О поиске оптимального по быстродействию граничного управления с помощью метода моментов для систем, описываемых диффузионно-волновым уравнением

Обложка

Цитировать

Полный текст

Аннотация

Для системы, описываемой одномерным неоднородным диффузионно-волновым уравнением на отрезке, рассматривается два типа задач оптимального граничного управления: задача поиска управления с минимальной нормой при заданном времени управления и задача поиска управления, переводящего систему в заданное состояние за минимальное время при заданном ограничении на норму управления. Рассмотрены разные способы задания условий на конечное состояние. Проанализирована конечномерная l-проблема моментов, к которой может быть сведена поставленная задача оптимального управления на основе приближенного решения диффузионно-волнового уравнения. Показано, что при выполнении условий корректности и разрешимости данной проблемы задача поиска управления с минимальной нормой всегда имеет решение, а задача поиска управления с минимальным временем перехода может решения не иметь. 

Полный текст

1. Введение. Задачи оптимального управления системами с распределёнными параметрами в настоящее время представляют значительный исследовательский интерес и имеют важные приложения. Относительно новое направление развития исследований в этой области составляют задачи для систем дробного порядка, в частности, для систем, поведение которых описывается уравнениями параболического или гиперболического типа с дробной производной по времени.

В настоящее время имеется ряд публикаций, посвящённых поиску оптимального управления для систем дробного порядка с распределёнными параметрами, которые описываются обобщённым уравнением диффузии или диффузионно MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ волновым уравнением (см., например, [4–6, 10–14] и ссылки в них). В данной работе исследована задача оптимального управления с ограничением на норму управления для линейного неоднородного диффузионно-волнового уравнения. Рассматривается граничное управление, определяемое существенно ограниченными функциями, на отрезке. Анализируется конечномерная l MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaaaa@36E4@  -проблема моментов, к которой ранее на основе приближённого решения диффузионно-волнового уравнения была сведена поставленная задача оптимального управления (см. [4, 5, 11, 12]). Показано, что при выполнении требований корректности и разрешимости полученной проблемы моментов и существовании решения данной проблемы, имеющего минимальную норму при заданной величине времени управления, задаваемое ограничение на норму управления для рассматриваемой задачи не всегда может быть выполнено, в отличие от аналогичной задачи для уравнения диффузии целого порядка.

2. Постановка задачи. Рассматриваются системы, состояние которых описывается диффузионно-волновым уравнением, имеющим вид

0 C D t α Q(x,t)= x w(x) Q(x,t) x q(x)Q(x,t),α(0,2), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0baaSqaai aaicdaaeaacaWGdbaaaOGaamiramaaDaaaleaacaWG0baabaGaeqyS degaaOGaamyuaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGypam aalaaabaGaeyOaIylabaGaeyOaIyRaamiEaaaadaWadaqaaiaadEha caaIOaGaamiEaiaaiMcadaWcaaqaaiabgkGi2kaadgfacaaIOaGaam iEaiaaiYcacaWG0bGaaGykaaqaaiabgkGi2kaadIhaaaaacaGLBbGa ayzxaaGaeyOeI0IaamyCaiaaiIcacaWG4bGaaGykaiaadgfacaaIOa GaamiEaiaaiYcacaWG0bGaaGykaiaaiYcacaaMf8UaeqySdeMaeyic I4SaaGikaiaaicdacaaISaGaaGOmaiaaiMcacaaISaaaaa@65B5@  (1)

где Q(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaiaaiI cacaWG4bGaaGilaiaadshacaaIPaaaaa@3ADA@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  состояние системы, w(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DaiaaiI cacaWG4bGaaGykaaaa@3951@  и q(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiaaiI cacaWG4bGaaGykaaaa@394B@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  некоторые функции, 0 C D t α MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0baaSqaai aaicdaaeaacaWGdbaaaOGaamiramaaDaaaleaacaWG0baabaGaeqyS degaaaaa@3B3A@  " MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@ левосторонний оператор дробного дифференцирования по времени, t0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgw MiZkaaicdaaaa@396C@ , x[0,L] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI GiolaaiUfacaaIWaGaaGilaiaadYeacaaIDbaaaa@3C81@ , (x,t)Ω=[0,L]×[0,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI hacaaISaGaamiDaiaaiMcacqGHiiIZcqqHPoWvcaaI9aGaaG4waiaa icdacaaISaGaamitaiaai2facqGHxdaTcaaIBbGaaGimaiaaiYcacq GHEisPcaaIPaaaaa@487A@ . Оператор дробного дифференцирования понимается в смысле определения Капуто (см. [?, ~2.4]):

0 C D t α Q(x,t )= 0 RL D t α Q(x,t) k=0 [α] k Q(x,0+) t k t k k! , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0baaSqaai aaicdaaeaacaWGdbaaaOGaamiramaaDaaaleaacaWG0baabaGaeqyS degaaOGaamyuaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGypam aaDaaaleaacaaIWaaabaGaamOuaiaadYeaaaGccaWGebWaa0baaSqa aiaadshaaeaacqaHXoqyaaGcdaWadaqaaiaadgfacaaIOaGaamiEai aaiYcacaWG0bGaaGykaiabgkHiTmaaqahabeWcbaGaam4Aaiaai2da caaIWaaabaGaaG4waiabeg7aHjaai2faa0GaeyyeIuoakmaalaaaba GaeyOaIy7aaWbaaSqabeaacaWGRbaaaOGaamyuaiaaiIcacaWG4bGa aGilaiaaicdacqGHRaWkcaaIPaaabaGaeyOaIyRaamiDamaaCaaale qabaGaam4AaaaaaaGcdaWcaaqaaiaadshadaahaaWcbeqaaiaadUga aaaakeaacaWGRbGaaGyiaaaaaiaawUfacaGLDbaacaaISaaaaa@6740@  (2)

где 0 RL D t α MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0baaSqaai aaicdaaeaacaWGsbGaamitaaaakiaadseadaqhaaWcbaGaamiDaaqa aiabeg7aHbaaaaa@3C1A@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  левосторонний оператор дробного дифференцирования Римана MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Лиувилля,

0 RL D t α Q(x,t)= 1 Γ(1{α}) [α]+1 τ [α]+1 0 t Q(x,τ)dτ (tτ) {α} . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0baaSqaai aaicdaaeaacaWGsbGaamitaaaakiaadseadaqhaaWcbaGaamiDaaqa aiabeg7aHbaakiaadgfacaaIOaGaamiEaiaaiYcacaWG0bGaaGykai aai2dadaWcaaqaaiaaigdaaeaacqqHtoWrcaaIOaGaaGymaiabgkHi TiaaiUhacqaHXoqycaaI9bGaaGykaaaadaWcaaqaaiabgkGi2oaaCa aaleqabaGaaG4waiabeg7aHjaai2facqGHRaWkcaaIXaaaaaGcbaGa eyOaIyRaeqiXdq3aaWbaaSqabeaacaaIBbGaeqySdeMaaGyxaiabgU caRiaaigdaaaaaaOWaa8qCaeqaleaacaaIWaaabaGaamiDaaqdcqGH RiI8aOWaaSaaaeaacaWGrbGaaGikaiaadIhacaaISaGaeqiXdqNaaG ykaiaadsgacqaHepaDaeaacaaIOaGaamiDaiabgkHiTiabes8a0jaa iMcadaahaaWcbeqaaiaaiUhacqaHXoqycaaI9baaaaaakiaai6caaa a@701E@

Следует отметить, что определение (2) для дифференцируемых функций эквивалентно определению дробной производной, основанному на свёртке первой производной функции с дробно-степенной функцией. Такое определение впервые было предложено А. Н. Герасимовым в [?], а впоследствии MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  в работах М. Капуто [7] и М. М. Джрбашяна [3].

Предполагается, что функция Q(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaiaaiI cacaWG4bGaaGilaiaadshacaaIPaaaaa@3ADA@  дифференцируема по времени (в случае α(0,1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey icI4SaaGikaiaaicdacaaISaGaaGymaiaaiMcaaaa@3CA6@  достаточно требовать суммируемости данной функции по времени) при t0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgw MiZkaaicdaaaa@396C@  и дважды дифференцируема по пространственной переменной на отрезке [0,L] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaaic dacaaISaGaamitaiaai2faaaa@3A00@ . Функции w(x)>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DaiaaiI cacaWG4bGaaGykaiaai6dacaaIWaaaaa@3AD3@  и q(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiaaiI cacaWG4bGaaGykaaaa@394B@  считаются непрерывными на отрезке [0,L] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaaic dacaaISaGaamitaiaai2faaaa@3A00@ .

