К вопросу о локальном расширении группы параллельных переносов четырехмерного пространства

Обложка

Цитировать

Полный текст

Аннотация

Задача о нахождении всех локально ограниченно точно дважды транзитивных расширений группы параллельных переносов четырёхмерного пространства сведена к вычислению алгебр Ли локально ограниченно точно дважды транзитивных расширений группы параллельных переносов. Найдены некоторые локально ограниченно точно дважды транзитивные группы Ли преобразований с разложимой алгеброй Ли. 

Полный текст

1.  Введение. В работе В. В. Горбацевича [3] приводится определение расширения транзитивной группы Ли G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raaaa@36BF@ , действующей в многообразии M MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaaaa@36C5@ : расширением транзитивной группы Ли G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raaaa@36BF@  называется группа Ли G 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaaIXaaabeaaaaa@37A6@ , содержащая G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raaaa@36BF@  в виде подгруппы Ли и также транзитивная на M MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaaaa@36C5@ , причем ограничение этого транзитивного действия на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raaaa@36BF@  дает исходное транзитивное действие группы Ли G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raaaa@36BF@ . Примером расширения группы параллельных переносов пространства R 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaCa aaleqabaGaaG4maaaaaaa@37B4@  является группа аффинных преобразований этого пространства.

Согласно [6, 10] можно говорить, что локально точно транзитивная группа Ли преобразований пространства R 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaCa aaleqabaGaaGinaaaaaaa@37B5@  задает феноменологически симметричную геометрию двух множеств ранга (2,2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaik dacaaISaGaaGOmaiaaiMcaaaa@3986@ , а локально ограниченно точно дважды транзитивная группа Ли преобразований пространства R 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaCa aaleqabaGaaGinaaaaaaa@37B5@  задает феноменологически симметричную геометрию двух множеств ранга (3,2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaio dacaaISaGaaGOmaiaaiMcaaaa@3987@ . Отметим, что первым множеством является пространство R 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaCa aaleqabaGaaGinaaaaaaa@37B5@ , а вторым множеством является транзитивно действующая группа Ли G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raaaa@36BF@

В данной работе ставится задача о нахождении всех локальных ограниченно точно дважды транзитивных расширений группы параллельных переносов пространства R 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaCa aaleqabaGaaGinaaaaaaa@37B5@ . Результаты исследований изложены в [7, 9] на примере классификации локальных ограниченно точно дважды транзитивных расширений группы параллельных переносов плоскости R 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaCa aaleqabaGaaGOmaaaaaaa@37B3@ , а также в [5, 8] на примере классификации локальных ограниченно точно дважды транзитивных расширений группы параллельных переносов прострнаства R 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaCa aaleqabaGaaG4maaaaaaa@37B4@ .

2.  Основные определения. Следуя [1, 6], определим локальное действие класса C 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCa aaleqabaGaaGOmaaaaaaa@37A4@  группы Ли G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raaaa@36BF@ , dimG=n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciizaiaacM gacaGGTbGaam4raiaai2dacaWGUbaaaa@3B41@ , в пространстве R 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaCa aaleqabaGaaGinaaaaaaa@37B5@ .

Определение 1 Дифференцируемое отображение π: R 4 ×G R 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaaG OoaiaadkfadaahaaWcbeqaaiaaisdaaaGccqGHxdaTcaWGhbGaeyOK H4QaamOuamaaCaaaleqabaGaaGinaaaaaaa@40D2@  класса C 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCa aaleqabaGaaGOmaaaaaaa@37A4@  называется эффективным локальным действием, если выполняются следующие свойства:

  1. π(a,e)=a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaaG ikaiaadggacaaISaGaamyzaiaaiMcacaaI9aGaamyyaaaa@3D48@  для всех aW MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgI GiolaadEfaaaa@3939@ , где W MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaaaa@36CF@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  область в R 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaCa aaleqabaGaaGinaaaaaaa@37B5@ , eG MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzaiabgI GiolaadEeaaaa@392D@  " MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@ единица;
  2. π(π(a, h 1 ), h 2 )=π(a, h 1 h 2 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaaG ikaiabec8aWjaaiIcacaWGHbGaaGilaiaadIgadaWgaaWcbaGaaGym aaqabaGccaaIPaGaaGilaiaadIgadaWgaaWcbaGaaGOmaaqabaGcca aIPaGaaGypaiabec8aWjaaiIcacaWGHbGaaGilaiaadIgadaWgaaWc baGaaGymaaqabaGccaWGObWaaSbaaSqaaiaaikdaaeqaaOGaaGykaa aa@4B88@  для всех aW MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgI GiolaadEfaaaa@3939@ , где h 1 , h 2 G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAamaaBa aaleaacaaIXaaabeaakiaaiYcacaWGObWaaSbaaSqaaiaaikdaaeqa aOGaeyicI4Saam4raaaa@3CB6@ ;
  3. π(a,h)=a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaaG ikaiaadggacaaISaGaamiAaiaaiMcacaaI9aGaamyyaaaa@3D4B@  для всех aW MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgI GiolaadEfaaaa@3939@ , где hG MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiabgI GiolaadEeaaaa@3930@ , тогда и только тогда, когда h=e MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiaai2 dacaWGLbaaaa@3891@ ;
  4. π h : R 4 R 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS baaSqaaiaadIgaaeqaaOGaaGOoaiaadkfadaahaaWcbeqaaiaaisda aaGccqGHsgIRcaWGsbWaaWbaaSqabeaacaaI0aaaaaaa@3F12@  " MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@ локальный диффеоморфизм для всякого hG MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiabgI GiolaadEeaaaa@3930@ .

Тройка ( R 4 ,G,π) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadk fadaahaaWcbeqaaiaaisdaaaGccaaISaGaam4raiaaiYcacqaHapaC caaIPaaaaa@3D19@  называется локальной группой Ли преобразований многообразия R 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaCa aaleqabaGaaGinaaaaaaa@37B5@ .

Обозначим через L MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaaaa@36C4@  алгебру Ли данной группы преобразований. Базис этой алгебры Ли состоит из операторов

Z i = Z i 1 x + Z i 2 y + Z i 3 z + Z i 4 w ,i=1,,n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwamaaBa aaleaacaWGPbaabeaakiaai2dacaWGAbWaa0baaSqaaiaadMgaaeaa caaIXaaaaOGaeyOaIy7aaSbaaSqaaiaadIhaaeqaaOGaey4kaSIaam OwamaaDaaaleaacaWGPbaabaGaaGOmaaaakiabgkGi2oaaBaaaleaa caWG5baabeaakiabgUcaRiaadQfadaqhaaWcbaGaamyAaaqaaiaaio daaaGccqGHciITdaWgaaWcbaGaamOEaaqabaGccqGHRaWkcaWGAbWa a0baaSqaaiaadMgaaeaacaaI0aaaaOGaeyOaIy7aaSbaaSqaaiaadE haaeqaaOGaaGilaiaaywW7caWGPbGaaGypaiaaigdacaaISaGaeSOj GSKaaGilaiaad6gaaaa@5900@  (2.1)

Определение 2 Эффективное локальное действие π: R 4 ×G R 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaaG OoaiaadkfadaahaaWcbeqaaiaaisdaaaGccqGHxdaTcaWGhbGaeyOK H4QaamOuamaaCaaaleqabaGaaGinaaaaaaa@40D2@  называется локально ограниченно точно дважды транзитивным, если дополнительно выполняются следующие свойства:

  1.   1. n=8 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaai2 dacaaI4aaaaa@386F@
  2.   матрица

V= Z 1 1 (a) Z 1 2 (a) Z 1 3 (a) Z 1 4 (a) Z 1 1 (b) Z 1 2 (b) Z 1 3 (b) Z 1 4 (b) Z 2 1 (a) Z 2 2 (a) Z 2 3 (a) Z 2 4 (a) Z 2 1 (b) Z 2 2 (b) Z 2 3 (b) Z 2 4 (b) Z 3 1 (a) Z 3 2 (a) Z 3 3 (a) Z 3 4 (a) Z 3 1 (b) Z 3 2 (b) Z 3 3 (b) Z 1 4 (b) Z 4 1 (a) Z 4 2 (a) Z 4 3 (a) Z 4 4 (a) Z 4 1 (b) Z 4 2 (b) Z 4 3 (b) Z 4 4 (b) Z 5 1 (a) Z 5 2 (a) Z 5 3 (a) Z 5 4 (a) Z 5 1 (b) Z 5 2 (b) Z 5 3 (b) Z 5 4 (b) Z 6 1 (a) Z 6 2 (a) Z 6 3 (a) Z 6 4 (a) Z 6 1 (b) Z 6 2 (b) Z 6 3 (b) Z 6 4 (b) Z 7 1 (a) Z 7 2 (a) Z 7 3 (a) Z 7 4 (a) Z 7 1 (b) Z 7 2 (b) Z 7 3 (b) Z 7 4 (b) Z 8 1 (a) Z 8 2 (a) Z 8 3 (a) Z 8 4 (a) Z 8 1 (b) Z 8 2 (b) Z 8 3 (b) Z 8 4 (b) , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvaiaai2 dadaqadaqaauaabeqajGaaaaaaaaqaaiaadQfadaqhaaWcbaGaaGym aaqaaiaaigdaaaGccaaIOaGaamyyaiaaiMcaaeaacaWGAbWaa0baaS qaaiaaigdaaeaacaaIYaaaaOGaaGikaiaadggacaaIPaaabaGaamOw amaaDaaaleaacaaIXaaabaGaaG4maaaakiaaiIcacaWGHbGaaGykaa qaaiaadQfadaqhaaWcbaGaaGymaaqaaiaaisdaaaGccaaIOaGaamyy aiaaiMcaaeaacaWGAbWaa0baaSqaaiaaigdaaeaacaaIXaaaaOGaaG ikaiaadkgacaaIPaaabaGaamOwamaaDaaaleaacaaIXaaabaGaaGOm aaaakiaaiIcacaWGIbGaaGykaaqaaiaadQfadaqhaaWcbaGaaGymaa qaaiaaiodaaaGccaaIOaGaamOyaiaaiMcaaeaacaWGAbWaa0baaSqa aiaaigdaaeaacaaI0aaaaOGaaGikaiaadkgacaaIPaaabaGaamOwam aaDaaaleaacaaIYaaabaGaaGymaaaakiaaiIcacaWGHbGaaGykaaqa aiaadQfadaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccaaIOaGaamyyai aaiMcaaeaacaWGAbWaa0baaSqaaiaaikdaaeaacaaIZaaaaOGaaGik aiaadggacaaIPaaabaGaamOwamaaDaaaleaacaaIYaaabaGaaGinaa aakiaaiIcacaWGHbGaaGykaaqaaiaadQfadaqhaaWcbaGaaGOmaaqa aiaaigdaaaGccaaIOaGaamOyaiaaiMcaaeaacaWGAbWaa0baaSqaai aaikdaaeaacaaIYaaaaOGaaGikaiaadkgacaaIPaaabaGaamOwamaa DaaaleaacaaIYaaabaGaaG4maaaakiaaiIcacaWGIbGaaGykaaqaai aadQfadaqhaaWcbaGaaGOmaaqaaiaaisdaaaGccaaIOaGaamOyaiaa iMcaaeaacaWGAbWaa0baaSqaaiaaiodaaeaacaaIXaaaaOGaaGikai aadggacaaIPaaabaGaamOwamaaDaaaleaacaaIZaaabaGaaGOmaaaa kiaaiIcacaWGHbGaaGykaaqaaiaadQfadaqhaaWcbaGaaG4maaqaai aaiodaaaGccaaIOaGaamyyaiaaiMcaaeaacaWGAbWaa0baaSqaaiaa iodaaeaacaaI0aaaaOGaaGikaiaadggacaaIPaaabaGaamOwamaaDa aaleaacaaIZaaabaGaaGymaaaakiaaiIcacaWGIbGaaGykaaqaaiaa dQfadaqhaaWcbaGaaG4maaqaaiaaikdaaaGccaaIOaGaamOyaiaaiM caaeaacaWGAbWaa0baaSqaaiaaiodaaeaacaaIZaaaaOGaaGikaiaa dkgacaaIPaaabaGaamOwamaaDaaaleaacaaIXaaabaGaaGinaaaaki aaiIcacaWGIbGaaGykaaqaaiaadQfadaqhaaWcbaGaaGinaaqaaiaa igdaaaGccaaIOaGaamyyaiaaiMcaaeaacaWGAbWaa0baaSqaaiaais daaeaacaaIYaaaaOGaaGikaiaadggacaaIPaaabaGaamOwamaaDaaa leaacaaI0aaabaGaaG4maaaakiaaiIcacaWGHbGaaGykaaqaaiaadQ fadaqhaaWcbaGaaGinaaqaaiaaisdaaaGccaaIOaGaamyyaiaaiMca aeaacaWGAbWaa0baaSqaaiaaisdaaeaacaaIXaaaaOGaaGikaiaadk gacaaIPaaabaGaamOwamaaDaaaleaacaaI0aaabaGaaGOmaaaakiaa iIcacaWGIbGaaGykaaqaaiaadQfadaqhaaWcbaGaaGinaaqaaiaaio daaaGccaaIOaGaamOyaiaaiMcaaeaacaWGAbWaa0baaSqaaiaaisda aeaacaaI0aaaaOGaaGikaiaadkgacaaIPaaabaGaamOwamaaDaaale aacaaI1aaabaGaaGymaaaakiaaiIcacaWGHbGaaGykaaqaaiaadQfa daqhaaWcbaGaaGynaaqaaiaaikdaaaGccaaIOaGaamyyaiaaiMcaae aacaWGAbWaa0baaSqaaiaaiwdaaeaacaaIZaaaaOGaaGikaiaadgga caaIPaaabaGaamOwamaaDaaaleaacaaI1aaabaGaaGinaaaakiaaiI cacaWGHbGaaGykaaqaaiaadQfadaqhaaWcbaGaaGynaaqaaiaaigda aaGccaaIOaGaamOyaiaaiMcaaeaacaWGAbWaa0baaSqaaiaaiwdaae aacaaIYaaaaOGaaGikaiaadkgacaaIPaaabaGaamOwamaaDaaaleaa caaI1aaabaGaaG4maaaakiaaiIcacaWGIbGaaGykaaqaaiaadQfada qhaaWcbaGaaGynaaqaaiaaisdaaaGccaaIOaGaamOyaiaaiMcaaeaa caWGAbWaa0baaSqaaiaaiAdaaeaacaaIXaaaaOGaaGikaiaadggaca aIPaaabaGaamOwamaaDaaaleaacaaI2aaabaGaaGOmaaaakiaaiIca caWGHbGaaGykaaqaaiaadQfadaqhaaWcbaGaaGOnaaqaaiaaiodaaa GccaaIOaGaamyyaiaaiMcaaeaacaWGAbWaa0baaSqaaiaaiAdaaeaa caaI0aaaaOGaaGikaiaadggacaaIPaaabaGaamOwamaaDaaaleaaca aI2aaabaGaaGymaaaakiaaiIcacaWGIbGaaGykaaqaaiaadQfadaqh aaWcbaGaaGOnaaqaaiaaikdaaaGccaaIOaGaamOyaiaaiMcaaeaaca WGAbWaa0baaSqaaiaaiAdaaeaacaaIZaaaaOGaaGikaiaadkgacaaI PaaabaGaamOwamaaDaaaleaacaaI2aaabaGaaGinaaaakiaaiIcaca WGIbGaaGykaaqaaiaadQfadaqhaaWcbaGaaG4naaqaaiaaigdaaaGc caaIOaGaamyyaiaaiMcaaeaacaWGAbWaa0baaSqaaiaaiEdaaeaaca aIYaaaaOGaaGikaiaadggacaaIPaaabaGaamOwamaaDaaaleaacaaI 3aaabaGaaG4maaaakiaaiIcacaWGHbGaaGykaaqaaiaadQfadaqhaa WcbaGaaG4naaqaaiaaisdaaaGccaaIOaGaamyyaiaaiMcaaeaacaWG AbWaa0baaSqaaiaaiEdaaeaacaaIXaaaaOGaaGikaiaadkgacaaIPa aabaGaamOwamaaDaaaleaacaaI3aaabaGaaGOmaaaakiaaiIcacaWG IbGaaGykaaqaaiaadQfadaqhaaWcbaGaaG4naaqaaiaaiodaaaGcca aIOaGaamOyaiaaiMcaaeaacaWGAbWaa0baaSqaaiaaiEdaaeaacaaI 0aaaaOGaaGikaiaadkgacaaIPaaabaGaamOwamaaDaaaleaacaaI4a aabaGaaGymaaaakiaaiIcacaWGHbGaaGykaaqaaiaadQfadaqhaaWc baGaaGioaaqaaiaaikdaaaGccaaIOaGaamyyaiaaiMcaaeaacaWGAb Waa0baaSqaaiaaiIdaaeaacaaIZaaaaOGaaGikaiaadggacaaIPaaa baGaamOwamaaDaaaleaacaaI4aaabaGaaGinaaaakiaaiIcacaWGHb GaaGykaaqaaiaadQfadaqhaaWcbaGaaGioaaqaaiaaigdaaaGccaaI OaGaamOyaiaaiMcaaeaacaWGAbWaa0baaSqaaiaaiIdaaeaacaaIYa aaaOGaaGikaiaadkgacaaIPaaabaGaamOwamaaDaaaleaacaaI4aaa baGaaG4maaaakiaaiIcacaWGIbGaaGykaaqaaiaadQfadaqhaaWcba GaaGioaaqaaiaaisdaaaGccaaIOaGaamOyaiaaiMcaaeaaaeaaaeaa aeaaaeaaaeaaaeaaaeaaaaaacaGLOaGaayzkaaGaaGilaaaa@7153@  (2.2)

