab gUcaRiabes7aKjabgUcaRiaaigdacaaIPaGaeu4KdCKaaGikaiaad6 gacqGHsislcaWGRbGaey4kaSIaeqiTdqMaey4kaSIaaGymaiaaiMca caaI9aaaaa@6487@

= k=1 n Γ(k+δ+1)Γ(nk+δ+1)+ S n Γ(n+δ+1)Γ(δ+1)=2 S n 2Γ(δ+1)Γ(n+δ+1), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaaabCaeqaleaacaWGRbGaaG ypaiaaigdaaeaacaWGUbaaniabggHiLdGccqqHtoWrcaaIOaGaam4A aiabgUcaRiabes7aKjabgUcaRiaaigdacaaIPaGaeu4KdCKaaGikai aad6gacqGHsislcaWGRbGaey4kaSIaeqiTdqMaey4kaSIaaGymaiaa iMcacqGHRaWkcaWGtbWaaSbaaSqaaiaad6gaaeqaaOGaeyOeI0Iaeu 4KdCKaaGikaiaad6gacqGHRaWkcqaH0oazcqGHRaWkcaaIXaGaaGyk aiabfo5ahjaaiIcacqaH0oazcqGHRaWkcaaIXaGaaGykaiaai2daca aIYaGaam4uamaaBaaaleaacaWGUbaabeaakiabgkHiTiaaikdacqqH toWrcaaIOaGaeqiTdqMaey4kaSIaaGymaiaaiMcacqqHtoWrcaaIOa GaamOBaiabgUcaRiabes7aKjabgUcaRiaaigdacaaIPaGaaGilaaaa @6F71@

откуда

S n = 1 2 (n+2δ+1) S n1 +Γ(δ+1)Γ(n+δ+1). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGtbWaaSbaaSqaaiaad6gaaeqaaO GaaGypamaalaaabaGaaGymaaqaaiaaikdaaaGaaGikaiaad6gacqGH RaWkcaaIYaGaeqiTdqMaey4kaSIaaGymaiaaiMcacaWGtbWaaSbaaS qaaiaad6gacqGHsislcaaIXaaabeaakiabgUcaRiabfo5ahjaaiIca cqaH0oazcqGHRaWkcaaIXaGaaGykaiabfo5ahjaaiIcacaWGUbGaey 4kaSIaeqiTdqMaey4kaSIaaGymaiaaiMcacaaIUaaaaa@507A@

С помощью тождества Γ(z+1)=zΓ(z) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWrcaaIOaGaamOEaiabgUcaRi aaigdacaaIPaGaaGypaiaadQhacqqHtoWrcaaIOaGaamOEaiaaiMca aaa@3CB8@  найдем

T n = (n+2δ+1)Γ(n+δ) 2Γ(n+δ+1) T n1 +Γ(δ+1), T n = n+2δ+1 2(n+δ) T n1 +Γ(δ+1). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubWaaSbaaSqaaiaad6gaaeqaaO GaaGypamaalaaabaGaaGikaiaad6gacqGHRaWkcaaIYaGaeqiTdqMa ey4kaSIaaGymaiaaiMcacqqHtoWrcaaIOaGaamOBaiabgUcaRiabes 7aKjaaiMcaaeaacaaIYaGaeu4KdCKaaGikaiaad6gacqGHRaWkcqaH 0oazcqGHRaWkcaaIXaGaaGykaaaacaWGubWaaSbaaSqaaiaad6gacq GHsislcaaIXaaabeaakiabgUcaRiabfo5ahjaaiIcacqaH0oazcqGH RaWkcaaIXaGaaGykaiaaiYcacaaMf8UaamivamaaBaaaleaacaWGUb aabeaakiaai2dadaWcaaqaaiaad6gacqGHRaWkcaaIYaGaeqiTdqMa ey4kaSIaaGymaaqaaiaaikdacaaIOaGaamOBaiabgUcaRiabes7aKj aaiMcaaaGaamivamaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaGc cqGHRaWkcqqHtoWrcaaIOaGaeqiTdqMaey4kaSIaaGymaiaaiMcaca aIUaaaaa@712E@

Применим индукцию по n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B0@ .

Так как 1<2(δ+2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIXaGaaGipaiaaikdacaaIOaGaeq iTdqMaey4kaSIaaGOmaiaaiMcaaaa@38A2@ , 1<δ+2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIXaGaaGipaiabes7aKjabgUcaRi aaikdaaaa@3681@  при δ0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH0oazcqGHLjYScaaIWaaaaa@35E2@  и Γ(x)>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWrcaaIOaGaamiEaiaaiMcaca aI+aGaaGimaaaa@3709@  при x>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGOpaiaaicdaaaa@343C@  (см. [15, с. 138]), имеем

T 0 =Γ(δ+1)<2(δ+2)Γ(δ+1), T 1 =2Γ(δ+1)<2(δ+2)Γ(δ+1), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubWaaSbaaSqaaiaaicdaaeqaaO GaaGypaiabfo5ahjaaiIcacqaH0oazcqGHRaWkcaaIXaGaaGykaiaa iYdacaaIYaGaaGikaiabes7aKjabgUcaRiaaikdacaaIPaGaeu4KdC KaaGikaiabes7aKjabgUcaRiaaigdacaaIPaGaaGilaiaaywW7caWG ubWaaSbaaSqaaiaaigdaaeqaaOGaaGypaiaaikdacqqHtoWrcaaIOa GaeqiTdqMaey4kaSIaaGymaiaaiMcacaaI8aGaaGOmaiaaiIcacqaH 0oazcqGHRaWkcaaIYaGaaGykaiabfo5ahjaaiIcacqaH0oazcqGHRa WkcaaIXaGaaGykaiaaiYcaaaa@5F24@

и неравенство (3) верно при n=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaaGypaiaaicdaaaa@3431@  и n=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaaGypaiaaigdaaaa@3432@ .

Предположим, что неравенство (3) верно для n=m11 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaaGypaiaad2gacqGHsislca aIXaGaeyyzImRaaGymaaaa@3892@ , и докажем его для n=m2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaaGypaiaad2gacqGHLjYSca aIYaaaaa@36EB@ :

T m = m+2δ+1 2(m+δ) T m1 +Γ(δ+1) m+δ+δ+1 2(m+δ) 2(δ+2)Γ(δ+1)+Γ(δ+1)= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubWaaSbaaSqaaiaad2gaaeqaaO GaaGypamaalaaabaGaamyBaiabgUcaRiaaikdacqaH0oazcqGHRaWk caaIXaaabaGaaGOmaiaaiIcacaWGTbGaey4kaSIaeqiTdqMaaGykaa aacaWGubWaaSbaaSqaaiaad2gacqGHsislcaaIXaaabeaakiabgUca Riabfo5ahjaaiIcacqaH0oazcqGHRaWkcaaIXaGaaGykaiabgsMiJo aalaaabaGaamyBaiabgUcaRiabes7aKjabgUcaRiabes7aKjabgUca RiaaigdaaeaacaaIYaGaaGikaiaad2gacqGHRaWkcqaH0oazcaaIPa aaaiaaikdacaaIOaGaeqiTdqMaey4kaSIaaGOmaiaaiMcacqqHtoWr caaIOaGaeqiTdqMaey4kaSIaaGymaiaaiMcacqGHRaWkcqqHtoWrca aIOaGaeqiTdqMaey4kaSIaaGymaiaaiMcacaaI9aaaaa@6CC2@

= δ+3+ δ+1 m+δ (δ+2) Γ(δ+1) δ+3+ δ+1 2+δ (δ+2) =2(δ+2)Γ(δ+1). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaaeWaaeaacqaH0oazcqGHRa WkcaaIZaGaey4kaSYaaSaaaeaacqaH0oazcqGHRaWkcaaIXaaabaGa amyBaiabgUcaRiabes7aKbaacaaIOaGaeqiTdqMaey4kaSIaaGOmai aaiMcaaiaawIcacaGLPaaacqqHtoWrcaaIOaGaeqiTdqMaey4kaSIa aGymaiaaiMcacqGHKjYOdaqadaqaaiabes7aKjabgUcaRiaaiodacq GHRaWkdaWcaaqaaiabes7aKjabgUcaRiaaigdaaeaacaaIYaGaey4k aSIaeqiTdqgaaiaaiIcacqaH0oazcqGHRaWkcaaIYaGaaGykaaGaay jkaiaawMcaaiaai2dacaaIYaGaaGikaiabes7aKjabgUcaRiaaikda caaIPaGaeu4KdCKaaGikaiabes7aKjabgUcaRiaaigdacaaIPaGaaG Olaaaa@6948@

Теорема 2. Пусть { a n } MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI7bGaamyyamaaBaaaleaacaWGUb aabeaakiaai2haaaa@35D8@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa8hfGaaa@3A93@  последовательность чисел, определяемая уравнением (1). Тогда при 2aβ+α1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIYaGaamyyaiabek7aIjabgUcaRi abeg7aHjabgwMiZkaaigdaaaa@3A02@  и n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaeyOKH4QaeyOhIukaaa@360E@  верна асимптотическая формула

a n n 2aβ+α1 n! βΓ(aβ)Γ(aβ+α) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbWaaSbaaSqaaiaad6gaaeqaae bbfv3ySLgzGueE0jxyaGabaOGae8hpIOZaaSaaaeaacaWGUbWaaWba aSqabeaacaaIYaGaamyyaiabek7aIjabgUcaRiabeg7aHjabgkHiTi aaigdaaaGccaWGUbGaaGyiaaqaaiabek7aIjaaykW7cqqHtoWrcaaI OaGaamyyaiabek7aIjaaiMcacqqHtoWrcaaIOaGaamyyaiabek7aIj abgUcaRiabeg7aHjaaiMcaaaGaaGOlaaaa@54D5@  (4)

Доказательство. Отметим, что гамма-функция Γ(z) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWrcaaIOaGaamOEaiaaiMcaaa a@3589@  определена при z0,1,2, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaeyiyIKRaaGimaiaaiYcacq GHsislcaaIXaGaaGilaiabgkHiTiaaikdacaaISaGaeSOjGSeaaa@3BD2@ . Поэтому в формуле (4) начальное значение a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbaaaa@32A3@  и параметры α,β MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHXoqycaaISaGaeqOSdigaaa@35B3@  должны быть такими, чтобы aβ0,1,2, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaeqOSdiMaeyiyIKRaaGimai aaiYcacqGHsislcaaIXaGaaGilaiabgkHiTiaaikdacaaISaGaeSOj GSeaaa@3D5A@  и aβ+α0,1,2, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaeqOSdiMaey4kaSIaeqySde MaeyiyIKRaaGimaiaaiYcacqGHsislcaaIXaGaaGilaiabgkHiTiaa ikdacaaISaGaeSOjGSeaaa@3FDB@ .