Начальные условия для уравнения (1) ставятся в следующем виде:

k Q(x,0+) t k = φ k (x),x[0,L],k=0,,[α]. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq GHciITdaahaaWcbeqaaiaadUgaaaGccaWGrbGaaGikaiaadIhacaaI SaGaaGimaiabgUcaRiaaiMcaaeaacqGHciITcaWG0bWaaWbaaSqabe aacaWGRbaaaaaakiaai2dacqaHgpGAdaahaaWcbeqaaiaadUgaaaGc caaIOaGaamiEaiaaiMcacaaISaGaaGzbVlaadIhacqGHiiIZcaaIBb GaaGimaiaaiYcacaWGmbGaaGyxaiaaiYcacaaMf8Uaam4Aaiaai2da caaIWaGaaGilaiablAciljaaiYcacaaIBbGaeqySdeMaaGyxaiaai6 caaaa@5BE5@  (3)

Граничные условия для уравнения (1):

b i Q(x,t) x + a i Q(x,t) x= x i = u i (t),t0,i=1,2, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaaca WGIbWaaSbaaSqaaiaadMgaaeqaaOWaaSaaaeaacqGHciITcaWGrbGa aGikaiaadIhacaaISaGaamiDaiaaiMcaaeaacqGHciITcaWG4baaai abgUcaRiaadggadaWgaaWcbaGaamyAaaqabaGccaWGrbGaaGikaiaa dIhacaaISaGaamiDaiaaiMcaaiaawUfacaGLDbaadaWgaaWcbaGaam iEaiaai2dacaWG4bWaaWbaaeqabaGaamyAaaaaaeqaaOGaaGypaiaa dwhadaahaaWcbeqaaiaadMgaaaGccaaIOaGaamiDaiaaiMcacaaISa GaaGzbVlaadshacqGHLjYScaaIWaGaaGilaiaaywW7caWGPbGaaGyp aiaaigdacaaISaGaaGOmaiaaiYcaaaa@6067@  (4)

где a i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaWGPbaabeaaaaa@37F3@  и b i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyamaaBa aaleaacaWGPbaabeaaaaa@37F4@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  коэффициенты, b 1 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyamaaBa aaleaacaaIXaaabeaakiabgsMiJkaaicdaaaa@3A3A@ , b 2 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyamaaBa aaleaacaaIYaaabeaakiabgwMiZkaaicdaaaa@3A4C@ ; x 1 =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa aaleqabaGaaGymaaaakiaai2dacaaIWaaaaa@3963@ , x 2 =L MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa aaleqabaGaaGOmaaaakiaai2dacaWGmbaaaa@397B@ . Граничные управления u 1,2 (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaCa aaleqabaGaaGymaiaaiYcacaaIYaaaaOGaaGikaiaadshacaaIPaaa aa@3BAF@  считаются элементами пространства L [0,T] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacqGHEisPaeqaaOGaaG4waiaaicdacaaISaGaamivaiaai2fa aaa@3C80@  и могут быть объединены в вектор U(t)=( u 1 (t), u 2 (t)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvaiaaiI cacaWG0bGaaGykaiaai2dacaaIOaGaamyDamaaCaaaleqabaGaaGym aaaakiaaiIcacaWG0bGaaGykaiaaiYcacaWG1bWaaWbaaSqabeaaca aIYaaaaOGaaGikaiaadshacaaIPaGaaGykaaaa@44A2@ .

Будем считать целью оптимального управления достижение системой желаемого состояния в заданный момент времени T>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiaai6 dacaaIWaaaaa@384E@ . Это условие может быть формально выражено виде ограничения как на состояние, так и на его производную:

Q(x,T)= Q * (x), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaiaaiI cacaWG4bGaaGilaiaadsfacaaIPaGaaGypaiaadgfadaahaaWcbeqa aiaaiQcaaaGccaaIOaGaamiEaiaaiMcacaaISaaaaa@405A@  (5)

Q(x,T) t =A(x), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq GHciITcaWGrbGaaGikaiaadIhacaaISaGaamivaiaaiMcaaeaacqGH ciITcaWG0baaaiaai2dacaWGbbGaaGikaiaadIhacaaIPaGaaGilaa aa@4334@  (6)

x[0,L] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI GiolaaiUfacaaIWaGaaGilaiaadYeacaaIDbaaaa@3C81@ , A(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaaiI cacaWG4bGaaGykaaaa@391B@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  заданная функция. Возможно и одновременно задавать условия на состояние и его производную по времени (см. [11]).

Задачу оптимального управления поставим в двух разновидностях следующим образом (см. [1]). Найти такие управления u 1,2 (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaCa aaleqabaGaaGymaiaaiYcacaaIYaaaaOGaaGikaiaadshacaaIPaaa aa@3BAF@ , что система, описываемая уравнением (1) с начальными условиями (3) и граничными условиями (4), достигнет при t=T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiaai2 dacaWGubaaaa@388C@  желаемого состояния, определяемого условиями (5) и/или (6) и при этом будет выполнено одно из условий: [ (a)]

  1. норма управления U(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvaiaaiI cacaWG0bGaaGykaaaa@392B@  будет минимальной при заданном T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36CC@  (задача А);
  2. время перехода в желаемое состояние будет минимальным при заданном ограничении на норму управления U(t)l MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamyvaiaaiIcacaWG0bGaaGykaiab=vIi qjabgsMiJkaadYgaaaa@42A5@  ( l>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaiaai6 dacaaIWaaaaa@3866@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  заданное число) (задача Б).
  3. l MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaaaa@36E4@  -Проблема моментов для диффузионно-волнового уравнения.

Ранее было показано, что поставленная выше задача оптимального управления для уравнения типа уравнения (1) сводится к следующей проблеме моментов (см. [4, 5, 11, 12]). Пусть задана система функций g n (t) L p [0,T] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaBa aaleaacaWGUbaabeaakiaaiIcacaWG0bGaaGykaiabgIGiolaadYea daWgaaWcbaGabmiCayaafaaabeaakiaaiUfacaaIWaGaaGilaiaads facaaIDbaaaa@4207@  и набор чисел c n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaWGUbaabeaaaaa@37FA@ , хотя бы одно из которых отлично от нуля. Пусть также задано число l>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaiaai6 dacaaIWaaaaa@3866@ . Необходимо найти такую функцию W(t) L p (0,T] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiaaiI cacaWG0bGaaGykaiabgIGiolaadYeadaWgaaWcbaGaamiCaaqabaGc caaIOaGaaGimaiaaiYcacaWGubGaaGyxaaaa@408F@  ( 1/p+1/ p =1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaai+ cacaWGWbGaey4kaSIaaGymaiaai+caceWGWbGbauaacaaI9aGaaGym aaaa@3D35@  ), что выполняются следующие соотношения:

0 T g n (τ)W(τ)dτ= c n ,, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqale aacaaIWaaabaGaamivaaqdcqGHRiI8aOGaam4zamaaBaaaleaacaWG UbaabeaakiaaiIcacqaHepaDcaaIPaGaam4vaiaaiIcacqaHepaDca aIPaGaamizaiabes8a0jaai2dacaWGJbWaaSbaaSqaaiaad6gaaeqa aOGaaGilaiaaywW7cqWIMaYscaaISaaaaa@4CE1@  (7)

W(t)l, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaam4vaiaaiIcacaWG0bGaaGykaiab=vIi qjabgsMiJkaadYgacaaISaaaaa@435D@  (8)

где W(τ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiaaiI cacqaHepaDcaaIPaaaaa@39F9@  " MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@ функция, содержащая в общем случае линейную комбинацию граничных управлений. В рассматриваемом в данной работе случае существенно ограниченных управлений p =1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiCayaafa GaaGypaiaaigdaaaa@3876@ , p= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiaai2 dacqGHEisPaaa@3920@  и проблема моментов (7) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (8) корректна и разрешима для α>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaG Opaiaaicdaaaa@3914@ .