составленная из коэффициентов операторовЁ(0.2.1)б невырождена для любых точек некоторых окрестностей U( a ),U( b )W MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvaiaaiI caceWGHbGbauaacaaIPaGaaGilaiaadwfacaaIOaGabmOyayaafaGa aGykaiabgkOimlaadEfaaaa@3FE4@ .

Свойства (v) и (vi) равносильны тому, что действие π×π MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaey 41aqRaeqiWdahaaa@3B84@  в R 4 × R 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaCa aaleqabaGaaGinaaaakiabgEna0kaadkfadaahaaWcbeqaaiaaisda aaaaaa@3B98@  локально точно транзитивно.

Определение 3 Будем говорить, что локально ограниченно точно дважды транзитивное действие π: R 4 ×G R 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaaG OoaiaadkfadaahaaWcbeqaaiaaisdaaaGccqGHxdaTcaWGhbGaeyOK H4QaamOuamaaCaaaleqabaGaaGinaaaaaaa@40D2@  является локальным расширением группы параллельных переносов, если базис его алгебры Ли L MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaaaa@36C4@  состоит из операторов

X 1 = x , X 2 = y , X 3 = z , X 4 = w , Y i = A i x + B i y + C i z + D i w , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIXaaabeaakiaai2dacqGHciITdaWgaaWcbaGaamiEaaqa baGccaaISaGaaGzbVlaadIfadaWgaaWcbaGaaGOmaaqabaGccaaI9a GaeyOaIy7aaSbaaSqaaiaadMhaaeqaaOGaaGilaiaaywW7caWGybWa aSbaaSqaaiaaiodaaeqaaOGaaGypaiabgkGi2oaaBaaaleaacaWG6b aabeaakiaaiYcacaaMf8UaamiwamaaBaaaleaacaaI0aaabeaakiaa i2dacqGHciITdaWgaaWcbaGaam4DaaqabaGccaaISaGaaGzbVlaadM fadaWgaaWcbaGaamyAaaqabaGccaaI9aGaamyqamaaBaaaleaacaWG PbaabeaakiabgkGi2oaaBaaaleaacaWG4baabeaakiabgUcaRiaadk eadaWgaaWcbaGaamyAaaqabaGccqGHciITdaWgaaWcbaGaamyEaaqa baGccqGHRaWkcaWGdbWaaSbaaSqaaiaadMgaaeqaaOGaeyOaIy7aaS baaSqaaiaadQhaaeqaaOGaey4kaSIaamiramaaBaaaleaacaWGPbaa beaakiabgkGi2oaaBaaaleaacaWG3baabeaakiaaiYcaaaa@6BFC@  (2.3)

причём A i = A i (x,y,z,w) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaWGPbaabeaakiaai2dacaWGbbWaaSbaaSqaaiaadMgaaeqa aOGaaGikaiaadIhacaaISaGaamyEaiaaiYcacaWG6bGaaGilaiaadE hacaaIPaaaaa@420B@ , B i = B i (x,y,z,w) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqamaaBa aaleaacaWGPbaabeaakiaai2dacaWGcbWaaSbaaSqaaiaadMgaaeqa aOGaaGikaiaadIhacaaISaGaamyEaiaaiYcacaWG6bGaaGilaiaadE hacaaIPaaaaa@420D@ , C i = C i (x,y,z,w) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa aaleaacaWGPbaabeaakiaai2dacaWGdbWaaSbaaSqaaiaadMgaaeqa aOGaaGikaiaadIhacaaISaGaamyEaiaaiYcacaWG6bGaaGilaiaadE hacaaIPaaaaa@420F@ , D i = D i (x,y,z,w) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaWGPbaabeaakiaai2dacaWGebWaaSbaaSqaaiaadMgaaeqa aOGaaGikaiaadIhacaaISaGaamyEaiaaiYcacaWG6bGaaGilaiaadE hacaaIPaaaaa@4211@ , i=1,2,3,4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaai2 dacaaIXaGaaGilaiaaikdacaaISaGaaG4maiaaiYcacaaI0aaaaa@3CBC@ , MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  дифференцируемые функции класса гладкости C 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCa aaleqabaGaaGymaaaaaaa@37A3@ .

В таком случае в алгебре Ли L MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaaaa@36C4@  выделяется коммутативная трехмерная подалгебра J MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaaaa@36C2@ , образованная операторами X 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIXaaabeaaaaa@37B7@ , X 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIYaaabeaaaaa@37B8@ , X 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIZaaabeaaaaa@37B9@  и X 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaI0aaabeaaaaa@37BA@ . Произвольный оператор Y MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywaaaa@36D1@  является линейной комбинацией с постоянными коэффициентами базисных операторов.

Теорема 1 Локальное действие π: R 4 ×G R 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaaG OoaiaadkfadaahaaWcbeqaaiaaisdaaaGccqGHxdaTcaWGhbGaeyOK H4QaamOuamaaCaaaleqabaGaaGinaaaaaaa@40D2@  с операторами ее алгебры Ли (2.3) локально ограниченно точно дважды транзитивно тогда и только тогда, когда матрица K(b)K(a) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaaiI cacaWGIbGaaGykaiabgkHiTiaadUeacaaIOaGaamyyaiaaiMcaaaa@3D17@  невырождена, где

K(a)= A 1 ( x a , y a , z a , w a ) B 1 ( x a , y a , z a , w a ) C 1 ( x a , y a , z a , w a ) D 1 ( x a , y a , z a , w a ) A 2 ( x a , y a , z a , w a ) B 2 ( x a , y a , z a , w a ) C 2 ( x a , y a , z a , w a ) D 2 ( x a , y a , z a , w a ) A 3 ( x a , y a , z a , w a ) B 3 ( x a , y a , z a , w a ) C 3 ( x a , y a , z a , w a ) D 3 ( x a , y a , z a , w a ) A 4 ( x a , y a , z a , w a ) B 4 ( x a , y a , z a , w a ) C 4 ( x a , y a , z a , w a ) D 4 ( x a , y a , z a , w a ) , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaaiI cacaWGHbGaaGykaiaai2dadaqadaqaauaabeqaeqaaaaaabaGaamyq amaaBaaaleaacaaIXaaabeaakiaaiIcacaWG4bWaaSbaaSqaaiaadg gaaeqaaOGaaGilaiaadMhadaWgaaWcbaGaamyyaaqabaGccaaISaGa amOEamaaBaaaleaacaWGHbaabeaakiaaiYcacaWG3bWaaSbaaSqaai aadggaaeqaaOGaaGykaaqaaiaadkeadaWgaaWcbaGaaGymaaqabaGc caaIOaGaamiEamaaBaaaleaacaWGHbaabeaakiaaiYcacaWG5bWaaS baaSqaaiaadggaaeqaaOGaaGilaiaadQhadaWgaaWcbaGaamyyaaqa baGccaaISaGaam4DamaaBaaaleaacaWGHbaabeaakiaaiMcaaeaaca WGdbWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadIhadaWgaaWcbaGa amyyaaqabaGccaaISaGaamyEamaaBaaaleaacaWGHbaabeaakiaaiY cacaWG6bWaaSbaaSqaaiaadggaaeqaaOGaaGilaiaadEhadaWgaaWc baGaamyyaaqabaGccaaIPaaabaGaamiramaaBaaaleaacaaIXaaabe aakiaaiIcacaWG4bWaaSbaaSqaaiaadggaaeqaaOGaaGilaiaadMha daWgaaWcbaGaamyyaaqabaGccaaISaGaamOEamaaBaaaleaacaWGHb aabeaakiaaiYcacaWG3bWaaSbaaSqaaiaadggaaeqaaOGaaGykaaqa aiaadgeadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiEamaaBaaale aacaWGHbaabeaakiaaiYcacaWG5bWaaSbaaSqaaiaadggaaeqaaOGa aGilaiaadQhadaWgaaWcbaGaamyyaaqabaGccaaISaGaam4DamaaBa aaleaacaWGHbaabeaakiaaiMcaaeaacaWGcbWaaSbaaSqaaiaaikda aeqaaOGaaGikaiaadIhadaWgaaWcbaGaamyyaaqabaGccaaISaGaam yEamaaBaaaleaacaWGHbaabeaakiaaiYcacaWG6bWaaSbaaSqaaiaa dggaaeqaaOGaaGilaiaadEhadaWgaaWcbaGaamyyaaqabaGccaaIPa aabaGaam4qamaaBaaaleaacaaIYaaabeaakiaaiIcacaWG4bWaaSba aSqaaiaadggaaeqaaOGaaGilaiaadMhadaWgaaWcbaGaamyyaaqaba GccaaISaGaamOEamaaBaaaleaacaWGHbaabeaakiaaiYcacaWG3bWa aSbaaSqaaiaadggaaeqaaOGaaGykaaqaaiaadseadaWgaaWcbaGaaG OmaaqabaGccaaIOaGaamiEamaaBaaaleaacaWGHbaabeaakiaaiYca caWG5bWaaSbaaSqaaiaadggaaeqaaOGaaGilaiaadQhadaWgaaWcba GaamyyaaqabaGccaaISaGaam4DamaaBaaaleaacaWGHbaabeaakiaa iMcaaeaacaWGbbWaaSbaaSqaaiaaiodaaeqaaOGaaGikaiaadIhada WgaaWcbaGaamyyaaqabaGccaaISaGaamyEamaaBaaaleaacaWGHbaa beaakiaaiYcacaWG6bWaaSbaaSqaaiaadggaaeqaaOGaaGilaiaadE hadaWgaaWcbaGaamyyaaqabaGccaaIPaaabaGaamOqamaaBaaaleaa caaIZaaabeaakiaaiIcacaWG4bWaaSbaaSqaaiaadggaaeqaaOGaaG ilaiaadMhadaWgaaWcbaGaamyyaaqabaGccaaISaGaamOEamaaBaaa leaacaWGHbaabeaakiaaiYcacaWG3bWaaSbaaSqaaiaadggaaeqaaO GaaGykaaqaaiaadoeadaWgaaWcbaGaaG4maaqabaGccaaIOaGaamiE amaaBaaaleaacaWGHbaabeaakiaaiYcacaWG5bWaaSbaaSqaaiaadg gaaeqaaOGaaGilaiaadQhadaWgaaWcbaGaamyyaaqabaGccaaISaGa am4DamaaBaaaleaacaWGHbaabeaakiaaiMcaaeaacaWGebWaaSbaaS qaaiaaiodaaeqaaOGaaGikaiaadIhadaWgaaWcbaGaamyyaaqabaGc caaISaGaamyEamaaBaaaleaacaWGHbaabeaakiaaiYcacaWG6bWaaS baaSqaaiaadggaaeqaaOGaaGilaiaadEhadaWgaaWcbaGaamyyaaqa baGccaaIPaaabaGaamyqamaaBaaaleaacaaI0aaabeaakiaaiIcaca WG4bWaaSbaaSqaaiaadggaaeqaaOGaaGilaiaadMhadaWgaaWcbaGa amyyaaqabaGccaaISaGaamOEamaaBaaaleaacaWGHbaabeaakiaaiY cacaWG3bWaaSbaaSqaaiaadggaaeqaaOGaaGykaaqaaiaadkeadaWg aaWcbaGaaGinaaqabaGccaaIOaGaamiEamaaBaaaleaacaWGHbaabe aakiaaiYcacaWG5bWaaSbaaSqaaiaadggaaeqaaOGaaGilaiaadQha daWgaaWcbaGaamyyaaqabaGccaaISaGaam4DamaaBaaaleaacaWGHb aabeaakiaaiMcaaeaacaWGdbWaaSbaaSqaaiaaisdaaeqaaOGaaGik aiaadIhadaWgaaWcbaGaamyyaaqabaGccaaISaGaamyEamaaBaaale aacaWGHbaabeaakiaaiYcacaWG6bWaaSbaaSqaaiaadggaaeqaaOGa aGilaiaadEhadaWgaaWcbaGaamyyaaqabaGccaaIPaaabaGaamiram aaBaaaleaacaaI0aaabeaakiaaiIcacaWG4bWaaSbaaSqaaiaadgga aeqaaOGaaGilaiaadMhadaWgaaWcbaGaamyyaaqabaGccaaISaGaam OEamaaBaaaleaacaWGHbaabeaakiaaiYcacaWG3bWaaSbaaSqaaiaa dggaaeqaaOGaaGykaaaaaiaawIcacaGLPaaacaaISaaaaa@16A4@

причем a=( x a , y a , z a , w a )U( a )W R 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaai2 dacaaIOaGaamiEamaaBaaaleaacaWGHbaabeaakiaaiYcacaWG5bWa aSbaaSqaaiaadggaaeqaaOGaaGilaiaadQhadaWgaaWcbaGaamyyaa qabaGccaaISaGaam4DamaaBaaaleaacaWGHbaabeaakiaaiMcacqGH iiIZcaWGvbGaaGikaiqadggagaqbaiaaiMcacqGHckcZcaWGxbGaey OGIWSaamOuamaaCaaaleqabaGaaGinaaaaaaa@4ED8@ .