Известно асимптотическое разложение вырожденной гипергеометрической функции Φ(a,b;x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHMoGrcaaIOaGaamyyaiaaiYcaca WGIbGaaG4oaiaadIhacaaIPaaaaa@38E1@  при фиксированных значениях a,b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaaGilaiaadkgaaaa@3440@  и |x| MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI8bGaamiEaiaaiYhacqGHsgIRcq GHEisPaaa@3824@  (см. [6, с. 59]):

Φ(a,b;x) Γ(b) Γ(ba) (x) a n=0 (a) n (ab+1) n n! (x) n , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHMoGrcaaIOaGaamyyaiaaiYcaca WGIbGaaG4oaiaadIhacaaIPaqeeuuDJXwAKbsr4rNCHbaceaGae8hp IOZaaSaaaeaacqqHtoWrcaaIOaGaamOyaiaaiMcaaeaacqqHtoWrca aIOaGaamOyaiabgkHiTiaadggacaaIPaaaaiaaiIcacqGHsislcaWG 4bGaaGykamaaCaaaleqabaGaeyOeI0IaamyyaaaakmaaqahabeWcba GaamOBaiaai2dacaaIWaaabaGaeyOhIukaniabggHiLdGcdaWcaaqa aiaaiIcacaWGHbGaaGykamaaBaaaleaacaWGUbaabeaakiaaiIcaca WGHbGaeyOeI0IaamOyaiabgUcaRiaaigdacaaIPaWaaSbaaSqaaiaa d6gaaeqaaaGcbaGaamOBaiaaigcaaaGaaGikaiabgkHiTiaadIhaca aIPaWaaWbaaSqabeaacqGHsislcaWGUbaaaOGaaGilaaaa@6592@

где (a) n =Γ(a+n)/Γ(a) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamyyaiaaiMcadaWgaaWcba GaamOBaaqabaGccaaI9aGaeu4KdCKaaGikaiaadggacqGHRaWkcaWG UbGaaGykaiaai+cacqqHtoWrcaaIOaGaamyyaiaaiMcaaaa@3FEC@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  символ Похгаммера. Поэтому в силу формулы (2) имеем

A(x)= x β lnΦ aβ,1α; 1 x = x β ln Γ(1α) Γ(1αaβ) x aβ n=0 (aβ) n (aβ+α) n n! x n = MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbGaaGikaiaadIhacaaIPaGaaG ypamaalaaabaGaamiEaaqaaiabek7aIbaadaqadaqaaiGacYgacaGG UbGaeuOPdy0aaeWaaeaacaWGHbGaeqOSdiMaaGilaiaaigdacqGHsi slcqaHXoqycaaI7aGaeyOeI0YaaSaaaeaacaaIXaaabaGaamiEaaaa aiaawIcacaGLPaaaaiaawIcacaGLPaaacaaI9aWaaSaaaeaacaWG4b aabaGaeqOSdigaamaabmaabaGaciiBaiaac6gadaWcaaqaaiabfo5a hjaaiIcacaaIXaGaeyOeI0IaeqySdeMaaGykaaqaaiabfo5ahjaaiI cacaaIXaGaeyOeI0IaeqySdeMaeyOeI0Iaamyyaiabek7aIjaaiMca aaGaamiEamaaCaaaleqabaGaamyyaiabek7aIbaakmaaqahabeWcba GaamOBaiaai2dacaaIWaaabaGaeyOhIukaniabggHiLdGcdaWcaaqa aiaaiIcacaWGHbGaeqOSdiMaaGykamaaBaaaleaacaWGUbaabeaaki aaiIcacaWGHbGaeqOSdiMaey4kaSIaeqySdeMaaGykamaaBaaaleaa caWGUbaabeaaaOqaaiaad6gacaaIHaaaaiaadIhadaahaaWcbeqaai aad6gaaaaakiaawIcacaGLPaaacaaI9aaaaa@7A8A@