Следует отметить, что в [4, 5, 11, 12], вообще говоря, рассматривались более частные или, наоборот, более общие случаи уравнения (1) и граничных условий (4). Так, в [4] рассматривалось уравнение (1) при α(0,1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey icI4SaaGikaiaaicdacaaISaGaaGymaiaaiMcaaaa@3CA6@ , q(x)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiaaiI cacaWG4bGaaGykaiaai2dacaaIWaaaaa@3ACC@ , w(x)=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DaiaaiI cacaWG4bGaaGykaiaai2dacaaIXaaaaa@3AD3@ , а в граничных условиях вместо управлений u i (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaCa aaleqabaGaamyAaaaakiaaiIcacaWG0bGaaGykaaaa@3A70@  задавалась сумма этих управлений с некоторыми известными функциями. В [5, 11, 12] использовались такие же граничные условия, а уравнение (1) рассматривалось при α(1,2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey icI4SaaGikaiaaigdacaaISaGaaGOmaiaaiMcaaaa@3CA8@ ; кроме того, в левой части вместо дробной производной состояния стояло произведение её на некоторую функцию r(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaaiI cacaWG4bGaaGykaaaa@394C@ . Также в [12]] желаемое состояние задавалось условием вида (6) при A(x)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaaiI cacaWG4bGaaGykaiaai2dacaaIWaaaaa@3A9C@ . Тем не менее, проводя рассуждения аналогично работам [4, 5, 11, 12], можно убедиться, что рассматриваемая в данной работе задача оптимального управления для уравнения (1) с начальными условиями (3), граничными условиями (4) и условиями, определяющими желаемое состояние (5) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (6), также сводится к l MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaaaa@36E4@  -проблеме моментов (7) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (8). Теми же остаются и условия корректности и разрешимости получаемой проблемы моментов (поскольку вышеописанные отклонения не влияют на вид функций g n (t,T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaBa aaleaacaWGUbaabeaakiaaiIcacaWG0bGaaGilaiaadsfacaaIPaaa aa@3BF5@ , а сказываются только на формулах для моментов и функции W(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiaaiI cacaWG0bGaaGykaaaa@392D@  ).

Далее рассматриваем 4 случая, отличающиеся заданием параметров в уравнении (1) и способом задания желаемого состояния: [ (i)]

  1. в уравнении (1) α(0,1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey icI4SaaGikaiaaicdacaaISaGaaGymaiaaiMcaaaa@3CA6@  и желаемое состояние задаётся условием (5);
  2. в уравнении (1) α(1,2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey icI4SaaGikaiaaigdacaaISaGaaGOmaiaaiMcaaaa@3CA8@  и желаемое состояние задаётся условием (5);
  3. в уравнении (1) α(1,2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey icI4SaaGikaiaaigdacaaISaGaaGOmaiaaiMcaaaa@3CA8@  и желаемое состояние задаётся условием (6);
  4. в уравнении (1) α(1,2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey icI4SaaGikaiaaigdacaaISaGaaGOmaiaaiMcaaaa@3CA8@  и желаемое состояние задаётся условием (5) и (6).

Для вышеперечисленных случаев ранее была обоснована корректность и разрешимость проблемы моментов, а также были получены явные выражения для моментов и функции g n (t,T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaBa aaleaacaWGUbaabeaakiaaiIcacaWG0bGaaGilaiaadsfacaaIPaaa aa@3BF5@  (см. [?, ?, ?, ?]). Для случая (1) эти выражения имеют вид

2 g n (t,T)= E α,α [ λ n (Tt) α ] (Tt) 1α ,α(0,1), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaadE gadaWgaaWcbaGaamOBaaqabaGccaaIOaGaamiDaiaaiYcacaWGubGa aGykaiaai2dadaWcaaqaaiaadweadaWgaaWcbaGaeqySdeMaaGilai abeg7aHbqabaGccaaIBbGaeyOeI0Iaeq4UdW2aaSbaaSqaaiaad6ga aeqaaOGaaGikaiaadsfacqGHsislcaWG0bGaaGykamaaCaaaleqaba GaeqySdegaaOGaaGyxaaqaaiaaiIcacaWGubGaeyOeI0IaamiDaiaa iMcadaahaaWcbeqaaiaaigdacqGHsislcqaHXoqyaaaaaOGaaGilai aaywW7cqaHXoqycqGHiiIZcaaIOaGaaGimaiaaiYcacaaIXaGaaGyk aiaaiYcaaaa@5F5B@  (9)

c n (T)= Q n * φ n 0 E α ( λ n T α ),α(0,1). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaWGUbaabeaakiaaiIcacaWGubGaaGykaiaai2dacaWGrbWa a0baaSqaaiaad6gaaeaacaaIQaaaaOGaeyOeI0IaeqOXdO2aa0baaS qaaiaad6gaaeaacaaIWaaaaOGaamyramaaBaaaleaacqaHXoqyaeqa aOGaaGikaiabgkHiTiabeU7aSnaaBaaaleaacaWGUbaabeaakiaads fadaahaaWcbeqaaiabeg7aHbaakiaaiMcacaaISaGaaGzbVlabeg7a HjabgIGiolaaiIcacaaIWaGaaGilaiaaigdacaaIPaGaaGOlaaaa@5677@  (10)

Здесь и далее λ n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaad6gaaeqaaaaa@38C6@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  собственные числа соответствующей задачи Штурма" MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Лиувилля для уравнения (1), а выражение Φ n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuOPdy0aaS baaSqaaiaad6gaaeqaaaaa@388C@  означает коэффициент разложения функции Φ(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuOPdyKaaG ikaiaadIhacaaIPaaaaa@39CF@  по системе собственных функций соответствующей задачи Штурма" MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Лиувилля для уравнения (1) (см. [4, 5, 11, 12]).

В случае (2) аналогичные выражения имеют вид

g n (t,T)= E α,α [ λ n (Tt) α ] (Tt) 1α ,α(1,2), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaBa aaleaacaWGUbaabeaakiaaiIcacaWG0bGaaGilaiaadsfacaaIPaGa aGypamaalaaabaGaamyramaaBaaaleaacqaHXoqycaaISaGaeqySde gabeaakiaaiUfacqGHsislcqaH7oaBdaWgaaWcbaGaamOBaaqabaGc caaIOaGaamivaiabgkHiTiaadshacaaIPaWaaWbaaSqabeaacqaHXo qyaaGccaaIDbaabaGaaGikaiaadsfacqGHsislcaWG0bGaaGykamaa CaaaleqabaGaaGymaiabgkHiTiabeg7aHbaaaaGccaaISaGaaGzbVl abeg7aHjabgIGiolaaiIcacaaIXaGaaGilaiaaikdacaaIPaGaaGil aaaa@5EA1@  (11)

c n (T)= Q n * φ n 0 E α ( λ n T α ) φ n 1 T E α,2 ( λ n T α ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaWGUbaabeaakiaaiIcacaWGubGaaGykaiaai2dacaWGrbWa a0baaSqaaiaad6gaaeaacaaIQaaaaOGaeyOeI0IaeqOXdO2aa0baaS qaaiaad6gaaeaacaaIWaaaaOGaamyramaaBaaaleaacqaHXoqyaeqa aOGaaGikaiabgkHiTiabeU7aSnaaBaaaleaacaWGUbaabeaakiaads fadaahaaWcbeqaaiabeg7aHbaakiaaiMcacqGHsislcqaHgpGAdaqh aaWcbaGaamOBaaqaaiaaigdaaaGccaWGubGaamyramaaBaaaleaacq aHXoqycaaISaGaaGOmaaqabaGccaaIOaGaeyOeI0Iaeq4UdW2aaSba aSqaaiaad6gaaeqaaOGaamivamaaCaaaleqabaGaeqySdegaaOGaaG ykaiaai6caaaa@5ED7@  (12)