Доказательство. Матрица (2.2) для действия π: R 4 ×G R 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaaG OoaiaadkfadaahaaWcbeqaaiaaisdaaaGccqGHxdaTcaWGhbGaeyOK H4QaamOuamaaCaaaleqabaGaaGinaaaaaaa@40D2@  с операторами ее алгебры Ли (2.3) принимает следующий вид:

V= E E K(a) K(b) , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvaiaai2 dadaqadaqaauaabeqaciaaaeaacaWGfbaabaGaamyraaqaaiaadUea caaIOaGaamyyaiaaiMcaaeaacaWGlbGaaGikaiaadkgacaaIPaaaaa GaayjkaiaawMcaaiaaiYcaaaa@41AF@

где E MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraaaa@36BD@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  единичная (4×4) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaais dacqGHxdaTcaaI0aGaaGykaaaa@3AEB@  =матрица. Согласно формуле Шура (см. [2, с.~59]) |V|=|K(b)K(a)| MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaadA facaaI8bGaaGypaiaaiYhacaWGlbGaaGikaiaadkgacaaIPaGaeyOe I0Iaam4saiaaiIcacaWGHbGaaGykaiaaiYhaaaa@42D1@ . Если действие π: R 4 ×G R 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaaG OoaiaadkfadaahaaWcbeqaaiaaisdaaaGccqGHxdaTcaWGhbGaeyOK H4QaamOuamaaCaaaleqabaGaaGinaaaaaaa@40D2@  локально ограниченно точно дважды транзитивно, то |V|0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaadA facaaI8bGaeyiyIKRaaGimaaaa@3B5B@  и поэтому |K(b)K(a)|0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaadU eacaaIOaGaamOyaiaaiMcacqGHsislcaWGlbGaaGikaiaadggacaaI PaGaaGiFaiabgcMi5kaaicdaaaa@41A4@ . Справедливо и обратное.

Следствие Локальное действие π: R 4 ×G R 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaaG OoaiaadkfadaahaaWcbeqaaiaaisdaaaGccqGHxdaTcaWGhbGaeyOK H4QaamOuamaaCaaaleqabaGaaGinaaaaaaa@40D2@  с операторами алгебры Ли вида

X 1 = x , X 2 = y , X 3 = z , X 4 = w , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIXaaabeaakiaai2dacqGHciITdaWgaaWcbaGaamiEaaqa baGccaaISaGaaGzbVlaadIfadaWgaaWcbaGaaGOmaaqabaGccaaI9a GaeyOaIy7aaSbaaSqaaiaadMhaaeqaaOGaaGilaiaaywW7caWGybWa aSbaaSqaaiaaiodaaeqaaOGaaGypaiabgkGi2oaaBaaaleaacaWG6b aabeaakiaaiYcacaaMf8UaamiwamaaBaaaleaacaaI0aaabeaakiaa i2dacqGHciITdaWgaaWcbaGaam4DaaqabaGccaaISaaaaa@5235@

Y i = A i (x,y,z,w) x + B i (x,y,z,w) y + C i (x,y,z,w) z ,i=1,2,3,4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaWGPbaabeaakiaai2dacaWGbbWaaSbaaSqaaiaadMgaaeqa aOGaaGikaiaadIhacaaISaGaamyEaiaaiYcacaWG6bGaaGilaiaadE hacaaIPaGaeyOaIy7aaSbaaSqaaiaadIhaaeqaaOGaey4kaSIaamOq amaaBaaaleaacaWGPbaabeaakiaaiIcacaWG4bGaaGilaiaadMhaca aISaGaamOEaiaaiYcacaWG3bGaaGykaiabgkGi2oaaBaaaleaacaWG 5baabeaakiabgUcaRiaadoeadaWgaaWcbaGaamyAaaqabaGccaaIOa GaamiEaiaaiYcacaWG5bGaaGilaiaadQhacaaISaGaam4DaiaaiMca cqGHciITdaWgaaWcbaGaamOEaaqabaGccaaISaGaaGzbVlaadMgaca aI9aGaaGymaiaaiYcacaaIYaGaaGilaiaaiodacaaISaGaaGinaaaa @6793@

не является локально ограниченно точно дважды транзитивным.

3. Системы линейных уравнений. Из свойства замкнутости относительно операции коммутирования, следует, что и коммутаторы [ X j , Y k ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaadI fadaWgaaWcbaGaamOAaaqabaGccaaISaGaamywamaaBaaaleaacaWG Rbaabeaakiaai2faaaa@3C7B@ , j,k=1,2,3,4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOAaiaaiY cacaWGRbGaaGypaiaaigdacaaISaGaaGOmaiaaiYcacaaIZaGaaGil aiaaisdaaaa@3E63@ , принадлежат этой же алгебре Ли (см. [12]). ВЁкоординатной записи, с учетом (2.3), это свойство приводит к системе дифференциальных уравнений на коэффициенты A i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaWGPbaabeaaaaa@37D3@ , B i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqamaaBa aaleaacaWGPbaabeaaaaa@37D4@ , C i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa aaleaacaWGPbaabeaaaaa@37D5@ , D i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaWGPbaabeaaaaa@37D6@ :

A x = T 1 A + G 1 , A y = T 2 A + P 1 , A z = T 3 A + Q 1 , A w = T 4 A + R 1 , B x = T 1 B + G 2 , B y = T 2 B + P 2 , B z = T 3 B + Q 2 , B w = T 4 B + R 2 , C x = T 1 C + G 3 , C y = T 2 C + P 3 , C z = T 3 C + Q 3 , C w = T 4 C + R 3 , D x = T 1 D + G 4 , D y = T 2 D + P 4 , D z = T 3 D + Q 4 , D w = T 4 D + R 4 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqqaaa aabaWaa8raaeaacaWGbbaacaGLxdcadaWgaaWcbaGaamiEaaqabaGc caaI9aGaamivamaaBaaaleaacaaIXaaabeaakmaaFeaabaGaamyqaa Gaay51GaGaey4kaSYaa8raaeaacaWGhbaacaGLxdcadaahaaWcbeqa aiaaigdaaaGccaaISaGaaGzbVpaaFeaabaGaamyqaaGaay51GaWaaS baaSqaaiaadMhaaeqaaOGaaGypaiaadsfadaWgaaWcbaGaaGOmaaqa baGcdaWhbaqaaiaadgeaaiaawEniaiabgUcaRmaaFeaabaGaamiuaa Gaay51GaWaaWbaaSqabeaacaaIXaaaaOGaaGilaiaaywW7daWhbaqa aiaadgeaaiaawEniamaaBaaaleaacaWG6baabeaakiaai2dacaWGub WaaSbaaSqaaiaaiodaaeqaaOWaa8raaeaacaWGbbaacaGLxdcacqGH RaWkdaWhbaqaaiaadgfaaiaawEniamaaCaaaleqabaGaaGymaaaaki aaiYcacaaMf8+aa8raaeaacaWGbbaacaGLxdcadaWgaaWcbaGaam4D aaqabaGccaaI9aGaamivamaaBaaaleaacaaI0aaabeaakmaaFeaaba GaamyqaaGaay51GaGaey4kaSYaa8raaeaacaWGsbaacaGLxdcadaah aaWcbeqaaiaaigdaaaGccaaISaaabaWaa8raaeaacaWGcbaacaGLxd cadaWgaaWcbaGaamiEaaqabaGccaaI9aGaamivamaaBaaaleaacaaI XaaabeaakmaaFeaabaGaamOqaaGaay51GaGaey4kaSYaa8raaeaaca WGhbaacaGLxdcadaahaaWcbeqaaiaaikdaaaGccaaISaGaaGzbVpaa FeaabaGaamOqaaGaay51GaWaaSbaaSqaaiaadMhaaeqaaOGaaGypai aadsfadaWgaaWcbaGaaGOmaaqabaGcdaWhbaqaaiaadkeaaiaawEni aiabgUcaRmaaFeaabaGaamiuaaGaay51GaWaaWbaaSqabeaacaaIYa aaaOGaaGilaiaaywW7daWhbaqaaiaadkeaaiaawEniamaaBaaaleaa caWG6baabeaakiaai2dacaWGubWaaSbaaSqaaiaaiodaaeqaaOWaa8 raaeaacaWGcbaacaGLxdcacqGHRaWkdaWhbaqaaiaadgfaaiaawEni amaaCaaaleqabaGaaGOmaaaakiaaiYcacaaMf8+aa8raaeaacaWGcb aacaGLxdcadaWgaaWcbaGaam4DaaqabaGccaaI9aGaamivamaaBaaa leaacaaI0aaabeaakmaaFeaabaGaamOqaaGaay51GaGaey4kaSYaa8 raaeaacaWGsbaacaGLxdcadaahaaWcbeqaaiaaikdaaaGccaaISaaa baWaa8raaeaacaWGdbaacaGLxdcadaWgaaWcbaGaamiEaaqabaGcca aI9aGaamivamaaBaaaleaacaaIXaaabeaakmaaFeaabaGaam4qaaGa ay51GaGaey4kaSYaa8raaeaacaWGhbaacaGLxdcadaahaaWcbeqaai aaiodaaaGccaaISaGaaGzbVpaaFeaabaGaam4qaaGaay51GaWaaSba aSqaaiaadMhaaeqaaOGaaGypaiaadsfadaWgaaWcbaGaaGOmaaqaba GcdaWhbaqaaiaadoeaaiaawEniaiabgUcaRmaaFeaabaGaamiuaaGa ay51GaWaaWbaaSqabeaacaaIZaaaaOGaaGilaiaaywW7daWhbaqaai aadoeaaiaawEniamaaBaaaleaacaWG6baabeaakiaai2dacaWGubWa aSbaaSqaaiaaiodaaeqaaOWaa8raaeaacaWGdbaacaGLxdcacqGHRa WkdaWhbaqaaiaadgfaaiaawEniamaaCaaaleqabaGaaG4maaaakiaa iYcacaaMf8+aa8raaeaacaWGdbaacaGLxdcadaWgaaWcbaGaam4Daa qabaGccaaI9aGaamivamaaBaaaleaacaaI0aaabeaakmaaFeaabaGa am4qaaGaay51GaGaey4kaSYaa8raaeaacaWGsbaacaGLxdcadaahaa WcbeqaaiaaiodaaaGccaaISaaabaWaa8raaeaacaWGebaacaGLxdca daWgaaWcbaGaamiEaaqabaGccaaI9aGaamivamaaBaaaleaacaaIXa aabeaakmaaFeaabaGaamiraaGaay51GaGaey4kaSYaa8raaeaacaWG hbaacaGLxdcadaahaaWcbeqaaiaaisdaaaGccaaISaGaaGzbVpaaFe aabaGaamiraaGaay51GaWaaSbaaSqaaiaadMhaaeqaaOGaaGypaiaa dsfadaWgaaWcbaGaaGOmaaqabaGcdaWhbaqaaiaadseaaiaawEniai abgUcaRmaaFeaabaGaamiuaaGaay51GaWaaWbaaSqabeaacaaI0aaa aOGaaGilaiaaywW7daWhbaqaaiaadseaaiaawEniamaaBaaaleaaca WG6baabeaakiaai2dacaWGubWaaSbaaSqaaiaaiodaaeqaaOWaa8ra aeaacaWGebaacaGLxdcacqGHRaWkdaWhbaqaaiaadgfaaiaawEniam aaCaaaleqabaGaaGinaaaakiaaiYcacaaMf8+aa8raaeaacaWGebaa caGLxdcadaWgaaWcbaGaam4DaaqabaGccaaI9aGaamivamaaBaaale aacaaI0aaabeaakmaaFeaabaGaamiraaGaay51GaGaey4kaSYaa8ra aeaacaWGsbaacaGLxdcadaahaaWcbeqaaiaaisdaaaGccaaISaaaaa aa@257B@  (3.1)

 где введены матричные обозначения:

T 1 = a 1 1 a 1 2 a 1 3 a 1 4 a 2 1 a 2 2 a 2 3 a 2 4 a 3 1 a 3 2 a 3 3 a 3 4 a 4 1 a 4 2 a 4 3 a 4 4 , T 2 = b 1 1 b 1 2 b 1 3 b 1 4 b 2 1 b 2 2 b 2 3 b 2 4 b 3 1 b 3 2 b 3 3 b 3 4 b 4 1 b 4 2 b 4 3 b 4 4 , T 3 = c 1 1 c 1 2 c 1 3 c 1 4 c 2 1 c 2 2 c 2 3 c 2 4 c 3 1 c 3 2 c 3 3 c 3 4 c 4 1 c 4 2 c 4 3 c 4 4 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIXaaabeaakiaai2dadaqadaqaauaabeqaeqaaaaaabaGa amyyamaaDaaaleaacaaIXaaabaGaaGymaaaaaOqaaiaadggadaqhaa WcbaGaaGymaaqaaiaaikdaaaaakeaacaWGHbWaa0baaSqaaiaaigda aeaacaaIZaaaaaGcbaGaamyyamaaDaaaleaacaaIXaaabaGaaGinaa aaaOqaaiaadggadaqhaaWcbaGaaGOmaaqaaiaaigdaaaaakeaacaWG HbWaa0baaSqaaiaaikdaaeaacaaIYaaaaaGcbaGaamyyamaaDaaale aacaaIYaaabaGaaG4maaaaaOqaaiaadggadaqhaaWcbaGaaGOmaaqa aiaaisdaaaaakeaacaWGHbWaa0baaSqaaiaaiodaaeaacaaIXaaaaa GcbaGaamyyamaaDaaaleaacaaIZaaabaGaaGOmaaaaaOqaaiaadgga daqhaaWcbaGaaG4maaqaaiaaiodaaaaakeaacaWGHbWaa0baaSqaai aaiodaaeaacaaI0aaaaaGcbaGaamyyamaaDaaaleaacaaI0aaabaGa aGymaaaaaOqaaiaadggadaqhaaWcbaGaaGinaaqaaiaaikdaaaaake aacaWGHbWaa0baaSqaaiaaisdaaeaacaaIZaaaaaGcbaGaamyyamaa DaaaleaacaaI0aaabaGaaGinaaaaaaaakiaawIcacaGLPaaacaaISa GaaGzbVlaadsfadaWgaaWcbaGaaGOmaaqabaGccaaI9aWaaeWaaeaa faqabeabeaaaaaqaaiaadkgadaqhaaWcbaGaaGymaaqaaiaaigdaaa aakeaacaWGIbWaa0baaSqaaiaaigdaaeaacaaIYaaaaaGcbaGaamOy amaaDaaaleaacaaIXaaabaGaaG4maaaaaOqaaiaadkgadaqhaaWcba GaaGymaaqaaiaaisdaaaaakeaacaWGIbWaa0baaSqaaiaaikdaaeaa caaIXaaaaaGcbaGaamOyamaaDaaaleaacaaIYaaabaGaaGOmaaaaaO qaaiaadkgadaqhaaWcbaGaaGOmaaqaaiaaiodaaaaakeaacaWGIbWa a0baaSqaaiaaikdaaeaacaaI0aaaaaGcbaGaamOyamaaDaaaleaaca aIZaaabaGaaGymaaaaaOqaaiaadkgadaqhaaWcbaGaaG4maaqaaiaa ikdaaaaakeaacaWGIbWaa0baaSqaaiaaiodaaeaacaaIZaaaaaGcba GaamOyamaaDaaaleaacaaIZaaabaGaaGinaaaaaOqaaiaadkgadaqh aaWcbaGaaGinaaqaaiaaigdaaaaakeaacaWGIbWaa0baaSqaaiaais daaeaacaaIYaaaaaGcbaGaamOyamaaDaaaleaacaaI0aaabaGaaG4m aaaaaOqaaiaadkgadaqhaaWcbaGaaGinaaqaaiaaisdaaaaaaaGcca GLOaGaayzkaaGaaGilaiaaywW7caWGubWaaSbaaSqaaiaaiodaaeqa aOGaaGypamaabmaabaqbaeqabqabaaaaaeaacaWGJbWaa0baaSqaai aaigdaaeaacaaIXaaaaaGcbaGaam4yamaaDaaaleaacaaIXaaabaGa aGOmaaaaaOqaaiaadogadaqhaaWcbaGaaGymaaqaaiaaiodaaaaake aacaWGJbWaa0baaSqaaiaaigdaaeaacaaI0aaaaaGcbaGaam4yamaa DaaaleaacaaIYaaabaGaaGymaaaaaOqaaiaadogadaqhaaWcbaGaaG OmaaqaaiaaikdaaaaakeaacaWGJbWaa0baaSqaaiaaikdaaeaacaaI ZaaaaaGcbaGaam4yamaaDaaaleaacaaIYaaabaGaaGinaaaaaOqaai aadogadaqhaaWcbaGaaG4maaqaaiaaigdaaaaakeaacaWGJbWaa0ba aSqaaiaaiodaaeaacaaIYaaaaaGcbaGaam4yamaaDaaaleaacaaIZa aabaGaaG4maaaaaOqaaiaadogadaqhaaWcbaGaaG4maaqaaiaaisda aaaakeaacaWGJbWaa0baaSqaaiaaisdaaeaacaaIXaaaaaGcbaGaam 4yamaaDaaaleaacaaI0aaabaGaaGOmaaaaaOqaaiaadogadaqhaaWc baGaaGinaaqaaiaaiodaaaaakeaacaWGJbWaa0baaSqaaiaaisdaae aacaaI0aaaaaaaaOGaayjkaiaawMcaaiaaiYcaaaa@C432@

T 4 = d 1 1 d 1 2 d 1 3 d 1 4 d 2 1 d 2 2 d 2 3 d 2 4 d 3 1 d 3 2 d 3 3 d 3 4 d 4 1 d 4 2 d 4 3 d 4 4 , A = A 1 A 2 A 3 A 4 , B = B 1 B 2 B 3 B 4 , C = C 1 C 2 C 3 C 4 , D = D 1 D 2 D 3 D 4 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaI0aaabeaakiaai2dadaqadaqaauaabeqaeqaaaaaabaGa amizamaaDaaaleaacaaIXaaabaGaaGymaaaaaOqaaiaadsgadaqhaa WcbaGaaGymaaqaaiaaikdaaaaakeaacaWGKbWaa0baaSqaaiaaigda aeaacaaIZaaaaaGcbaGaamizamaaDaaaleaacaaIXaaabaGaaGinaa aaaOqaaiaadsgadaqhaaWcbaGaaGOmaaqaaiaaigdaaaaakeaacaWG KbWaa0baaSqaaiaaikdaaeaacaaIYaaaaaGcbaGaamizamaaDaaale aacaaIYaaabaGaaG4maaaaaOqaaiaadsgadaqhaaWcbaGaaGOmaaqa aiaaisdaaaaakeaacaWGKbWaa0baaSqaaiaaiodaaeaacaaIXaaaaa GcbaGaamizamaaDaaaleaacaaIZaaabaGaaGOmaaaaaOqaaiaadsga daqhaaWcbaGaaG4maaqaaiaaiodaaaaakeaacaWGKbWaa0baaSqaai aaiodaaeaacaaI0aaaaaGcbaGaamizamaaDaaaleaacaaI0aaabaGa aGymaaaaaOqaaiaadsgadaqhaaWcbaGaaGinaaqaaiaaikdaaaaake aacaWGKbWaa0baaSqaaiaaisdaaeaacaaIZaaaaaGcbaGaamizamaa DaaaleaacaaI0aaabaGaaGinaaaaaaaakiaawIcacaGLPaaacaaISa GaaGzbVpaaFeaabaGaamyqaaGaay51GaGaaGypamaabmaabaqbaeqa bqqaaaaabaGaamyqamaaBaaaleaacaaIXaaabeaaaOqaaiaadgeada WgaaWcbaGaaGOmaaqabaaakeaacaWGbbWaaSbaaSqaaiaaiodaaeqa aaGcbaGaamyqamaaBaaaleaacaaI0aaabeaaaaaakiaawIcacaGLPa aacaaISaGaaGzbVpaaFeaabaGaamOqaaGaay51GaGaaGypamaabmaa baqbaeqabqqaaaaabaGaamOqamaaBaaaleaacaaIXaaabeaaaOqaai aadkeadaWgaaWcbaGaaGOmaaqabaaakeaacaWGcbWaaSbaaSqaaiaa iodaaeqaaaGcbaGaamOqamaaBaaaleaacaaI0aaabeaaaaaakiaawI cacaGLPaaacaaISaGaaGzbVpaaFeaabaGaam4qaaGaay51GaGaaGyp amaabmaabaqbaeqabqqaaaaabaGaam4qamaaBaaaleaacaaIXaaabe aaaOqaaiaadoeadaWgaaWcbaGaaGOmaaqabaaakeaacaWGdbWaaSba aSqaaiaaiodaaeqaaaGcbaGaam4qamaaBaaaleaacaaI0aaabeaaaa aakiaawIcacaGLPaaacaaISaGaaGzbVpaaFeaabaGaamiraaGaay51 GaGaaGypamaabmaabaqbaeqabqqaaaaabaGaamiramaaBaaaleaaca aIXaaabeaaaOqaaiaadseadaWgaaWcbaGaaGOmaaqabaaakeaacaWG ebWaaSbaaSqaaiaaiodaaeqaaaGcbaGaamiramaaBaaaleaacaaI0a aabeaaaaaakiaawIcacaGLPaaacaaISaaaaa@9C94@

G j = g 1 j g 2 j g 3 j g 4 j , Q j = q 1 j q 2 j q 3 j q 4 j , P j = p 1 j p 2 j p 3 j p 4 j , R j = r 1 j r 2 j r 3 j r 4 j , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGhbaacaGLxdcadaahaaWcbeqaaiaadQgaaaGccaaI9aWaaeWaaeaa faqabeabbaaaaeaacaWGNbWaa0baaSqaaiaaigdaaeaacaWGQbaaaa GcbaGaam4zamaaDaaaleaacaaIYaaabaGaamOAaaaaaOqaaiaadEga daqhaaWcbaGaaG4maaqaaiaadQgaaaaakeaacaWGNbWaa0baaSqaai aaisdaaeaacaWGQbaaaaaaaOGaayjkaiaawMcaaiaaiYcacaaMf8+a a8raaeaacaWGrbaacaGLxdcadaahaaWcbeqaaiaadQgaaaGccaaI9a WaaeWaaeaafaqabeabbaaaaeaacaWGXbWaa0baaSqaaiaaigdaaeaa caWGQbaaaaGcbaGaamyCamaaDaaaleaacaaIYaaabaGaamOAaaaaaO qaaiaadghadaqhaaWcbaGaaG4maaqaaiaadQgaaaaakeaacaWGXbWa a0baaSqaaiaaisdaaeaacaWGQbaaaaaaaOGaayjkaiaawMcaaiaaiY cacaaMf8+aa8raaeaacaWGqbWaaWbaaSqabeaacaWGQbaaaaGccaGL xdcacaaI9aWaaeWaaeaafaqabeabbaaaaeaacaWGWbWaa0baaSqaai aaigdaaeaacaWGQbaaaaGcbaGaamiCamaaDaaaleaacaaIYaaabaGa amOAaaaaaOqaaiaadchadaqhaaWcbaGaaG4maaqaaiaadQgaaaaake aacaWGWbWaa0baaSqaaiaaisdaaeaacaWGQbaaaaaaaOGaayjkaiaa wMcaaiaaiYcacaaMf8+aa8raaeaacaWGsbWaaWbaaSqabeaacaWGQb aaaaGccaGLxdcacaaI9aWaaeWaaeaafaqabeabbaaaaeaacaWGYbWa a0baaSqaaiaaigdaaeaacaWGQbaaaaGcbaGaamOCamaaDaaaleaaca aIYaaabaGaamOAaaaaaOqaaiaadkhadaqhaaWcbaGaaG4maaqaaiaa dQgaaaaakeaacaWGYbWaa0baaSqaaiaaisdaaeaacaWGQbaaaaaaaO GaayjkaiaawMcaaiaaiYcaaaa@830B@

причем a i j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaDa aaleaacaWGPbaabaGaamOAaaaaaaa@38E3@ , b i j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyamaaDa aaleaacaWGPbaabaGaamOAaaaaaaa@38E4@ , c i j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaDa aaleaacaWGPbaabaGaamOAaaaaaaa@38E5@ , d i j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaDa aaleaacaWGPbaabaGaamOAaaaaaaa@38E6@ , g i j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaDa aaleaacaWGPbaabaGaamOAaaaaaaa@38E9@ , q i j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCamaaDa aaleaacaWGPbaabaGaamOAaaaaaaa@38F3@ , p i j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaDa aaleaacaWGPbaabaGaamOAaaaaaaa@38F2@ , r i j =const MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCamaaDa aaleaacaWGPbaabaGaamOAaaaakiaai2dacaWGJbGaam4Baiaad6ga caWGZbGaamiDaaaa@3E85@ , i,j=1,2,3,4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaaiY cacaWGQbGaaGypaiaaigdacaaISaGaaGOmaiaaiYcacaaIZaGaaGil aiaaisdaaaa@3E61@ .

Из свойства независимости частных производных относительно порядка дифференцирования вытекают соотношения:

( T i T j T j T i ) A = const ,( T i T j T j T i ) B = const , ( T i T j T j T i ) C = const ,( T i T j T j T i ) D = const , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiqaaa qaaiaaiIcacaWGubWaaSbaaSqaaiaadMgaaeqaaOGaamivamaaBaaa leaacaWGQbaabeaakiabgkHiTiaadsfadaWgaaWcbaGaamOAaaqaba GccaWGubWaaSbaaSqaaiaadMgaaeqaaOGaaGykamaaFeaabaGaamyq aaGaay51GaGaaGypamaaFeaabaGaam4yaiaad+gacaWGUbGaam4Cai aadshaaiaawEniaiaaiYcacaaMf8UaaGikaiaadsfadaWgaaWcbaGa amyAaaqabaGccaWGubWaaSbaaSqaaiaadQgaaeqaaOGaeyOeI0Iaam ivamaaBaaaleaacaWGQbaabeaakiaadsfadaWgaaWcbaGaamyAaaqa baGccaaIPaWaa8raaeaacaWGcbaacaGLxdcacaaI9aWaa8raaeaaca WGJbGaam4Baiaad6gacaWGZbGaamiDaaGaay51GaGaaGilaaqaaiaa iIcacaWGubWaaSbaaSqaaiaadMgaaeqaaOGaamivamaaBaaaleaaca WGQbaabeaakiabgkHiTiaadsfadaWgaaWcbaGaamOAaaqabaGccaWG ubWaaSbaaSqaaiaadMgaaeqaaOGaaGykamaaFeaabaGaam4qaaGaay 51GaGaaGypamaaFeaabaGaam4yaiaad+gacaWGUbGaam4Caiaadsha aiaawEniaiaaiYcacaaMf8UaaGikaiaadsfadaWgaaWcbaGaamyAaa qabaGccaWGubWaaSbaaSqaaiaadQgaaeqaaOGaeyOeI0Iaamivamaa BaaaleaacaWGQbaabeaakiaadsfadaWgaaWcbaGaamyAaaqabaGcca aIPaWaa8raaeaacaWGebaacaGLxdcacaaI9aWaa8raaeaacaWGJbGa am4Baiaad6gacaWGZbGaamiDaaGaay51GaGaaGilaaaaaaa@8BE5@  (3.2)

где i<j=1,2,3,4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaaiY dacaWGQbGaaGypaiaaigdacaaISaGaaGOmaiaaiYcacaaIZaGaaGil aiaaisdaaaa@3E71@ . Линейные системы (0.3.1), очевидно, совместны.

Теорема 2 Подалгебра Ли J MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaaaa@36C2@  алгебры Ли L MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaaaa@36C4@  является идеалом тогда и только тогда, когда векторы A x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGbbaacaGLxdcadaWgaaWcbaGaamiEaaqabaaaaa@3995@ , B x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGcbaacaGLxdcadaWgaaWcbaGaamiEaaqabaaaaa@3996@ , C x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGdbaacaGLxdcadaWgaaWcbaGaamiEaaqabaaaaa@3997@ , D x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGebaacaGLxdcadaWgaaWcbaGaamiEaaqabaaaaa@3998@ , A y MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGbbaacaGLxdcadaWgaaWcbaGaamyEaaqabaaaaa@3996@ , B y MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGcbaacaGLxdcadaWgaaWcbaGaamyEaaqabaaaaa@3997@ , C y MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGdbaacaGLxdcadaWgaaWcbaGaamyEaaqabaaaaa@3998@ , D y MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGebaacaGLxdcadaWgaaWcbaGaamyEaaqabaaaaa@3999@ , A z MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGbbaacaGLxdcadaWgaaWcbaGaamOEaaqabaaaaa@3997@ , B z MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGcbaacaGLxdcadaWgaaWcbaGaamOEaaqabaaaaa@3998@ , C z MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGdbaacaGLxdcadaWgaaWcbaGaamOEaaqabaaaaa@3999@ , D z , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGebaacaGLxdcadaWgaaWcbaGaamOEaaqabaGccaaISaaaaa@3A5A@   A w MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGbbaacaGLxdcadaWgaaWcbaGaam4Daaqabaaaaa@3994@ , B w MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGcbaacaGLxdcadaWgaaWcbaGaam4Daaqabaaaaa@3995@ , C w MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGdbaacaGLxdcadaWgaaWcbaGaam4Daaqabaaaaa@3996@ , D w MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGebaacaGLxdcadaWgaaWcbaGaam4Daaqabaaaaa@3997@  постоянные.