= x β ln Γ(1α) Γ(1αaβ) x aβ + x β ln n=0 (aβ) n (aβ+α) n n! x n = MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaaSaaaeaacaWG4baabaGaeq OSdigaamaabmaabaGaciiBaiaac6gadaWcaaqaaiabfo5ahjaaiIca caaIXaGaeyOeI0IaeqySdeMaaGykaaqaaiabfo5ahjaaiIcacaaIXa GaeyOeI0IaeqySdeMaeyOeI0Iaamyyaiabek7aIjaaiMcaaaGaamiE amaaCaaaleqabaGaamyyaiabek7aIbaaaOGaayjkaiaawMcaaiabgU caRmaalaaabaGaamiEaaqaaiabek7aIbaadaqadaqaaiGacYgacaGG UbWaaabCaeqaleaacaWGUbGaaGypaiaaicdaaeaacqGHEisPa0Gaey yeIuoakmaalaaabaGaaGikaiaadggacqaHYoGycaaIPaWaaSbaaSqa aiaad6gaaeqaaOGaaGikaiaadggacqaHYoGycqGHRaWkcqaHXoqyca aIPaWaaSbaaSqaaiaad6gaaeqaaaGcbaGaamOBaiaaigcaaaGaamiE amaaCaaaleqabaGaamOBaaaaaOGaayjkaiaawMcaaiaai2daaaa@6A7C@

=a+ x β ln(1+ n=1 G n x n ) =a+ x β n=1 g n x n , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaamyyaiabgUcaRmaalaaaba GaamiEaaqaaiabek7aIbaadaqadaqaaiGacYgacaGGUbGaaGikaiaa igdacqGHRaWkdaaeWbqabSqaaiaad6gacaaI9aGaaGymaaqaaiabg6 HiLcqdcqGHris5aOGaam4ramaaBaaaleaacaWGUbaabeaakiaadIha daahaaWcbeqaaiaad6gaaaGccaaIPaaacaGLOaGaayzkaaGaaGypai aadggacqGHRaWkdaWcaaqaaiaadIhaaeaacqaHYoGyaaWaaeWaaeaa daaeWbqabSqaaiaad6gacaaI9aGaaGymaaqaaiabg6HiLcqdcqGHri s5aOGaam4zamaaBaaaleaacaWGUbaabeaakiaadIhadaahaaWcbeqa aiaad6gaaaaakiaawIcacaGLPaaacaaISaaaaa@59A3@

где введено обозначение

G n = (aβ) n (aβ+α) n n! = Γ(n+aβ)Γ(n+aβ+α) n!Γ(aβ)Γ(aβ+α) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiaad6gaaeqaaO GaaGypamaalaaabaGaaGikaiaadggacqaHYoGycaaIPaWaaSbaaSqa aiaad6gaaeqaaOGaaGikaiaadggacqaHYoGycqGHRaWkcqaHXoqyca aIPaWaaSbaaSqaaiaad6gaaeqaaaGcbaGaamOBaiaaigcaaaGaaGyp amaalaaabaGaeu4KdCKaaGikaiaad6gacqGHRaWkcaWGHbGaeqOSdi MaaGykaiabfo5ahjaaiIcacaWGUbGaey4kaSIaamyyaiabek7aIjab gUcaRiabeg7aHjaaiMcaaeaacaWGUbGaaGyiaiabfo5ahjaaiIcaca WGHbGaeqOSdiMaaGykaiabfo5ahjaaiIcacaWGHbGaeqOSdiMaey4k aSIaeqySdeMaaGykaaaacaaIUaaaaa@63FB@ (5)

Пусть две производящие функции

G(x)= n=0 G n x n ,g(x)= n=0 g n x n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbGaaGikaiaadIhacaaIPaGaaG ypamaaqahabeWcbaGaamOBaiaai2dacaaIWaaabaGaeyOhIukaniab ggHiLdGccaWGhbWaaSbaaSqaaiaad6gaaeqaaOGaamiEamaaCaaale qabaGaamOBaaaakiaaiYcacaaMf8Uaam4zaiaaiIcacaWG4bGaaGyk aiaai2dadaaeWbqabSqaaiaad6gacaaI9aGaaGimaaqaaiabg6HiLc qdcqGHris5aOGaam4zamaaBaaaleaacaWGUbaabeaakiaadIhadaah aaWcbeqaaiaad6gaaaaaaa@50BD@

связаны функциональным уравнением F(x,G(x))=g(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbGaaGikaiaadIhacaaISaGaam 4raiaaiIcacaWG4bGaaGykaiaaiMcacaaI9aGaam4zaiaaiIcacaWG 4bGaaGykaaaa@3CE3@ . Из теоремы Бендера (см. [8]) следует, что при n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaeyOKH4QaeyOhIukaaa@360E@  верна асимптотика

g n F y (0,0) G n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaad6gaaeqaae bbfv3ySLgzGueE0jxyaGabaOGae8hpIOJaamOramaaBaaaleaacaWG 5baabeaakiaaiIcacaaIWaGaaGilaiaaicdacaaIPaGaaGjbVlaadE eadaWgaaWcbaGaamOBaaqabaaaaa@4290@

при условиях, когда F(x,y) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbGaaGikaiaadIhacaaISaGaam yEaiaaiMcaaaa@369E@  аналитична в точке (0,0) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaaGimaiaaiYcacaaIWaGaaG ykaaaa@354C@ , и при n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaeyOKH4QaeyOhIukaaa@360E@  верны соотношения