В случае (3) имеем формулы

g n (t,T)= E α,α1 [ λ n (Tt) α ] (Tt) 2α ,α(1,2), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaBa aaleaacaWGUbaabeaakiaaiIcacaWG0bGaaGilaiaadsfacaaIPaGa aGypamaalaaabaGaamyramaaBaaaleaacqaHXoqycaaISaGaeqySde MaeyOeI0IaaGymaaqabaGccaaIBbGaeyOeI0Iaeq4UdW2aaSbaaSqa aiaad6gaaeqaaOGaaGikaiaadsfacqGHsislcaWG0bGaaGykamaaCa aaleqabaGaeqySdegaaOGaaGyxaaqaaiaaiIcacaWGubGaeyOeI0Ia amiDaiaaiMcadaahaaWcbeqaaiaaikdacqGHsislcqaHXoqyaaaaaO GaaGilaiaaywW7cqaHXoqycqGHiiIZcaaIOaGaaGymaiaaiYcacaaI YaGaaGykaiaaiYcaaaa@604A@  (13)

c n (T)= A n + λ n T α1 φ n 0 E α,α ( λ n T α ) φ n 1 T E α ( λ n T α ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaWGUbaabeaakiaaiIcacaWGubGaaGykaiaai2dacaWGbbWa aSbaaSqaaiaad6gaaeqaaOGaey4kaSIaeq4UdW2aaSbaaSqaaiaad6 gaaeqaaOGaamivamaaCaaaleqabaGaeqySdeMaeyOeI0IaaGymaaaa kiabeA8aQnaaDaaaleaacaWGUbaabaGaaGimaaaakiaadweadaWgaa WcbaGaeqySdeMaaGilaiabeg7aHbqabaGccaaIOaGaeyOeI0Iaeq4U dW2aaSbaaSqaaiaad6gaaeqaaOGaamivamaaCaaaleqabaGaeqySde gaaOGaaGykaiabgkHiTiabeA8aQnaaDaaaleaacaWGUbaabaGaaGym aaaakiaadsfacaWGfbWaaSbaaSqaaiabeg7aHbqabaGccaaIOaGaey OeI0Iaeq4UdW2aaSbaaSqaaiaad6gaaeqaaOGaamivamaaCaaaleqa baGaeqySdegaaOGaaGykaiaai6caaaa@661E@  (14)

Наконец, в случае (4) будут справедливы выражения

g 2n1 (t,T)= E α,α [ λ n (Tt) α ] (Tt) 1α , g 2n (t,T)= E α,α1 [ λ n (Tt) α ] (Tt) 2α ,α(1,2), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaa qaaaqaaiaadEgadaWgaaWcbaGaaGOmaiaad6gacqGHsislcaaIXaaa beaakiaaiIcacaWG0bGaaGilaiaadsfacaaIPaGaaGypamaalaaaba GaamyramaaBaaaleaacqaHXoqycaaISaGaeqySdegabeaakiaaiUfa cqGHsislcqaH7oaBdaWgaaWcbaGaamOBaaqabaGccaaIOaGaamivai abgkHiTiaadshacaaIPaWaaWbaaSqabeaacqaHXoqyaaGccaaIDbaa baGaaGikaiaadsfacqGHsislcaWG0bGaaGykamaaCaaaleqabaGaaG ymaiabgkHiTiabeg7aHbaaaaGccaaISaaabaaabaGaam4zamaaBaaa leaacaaIYaGaamOBaaqabaGccaaIOaGaamiDaiaaiYcacaWGubGaaG ykaiaai2dadaWcaaqaaiaadweadaWgaaWcbaGaeqySdeMaaGilaiab eg7aHjabgkHiTiaaigdaaeqaaOGaaG4waiabgkHiTiabeU7aSnaaBa aaleaacaWGUbaabeaakiaaiIcacaWGubGaeyOeI0IaamiDaiaaiMca daahaaWcbeqaaiabeg7aHbaakiaai2faaeaacaaIOaGaamivaiabgk HiTiaadshacaaIPaWaaWbaaSqabeaacaaIYaGaeyOeI0IaeqySdega aaaakiaaiYcacaaMf8UaeqySdeMaeyicI4SaaGikaiaaigdacaaISa GaaGOmaiaaiMcacaaISaaaaaaa@832E@  (15)

c 2n1 (T)= Q n * φ n 0 E α ( λ n T α ) φ n 1 T E α,2 ( λ n T α ), c 2n (T)= A n + λ n T α1 φ n 0 E α,α ( λ n T α ) φ n 1 T E α ( λ n T α ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaa qaaaqaaiaadogadaWgaaWcbaGaaGOmaiaad6gacqGHsislcaaIXaaa beaakiaaiIcacaWGubGaaGykaiaai2dacaWGrbWaa0baaSqaaiaad6 gaaeaacaaIQaaaaOGaeyOeI0IaeqOXdO2aa0baaSqaaiaad6gaaeaa caaIWaaaaOGaamyramaaBaaaleaacqaHXoqyaeqaaOGaaGikaiabgk HiTiabeU7aSnaaBaaaleaacaWGUbaabeaakiaadsfadaahaaWcbeqa aiabeg7aHbaakiaaiMcacqGHsislcqaHgpGAdaqhaaWcbaGaamOBaa qaaiaaigdaaaGccaWGubGaamyramaaBaaaleaacqaHXoqycaaISaGa aGOmaaqabaGccaaIOaGaeyOeI0Iaeq4UdW2aaSbaaSqaaiaad6gaae qaaOGaamivamaaCaaaleqabaGaeqySdegaaOGaaGykaiaaiYcaaeaa aeaacaWGJbWaaSbaaSqaaiaaikdacaWGUbaabeaakiaaiIcacaWGub GaaGykaiaai2dacaWGbbWaaSbaaSqaaiaad6gaaeqaaOGaey4kaSIa eq4UdW2aaSbaaSqaaiaad6gaaeqaaOGaamivamaaCaaaleqabaGaeq ySdeMaeyOeI0IaaGymaaaakiabeA8aQnaaDaaaleaacaWGUbaabaGa aGimaaaakiaadweadaWgaaWcbaGaeqySdeMaaGilaiabeg7aHbqaba GccaaIOaGaeyOeI0Iaeq4UdW2aaSbaaSqaaiaad6gaaeqaaOGaamiv amaaCaaaleqabaGaeqySdegaaOGaaGykaiabgkHiTiabeA8aQnaaDa aaleaacaWGUbaabaGaaGymaaaakiaadsfacaWGfbWaaSbaaSqaaiab eg7aHbqabaGccaaIOaGaeyOeI0Iaeq4UdW2aaSbaaSqaaiaad6gaae qaaOGaamivamaaCaaaleqabaGaeqySdegaaOGaaGykaiaai6caaaaa aa@922F@  (16)

4. Основные результаты. В [4, 5, 11, 12] была обоснована корректность и разрешимость конечномерной проблемы моментов, получаемой в случаях (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (4). При выполнении соответствующих условий удаётся решить проблему моментов, получив тем самым решение задачи А, т.е. управление из класса допустимых, имеющее наименьшую норму. Для решения задачи Б в общем случае необходимо найти решение неравенства

Λ N (T)l, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4MdW0aaS baaSqaaiaad6eaaeqaaOGaaGikaiaadsfacaaIPaGaeyizImQaamiB aiaaiYcaaaa@3E0B@  (17)

где Λ N (T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4MdW0aaS baaSqaaiaad6eaaeqaaOGaaGikaiaadsfacaaIPaaaaa@3AAF@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  норма оптимального управления, найденного в результате решения задачи А, зависящая от параметра T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36CC@ . Решением задачи Б считается наименьшее действительное положительное число T * MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaCa aaleqabaGaaGOkaaaaaaa@37AD@ , для которого справедливо неравенство (17) (см. [1, гл. 3]). Значение Λ N (T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4MdW0aaS baaSqaaiaad6eaaeqaaOGaaGikaiaadsfacaaIPaaaaa@3AAF@  при этом может быть вычислено по формуле

Λ N (T)= 1 min ξ i ,i=1,,N ρ ξ (T) = 1 ρ ξ * (T) , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4MdW0aaS baaSqaaiaad6eaaeqaaOGaaGikaiaadsfacaaIPaGaaGypamaalaaa baGaaGymaaqaamaawafabeWcbaGaeqOVdG3aaSbaaeaacaWGPbaabe aacaaISaGaaGjbVlaadMgacaaI9aGaaGymaiaaiYcacqWIMaYscaaI SaGaamOtaaqabOqaaiGac2gacaGGPbGaaiOBaaaacqaHbpGCdaWgaa WcbaGaeqOVdGhabeaakiaaiIcacaWGubGaaGykaaaacaaI9aWaaSaa aeaacaaIXaaabaGaeqyWdi3aaSbaaSqaaiabe67a4naaCaaabeqaai aaiQcaaaaabeaakiaaiIcacaWGubGaaGykaaaacaaISaaaaa@5989@  (18)