Доказательство. Пусть сначала J MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaaaa@36C2@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  идеал в L MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaaaa@36C4@ . Заметим, что J MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaaaa@36C2@  является идеалом тогда и только тогда, когда

[ X i , Y k ]= μ 1 X 1 + μ 2 X 2 + μ 3 X 3 + μ 4 X 4 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaadI fadaWgaaWcbaGaamyAaaqabaGccaaISaGaamywamaaBaaaleaacaWG Rbaabeaakiaai2facaaI9aGaeqiVd02aaSbaaSqaaiaaigdaaeqaaO GaamiwamaaBaaaleaacaaIXaaabeaakiabgUcaRiabeY7aTnaaBaaa leaacaaIYaaabeaakiaadIfadaWgaaWcbaGaaGOmaaqabaGccqGHRa WkcqaH8oqBdaWgaaWcbaGaaG4maaqabaGccaWGybWaaSbaaSqaaiaa iodaaeqaaOGaey4kaSIaeqiVd02aaSbaaSqaaiaaisdaaeqaaOGaam iwamaaBaaaleaacaaI0aaabeaakiaaiYcaaaa@527D@

причем μ 1 , μ 2 , μ 3 , μ 4 =const MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aaS baaSqaaiaaigdaaeqaaOGaaGilaiabeY7aTnaaBaaaleaacaaIYaaa beaakiaaiYcacqaH8oqBdaWgaaWcbaGaaG4maaqabaGccaaISaGaeq iVd02aaSbaaSqaaiaaisdaaeqaaOGaaGypaiaadogacaWGVbGaamOB aiaadohacaWG0baaaa@483E@ , i,k=1,2,3,4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaaiY cacaWGRbGaaGypaiaaigdacaaISaGaaGOmaiaaiYcacaaIZaGaaGil aiaaisdaaaa@3E62@ . Тогда векторы A x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGbbaacaGLxdcadaWgaaWcbaGaamiEaaqabaaaaa@3995@ , B x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGcbaacaGLxdcadaWgaaWcbaGaamiEaaqabaaaaa@3996@ , C x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGdbaacaGLxdcadaWgaaWcbaGaamiEaaqabaaaaa@3997@  , D x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGebaacaGLxdcadaWgaaWcbaGaamiEaaqabaaaaa@3998@ , A y MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGbbaacaGLxdcadaWgaaWcbaGaamyEaaqabaaaaa@3996@ , B y MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGcbaacaGLxdcadaWgaaWcbaGaamyEaaqabaaaaa@3997@ , C y MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGdbaacaGLxdcadaWgaaWcbaGaamyEaaqabaaaaa@3998@ , D y MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGebaacaGLxdcadaWgaaWcbaGaamyEaaqabaaaaa@3999@ , A z MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGbbaacaGLxdcadaWgaaWcbaGaamOEaaqabaaaaa@3997@ , B z MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGcbaacaGLxdcadaWgaaWcbaGaamOEaaqabaaaaa@3998@ , C z MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGdbaacaGLxdcadaWgaaWcbaGaamOEaaqabaaaaa@3999@ , D z , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGebaacaGLxdcadaWgaaWcbaGaamOEaaqabaGccaaISaaaaa@3A5A@   A w MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGbbaacaGLxdcadaWgaaWcbaGaam4Daaqabaaaaa@3994@ , B w MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGcbaacaGLxdcadaWgaaWcbaGaam4Daaqabaaaaa@3995@ , C w MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGdbaacaGLxdcadaWgaaWcbaGaam4Daaqabaaaaa@3996@ , D w MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGebaacaGLxdcadaWgaaWcbaGaam4Daaqabaaaaa@3997@  постоянные.

Обратно, пусть производные коэффициентов операторов Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@ , Y 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIYaaabeaaaaa@37B9@ , Y 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIZaaabeaaaaa@37BA@  и Y 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaI0aaabeaaaaa@37BB@  постоянны; тогда коммутаторы [ X i , Y k ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaadI fadaWgaaWcbaGaamyAaaqabaGccaaISaGaamywamaaBaaaleaacaWG Rbaabeaakiaai2faaaa@3C7A@  будут линейно выражаться через операторы X 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIXaaabeaaaaa@37B7@ , X 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIYaaabeaaaaa@37B8@ , X 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIZaaabeaaaaa@37B9@  и X 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaI0aaabeaaaaa@37BA@ , поэтому J MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaaaa@36C2@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  идеал в L MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaaaa@36C4@ .

Следствие T 1 = T 2 = T 3 = T 4 =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIXaaabeaakiaai2dacaWGubWaaSbaaSqaaiaaikdaaeqa aOGaaGypaiaadsfadaWgaaWcbaGaaG4maaqabaGccaaI9aGaamivam aaBaaaleaacaaI0aaabeaakiaai2dacaaIWaaaaa@40F7@  тогда и только тогда, когда J MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaaaa@36C2@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa8hfGaaa@3A93@  идеал в L MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaaaa@36C4@ .

Доказательство. Если T 1 = T 2 = T 3 = T 4 =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIXaaabeaakiaai2dacaWGubWaaSbaaSqaaiaaikdaaeqa aOGaaGypaiaadsfadaWgaaWcbaGaaG4maaqabaGccaaI9aGaamivam aaBaaaleaacaaI0aaabeaakiaai2dacaaIWaaaaa@40F7@ , то из системы (3.1) получаем, что производные векторов A MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGbbaacaGLxdcaaaa@386C@ , B MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGcbaacaGLxdcaaaa@386D@ , C MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGdbaacaGLxdcaaaa@386E@ , D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGebaacaGLxdcaaaa@386F@  по переменным x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@36F0@ , y MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaaaa@36F1@ , z MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEaaaa@36F2@ , w MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Daaaa@36EF@  постоянны, и поэтому J MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaaaa@36C2@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  идеал в L MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaaaa@36C4@  (теорема 2).

Пусть J MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaaaa@36C2@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  идеал в L MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaaaa@36C4@ . Предположим для определенности, что T 1 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIXaaabeaakiabgcMi5kaaicdaaaa@3A3E@ . Тогда согласно системе (3.2) хотя бы одна из производных A x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGbbaacaGLxdcadaWgaaWcbaGaamiEaaqabaaaaa@3995@ , B x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGcbaacaGLxdcadaWgaaWcbaGaamiEaaqabaaaaa@3996@ , C x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGdbaacaGLxdcadaWgaaWcbaGaamiEaaqabaaaaa@3997@ , D x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGebaacaGLxdcadaWgaaWcbaGaamiEaaqabaaaaa@3998@  не постоянна. Поэтому согласно теореме 2 получаем, что J MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaaaa@36C2@  не является идеалом в L MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaaaa@36C4@ . Противоречие.

Теорема 3 Матрицы коэффициентов системы (3.1) взаимно коммутативны, т.е.

T i T j T j T i =0,i<j=1,2,3,4. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaWGPbaabeaakiaadsfadaWgaaWcbaGaamOAaaqabaGccqGH sislcaWGubWaaSbaaSqaaiaadQgaaeqaaOGaamivamaaBaaaleaaca WGPbaabeaakiaai2dacaaIWaGaaGilaiaaywW7caWGPbGaaGipaiaa dQgacaaI9aGaaGymaiaaiYcacaaIYaGaaGilaiaaiodacaaISaGaaG inaiaai6caaaa@4BD1@

Доказательство. Пусть одна из пар матриц коэффициентов системы (3.1) некоммутативна, т.е. T 1 T 2 T 2 T 1 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIXaaabeaakiaadsfadaWgaaWcbaGaaGOmaaqabaGccqGH sislcaWGubWaaSbaaSqaaiaaikdaaeqaaOGaamivamaaBaaaleaaca aIXaaabeaakiabgcMi5kaaicdaaaa@408B@ . В таком случае ранг матрицы T 1 T 2 T 2 T 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIXaaabeaakiaadsfadaWgaaWcbaGaaGOmaaqabaGccqGH sislcaWGubWaaSbaaSqaaiaaikdaaeqaaOGaamivamaaBaaaleaaca aIXaaabeaaaaa@3E00@  равен либо 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGinaaaa@36B1@ , либо 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4maaaa@36B0@ , либо 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaaaa@36AF@ , либо 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaaaa@36AE@ . Эквивалентными преобразованиями добьемся упрощения систем линейных уравнений

( T 1 T 2 T 2 T 1 ) A = R 1 ,( T 1 T 2 T 2 T 1 ) B = R 2 ,( T 1 T 2 T 2 T 1 ) C = R 3 ,( T 1 T 2 T 2 T 1 ) D = R 4 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaads fadaWgaaWcbaGaaGymaaqabaGccaWGubWaaSbaaSqaaiaaikdaaeqa aOGaeyOeI0IaamivamaaBaaaleaacaaIYaaabeaakiaadsfadaWgaa WcbaGaaGymaaqabaGccaaIPaWaa8raaeaacaWGbbaacaGLxdcacaaI 9aWaa8raaeaacaWGsbaacaGLxdcadaWgaaWcbaGaaGymaaqabaGcca aISaGaaGzbVlaaiIcacaWGubWaaSbaaSqaaiaaigdaaeqaaOGaamiv amaaBaaaleaacaaIYaaabeaakiabgkHiTiaadsfadaWgaaWcbaGaaG OmaaqabaGccaWGubWaaSbaaSqaaiaaigdaaeqaaOGaaGykamaaFeaa baGaamOqaaGaay51GaGaaGypamaaFeaabaGaamOuaaGaay51GaWaaS baaSqaaiaaikdaaeqaaOGaaGilaiaaywW7caaIOaGaamivamaaBaaa leaacaaIXaaabeaakiaadsfadaWgaaWcbaGaaGOmaaqabaGccqGHsi slcaWGubWaaSbaaSqaaiaaikdaaeqaaOGaamivamaaBaaaleaacaaI XaaabeaakiaaiMcadaWhbaqaaiaadoeaaiaawEniaiaai2dadaWhba qaaiaadkfaaiaawEniamaaBaaaleaacaaIZaaabeaakiaaiYcacaaM f8UaaGikaiaadsfadaWgaaWcbaGaaGymaaqabaGccaWGubWaaSbaaS qaaiaaikdaaeqaaOGaeyOeI0IaamivamaaBaaaleaacaaIYaaabeaa kiaadsfadaWgaaWcbaGaaGymaaqabaGccaaIPaWaa8raaeaacaWGeb aacaGLxdcacaaI9aWaa8raaeaacaWGsbaacaGLxdcadaWgaaWcbaGa aGinaaqabaGccaaIUaaaaa@7E5F@

Тогда в эквивалентных системах матрица коэффициентов T 1 T 2 T 2 T 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIXaaabeaakiaadsfadaWgaaWcbaGaaGOmaaqabaGccqGH sislcaWGubWaaSbaaSqaaiaaikdaaeqaaOGaamivamaaBaaaleaaca aIXaaabeaaaaa@3E00@  принимает один из следующих видов:

1 0 0 0 , 0 1 0 0 , 0 0 1 0 , 0 0 0 1 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafa qabeabeaaaaaqaaiaaigdaaeaacaaIWaaabaGaaGimaaqaaiaaicda aeaacqWIVlctaeaacqWIVlctaeaacqWIVlctaeaacqWIVlctaeaacq WIVlctaeaacqWIVlctaeaacqWIVlctaeaacqWIVlctaeaacqWIVlct aeaacqWIVlctaeaacqWIVlctaeaacqWIVlctaaaacaGLOaGaayzkaa GaaGilaiaaywW7daqadaqaauaabeqaeqaaaaaabaGaeS47IWeabaGa eS47IWeabaGaeS47IWeabaGaeS47IWeabaGaaGimaaqaaiaaigdaae aacaaIWaaabaGaaGimaaqaaiabl+Uimbqaaiabl+Uimbqaaiabl+Ui mbqaaiabl+Uimbqaaiabl+Uimbqaaiabl+Uimbqaaiabl+Uimbqaai abl+UimbaaaiaawIcacaGLPaaacaaISaGaaGzbVpaabmaabaqbaeqa bqabaaaaaeaacqWIVlctaeaacqWIVlctaeaacqWIVlctaeaacqWIVl ctaeaacqWIVlctaeaacqWIVlctaeaacqWIVlctaeaacqWIVlctaeaa caaIWaaabaGaaGimaaqaaiaaigdaaeaacaaIWaaabaGaeS47IWeaba GaeS47IWeabaGaeS47IWeabaGaeS47IWeaaaGaayjkaiaawMcaaiaa iYcacaaMf8+aaeWaaeaafaqabeqbeaaaaaqaaiabl+Uimbqaaiabl+ Uimbqaaiabl+Uimbqaaiabl+Uimbqaaiabl+Uimbqaaiabl+Uimbqa aiabl+Uimbqaaiabl+Uimbqaaiabl+Uimbqaaiabl+Uimbqaaiabl+ Uimbqaaiabl+UimbqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaa igdaaeaaaeaaaeaaaeaaaaaacaGLOaGaayzkaaGaaGOlaaaa@AC64@