G n1 =o( G n ), k=1 n1 | G k G nk |=O( G n1 ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiaad6gacqGHsi slcaaIXaaabeaakiaai2dacaWGVbGaaGikaiaadEeadaWgaaWcbaGa amOBaaqabaGccaaIPaGaaGilaiaaywW7daaeWbqabSqaaiaadUgaca aI9aGaaGymaaqaaiaad6gacqGHsislcaaIXaaaniabggHiLdGccaaI 8bGaam4ramaaBaaaleaacaWGRbaabeaakiaadEeadaWgaaWcbaGaam OBaiabgkHiTiaadUgaaeqaaOGaaGiFaiaai2dacaWGpbGaaGikaiaa dEeadaWgaaWcbaGaamOBaiabgkHiTiaaigdaaeqaaOGaaGykaiaays W7caaIUaaaaa@54BF@  (6)

В нашем случае функция F(x,y)=ln(1+y) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbGaaGikaiaadIhacaaISaGaam yEaiaaiMcacaaI9aGaamiBaiaad6gacaaIOaGaaGymaiabgUcaRiaa dMhacaaIPaaaaa@3D49@  аналитична в точке (0,0) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaaGimaiaaiYcacaaIWaGaaG ykaaaa@354C@ . Из (5) с помощью тождества Γ(z+1)=zΓ(z) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWrcaaIOaGaamOEaiabgUcaRi aaigdacaaIPaGaaGypaiaadQhacqqHtoWrcaaIOaGaamOEaiaaiMca aaa@3CB8@  найдем при n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaeyOKH4QaeyOhIukaaa@360E@  

G n1 G n = nΓ(n1+aβ)Γ(n1+aβ+α) Γ(n+aβ)Γ(n+aβ+α) = n (n1+aβ)(n1+aβ+α) 1 n =o(1). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaadEeadaWgaaWcbaGaam OBaiabgkHiTiaaigdaaeqaaaGcbaGaam4ramaaBaaaleaacaWGUbaa beaaaaGccaaI9aWaaSaaaeaacaWGUbGaeu4KdCKaaGikaiaad6gacq GHsislcaaIXaGaey4kaSIaamyyaiabek7aIjaaiMcacqqHtoWrcaaI OaGaamOBaiabgkHiTiaaigdacqGHRaWkcaWGHbGaeqOSdiMaey4kaS IaeqySdeMaaGykaaqaaiabfo5ahjaaiIcacaWGUbGaey4kaSIaamyy aiabek7aIjaaiMcacqqHtoWrcaaIOaGaamOBaiabgUcaRiaadggacq aHYoGycqGHRaWkcqaHXoqycaaIPaaaaiaai2dadaWcaaqaaiaad6ga aeaacaaIOaGaamOBaiabgkHiTiaaigdacqGHRaWkcaWGHbGaeqOSdi MaaGykaiaaiIcacaWGUbGaeyOeI0IaaGymaiabgUcaRiaadggacqaH YoGycqGHRaWkcqaHXoqycaaIPaaaaebbfv3ySLgzGueE0jxyaGabai ab=XJi6maalaaabaGaaGymaaqaaiaad6gaaaGaaGypaiaad+gacaaI OaGaaGymaiaaiMcacaaIUaaaaa@7D45@

Из асимптотики для гамма-функции (см. [2, с. 62]) имеем Γ(z+ε) z ε Γ(z) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWrcaaIOaGaamOEaiabgUcaRi abew7aLjaaiMcarqqr1ngBPrgifHhDYfgaiqaacqWF8iIocaWG6bWa aWbaaSqabeaacqaH1oqzaaGccqqHtoWrcaaIOaGaamOEaiaaiMcaaa a@4473@  при фиксированном ε MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzaaa@3364@  и z MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaeyOKH4QaeyOhIukaaa@361A@ . Поэтому при n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaeyOKH4QaeyOhIukaaa@360E@  получим

G n n aβ Γ(n) n aβ+α Γ(n) nΓ(n)Γ(aβ)Γ(aβ+α) = n 2aβ+α1 Γ(n) Γ(aβ)Γ(aβ+α) Γ(n+2aβ+α1) Γ(aβ)Γ(aβ+α) =CΓ(n+δ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiaad6gaaeqaae bbfv3ySLgzGueE0jxyaGabaOGae8hpIOZaaSaaaeaacaWGUbWaaWba aSqabeaacaWGHbGaeqOSdigaaOGaeu4KdCKaaGikaiaad6gacaaIPa GaamOBamaaCaaaleqabaGaamyyaiabek7aIjabgUcaRiabeg7aHbaa kiabfo5ahjaaiIcacaWGUbGaaGykaaqaaiaad6gacqqHtoWrcaaIOa GaamOBaiaaiMcacqqHtoWrcaaIOaGaamyyaiabek7aIjaaiMcacqqH toWrcaaIOaGaamyyaiabek7aIjabgUcaRiabeg7aHjaaiMcaaaGaaG ypamaalaaabaGaamOBamaaCaaaleqabaGaaGOmaiaadggacqaHYoGy cqGHRaWkcqaHXoqycqGHsislcaaIXaaaaOGaeu4KdCKaaGikaiaad6 gacaaIPaaabaGaeu4KdCKaaGikaiaadggacqaHYoGycaaIPaGaeu4K dCKaaGikaiaadggacqaHYoGycqGHRaWkcqaHXoqycaaIPaaaaiab=X Ji6maalaaabaGaeu4KdCKaaGikaiaad6gacqGHRaWkcaaIYaGaamyy aiabek7aIjabgUcaRiabeg7aHjabgkHiTiaaigdacaaIPaaabaGaeu 4KdCKaaGikaiaadggacqaHYoGycaaIPaGaeu4KdCKaaGikaiaadgga cqaHYoGycqGHRaWkcqaHXoqycaaIPaaaaiaai2dacaWGdbGaeu4KdC KaaGikaiaad6gacqGHRaWkcqaH0oazcaaIPaGaaGilaaaa@99FF@