(см. [1, гл. 3]), где

ρ ξ = 0 T i=1 N1 ξ i g i (t) c i (T) c N (T) g N (t) + 1 c N (T) g N (t) dt, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiabe67a4bqabaGccaaI9aWaa8qCaeqaleaacaaIWaaabaGa amivaaqdcqGHRiI8aOWaaqWaaeaadaaeWbqabSqaaiaadMgacaaI9a GaaGymaaqaaiaad6eacqGHsislcaaIXaaaniabggHiLdGccqaH+oaE daWgaaWcbaGaamyAaaqabaGcdaqadaqaaiaadEgadaWgaaWcbaGaam yAaaqabaGccaaIOaGaamiDaiaaiMcacqGHsisldaWcaaqaaiaadoga daWgaaWcbaGaamyAaaqabaGccaaIOaGaamivaiaaiMcaaeaacaWGJb WaaSbaaSqaaiaad6eaaeqaaOGaaGikaiaadsfacaaIPaaaaiaadEga daWgaaWcbaGaamOtaaqabaGccaaIOaGaamiDaiaaiMcaaiaawIcaca GLPaaacqGHRaWkdaWcaaqaaiaaigdaaeaacaWGJbWaaSbaaSqaaiaa d6eaaeqaaOGaaGikaiaadsfacaaIPaaaaiaadEgadaWgaaWcbaGaam OtaaqabaGccaaIOaGaamiDaiaaiMcaaiaawEa7caGLiWoacaWGKbGa amiDaiaaiYcaaaa@6C42@  (19)

ξ i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aaS baaSqaaiaadMgaaeqaaaaa@38D0@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  некоторые числа, ξ i * MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aa0 baaSqaaiaadMgaaeaacaaIQaaaaaaa@3985@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  числа, при которых достигается минимум функции ρ ξ (T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiabe67a4bqabaGccaaIOaGaamivaiaaiMcaaaa@3BEA@  по ξ i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aaS baaSqaaiaadMgaaeqaaaaa@38D0@ . Учитывая (18), можно переписать условие (17) в виде

ρ ξ * (T) 1 l . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiabe67a4naaCaaabeqaaiaaiQcaaaaabeaakiaaiIcacaWG ubGaaGykaiabgwMiZoaalaaabaGaaGymaaqaaiaadYgaaaGaaGOlaa aa@40FA@  (20)

Функция (19) неотрицательна и непрерывно зависит от аргумента T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36CC@ . Если подынтегральная функция в выражении (19) не зависит от T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36CC@ , то функция ρ ξ * (T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiabe67a4naaCaaabeqaaiaaiQcaaaaabeaakiaaiIcacaWG ubGaaGykaaaa@3CC0@  монотонно возрастает с ростом T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36CC@ . Аналогичная тенденция проявляется и в случае, если функции g i (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaBa aaleaacaWGPbaabeaakiaaiIcacaWG0bGaaGykaaaa@3A61@  не зависят от параметра T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36CC@ , а моменты зависят достаточно слабо. Именно такая ситуация имеет место для систем целого порядка, описываемых обычным уравнением диффузии. Для них всегда можно подобрать такое значение T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36CC@ , что условие (20) окажется выполненным для любого заданного l>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaiaai6 dacaaIWaaaaa@3866@  (см. [1, гл. 4]).

В случае же, когда подынтегральная функция в выражении (19) также зависит от аргумента T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36CC@ , как это имеет место для рассматриваемых систем дробного порядка, функция ρ ξ * (T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiabe67a4naaCaaabeqaaiaaiQcaaaaabeaakiaaiIcacaWG ubGaaGykaaaa@3CC0@  уже может не быть монотонно возрастающей по T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36CC@ . Более того, ниже будет показано, что данная функция ограничена.

Теорема 1. Пусть функции g n (t,T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaBa aaleaacaWGUbaabeaakiaaiIcacaWG0bGaaGilaiaadsfacaaIPaaa aa@3BF5@  и моменты c n (T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaWGUbaabeaakiaaiIcacaWGubGaaGykaaaa@3A42@  определяются либо формулами (9) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ (10), либо формулами (11) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ (12) (что соответствует рассмотрению вышеперечисленных случаев (1) и (2)) и при этом c N (T)0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaWGobaabeaakiaaiIcacaWGubGaaGykaiabgcMi5kaaicda aaa@3CA3@  для заданного N MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaaaa@36C6@ , T>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiaai6 dacaaIWaaaaa@384E@ . Тогда значение функции (19) при любом фиксированном N MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaaaa@36C6@  будет ограничено, а при T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiabgk ziUkabg6HiLcaa@3A2A@  справедлива следующая оценка:

lim T ρ ξ * (T) i=1 N1 | ξ i | 1 λ i + Q i * Q N * λ N + 1 | Q N * | λ N . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqale aacaWGubGaeyOKH4QaeyOhIukabeGcbaGaciiBaiaacMgacaGGTbaa aiabeg8aYnaaBaaaleaacqaH+oaEdaahaaqabeaacaaIQaaaaaqaba GccaaIOaGaamivaiaaiMcacqGHKjYOdaaeWbqabSqaaiaadMgacaaI 9aGaaGymaaqaaiaad6eacqGHsislcaaIXaaaniabggHiLdGccaaI8b GaeqOVdG3aaSbaaSqaaiaadMgaaeqaaOGaaGiFamaabmaabaWaaSaa aeaacaaIXaaabaGaeq4UdW2aaSbaaSqaaiaadMgaaeqaaaaakiabgU caRmaaemaabaWaaSaaaeaacaWGrbWaa0baaSqaaiaadMgaaeaacaaI QaaaaaGcbaGaamyuamaaDaaaleaacaWGobaabaGaaGOkaaaakiabeU 7aSnaaBaaaleaacaWGobaabeaaaaaakiaawEa7caGLiWoaaiaawIca caGLPaaacqGHRaWkdaWcaaqaaiaaigdaaeaacaaI8bGaamyuamaaDa aaleaacaWGobaabaGaaGOkaaaakiaaiYhacqaH7oaBdaWgaaWcbaGa amOtaaqabaaaaOGaaGOlaaaa@6D2D@  (21)

Доказательство. Для функции (19) справедлива следующая оценка:

ρ ξ i=1 N1 | ξ i | 0 T g i (t)dt+ c i (T) c N (T) 0 T g N (t)dt + 1 | c N (T)| 0 T g N (t)dt, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiabe67a4bqabaGccqGHKjYOdaaeWbqabSqaaiaadMgacaaI 9aGaaGymaaqaaiaad6eacqGHsislcaaIXaaaniabggHiLdGccaaI8b GaeqOVdG3aaSbaaSqaaiaadMgaaeqaaOGaaGiFamaabmaabaWaa8qC aeqaleaacaaIWaaabaGaamivaaqdcqGHRiI8aOGaam4zamaaBaaale aacaWGPbaabeaakiaaiIcacaWG0bGaaGykaiaadsgacaWG0bGaey4k aSYaaqWaaeaadaWcaaqaaiaadogadaWgaaWcbaGaamyAaaqabaGcca aIOaGaamivaiaaiMcaaeaacaWGJbWaaSbaaSqaaiaad6eaaeqaaOGa aGikaiaadsfacaaIPaaaaaGaay5bSlaawIa7amaapehabeWcbaGaaG imaaqaaiaadsfaa0Gaey4kIipakiaadEgadaWgaaWcbaGaamOtaaqa baGccaaIOaGaamiDaiaaiMcacaWGKbGaamiDaaGaayjkaiaawMcaai abgUcaRmaalaaabaGaaGymaaqaaiaaiYhacaWGJbWaaSbaaSqaaiaa d6eaaeqaaOGaaGikaiaadsfacaaIPaGaaGiFaaaadaWdXbqabSqaai aaicdaaeaacaWGubaaniabgUIiYdGccaWGNbWaaSbaaSqaaiaad6ea aeqaaOGaaGikaiaadshacaaIPaGaamizaiaadshacaaISaaaaa@7D0F@  (22)

где учтено, что функции g i (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaBa aaleaacaWGPbaabeaakiaaiIcacaWG0bGaaGykaaaa@3A61@  неотрицательны на интервале (0,T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaic dacaaISaGaamivaiaaiMcaaaa@39A1@ . Используя формулы (9) или (11) и представление функции Миттаг MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Леффлера в виде равномерно и абсолютно сходящегося степенного ряда

E α,β (t)= k=0 t k Γ(αk+β) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacqaHXoqycaaISaGaeqOSdigabeaakiaaiIcacaWG0bGaaGyk aiaai2dadaaeWbqabSqaaiaadUgacaaI9aGaaGimaaqaaiabg6HiLc qdcqGHris5aOWaaSaaaeaacaWG0bWaaWbaaSqabeaacaWGRbaaaaGc baGaeu4KdCKaaGikaiabeg7aHjaadUgacqGHRaWkcqaHYoGycaaIPa aaaaaa@4E4C@  (23)