Значит, A 1 =const MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaaIXaaabeaakiaai2dacaWGJbGaam4Baiaad6gacaWGZbGa amiDaaaa@3D31@ , B 1 =const MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqamaaBa aaleaacaaIXaaabeaakiaai2dacaWGJbGaam4Baiaad6gacaWGZbGa amiDaaaa@3D32@ , C 1 =const MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa aaleaacaaIXaaabeaakiaai2dacaWGJbGaam4Baiaad6gacaWGZbGa amiDaaaa@3D33@ , D 1 =const MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaaIXaaabeaakiaai2dacaWGJbGaam4Baiaad6gacaWGZbGa amiDaaaa@3D34@ , или A 2 =const MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaaIYaaabeaakiaai2dacaWGJbGaam4Baiaad6gacaWGZbGa amiDaaaa@3D32@ , B 2 =const MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqamaaBa aaleaacaaIYaaabeaakiaai2dacaWGJbGaam4Baiaad6gacaWGZbGa amiDaaaa@3D33@ , C 2 =const MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa aaleaacaaIYaaabeaakiaai2dacaWGJbGaam4Baiaad6gacaWGZbGa amiDaaaa@3D34@ , D2=const MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiaaik dacaaI9aGaam4yaiaad+gacaWGUbGaam4Caiaadshaaaa@3CFF@ , или A 3 =const MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaaIZaaabeaakiaai2dacaWGJbGaam4Baiaad6gacaWGZbGa amiDaaaa@3D33@ , B 3 =const MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqamaaBa aaleaacaaIZaaabeaakiaai2dacaWGJbGaam4Baiaad6gacaWGZbGa amiDaaaa@3D34@ , C 3 =const MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa aaleaacaaIZaaabeaakiaai2dacaWGJbGaam4Baiaad6gacaWGZbGa amiDaaaa@3D35@ , D 3 =const MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaaIZaaabeaakiaai2dacaWGJbGaam4Baiaad6gacaWGZbGa amiDaaaa@3D36@ , или A 4 =const MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaaI0aaabeaakiaai2dacaWGJbGaam4Baiaad6gacaWGZbGa amiDaaaa@3D34@ , B 4 =const MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqamaaBa aaleaacaaI0aaabeaakiaai2dacaWGJbGaam4Baiaad6gacaWGZbGa amiDaaaa@3D35@ , C 4 =const MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa aaleaacaaI0aaabeaakiaai2dacaWGJbGaam4Baiaad6gacaWGZbGa amiDaaaa@3D36@ , D 4 =const MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaaI0aaabeaakiaai2dacaWGJbGaam4Baiaad6gacaWGZbGa amiDaaaa@3D37@ . Поэтому, соответственно, оператор Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@ , или Y 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIYaaabeaaaaa@37B9@ , или Y 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIZaaabeaaaaa@37BA@ , или Y 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaI0aaabeaaaaa@37BB@  из системы (2.3) линейно выражается через операторы X 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIXaaabeaaaaa@37B7@ , X 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIYaaabeaaaaa@37B8@ , X 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIZaaabeaaaaa@37B9@  и X 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaI0aaabeaaaaa@37BA@ , что противоречит линейной независимости базисных операторов (2.3). Аналогичная проверка проводится и относительно систем из (3.2) с матрицами коэффициентов T i T j T j T i =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaWGPbaabeaakiaadsfadaWgaaWcbaGaamOAaaqabaGccqGH sislcaWGubWaaSbaaSqaaiaadQgaaeqaaOGaamivamaaBaaaleaaca WGPbaabeaakiaai2dacaaIWaaaaa@4057@ , i<j=1,2,3,4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaaiY dacaWGQbGaaGypaiaaigdacaaISaGaaGOmaiaaiYcacaaIZaGaaGil aiaaisdaaaa@3E71@ .

Теорема 4 Для алгебры Ли локально ограниченно точно дважды транзитивного действия π: R 4 ×G R 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaaG OoaiaadkfadaahaaWcbeqaaiaaisdaaaGccqGHxdaTcaWGhbGaeyOK H4QaamOuamaaCaaaleqabaGaaGinaaaaaaa@40D2@  в подходящем базисе матрица T 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIXaaabeaaaaa@37B3@  принимает следующий вид:

1) J 1, λ 1 J 1, λ 2 J 1, λ 3 J 1, λ 4 ; 2) J 2, λ 5 J 1, λ 6 J 1, λ 7 ; 3) J 2, λ 5 J 2, λ 8 ; 4) J 3, λ 9 J 1, λ 10 ; 5) J 4,λ , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabuGaaa aabaGaaGymaiaaiMcaaeaacaaMf8UaamOsamaaBaaaleaacaaIXaGa aGilaiabeU7aSnaaBaaabaGaaGymaaqabaaabeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaOGae8hfIOUaamOsamaaBaaa leaacaaIXaGaaGilaiabeU7aSnaaBaaabaGaaGOmaaqabaaabeaaki ab=rHiQlaadQeadaWgaaWcbaGaaGymaiaaiYcacqaH7oaBdaWgaaqa aiaaiodaaeqaaaqabaGccqWFuiI6caWGkbWaaSbaaSqaaiaaigdaca aISaGaeq4UdW2aaSbaaeaacaaI0aaabeaaaeqaaOGaaG4oaaqaaiaa ikdacaaIPaaabaGaaGzbVlaadQeadaWgaaWcbaGaaGOmaiaaiYcacq aH7oaBdaWgaaqaaiaaiwdaaeqaaaqabaGccqWFuiI6caWGkbWaaSba aSqaaiaaigdacaaISaGaeq4UdW2aaSbaaeaacaaI2aaabeaaaeqaaO Gae8hfIOUaamOsamaaBaaaleaacaaIXaGaaGilaiabeU7aSnaaBaaa baGaaG4naaqabaaabeaakiaaiUdaaeaacaaIZaGaaGykaaqaaiaayw W7caWGkbWaaSbaaSqaaiaaikdacaaISaGaeq4UdW2aaSbaaeaacaaI 1aaabeaaaeqaaOGae8hfIOUaamOsamaaBaaaleaacaaIYaGaaGilai abeU7aSnaaBaaabaGaaGioaaqabaaabeaakiaaiUdaaeaacaaI0aGa aGykaaqaaiaaywW7caWGkbWaaSbaaSqaaiaaiodacaaISaGaeq4UdW 2aaSbaaeaacaaI5aaabeaaaeqaaOGae8hfIOUaamOsamaaBaaaleaa caaIXaGaaGilaiabeU7aSnaaBaaabaGaaGymaiaaicdaaeqaaaqaba GccaaI7aaabaGaaGynaiaaiMcaaeaacaaMf8UaamOsamaaBaaaleaa caaI0aGaaGilaiabeU7aSbqabaGccaaISaaaaaaa@9A2E@  (3.3)

где J m,μ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsamaaBa aaleaacaWGTbGaaGilaiabeY7aTbqabaaaaa@3A4C@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  жорданова клетка порядка m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaaaa@36E5@ , соответствующая собственному значению μ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0gaaa@37A9@ .

Доказательство. Базис алгебры Ли локально ограниченно точно дважды транзитивного действия π: R 4 ×G R 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaaG OoaiaadkfadaahaaWcbeqaaiaaisdaaaGccqGHxdaTcaWGhbGaeyOK H4QaamOuamaaCaaaleqabaGaaGinaaaaaaa@40D2@  задается операторами (2.3). Перейдем к новому базису

X i = X i , Y i = j=1 4 χ i j Y j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiwayaafa WaaSbaaSqaaiaadMgaaeqaaOGaaGypaiaadIfadaWgaaWcbaGaamyA aaqabaGccaaISaGaaGzbVlqadMfagaqbamaaBaaaleaacaWGPbaabe aakiaai2dadaaeWbqabSqaaiaadQgacaaI9aGaaGymaaqaaiaaisda a0GaeyyeIuoakiabeE8aJnaaDaaaleaacaWGPbaabaGaamOAaaaaki aadMfadaWgaaWcbaGaamOAaaqabaaaaa@4B21@

при помощи невырожденной матрицы коэффициентов χ=( χ i j ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4XdmMaaG ypaiaaiIcacqaHhpWydaqhaaWcbaGaamyAaaqaaiaadQgaaaGccaaI Paaaaa@3DA1@ . Тогда выражения (2.3) принимают следующий вид:

X 1 = x , X 2 = y , X 3 = z , X 4 = w , Y i = A i x + B i y + C i z + D i w , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIXaaabeaakiaai2dacqGHciITdaWgaaWcbaGaamiEaaqa baGccaaISaGaaGzbVlaadIfadaWgaaWcbaGaaGOmaaqabaGccaaI9a GaeyOaIy7aaSbaaSqaaiaadMhaaeqaaOGaaGilaiaaywW7caWGybWa aSbaaSqaaiaaiodaaeqaaOGaaGypaiabgkGi2oaaBaaaleaacaWG6b aabeaakiaaiYcacaaMf8UaamiwamaaBaaaleaacaaI0aaabeaakiaa i2dacqGHciITdaWgaaWcbaGaam4DaaqabaGccaaISaGaaGzbVlqadM fagaqbamaaBaaaleaacaWGPbaabeaakiaai2daceWGbbGbauaadaWg aaWcbaGaamyAaaqabaGccqGHciITdaWgaaWcbaGaamiEaaqabaGccq GHRaWkceWGcbGbauaadaWgaaWcbaGaamyAaaqabaGccqGHciITdaWg aaWcbaGaamyEaaqabaGccqGHRaWkceWGdbGbauaadaWgaaWcbaGaam yAaaqabaGccqGHciITdaWgaaWcbaGaamOEaaqabaGccqGHRaWkceWG ebGbauaadaWgaaWcbaGaamyAaaqabaGccqGHciITdaWgaaWcbaGaam 4DaaqabaGccaaISaaaaa@6C38@

причем

A =χ A , B =χ B , C =χ C , D =χ D . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaace WGbbGbauaaaiaawEniaiaai2dacqaHhpWydaWhbaqaaiaadgeaaiaa wEniaiaaiYcacaaMf8+aa8raaeaaceWGcbGbauaaaiaawEniaiaai2 dacqaHhpWydaWhbaqaaiaadkeaaiaawEniaiaaiYcacaaMf8+aa8ra aeaaceWGdbGbauaaaiaawEniaiaai2dacqaHhpWydaWhbaqaaiaado eaaiaawEniaiaaiYcacaaMf8+aa8raaeaaceWGebGbauaaaiaawEni aiaai2dacqaHhpWydaWhbaqaaiaadseaaiaawEniaiaai6caaaa@5B73@   (0.3.4)

Вычисляя коммутаторы [ X i , Y j ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaadI fadaWgaaWcbaGaamyAaaqabaGccaaISaGabmywayaafaWaaSbaaSqa aiaadQgaaeqaaOGaaGyxaaaa@3C85@ , учитывая их замкнутость и сравнивая коэффициенты при x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOaIy7aaS baaSqaaiaadIhaaeqaaaaa@3882@ , y MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOaIy7aaS baaSqaaiaadMhaaeqaaaaa@3883@ , z MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOaIy7aaS baaSqaaiaadQhaaeqaaaaa@3884@  и w MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOaIy7aaS baaSqaaiaadEhaaeqaaaaa@3881@ , получаем векторные уравнения

A x = T 1 A + G 1 , A y = T 2 A + P 1 , A z = T 3 A + Q 1 , A w = T 4 A + R 1 , B x = T 1 B + G 2 , B y = T 2 B + P 2 , B z = T 3 B + Q 2 , B w = T 4 B + R 2 , C x = T 1 C + G 3 , C y = T 2 C + P 3 , C z = T 3 C + Q 3 , C w = T 4 C + R 3 , D x = T 1 D + G 4 , D y = T 2 D + P 4 , D z = T 3 D + Q 4 , D w = T 4 D + R 4 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiqaaeaafa qaaeabiaaaaaaabaaabaWaa8raaeaaceWGbbGbauaaaiaawEniamaa BaaaleaacaWG4baabeaakiaai2daceWGubGbauaadaWgaaWcbaGaaG ymaaqabaGcdaWhbaqaaiqadgeagaqbaaGaay51GaGaey4kaSYaa8ra aeaaceWGhbGbauaaaiaawEniamaaCaaaleqabaGaaGymaaaakiaaiY caaeaacaaMf8oabaWaa8raaeaaceWGbbGbauaaaiaawEniamaaBaaa leaacaWG5baabeaakiaai2daceWGubGbauaadaWgaaWcbaGaaGOmaa qabaGcdaWhbaqaaiqadgeagaqbaaGaay51GaGaey4kaSYaa8raaeaa ceWGqbGbauaaaiaawEniamaaCaaaleqabaGaaGymaaaakiaaiYcaae aacaaMf8oabaWaa8raaeaaceWGbbGbauaaaiaawEniamaaBaaaleaa caWG6baabeaakiaai2daceWGubGbauaadaWgaaWcbaGaaG4maaqaba GcdaWhbaqaaiqadgeagaqbaaGaay51GaGaey4kaSYaa8raaeaaceWG rbGbauaaaiaawEniamaaCaaaleqabaGaaGymaaaakiaaiYcaaeaaca aMf8oabaWaa8raaeaaceWGbbGbauaaaiaawEniamaaBaaaleaacaWG 3baabeaakiaai2daceWGubGbauaadaWgaaWcbaGaaGinaaqabaGcda WhbaqaaiqadgeagaqbaaGaay51GaGaey4kaSYaa8raaeaaceWGsbGb auaaaiaawEniamaaCaaaleqabaGaaGymaaaakiaaiYcaaeaaaeaada WhbaqaaiqadkeagaqbaaGaay51GaWaaSbaaSqaaiaadIhaaeqaaOGa aGypaiqadsfagaqbamaaBaaaleaacaaIXaaabeaakmaaFeaabaGabm OqayaafaaacaGLxdcacqGHRaWkdaWhbaqaaiqadEeagaqbaaGaay51 GaWaaWbaaSqabeaacaaIYaaaaOGaaGilaaqaaiaaywW7aeaadaWhba qaaiqadkeagaqbaaGaay51GaWaaSbaaSqaaiaadMhaaeqaaOGaaGyp aiqadsfagaqbamaaBaaaleaacaaIYaaabeaakmaaFeaabaGabmOqay aafaaacaGLxdcacqGHRaWkdaWhbaqaaiqadcfagaqbaaGaay51GaWa aWbaaSqabeaacaaIYaaaaOGaaGilaaqaaiaaywW7aeaadaWhbaqaai qadkeagaqbaaGaay51GaWaaSbaaSqaaiaadQhaaeqaaOGaaGypaiqa dsfagaqbamaaBaaaleaacaaIZaaabeaakmaaFeaabaGabmOqayaafa aacaGLxdcacqGHRaWkdaWhbaqaaiqadgfagaqbaaGaay51GaWaaWba aSqabeaacaaIYaaaaOGaaGilaaqaaiaaywW7aeaadaWhbaqaaiqadk eagaqbaaGaay51GaWaaSbaaSqaaiaadEhaaeqaaOGaaGypaiqadsfa gaqbamaaBaaaleaacaaI0aaabeaakmaaFeaabaGabmOqayaafaaaca GLxdcacqGHRaWkdaWhbaqaaiqadkfagaqbaaGaay51GaWaaWbaaSqa beaacaaIYaaaaOGaaGilaaqaaaqaamaaFeaabaGabm4qayaafaaaca GLxdcadaWgaaWcbaGaamiEaaqabaGccaaI9aGabmivayaafaWaaSba aSqaaiaaigdaaeqaaOWaa8raaeaaceWGdbGbauaaaiaawEniaiabgU caRmaaFeaabaGabm4rayaafaaacaGLxdcadaahaaWcbeqaaiaaioda aaGccaaISaaabaGaaGzbVdqaamaaFeaabaGabm4qayaafaaacaGLxd cadaWgaaWcbaGaamyEaaqabaGccaaI9aGabmivayaafaWaaSbaaSqa aiaaikdaaeqaaOWaa8raaeaaceWGdbGbauaaaiaawEniaiabgUcaRm aaFeaabaGabmiuayaafaaacaGLxdcadaahaaWcbeqaaiaaiodaaaGc caaISaaabaGaaGzbVdqaamaaFeaabaGabm4qayaafaaacaGLxdcada WgaaWcbaGaamOEaaqabaGccaaI9aGabmivayaafaWaaSbaaSqaaiaa iodaaeqaaOWaa8raaeaaceWGdbGbauaaaiaawEniaiabgUcaRmaaFe aabaGabmyuayaafaaacaGLxdcadaahaaWcbeqaaiaaiodaaaGccaaI SaaabaGaaGzbVdqaamaaFeaabaGabm4qayaafaaacaGLxdcadaWgaa WcbaGaam4DaaqabaGccaaI9aGabmivayaafaWaaSbaaSqaaiaaisda aeqaaOWaa8raaeaaceWGdbGbauaaaiaawEniaiabgUcaRmaaFeaaba GabmOuayaafaaacaGLxdcadaahaaWcbeqaaiaaiodaaaGccaaISaaa baaabaWaa8raaeaaceWGebGbauaaaiaawEniamaaBaaaleaacaWG4b aabeaakiaai2daceWGubGbauaadaWgaaWcbaGaaGymaaqabaGcdaWh baqaaiqadseagaqbaaGaay51GaGaey4kaSYaa8raaeaaceWGhbGbau aaaiaawEniamaaCaaaleqabaGaaGinaaaakiaaiYcaaeaacaaMf8oa baWaa8raaeaaceWGebGbauaaaiaawEniamaaBaaaleaacaWG5baabe aakiaai2daceWGubGbauaadaWgaaWcbaGaaGOmaaqabaGcdaWhbaqa aiqadseagaqbaaGaay51GaGaey4kaSYaa8raaeaaceWGqbGbauaaai aawEniamaaCaaaleqabaGaaGinaaaakiaaiYcaaeaacaaMf8oabaWa a8raaeaaceWGebGbauaaaiaawEniamaaBaaaleaacaWG6baabeaaki aai2daceWGubGbauaadaWgaaWcbaGaaG4maaqabaGcdaWhbaqaaiqa dseagaqbaaGaay51GaGaey4kaSYaa8raaeaaceWGrbGbauaaaiaawE niamaaCaaaleqabaGaaGinaaaakiaaiYcaaeaacaaMf8oabaWaa8ra aeaaceWGebGbauaaaiaawEniamaaBaaaleaacaWG3baabeaakiaai2 daceWGubGbauaadaWgaaWcbaGaaGinaaqabaGcdaWhbaqaaiqadsea gaqbaaGaay51GaGaey4kaSYaa8raaeaaceWGsbGbauaaaiaawEniam aaCaaaleqabaGaaGinaaaakiaai6caaaaacaGL7baaaaa@29BA@