где использовано обозначение δ=2aβ+α10 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH0oazcaaI9aGaaGOmaiaadggacq aHYoGycqGHRaWkcqaHXoqycqGHsislcaaIXaGaeyyzImRaaGimaaaa @3E15@ , C=1/(Γ(aβ)Γ(aβ+α))>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaGypaiaaigdacaaIVaGaaG ikaiabfo5ahjaaiIcacaWGHbGaeqOSdiMaaGykaiabfo5ahjaaiIca caWGHbGaeqOSdiMaey4kaSIaeqySdeMaaGykaiaaiMcacaaI+aGaaG imaaaa@44D0@ . Следовательно, существуют такие константы c 1 >0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGJbWaaSbaaSqaaiaaigdaaeqaaO GaaGOpaiaaicdaaaa@3518@ , c 2 >0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGJbWaaSbaaSqaaiaaikdaaeqaaO GaaGOpaiaaicdaaaa@3519@ , что

0< c 1 Γ(n+δ) G n c 2 Γ(n+δ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaiaadogadaWgaaWcba GaaGymaaqabaGccqqHtoWrcaaIOaGaamOBaiabgUcaRiabes7aKjaa iMcacqGHKjYOcaWGhbWaaSbaaSqaaiaad6gaaeqaaOGaeyizImQaam 4yamaaBaaaleaacaaIYaaabeaakiabfo5ahjaaiIcacaWGUbGaey4k aSIaeqiTdqMaaGykaiaai6caaaa@4995@

Теперь имеем оценки

Q n = k=1 n1 | G k G nk | G n1 c 2 2 c 1 k=1 n1 Γ(k+δ)Γ(nk+δ) Γ(n+δ1) = MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbWaaSbaaSqaaiaad6gaaeqaaO GaaGypamaaqahabeWcbaGaam4Aaiaai2dacaaIXaaabaGaamOBaiab gkHiTiaaigdaa0GaeyyeIuoakmaalaaabaGaaGiFaiaadEeadaWgaa WcbaGaam4AaaqabaGccaWGhbWaaSbaaSqaaiaad6gacqGHsislcaWG RbaabeaakiaaiYhaaeaacaWGhbWaaSbaaSqaaiaad6gacqGHsislca aIXaaabeaaaaGccqGHKjYOdaWcaaqaaiaadogadaqhaaWcbaGaaGOm aaqaaiaaikdaaaaakeaacaWGJbWaaSbaaSqaaiaaigdaaeqaaaaakm aaqahabeWcbaGaam4Aaiaai2dacaaIXaaabaGaamOBaiabgkHiTiaa igdaa0GaeyyeIuoakmaalaaabaGaeu4KdCKaaGikaiaadUgacqGHRa WkcqaH0oazcaaIPaGaeu4KdCKaaGikaiaad6gacqGHsislcaWGRbGa ey4kaSIaeqiTdqMaaGykaaqaaiabfo5ahjaaiIcacaWGUbGaey4kaS IaeqiTdqMaeyOeI0IaaGymaiaaiMcaaaGaaGypaaaa@6C17@

= c 2 2 c 1 k=0 n2 Γ(k+1+δ)Γ(nk1+δ) Γ(n+δ1) = c 2 2 c 1 T n2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaaSaaaeaacaWGJbWaa0baaS qaaiaaikdaaeaacaaIYaaaaaGcbaGaam4yamaaBaaaleaacaaIXaaa beaaaaGcdaaeWbqabSqaaiaadUgacaaI9aGaaGimaaqaaiaad6gacq GHsislcaaIYaaaniabggHiLdGcdaWcaaqaaiabfo5ahjaaiIcacaWG RbGaey4kaSIaaGymaiabgUcaRiabes7aKjaaiMcacqqHtoWrcaaIOa GaamOBaiabgkHiTiaadUgacqGHsislcaaIXaGaey4kaSIaeqiTdqMa aGykaaqaaiabfo5ahjaaiIcacaWGUbGaey4kaSIaeqiTdqMaeyOeI0 IaaGymaiaaiMcaaaGaaGypamaalaaabaGaam4yamaaDaaaleaacaaI YaaabaGaaGOmaaaaaOqaaiaadogadaWgaaWcbaGaaGymaaqabaaaaO GaamivamaaBaaaleaacaWGUbGaeyOeI0IaaGOmaaqabaGccaaIUaaa aa@61B4@

В силу леммы для для любых δ0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH0oazcqGHLjYScaaIWaaaaa@35E2@  и любых целых n0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaeyyzImRaaGimaaaa@3530@  получим