(см. [9, § 1.8]), можно вычислить интегралы в формуле (22) и получить следующую оценку:

ρ ξ i=1 N1 | ξ i | 1 E α ( λ i T α ) λ i + c i (T) c N (T) 1 E α ( λ N T α ) λ N + 1 | c N (T)| 1 E α ( λ N T α ) λ N . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiabe67a4bqabaGccqGHKjYOdaaeWbqabSqaaiaadMgacaaI 9aGaaGymaaqaaiaad6eacqGHsislcaaIXaaaniabggHiLdGccaaI8b GaeqOVdG3aaSbaaSqaaiaadMgaaeqaaOGaaGiFamaabmaabaWaaSaa aeaacaaIXaGaeyOeI0IaamyramaaBaaaleaacqaHXoqyaeqaaOGaaG ikaiabgkHiTiabeU7aSnaaBaaaleaacaWGPbaabeaakiaadsfadaah aaWcbeqaaiabeg7aHbaakiaaiMcaaeaacqaH7oaBdaWgaaWcbaGaam yAaaqabaaaaOGaey4kaSYaaqWaaeaadaWcaaqaaiaadogadaWgaaWc baGaamyAaaqabaGccaaIOaGaamivaiaaiMcaaeaacaWGJbWaaSbaaS qaaiaad6eaaeqaaOGaaGikaiaadsfacaaIPaaaaaGaay5bSlaawIa7 amaalaaabaGaaGymaiabgkHiTiaadweadaWgaaWcbaGaeqySdegabe aakiaaiIcacqGHsislcqaH7oaBdaWgaaWcbaGaamOtaaqabaGccaWG ubWaaWbaaSqabeaacqaHXoqyaaGccaaIPaaabaGaeq4UdW2aaSbaaS qaaiaad6eaaeqaaaaaaOGaayjkaiaawMcaaiabgUcaRmaalaaabaGa aGymaaqaaiaaiYhacaWGJbWaaSbaaSqaaiaad6eaaeqaaOGaaGikai aadsfacaaIPaGaaGiFaaaadaWcaaqaaiaaigdacqGHsislcaWGfbWa aSbaaSqaaiabeg7aHbqabaGccaaIOaGaeyOeI0Iaeq4UdW2aaSbaaS qaaiaad6eaaeqaaOGaamivamaaCaaaleqabaGaeqySdegaaOGaaGyk aaqaaiabeU7aSnaaBaaaleaacaWGobaabeaaaaGccaaIUaaaaa@8AEE@  (24)

Функции Миттаг MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Леффлера в (24) монотонно убывают с ростом T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36CC@ , стремясь к нулю (см. [9, § 1.8]). Моменты, определяемые формулой (10), также содержат однопараметрические функции Миттаг MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Леффлера, убывающие с ростом T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36CC@ . Моменты, определяемые формулой (12), содержат, кроме того, слагаемые вида φ n 1 T E α,2 ( λ n T α ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdO2aa0 baaSqaaiaad6gaaeaacaaIXaaaaOGaamivaiaadweadaWgaaWcbaGa eqySdeMaaGilaiaaikdaaeqaaOGaaGikaiabgkHiTiabeU7aSnaaBa aaleaacaWGUbaabeaakiaadsfadaahaaWcbeqaaiabeg7aHbaakiaa iMcaaaa@465D@ . Для оценки их поведения можно воспользоваться асимптотикой

E α,β (z)= k=1 p z k Γ(βαk) +O |z | 1p ,z, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacqaHXoqycaaISaGaeqOSdigabeaakiaaiIcacaWG6bGaaGyk aiaai2dacqGHsisldaaeWbqabSqaaiaadUgacaaI9aGaaGymaaqaai aadchaa0GaeyyeIuoakmaalaaabaGaamOEamaaCaaaleqabaGaeyOe I0Iaam4AaaaaaOqaaiabfo5ahjaaiIcacqaHYoGycqGHsislcqaHXo qycaWGRbGaaGykaaaacqGHRaWkcaWGpbWaaeWaaeaacaaI8bGaamOE aiaaiYhadaahaaWcbeqaaiabgkHiTiaaigdacqGHsislcaWGWbaaaa GccaGLOaGaayzkaaGaaGilaiaaywW7caWG6bGaeyOKH4QaeyOeI0Ia eyOhIuQaaGilaaaa@6211@  (25)

где p=[2/α] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiaai2 dacaaIBbGaaGOmaiaai+cacqaHXoqycaaIDbaaaa@3C8F@  (см. [?]. Учитывая, что α>1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaG Opaiaaigdaaaa@3915@  в случае (2), из формулы (25) можно получить следующее соотношение:

T E α,2 ( λ n T α ) k=1 p T 1αk T 0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiaadw eadaWgaaWcbaGaeqySdeMaaGilaiaaikdaaeqaaOGaaGikaiabgkHi TiabeU7aSnaaBaaaleaacaWGUbaabeaakiaadsfadaahaaWcbeqaai abeg7aHbaakiaaiMcarqqr1ngBPrgifHhDYfgaiuaacqWF8iIodaae WbqabSqaaiaadUgacaaI9aGaaGymaaqaaiaadchaa0GaeyyeIuoaki aadsfadaahaaWcbeqaaiaaigdacqGHsislcqaHXoqycaWGRbaaaOWa a4ajaSqaaiaaysW7caWGubGaeyOKH4QaeyOhIuQaaGjbVdqabOGaay PKHaGaaGimaiaai6caaaa@5DCA@  (26)

Тогда из формул (10) и (12) получим, что c i (T) Q i * MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaWGPbaabeaakiaaiIcacaWGubGaaGykaiabgkziUkaadgfa daqhaaWcbaGaamyAaaqaaiaaiQcaaaaaaa@3ECF@  при T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiabgk ziUkabg6HiLcaa@3A2A@ , i=1,,N MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaai2 dacaaIXaGaaGilaiablAciljaaiYcacaWGobaaaa@3BC4@ . Подставляя полученные оценки в формулу (24), получим оценку (21).

Кроме того, из формулы (24) с учётом выражений (10) и (12) следует, что при фиксированном T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36CC@ , 0<T< MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY dacaWGubGaaGipaiabg6HiLcaa@3A83@ , выражение в правой части формулы (24) определено и ограничено сверху. Теорема доказана.

Теорема 2. Пусть функции g n (t,T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaBa aaleaacaWGUbaabeaakiaaiIcacaWG0bGaaGilaiaadsfacaaIPaaa aa@3BF5@  и моменты c n (T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaWGUbaabeaakiaaiIcacaWGubGaaGykaaaa@3A42@  определяются формулами (13) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ (14) (что соответствует рассмотрению вышеописанного случая (3)) и при этом c N (T)0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaWGobaabeaakiaaiIcacaWGubGaaGykaiabgcMi5kaaicda aaa@3CA3@  для заданного N MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaaaa@36C6@ , T>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiaai6 dacaaIWaaaaa@384E@ . Тогда значение функции (19) при любом фиксированном N MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaaaa@36C6@  будет ограничено, а при T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiabgk ziUkabg6HiLcaa@3A2A@  будет справедлива следующая оценка:

lim T ρ ξ * (T)r(T),r(T) T 0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqale aacaWGubGaeyOKH4QaeyOhIukabeGcbaGaciiBaiaacMgacaGGTbaa aiabeg8aYnaaBaaaleaacqaH+oaEdaahaaqabeaacaaIQaaaaaqaba GccaaIOaGaamivaiaaiMcacqGHKjYOcaWGYbGaaGikaiaadsfacaaI PaGaaGilaiaaywW7caWGYbGaaGikaiaadsfacaaIPaWaa4ajaSqaai aadsfacqGHsgIRcqGHEisPaeqakiaawkziaiaaicdacaaIUaaaaa@55EF@  (27)