Подставляя в последнюю систему выражения (3.4) и сравнивая с (3.1), находим

T 1 = χ 1 T 1 χ, T 2 = χ 1 T 2 χ, T 3 = χ 1 T 3 χ, T 4 = χ 1 T 4 χ. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIXaaabeaakiaai2dacqaHhpWydaahaaWcbeqaaiabgkHi TiaaigdaaaGcceWGubGbauaadaWgaaWcbaGaaGymaaqabaGccqaHhp WycaaISaGaaGzbVlaadsfadaWgaaWcbaGaaGOmaaqabaGccaaI9aGa eq4Xdm2aaWbaaSqabeaacqGHsislcaaIXaaaaOGabmivayaafaWaaS baaSqaaiaaikdaaeqaaOGaeq4XdmMaaGilaiaaywW7caWGubWaaSba aSqaaiaaiodaaeqaaOGaaGypaiabeE8aJnaaCaaaleqabaGaeyOeI0 IaaGymaaaakiqadsfagaqbamaaBaaaleaacaaIZaaabeaakiabeE8a JjaaiYcacaaMf8UaamivamaaBaaaleaacaaI0aaabeaakiaai2dacq aHhpWydaahaaWcbeqaaiabgkHiTiaaigdaaaGcceWGubGbauaadaWg aaWcbaGaaGinaaqabaGccqaHhpWycaaIUaaaaa@6453@

Поскольку матрицу T 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIXaaabeaaaaa@37B3@  можно привести к жордановому виду при помощи надлежащего выбора невырожденной матрицы χ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Xdmgaaa@37AA@  (см. [4, с.~482]), приходим к утверждению теоремы.

Отметим, что в теореме 4 собственные значения матриц могут быть как вещественными, так и комплексно сопряженными, поэтому в явном виде эти матрицы, с учетом вещественных форм, принимают следующий вид:

null (3.5)

причём β 1 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdi2aaS baaSqaaiaaigdaaeqaaOGaeyiyIKRaaGimaaaa@3B06@ , β 2 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdi2aaS baaSqaaiaaikdaaeqaaOGaeyiyIKRaaGimaaaa@3B07@ , β 3 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdi2aaS baaSqaaiaaiodaaeqaaOGaeyiyIKRaaGimaaaa@3B08@ , β 4 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdi2aaS baaSqaaiaaisdaaeqaaOGaeyiyIKRaaGimaaaa@3B09@ . Заметим, что в этих матрицах все элементы MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  вещественные числа.

Теорема 5 Пусть T 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIXaaabeaaaaa@37B3@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa8hfGaaa@3A93@  вещественная форма (3.5) жордановой матрицы из (3.3). Справедливы следующие утверждения. [ 1.]

1. Для матрицы T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36CC@ , коммутирующей с матрицей T 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIXaaabeaaaaa@37B3@  вида 1 из (3.5), с точностью до перестановки строк и столбцов, возможны соответственно четыре различных случая:

a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 a 10 a 11 a 12 a 13 a 14 a 15 a 16 , λ 1 = λ 2 = λ 3 = λ 4 ; a 1 a 2 a 3 0 a 5 a 6 a 7 0 a 9 a 10 a 11 0 0 0 0 a 16 , λ 1 = λ 2 = λ 3 λ 4 ; a 1 a 2 0 0 a 5 a 6 0 0 0 0 a 11 0 0 0 0 a 16 , λ 1 = λ 2 λ 3 λ 4 , λ 1 = λ 2 λ 4 ; a 1 0 0 0 0 a 6 0 0 0 0 a 11 0 0 0 0 a 16 дляпопарнораз личных λ 1 , λ 2 , λ 3 , λ 4 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiabaa aabaaabaWaaeWaaeaafaqabeabeaaaaaqaaiaadggadaWgaaWcbaGa aGymaaqabaaakeaacaWGHbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaam yyamaaBaaaleaacaaIZaaabeaaaOqaaiaadggadaWgaaWcbaGaaGin aaqabaaakeaacaWGHbWaaSbaaSqaaiaaiwdaaeqaaaGcbaGaamyyam aaBaaaleaacaaI2aaabeaaaOqaaiaadggadaWgaaWcbaGaaG4naaqa baaakeaacaWGHbWaaSbaaSqaaiaaiIdaaeqaaaGcbaGaamyyamaaBa aaleaacaaI5aaabeaaaOqaaiaadggadaWgaaWcbaGaaGymaiaaicda aeqaaaGcbaGaamyyamaaBaaaleaacaaIXaGaaGymaaqabaaakeaaca WGHbWaaSbaaSqaaiaaigdacaaIYaaabeaaaOqaaiaadggadaWgaaWc baGaaGymaiaaiodaaeqaaaGcbaGaamyyamaaBaaaleaacaaIXaGaaG inaaqabaaakeaacaWGHbWaaSbaaSqaaiaaigdacaaI1aaabeaaaOqa aiaadggadaWgaaWcbaGaaGymaiaaiAdaaeqaaaaaaOGaayjkaiaawM caaiaaiYcacaaMe8Uaeq4UdW2aaSbaaSqaaiaaigdaaeqaaOGaaGyp aiabeU7aSnaaBaaaleaacaaIYaaabeaakiaai2dacqaH7oaBdaWgaa WcbaGaaG4maaqabaGccaaI9aGaeq4UdW2aaSbaaSqaaiaaisdaaeqa aOGaaG4oaaqaaaqaamaabmaabaqbaeqabqabaaaaaeaacaWGHbWaaS baaSqaaiaaigdaaeqaaaGcbaGaamyyamaaBaaaleaacaaIYaaabeaa aOqaaiaadggadaWgaaWcbaGaaG4maaqabaaakeaacaaIWaaabaGaam yyamaaBaaaleaacaaI1aaabeaaaOqaaiaadggadaWgaaWcbaGaaGOn aaqabaaakeaacaWGHbWaaSbaaSqaaiaaiEdaaeqaaaGcbaGaaGimaa qaaiaadggadaWgaaWcbaGaaGyoaaqabaaakeaacaWGHbWaaSbaaSqa aiaaigdacaaIWaaabeaaaOqaaiaadggadaWgaaWcbaGaaGymaiaaig daaeqaaaGcbaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqa aiaadggadaWgaaWcbaGaaGymaiaaiAdaaeqaaaaaaOGaayjkaiaawM caaiaaiYcacaaMe8Uaeq4UdW2aaSbaaSqaaiaaigdaaeqaaOGaaGyp aiabeU7aSnaaBaaaleaacaaIYaaabeaakiaai2dacqaH7oaBdaWgaa WcbaGaaG4maaqabaGccqGHGjsUcqaH7oaBdaWgaaWcbaGaaGinaaqa baGccaaI7aaabaaabaWaaeWaaeaafaqabeabeaaaaaqaaiaadggada WgaaWcbaGaaGymaaqabaaakeaacaWGHbWaaSbaaSqaaiaaikdaaeqa aaGcbaGaaGimaaqaaiaaicdaaeaacaWGHbWaaSbaaSqaaiaaiwdaae qaaaGcbaGaamyyamaaBaaaleaacaaI2aaabeaaaOqaaiaaicdaaeaa caaIWaaabaGaaGimaaqaaiaaicdaaeaacaWGHbWaaSbaaSqaaiaaig dacaaIXaaabeaaaOqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaa icdaaeaacaWGHbWaaSbaaSqaaiaaigdacaaI2aaabeaaaaaakiaawI cacaGLPaaacaaISaqbaeaabiGaaaqaaaqaaiabeU7aSnaaBaaaleaa caaIXaaabeaakiaai2dacqaH7oaBdaWgaaWcbaGaaGOmaaqabaGccq GHGjsUcqaH7oaBdaWgaaWcbaGaaG4maaqabaGccqGHGjsUcqaH7oaB daWgaaWcbaGaaGinaaqabaGccaaISaaabaaabaGaeq4UdW2aaSbaaS qaaiaaigdaaeqaaOGaaGypaiabeU7aSnaaBaaaleaacaaIYaaabeaa kiabgcMi5kabeU7aSnaaBaaaleaacaaI0aaabeaakiaaiUdaaaaaba aabaWaaeWaaeaafaqabeabeaaaaaqaaiaadggadaWgaaWcbaGaaGym aaqabaaakeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaaba GaamyyamaaBaaaleaacaaI2aaabeaaaOqaaiaaicdaaeaacaaIWaaa baGaaGimaaqaaiaaicdaaeaacaWGHbWaaSbaaSqaaiaaigdacaaIXa aabeaaaOqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaa caWGHbWaaSbaaSqaaiaaigdacaaI2aaabeaaaaaakiaawIcacaGLPa aacaaMe8EbaeaabiGaaaqaaaqaaiaabsdbcaqG7qGaae4teiaab+db caqG+qGaae4peiaabcdbcaqGarGaaeypeiaab6dbcaqGarGaaeimei aabEdbcqGHsislaeaaaeaacaqG7qGaaeioeiaabEebcaqG9qGaae4s eiaabwebcqaH7oaBdaWgaaWcbaGaaGymaaqabaGccaaISaGaeq4UdW 2aaSbaaSqaaiaaikdaaeqaaOGaaGilaiabeU7aSnaaBaaaleaacaaI ZaaabeaakiaaiYcacqaH7oaBdaWgaaWcbaGaaGinaaqabaGccaaIUa aaaaaaaaa@F916@  (3.6)

2. Для матрицы T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36CC@ , коммутирующей с матрицей T 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIXaaabeaaaaa@37B3@  вида 2 из (3.5), с точностью до перестановки строк и столбцов, возможны соответственно два различных случая:

a 1 a 2 0 0 a 5 a 6 0 0 0 0 a 11 a 12 0 0 a 12 a 11 , λ 1 = λ 2 ; a 1 0 0 0 0 a 6 0 0 0 0 a 11 a 12 0 0 a 12 a 11 , λ 1 λ 2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafa qabeabeaaaaaqaaiaadggadaWgaaWcbaGaaGymaaqabaaakeaacaWG HbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaaGimaaqaaiaaicdaaeaaca WGHbWaaSbaaSqaaiaaiwdaaeqaaaGcbaGaamyyamaaBaaaleaacaaI 2aaabeaaaOqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaae aacaWGHbWaaSbaaSqaaiaaigdacaaIXaaabeaaaOqaaiabgkHiTiaa dggadaWgaaWcbaGaaGymaiaaikdaaeqaaaGcbaGaaGimaaqaaiaaic daaeaacaWGHbWaaSbaaSqaaiaaigdacaaIYaaabeaaaOqaaiaadgga daWgaaWcbaGaaGymaiaaigdaaeqaaaaaaOGaayjkaiaawMcaaiaaiY cacqaH7oaBdaWgaaWcbaGaaGymaaqabaGccaaI9aGaeq4UdW2aaSba aSqaaiaaikdaaeqaaOGaaG4oaiaaywW7daqadaqaauaabeqaeqaaaa aabaGaamyyamaaBaaaleaacaaIXaaabeaaaOqaaiaaicdaaeaacaaI WaaabaGaaGimaaqaaiaaicdaaeaacaWGHbWaaSbaaSqaaiaaiAdaae qaaaGcbaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaa dggadaWgaaWcbaGaaGymaiaaigdaaeqaaaGcbaGaeyOeI0Iaamyyam aaBaaaleaacaaIXaGaaGOmaaqabaaakeaacaaIWaaabaGaaGimaaqa aiaadggadaWgaaWcbaGaaGymaiaaikdaaeqaaaGcbaGaamyyamaaBa aaleaacaaIXaGaaGymaaqabaaaaaGccaGLOaGaayzkaaGaaGilaiaa ysW7cqaH7oaBdaWgaaWcbaGaaGymaaqabaGccqGHGjsUcqaH7oaBda WgaaWcbaGaaGOmaaqabaGccaaIUaaaaa@7B08@  (3.7)