Q n 2(δ+2)Γ(δ+1) c 2 2 c 1 ,т. k=1 n1 | G k G nk |=O( G n1 ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbWaaSbaaSqaaiaad6gaaeqaaO GaeyizImQaaGOmaiaaiIcacqaH0oazcqGHRaWkcaaIYaGaaGykaiab fo5ahjaaiIcacqaH0oazcqGHRaWkcaaIXaGaaGykamaalaaabaGaam 4yamaaDaaaleaacaaIYaaabaGaaGOmaaaaaOqaaiaadogadaWgaaWc baGaaGymaaqabaaaaOGaaGilaiaaywW7caqGcrGaaeOlaiaabwdbca qGUaGaaGzbVpaaqahabeWcbaGaam4Aaiaai2dacaaIXaaabaGaamOB aiabgkHiTiaaigdaa0GaeyyeIuoakiaaiYhacaWGhbWaaSbaaSqaai aadUgaaeqaaOGaam4ramaaBaaaleaacaWGUbGaeyOeI0Iaam4Aaaqa baGccaaI8bGaaGypaiaad+eacaaIOaGaam4ramaaBaaaleaacaWGUb GaeyOeI0IaaGymaaqabaGccaaIPaGaaGOlaaaa@629C@

Поэтому условия (6) теоремы Бендера выполнены и при n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaeyOKH4QaeyOhIukaaa@360E@  верна асимптотика

g n G n , a n = n g n β n G n β n 2aβ+α Γ(n) βΓ(aβ)Γ(aβ+α) , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaad6gaaeqaae bbfv3ySLgzGueE0jxyaGabaOGae8hpIOJaam4ramaaBaaaleaacaWG UbaabeaakiaaiYcacaaMf8UaamyyamaaBaaaleaacaWGUbaabeaaki aai2dadaWcaaqaaiaad6gacaWGNbWaaSbaaSqaaiaad6gaaeqaaaGc baGaeqOSdigaaiab=XJi6maalaaabaGaamOBaiaadEeadaWgaaWcba GaamOBaaqabaaakeaacqaHYoGyaaGae8hpIOZaaSaaaeaacaWGUbWa aWbaaSqabeaacaaIYaGaamyyaiabek7aIjabgUcaRiabeg7aHbaaki abfo5ahjaaiIcacaWGUbGaaGykaaqaaiabek7aIjaaykW7cqqHtoWr caaIOaGaamyyaiabek7aIjaaiMcacqqHtoWrcaaIOaGaamyyaiabek 7aIjabgUcaRiabeg7aHjaaiMcaaaGaaGilaaaa@67EE@

что равносильно формуле (4).

Следствие 1. Пусть последовательность чисел { e n } MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI7bGaamyzamaaBaaaleaacaWGUb aabeaakiaai2haaaa@35DC@  определяется уравнением

e n+1 = n+ 2 3 e n + k=0 n e k e nk ,n0, e 0 = 1 6 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGLbWaaSbaaSqaaiaad6gacqGHRa WkcaaIXaaabeaakiaai2dadaqadaqaaiaad6gacqGHRaWkdaWcaaqa aiaaikdaaeaacaaIZaaaaaGaayjkaiaawMcaaiaadwgadaWgaaWcba GaamOBaaqabaGccqGHRaWkdaaeWbqabSqaaiaadUgacaaI9aGaaGim aaqaaiaad6gaa0GaeyyeIuoakiaadwgadaWgaaWcbaGaam4Aaaqaba GccaWGLbWaaSbaaSqaaiaad6gacqGHsislcaWGRbaabeaakiaaiYca caaMf8UaamOBaiabgwMiZkaaicdacaaISaGaaGzbVlaadwgadaWgaa WcbaGaaGimaaqabaGccaaI9aWaaSaaaeaacaaIXaaabaGaaGOnaaaa caaIUaaaaa@56A0@

Тогда при n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaeyOKH4QaeyOhIukaaa@360E@  верна асимптотика

e n n! 2π . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGLbWaaSbaaSqaaiaad6gaaeqaae bbfv3ySLgzGueE0jxyaGabaOGae8hpIOZaaSaaaeaacaWGUbGaaGyi aaqaaiaaikdacqaHapaCaaGaaGOlaaaa@3E67@  (7)

Доказательство. Из теоремы 2 при α=2/3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHXoqycaaI9aGaaGOmaiaai+caca aIZaaaaa@3655@ , β=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGycaaI9aGaaGymaaaa@34E0@ , a=1/6 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaaGypaiaaigdacaaIVaGaaG Onaaaa@359E@  при n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaeyOKH4QaeyOhIukaaa@360E@  следует асимптотика

e n n! Γ( 1 6 )Γ( 5 6 ) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGLbWaaSbaaSqaaiaad6gaaeqaae bbfv3ySLgzGueE0jxyaGabaOGae8hpIOZaaSaaaeaacaWGUbGaaGyi aaqaaiabfo5ahjaaiIcadaWcaaqaaiaaigdaaeaacaaI2aaaaiaaiM cacqqHtoWrcaaIOaWaaSaaaeaacaaI1aaabaGaaGOnaaaacaaIPaaa aiaai6caaaa@44A2@