Доказательство. Воспользуемся, как и выше, оценкой (22), обозначив правую часть этой формулы r(T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaaiI cacaWGubGaaGykaaaa@3928@ , и вычислим присутствующие в ней интегралы с учётом формулы (13). Для этого воспользуемся представлением (23) и, проведя необходимые вычисления, получим:

r(T)= T α1 i=1 N1 | ξ i | E α,α ( λ i T α )+ c i (T) c N (T) E α,α ( λ N T α ) + T α1 | c N (T)| E α,α ( λ N T α ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaaiI cacaWGubGaaGykaiaai2dacaWGubWaaWbaaSqabeaacqaHXoqycqGH sislcaaIXaaaaOWaaabCaeqaleaacaWGPbGaaGypaiaaigdaaeaaca WGobGaeyOeI0IaaGymaaqdcqGHris5aOGaaGiFaiabe67a4naaBaaa leaacaWGPbaabeaakiaaiYhadaqadaqaaiaadweadaWgaaWcbaGaeq ySdeMaaGilaiabeg7aHbqabaGccaaIOaGaeyOeI0Iaeq4UdW2aaSba aSqaaiaadMgaaeqaaOGaamivamaaCaaaleqabaGaeqySdegaaOGaaG ykaiabgUcaRmaaemaabaWaaSaaaeaacaWGJbWaaSbaaSqaaiaadMga aeqaaOGaaGikaiaadsfacaaIPaaabaGaam4yamaaBaaaleaacaWGob aabeaakiaaiIcacaWGubGaaGykaaaaaiaawEa7caGLiWoacaWGfbWa aSbaaSqaaiabeg7aHjaaiYcacqaHXoqyaeqaaOGaaGikaiabgkHiTi abeU7aSnaaBaaaleaacaWGobaabeaakiaadsfadaahaaWcbeqaaiab eg7aHbaakiaaiMcaaiaawIcacaGLPaaacqGHRaWkdaWcaaqaaiaads fadaahaaWcbeqaaiabeg7aHjabgkHiTiaaigdaaaaakeaacaaI8bGa am4yamaaBaaaleaacaWGobaabeaakiaaiIcacaWGubGaaGykaiaaiY haaaGaamyramaaBaaaleaacqaHXoqycaaISaGaeqySdegabeaakiaa iIcacqGHsislcqaH7oaBdaWgaaWcbaGaamOtaaqabaGccaWGubWaaW baaSqabeaacqaHXoqyaaGccaaIPaGaaGOlaaaa@8AF4@  (28)

Каждое из слагаемых в полученном выражении (с учётом выражений (14)) определено и ограничено сверху при любом фиксированном положительном значении T< MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiaaiY dacqGHEisPaaa@3903@ . Воспользовавшись асимптотикой (25), можно показать, что при T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiabgk ziUkabg6HiLcaa@3A2A@  каждое из слагаемых в формуле (28) стремится к нулю. Теорема доказана.

Теорема 3. Пусть функции g n (t,T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaBa aaleaacaWGUbaabeaakiaaiIcacaWG0bGaaGilaiaadsfacaaIPaaa aa@3BF5@  и моменты c n (T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaWGUbaabeaakiaaiIcacaWGubGaaGykaaaa@3A42@  определяются формулами (15) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ (16) (что соответствует рассмотрению вышеописанного случая (4)) и при этом c N (T)0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaWGobaabeaakiaaiIcacaWGubGaaGykaiabgcMi5kaaicda aaa@3CA3@  для заданного N MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaaaa@36C6@ , T>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiaai6 dacaaIWaaaaa@384E@ . Тогда значение функции (19) при любом фиксированном N MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaaaa@36C6@  будет ограничено, а при T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiabgk ziUkabg6HiLcaa@3A2A@  будет справедлива следующая оценка:

lim T ρ ξ * (T) i=1 N/2 | ξ 2i1 | λ 2i1 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqale aacaWGubGaeyOKH4QaeyOhIukabeGcbaGaciiBaiaacMgacaGGTbaa aiabeg8aYnaaBaaaleaacqaH+oaEdaahaaqabeaacaaIQaaaaaqaba GccaaIOaGaamivaiaaiMcacqGHKjYOdaaeWbqabSqaaiaadMgacaaI 9aGaaGymaaqaaiaad6eacaaIVaGaaGOmaaqdcqGHris5aOWaaSaaae aacaaI8bGaeqOVdG3aaSbaaSqaaiaaikdacaWGPbGaeyOeI0IaaGym aaqabaGccaaI8baabaGaeq4UdW2aaSbaaSqaaiaaikdacaWGPbGaey OeI0IaaGymaaqabaaaaOGaaGOlaaaa@5A60@  (29)

Доказательство. Аналогично доказательствам теорем 1 и 2 используем оценку (22). Примем во внимание, что в данном случае количество моментов и функций g i (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaBa aaleaacaWGPbaabeaakiaaiIcacaWG0bGaaGykaaaa@3A61@  и, соответственно, число N MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaaaa@36C6@  чётное (что обусловлено двумя условиями, определяющими желаемое состояние). Поэтому перепишем формулу (22)в виде

ρ ξ i=1 N/2 | ξ 2i1 | 0 T g 2i1 (t)dt+ c 2i1 (T) c N (T) 0 T g N (t)dt + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiabe67a4bqabaGccqGHKjYOdaaeWbqabSqaaiaadMgacaaI 9aGaaGymaaqaaiaad6eacaaIVaGaaGOmaaqdcqGHris5aOGaaGiFai abe67a4naaBaaaleaacaaIYaGaamyAaiabgkHiTiaaigdaaeqaaOGa aGiFamaabmaabaWaa8qCaeqaleaacaaIWaaabaGaamivaaqdcqGHRi I8aOGaam4zamaaBaaaleaacaaIYaGaamyAaiabgkHiTiaaigdaaeqa aOGaaGikaiaadshacaaIPaGaamizaiaadshacqGHRaWkdaabdaqaam aalaaabaGaam4yamaaBaaaleaacaaIYaGaamyAaiabgkHiTiaaigda aeqaaOGaaGikaiaadsfacaaIPaaabaGaam4yamaaBaaaleaacaWGob aabeaakiaaiIcacaWGubGaaGykaaaaaiaawEa7caGLiWoadaWdXbqa bSqaaiaaicdaaeaacaWGubaaniabgUIiYdGccaWGNbWaaSbaaSqaai aad6eaaeqaaOGaaGikaiaadshacaaIPaGaamizaiaadshaaiaawIca caGLPaaacqGHRaWkaaa@7210@

+ i=1 N/21 | ξ 2i | 0 T g 2i (t)dt+ c 2i (T) c N (T) 0 T g N (t)dt + 1 | c N (T)| 0 T g N (t)dt. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaaa bCaeqaleaacaWGPbGaaGypaiaaigdaaeaacaWGobGaaG4laiaaikda cqGHsislcaaIXaaaniabggHiLdGccaaI8bGaeqOVdG3aaSbaaSqaai aaikdacaWGPbaabeaakiaaiYhadaqadaqaamaapehabeWcbaGaaGim aaqaaiaadsfaa0Gaey4kIipakiaadEgadaWgaaWcbaGaaGOmaiaadM gaaeqaaOGaaGikaiaadshacaaIPaGaamizaiaadshacqGHRaWkdaab daqaamaalaaabaGaam4yamaaBaaaleaacaaIYaGaamyAaaqabaGcca aIOaGaamivaiaaiMcaaeaacaWGJbWaaSbaaSqaaiaad6eaaeqaaOGa aGikaiaadsfacaaIPaaaaaGaay5bSlaawIa7amaapehabeWcbaGaaG imaaqaaiaadsfaa0Gaey4kIipakiaadEgadaWgaaWcbaGaamOtaaqa baGccaaIOaGaamiDaiaaiMcacaWGKbGaamiDaaGaayjkaiaawMcaai abgUcaRmaalaaabaGaaGymaaqaaiaaiYhacaWGJbWaaSbaaSqaaiaa d6eaaeqaaOGaaGikaiaadsfacaaIPaGaaGiFaaaadaWdXbqabSqaai aaicdaaeaacaWGubaaniabgUIiYdGccaWGNbWaaSbaaSqaaiaad6ea aeqaaOGaaGikaiaadshacaaIPaGaamizaiaadshacaaIUaaaaa@7C2E@  (30)

Пользуясь формулами (15) и представлением (23), проведём, как и выше, вычисления интегралов в формуле (30). В результате будем иметь:

ρ ξ i=1 N/2 | ξ 2i1 | 1 E α ( λ 2i1 T α ) λ 2i1 + c 2i1 (T) c N (T) T α1 E α,α ( λ N T α ) + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiabe67a4bqabaGccqGHKjYOdaaeWbqabSqaaiaadMgacaaI 9aGaaGymaaqaaiaad6eacaaIVaGaaGOmaaqdcqGHris5aOGaaGiFai abe67a4naaBaaaleaacaaIYaGaamyAaiabgkHiTiaaigdaaeqaaOGa aGiFamaabmaabaWaaSaaaeaacaaIXaGaeyOeI0IaamyramaaBaaale aacqaHXoqyaeqaaOGaaGikaiabgkHiTiabeU7aSnaaBaaaleaacaaI YaGaamyAaiabgkHiTiaaigdaaeqaaOGaamivamaaCaaaleqabaGaeq ySdegaaOGaaGykaaqaaiabeU7aSnaaBaaaleaacaaIYaGaamyAaiab gkHiTiaaigdaaeqaaaaakiabgUcaRmaaemaabaWaaSaaaeaacaWGJb WaaSbaaSqaaiaaikdacaWGPbGaeyOeI0IaaGymaaqabaGccaaIOaGa amivaiaaiMcaaeaacaWGJbWaaSbaaSqaaiaad6eaaeqaaOGaaGikai aadsfacaaIPaaaaaGaay5bSlaawIa7aiaadsfadaahaaWcbeqaaiab eg7aHjabgkHiTiaaigdaaaGccaWGfbWaaSbaaSqaaiabeg7aHjaaiY cacqaHXoqyaeqaaOGaaGikaiabgkHiTiabeU7aSnaaBaaaleaacaWG obaabeaakiaadsfadaahaaWcbeqaaiabeg7aHbaakiaaiMcaaiaawI cacaGLPaaacqGHRaWkaaa@7FF2@

+ T α1 i=1 N/21 | ξ 2i | E α,α ( λ 2i T α )+ c 2i (T) c N (T) E α,α ( λ N T α ) + T α1 | c N (T)| E α,α ( λ N T α ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSIaam ivamaaCaaaleqabaGaeqySdeMaeyOeI0IaaGymaaaakmaaqahabeWc baGaamyAaiaai2dacaaIXaaabaGaamOtaiaai+cacaaIYaGaeyOeI0 IaaGymaaqdcqGHris5aOGaaGiFaiabe67a4naaBaaaleaacaaIYaGa amyAaaqabaGccaaI8bWaaeWaaeaacaWGfbWaaSbaaSqaaiabeg7aHj aaiYcacqaHXoqyaeqaaOGaaGikaiabgkHiTiabeU7aSnaaBaaaleaa caaIYaGaamyAaaqabaGccaWGubWaaWbaaSqabeaacqaHXoqyaaGcca aIPaGaey4kaSYaaqWaaeaadaWcaaqaaiaadogadaWgaaWcbaGaaGOm aiaadMgaaeqaaOGaaGikaiaadsfacaaIPaaabaGaam4yamaaBaaale aacaWGobaabeaakiaaiIcacaWGubGaaGykaaaaaiaawEa7caGLiWoa caWGfbWaaSbaaSqaaiabeg7aHjaaiYcacqaHXoqyaeqaaOGaaGikai abgkHiTiabeU7aSnaaBaaaleaacaWGobaabeaakiaadsfadaahaaWc beqaaiabeg7aHbaakiaaiMcaaiaawIcacaGLPaaacqGHRaWkdaWcaa qaaiaadsfadaahaaWcbeqaaiabeg7aHjabgkHiTiaaigdaaaaakeaa caaI8bGaam4yamaaBaaaleaacaWGobaabeaakiaaiIcacaWGubGaaG ykaiaaiYhaaaGaamyramaaBaaaleaacqaHXoqycaaISaGaeqySdega beaakiaaiIcacqGHsislcqaH7oaBdaWgaaWcbaGaamOtaaqabaGcca WGubWaaWbaaSqabeaacqaHXoqyaaGccaaIPaGaaGOlaaaa@8B83@  (31)

Все слагаемые, входящие в правую часть неравенства (31) (с учётом формул (16)) при конечном положительном T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36CC@  и α(1,2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey icI4SaaGikaiaaigdacaaISaGaaGOmaiaaiMcaaaa@3CA8@  определены и ограничены. При T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiabgk ziUkabg6HiLcaa@3A2A@ , пользуясь асимптотикой (25), можно, по аналогии с доказательствами теорем 1 и 2, убедиться, что последнее слагаемое и вторая сумма в формуле (31) сходятся к нулю, а первая сумма даст оценку (29). Теорема доказана.

Следствие. Из доказанных выше теорем 1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ 3 следует, что величина ρ ξ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiabe67a4bqabaaaaa@39A2@  не увеличивается монотонно с ростом T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36CC@ , а ограничена сверху на интервале (0,T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaic dacaaISaGaamivaiaaiMcaaaa@39A1@  при любом конечном T>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiaai6 dacaaIWaaaaa@384E@  и при T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiabgk ziUkabg6HiLcaa@3A2A@ . Поэтому всегда можно указать такое число l>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaiaai6 dacaaIWaaaaa@3866@ , что неравенство (20) не будет выполнено. Следовательно, в этом случае задача Б не будет иметь решения, в то время как задача А будет иметь решение.

5. Заключение. В работе рассмотрено использование метода моментов для исследования задач оптимального граничного управления системами дробного порядка с распределёнными параметрами, поведение которых описывается диффузионно MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ волновым уравнением. Проанализировано несколько способов задания желаемого состояния и получены оценки на величину функционала, обратно пропорционального норме оптимального управления. Показано, что ограниченность данного функционала может приводить к ситуациям, когда задача поиска управления с минимальной нормой разрешима, а задача построения управления с максимальным быстродействием при заданном ограничении на норму управления не разрешима в силу невозможности выполнить упомянутое ограничение. Это отличает рассмотренные системы дробного порядка от их аналогов, описываемых обычным уравнением диффузии или волновым уравнением (см. [1]).

×

Об авторах

Сергей Сергеевич Постнов

Институт проблем управления им. В. А. Трапезникова РАН

Автор, ответственный за переписку.
Email: postnov.sergey@inbox.ru
Россия, Москва

Список литературы

  1. Бутковский А. Г. Теория оптимального управления системами с распределенными параметрами. —М.: Наука, 1965.
  2. Герасимов А. Н. Обобщение линейных законов деформирования и его применение к задачам внутреннего трения// Прикл. мат. мех. — 1948. — 12,, № 3. — С. 251–260.
  3. Джрбашян М. М., Нерсесян А. Б. Дробные производные и задача Коши для дифференциальных уравнений дробного порядка// Изв. АН АрмССР. Мат. — 1968. — 3, № 1. — С. 3–29.
  4. Кубышкин В. А., Постнов С. C. Оптимальное по быстродействию граничное управление для систем,тописываемых уравнением диффузии дробного порядка// Автомат. телемех. — 2018. — № 5. — С. 137–152.
  5. Постнов С. C. Оптимальное управление для систем, моделируемых диффузионно-волновым уравнением// Владикавказ. мат. ж. — 2022. — 24, № 3. — С. 108–119.
  6. Azamov A. A., Bakhramov J. A., Akhmedov O. S. On the Chernous’ko time-optimal problem for the equation of heat conductivity in a rod// Ural Math. J. — 2019. — 5, № 1. — P. 13-–23.
  7. Caputo M. Linear models of dissipation whose Q is almost frequency independent, II// Geophys. J. Roy. Astron. Soc. — 1967. — 13. — P. 529–539.
  8. Gorenflo R., Kilbas A. A., Mainardi F. et al. Mittag–Leffler Functions, Related Topics and Applications. — Berlin: Springer, 2014.
  9. Kilbas A. A., Srivastava H. M., Trujillo J. J. Theory and Applications of Fractional Differential Equations. — Amsterdam: Elsevier, 2006.
  10. Mophou G. M. Optimal control of fractional diffusion equation// Comp. Math. Appl. — 2010. — 61, № 1.— P. 68–78.
  11. Postnov S. Optimal damping problem with additional terminal state condition in diffusion-wave processes//Proc. 2 Int. Conf. on Control Systems,MathematicalModeling, Automation and Energy Efficiency.—IEEE, 2021. — P. 1–5.
  12. Postnov S. Optimal damping problem for diffusion-wave equation// in: Stability and Control Processes (Smirnov N., Golovkina A., eds.). — Cham: Springer, 2022. — P. 127–135.
  13. Tang Q., Ma Q. Variational formulation and optimal control of fractional diffusion equations with Caputo derivatives// Adv. Differ. Equations. — 2015. — 2015. — 283.
  14. Zhou Z., Gong W. Finite element approximation of optimal control problems governed by time fractional diffusion equation// Comp. Math. Appl. — 2016. — 71, № 1. — P. 301–318.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Постнов С.С., 2023

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).