Из функционального уравнения для гамма-функции

Γ 1 2 +z Γ 1 2 z = π cos(πz) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWrdaqadaqaamaalaaabaGaaG ymaaqaaiaaikdaaaGaey4kaSIaamOEaaGaayjkaiaawMcaaiabfo5a hnaabmaabaWaaSaaaeaacaaIXaaabaGaaGOmaaaacqGHsislcaWG6b aacaGLOaGaayzkaaGaaGypamaalaaabaGaeqiWdahabaGaci4yaiaa c+gacaGGZbGaaGikaiabec8aWjaadQhacaaIPaaaaaaa@4802@

(см. [2, с. 18]) при z=1/3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGypaiaaigdacaaIVaGaaG 4maaaa@35B4@  имеем

Γ 1 6 Γ 5 6 = π 1/2 =2π, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWrdaqadaqaamaalaaabaGaaG ymaaqaaiaaiAdaaaaacaGLOaGaayzkaaGaeu4KdC0aaeWaaeaadaWc aaqaaiaaiwdaaeaacaaI2aaaaaGaayjkaiaawMcaaiaai2dadaWcaa qaaiabec8aWbqaaiaaigdacaaIVaGaaGOmaaaacaaI9aGaaGOmaiab ec8aWjaaiYcaaaa@4373@

откуда следует формула (7).

Отметим, что e n = d n n! MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGLbWaaSbaaSqaaiaad6gaaeqaaO GaaGypaiaadsgadaWgaaWcbaGaamOBaaqabaGccaWGUbGaaGyiaaaa @3847@ , где d n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGKbWaaSbaaSqaaiaad6gaaeqaaa aa@33C5@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  константы Райта (коэффициенты Степанова MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Райта; см. [3, 124]), используемые во многих работах по перечислению помеченных графов (см. [4, 17, 19]) и в теории случайных графов (см. [13]).

×

Об авторах

Виталий Антониевич Воблый

Всероссийский институт научной и технической информации Российской академии наук

Автор, ответственный за переписку.
Email: vitvobl@yandex.ru
Россия, Москва

Список литературы

  1. Багаев Г. Н., Дмитриев Е. Ф. Перечисление связных отмеченных двудольных графов// Докл. АН БССР. — 1984. — 28, №12. — С. 1061–1063.
  2. Бейтмен Г., Эрдейи А. Высшие трансцендентные функции. Т. 1. — М.: Наука, 1965.
  3. Воблый В. А. О коэффициентах Райта и Степанова—Райта// Мат. заметки. — 1987. — 42, № 6. — С. 854–862.
  4. Воблый В. А. О перечислении помеченных связных гомеоморфно несводимых графов// Мат. заметки. — 1991. — 49, №3. — С. 12–22.
  5. Камке Э. Справочник по обыкновенным дифференциальным уравнениям. — М.: Наука, 1976.
  6. Слейтер Л. Дж. Вырожденные гипергеометрические функции. — М.: ВЦ АН СССР, 1966.
  7. Степанов В. Е./ Несколько теорем относительно случайных графов в кн.: Вероятностные методы в дискретной математике. — Петрозаводск, 1983. — С. 90–92.
  8. Bender E. A. An asymptotic expansion for the coefficients of some formal power series// J. London Math. Soc. (2). — 1975. — 49. — С. 451–458.
  9. Bender E. A. Asymptotic of some convolutional recurrences// Electron. J. Combin. — 2010. — 17. — R1.
  10. Chern H. H. et al. Psi-series method for equality of random trees and quadratic convolution recurrences//Random Struct. Algorithms. — 2014. — 44, №1. — С. 67–108.
  11. Flajolet P., Poblete P., Viola A. On the analysis of linear probing hashing// Algorithmica. — 1998. — 22. — С. 490–515.
  12. Flajolet P., Louchard G. Analytic variations on the Airy distribution// Algorithmica. — 2001. — 31. — С. 337–358.
  13. Janson S., Knuth D. E., Luczak T., Pittel B. The birth of the giant component// Random Struct. Algorithms. — 1993. — 4, №2. — С. 233–358.
  14. Janson S. Brownian excursion area, Wright’s constants in graph enumeration, and other Brownian areas// Probab. Surv. — 2007. — 4. — С. 80–145.
  15. Olver F. W., Lozier D., Boisvert R. F., Clark C. W. NIST Handbook of Mathematical Functions. — New York: Cambridge Univ. Press, 2010.
  16. Stein P. R., Everett C. J. On quadratic recurrence rule of Faltung type// J. Comb. Inf. Syst. Sci. — 1978. — 3. — С. 1–10.
  17. Wright E. M. A quadratic recurrence of Faltung type// Math. Proc. Cambridge Phil. Soc. — 1980. — 88. — С. 193–197.
  18. Wright E. M. The number of connected sparsely edged graphs, III// J. Graph Theory. — 1980. — 4. — С. 393–407.
  19. Wright E. M. Enumeration of smooth labelled graphs// Proc. Roy. Soc. Edinburgh. — 1981. — A91. — С. 205–212.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Воблый В.А., 2024

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).