3. Для матрицы T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36CC@ , коммутирующей с матрицей T 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIXaaabeaaaaa@37B3@  вида 3 из (3.5), с точностью до перестановки строк и столбцов, возможен случай

a 1 a 2 0 0 a 2 a 1 0 0 0 0 a 11 a 12 0 0 a 12 a 11 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafa qabeabeaaaaaqaaiaadggadaWgaaWcbaGaaGymaaqabaaakeaacqGH sislcaWGHbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaaGimaaqaaiaaic daaeaacaWGHbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaamyyamaaBaaa leaacaaIXaaabeaaaOqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaai aaicdaaeaacaWGHbWaaSbaaSqaaiaaigdacaaIXaaabeaaaOqaaiab gkHiTiaadggadaWgaaWcbaGaaGymaiaaikdaaeqaaaGcbaGaaGimaa qaaiaaicdaaeaacaWGHbWaaSbaaSqaaiaaigdacaaIYaaabeaaaOqa aiaadggadaWgaaWcbaGaaGymaiaaigdaaeqaaaaaaOGaayjkaiaawM caaiaai6caaaa@51A6@  (3.8)

4. Для матрицы T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36CC@ , коммутирующей с матрицей T 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIXaaabeaaaaa@37B3@  вида 4 из (3.5), с точностью до перестановки строк и столбцов, возможны четыре различных случая:

a 1 a 2 a 3 a 4 0 a 1 0 0 0 a 10 a 11 a 12 0 a 14 a 15 a 16 , λ 5 = λ 6 = λ 7 ; a 1 a 2 a 3 0 0 a 1 0 0 0 a 10 a 11 0 0 0 0 a 16 , λ 5 = λ 6 λ 7 ; a 1 a 2 0 0 0 a 1 0 0 0 0 a 11 a 12 0 0 a 15 a 16 , λ 5 λ 6 = λ 7 ; a 1 a 2 0 0 0 a 1 0 0 0 0 a 11 0 0 0 0 a 16 , λ 5 λ 6 , λ 5 λ 7 , λ 6 λ 7 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiabaa aabaaabaWaaeWaaeaafaqabeabeaaaaaqaaiaadggadaWgaaWcbaGa aGymaaqabaaakeaacaWGHbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaam yyamaaBaaaleaacaaIZaaabeaaaOqaaiaadggadaWgaaWcbaGaaGin aaqabaaakeaacaaIWaaabaGaamyyamaaBaaaleaacaaIXaaabeaaaO qaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaadggadaWgaaWcbaGa aGymaiaaicdaaeqaaaGcbaGaamyyamaaBaaaleaacaaIXaGaaGymaa qabaaakeaacaWGHbWaaSbaaSqaaiaaigdacaaIYaaabeaaaOqaaiaa icdaaeaacaWGHbWaaSbaaSqaaiaaigdacaaI0aaabeaaaOqaaiaadg gadaWgaaWcbaGaaGymaiaaiwdaaeqaaaGcbaGaamyyamaaBaaaleaa caaIXaGaaGOnaaqabaaaaaGccaGLOaGaayzkaaGaaGilaiabeU7aSn aaBaaaleaacaaI1aaabeaakiaai2dacqaH7oaBdaWgaaWcbaGaaGOn aaqabaGccaaI9aGaeq4UdW2aaSbaaSqaaiaaiEdaaeqaaOGaaG4oaa qaaiaaywW7aeaadaqadaqaauaabeqaeqaaaaaabaGaamyyamaaBaaa leaacaaIXaaabeaaaOqaaiaadggadaWgaaWcbaGaaGOmaaqabaaake aacaWGHbWaaSbaaSqaaiaaiodaaeqaaaGcbaGaaGimaaqaaiaaicda aeaacaWGHbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaaGimaaqaaiaaic daaeaacaaIWaaabaGaamyyamaaBaaaleaacaaIXaGaaGimaaqabaaa keaacaWGHbWaaSbaaSqaaiaaigdacaaIXaaabeaaaOqaaiaaicdaae aacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaWGHbWaaSbaaSqaaiaa igdacaaI2aaabeaaaaaakiaawIcacaGLPaaacaaISaGaeq4UdW2aaS baaSqaaiaaiwdaaeqaaOGaaGypaiabeU7aSnaaBaaaleaacaaI2aaa beaakiabgcMi5kabeU7aSnaaBaaaleaacaaI3aaabeaakiaaiUdaae aaaeaadaqadaqaauaabeqaeqaaaaaabaGaamyyamaaBaaaleaacaaI XaaabeaaaOqaaiaadggadaWgaaWcbaGaaGOmaaqabaaakeaacaaIWa aabaGaaGimaaqaaiaaicdaaeaacaWGHbWaaSbaaSqaaiaaigdaaeqa aaGcbaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaadg gadaWgaaWcbaGaaGymaiaaigdaaeqaaaGcbaGaamyyamaaBaaaleaa caaIXaGaaGOmaaqabaaakeaacaaIWaaabaGaaGimaaqaaiaadggada WgaaWcbaGaaGymaiaaiwdaaeqaaaGcbaGaamyyamaaBaaaleaacaaI XaGaaGOnaaqabaaaaaGccaGLOaGaayzkaaGaaGilaiabeU7aSnaaBa aaleaacaaI1aaabeaakiabgcMi5kabeU7aSnaaBaaaleaacaaI2aaa beaakiaai2dacqaH7oaBdaWgaaWcbaGaaG4naaqabaGccaaI7aaaba GaaGzbVdqaamaabmaabaqbaeqabqabaaaaaeaacaWGHbWaaSbaaSqa aiaaigdaaeqaaaGcbaGaamyyamaaBaaaleaacaaIYaaabeaaaOqaai aaicdaaeaacaaIWaaabaGaaGimaaqaaiaadggadaWgaaWcbaGaaGym aaqabaaakeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaaba GaamyyamaaBaaaleaacaaIXaGaaGymaaqabaaakeaacaaIWaaabaGa aGimaaqaaiaaicdaaeaacaaIWaaabaGaamyyamaaBaaaleaacaaIXa GaaGOnaaqabaaaaaGccaGLOaGaayzkaaGaaGilauaabaqadiaaaeaa aeaacqaH7oaBdaWgaaWcbaGaaGynaaqabaGccqGHGjsUcqaH7oaBda WgaaWcbaGaaGOnaaqabaGccaaISaaabaaabaGaeq4UdW2aaSbaaSqa aiaaiwdaaeqaaOGaeyiyIKRaeq4UdW2aaSbaaSqaaiaaiEdaaeqaaO GaaGilaaqaaaqaaiabeU7aSnaaBaaaleaacaaI2aaabeaakiabgcMi 5kabeU7aSnaaBaaaleaacaaI3aaabeaakiaai6caaaaaaaaa@D61F@  (3.9)

5. Для матрицы T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36CC@ , коммутирующей с матрицей T 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIXaaabeaaaaa@37B3@  вида 5 из (3.5), с точностью до перестановки строк и столбцов, возможен случай

a 1 a 2 0 0 0 a 1 0 0 0 0 a 11 a 12 0 0 a 12 a 11 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafa qabeabeaaaaaqaaiaadggadaWgaaWcbaGaaGymaaqabaaakeaacaWG HbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaaGimaaqaaiaaicdaaeaaca aIWaaabaGaamyyamaaBaaaleaacaaIXaaabeaaaOqaaiaaicdaaeaa caaIWaaabaGaaGimaaqaaiaaicdaaeaacaWGHbWaaSbaaSqaaiaaig dacaaIXaaabeaaaOqaaiabgkHiTiaadggadaWgaaWcbaGaaGymaiaa ikdaaeqaaaGcbaGaaGimaaqaaiaaicdaaeaacaWGHbWaaSbaaSqaai aaigdacaaIYaaabeaaaOqaaiaadggadaWgaaWcbaGaaGymaiaaigda aeqaaaaaaOGaayjkaiaawMcaaiaai6caaaa@4F9B@  (3.10)

6. Для матрицы T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36CC@ , коммутирующей с матрицей T 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIXaaabeaaaaa@37B3@  вида 6 из (3.5), с точностью до перестановки строк и столбцов, возможны два различных случая:

a 1 a 2 a 3 a 4 0 a 1 0 a 3 a 9 a 10 a 11 a 12 0 a 9 0 a 11 , λ 5 = λ 8 ; a 1 a 2 0 0 0 a 1 0 0 0 0 a 11 a 12 0 0 0 a 11 , λ 5 λ 8 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafa qabeabeaaaaaqaaiaadggadaWgaaWcbaGaaGymaaqabaaakeaacaWG HbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaamyyamaaBaaaleaacaaIZa aabeaaaOqaaiaadggadaWgaaWcbaGaaGinaaqabaaakeaacaaIWaaa baGaamyyamaaBaaaleaacaaIXaaabeaaaOqaaiaaicdaaeaacaWGHb WaaSbaaSqaaiaaiodaaeqaaaGcbaGaamyyamaaBaaaleaacaaI5aaa beaaaOqaaiaadggadaWgaaWcbaGaaGymaiaaicdaaeqaaaGcbaGaam yyamaaBaaaleaacaaIXaGaaGymaaqabaaakeaacaWGHbWaaSbaaSqa aiaaigdacaaIYaaabeaaaOqaaiaaicdaaeaacaWGHbWaaSbaaSqaai aaiMdaaeqaaaGcbaGaaGimaaqaaiaadggadaWgaaWcbaGaaGymaiaa igdaaeqaaaaaaOGaayjkaiaawMcaaiaaiYcacqaH7oaBdaWgaaWcba GaaGynaaqabaGccaaI9aGaeq4UdW2aaSbaaSqaaiaaiIdaaeqaaOGa aG4oaiaaywW7daqadaqaauaabeqaeqaaaaaabaGaamyyamaaBaaale aacaaIXaaabeaaaOqaaiaadggadaWgaaWcbaGaaGOmaaqabaaakeaa caaIWaaabaGaaGimaaqaaiaaicdaaeaacaWGHbWaaSbaaSqaaiaaig daaeqaaaGcbaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqa aiaadggadaWgaaWcbaGaaGymaiaaigdaaeqaaaGcbaGaamyyamaaBa aaleaacaaIXaGaaGOmaaqabaaakeaacaaIWaaabaGaaGimaaqaaiaa icdaaeaacaWGHbWaaSbaaSqaaiaaigdacaaIXaaabeaaaaaakiaawI cacaGLPaaacaaISaGaeq4UdW2aaSbaaSqaaiaaiwdaaeqaaOGaeyiy IKRaeq4UdW2aaSbaaSqaaiaaiIdaaeqaaOGaaGOlaaaa@7B75@  (3.11)

7. Для матрицы T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36CC@ , коммутирующей с матрицей T 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIXaaabeaaaaa@37B3@  вида 7 из (3.5), с точностью до перестановки строк и столбцов, возможны соответственно два различных случая:

a 1 a 2 a 3 a 4 0 a 1 a 2 0 0 0 a 1 0 0 0 a 15 a 16 , λ 9 = λ 10 ; a 1 a 2 a 3 0 0 a 1 a 2 0 0 0 a 1 0 0 0 0 a 16 , λ 9 λ 10 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafa qabeabeaaaaaqaaiaadggadaWgaaWcbaGaaGymaaqabaaakeaacaWG HbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaamyyamaaBaaaleaacaaIZa aabeaaaOqaaiaadggadaWgaaWcbaGaaGinaaqabaaakeaacaaIWaaa baGaamyyamaaBaaaleaacaaIXaaabeaaaOqaaiaadggadaWgaaWcba GaaGOmaaqabaaakeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaWG HbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaaGimaaqaaiaaicdaaeaaca aIWaaabaGaamyyamaaBaaaleaacaaIXaGaaGynaaqabaaakeaacaWG HbWaaSbaaSqaaiaaigdacaaI2aaabeaaaaaakiaawIcacaGLPaaaca aISaGaeq4UdW2aaSbaaSqaaiaaiMdaaeqaaOGaaGypaiabeU7aSnaa BaaaleaacaaIXaGaaGimaaqabaGccaaI7aGaaGzbVpaabmaabaqbae qabqabaaaaaeaacaWGHbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaamyy amaaBaaaleaacaaIYaaabeaaaOqaaiaadggadaWgaaWcbaGaaG4maa qabaaakeaacaaIWaaabaGaaGimaaqaaiaadggadaWgaaWcbaGaaGym aaqabaaakeaacaWGHbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaaGimaa qaaiaaicdaaeaacaaIWaaabaGaamyyamaaBaaaleaacaaIXaaabeaa aOqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaWGHb WaaSbaaSqaaiaaigdacaaI2aaabeaaaaaakiaawIcacaGLPaaacaaI SaGaeq4UdW2aaSbaaSqaaiaaiMdaaeqaaOGaeyiyIKRaeq4UdW2aaS baaSqaaiaaigdacaaIWaaabeaakiaai6caaaa@77BC@  (3.12)

8. Матрица T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36CC@ , коммутирующая с матрицей T 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIXaaabeaaaaa@37B3@  вида 8 из (3.5), имеет вид

a 1 a 2 a 3 a 4 0 a 1 a 2 a 3 0 0 a 1 a 2 0 0 0 a 1 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafa qabeabeaaaaaqaaiaadggadaWgaaWcbaGaaGymaaqabaaakeaacaWG HbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaamyyamaaBaaaleaacaaIZa aabeaaaOqaaiaadggadaWgaaWcbaGaaGinaaqabaaakeaacaaIWaaa baGaamyyamaaBaaaleaacaaIXaaabeaaaOqaaiaadggadaWgaaWcba GaaGOmaaqabaaakeaacaWGHbWaaSbaaSqaaiaaiodaaeqaaaGcbaGa aGimaaqaaiaaicdaaeaacaWGHbWaaSbaaSqaaiaaigdaaeqaaaGcba GaamyyamaaBaaaleaacaaIYaaabeaaaOqaaiaaicdaaeaacaaIWaaa baGaaGimaaqaaiaadggadaWgaaWcbaGaaGymaaqabaaaaaGccaGLOa GaayzkaaGaaGOlaaaa@4F20@  (3.13)

Доказательство. данной теоремы сводится к вычислению матричных коммутаторов и приравниванию их к нулевой матрице: T 1 TT T 1 =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIXaaabeaakiaadsfacqGHsislcaWGubGaamivamaaBaaa leaacaaIXaaabeaakiaai2dacaaIWaaaaa@3DA7@ . Проиллюстрируем это для последнего случая, когда матрица T 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIXaaabeaaaaa@37B3@  имеет вид 8) из (3.5) и

T= a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 a 10 a 11 a 12 a 13 a 14 a 15 a 16 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiaai2 dadaqadaqaauaabeqaeqaaaaaabaGaamyyamaaBaaaleaacaaIXaaa beaaaOqaaiaadggadaWgaaWcbaGaaGOmaaqabaaakeaacaWGHbWaaS baaSqaaiaaiodaaeqaaaGcbaGaamyyamaaBaaaleaacaaI0aaabeaa aOqaaiaadggadaWgaaWcbaGaaGynaaqabaaakeaacaWGHbWaaSbaaS qaaiaaiAdaaeqaaaGcbaGaamyyamaaBaaaleaacaaI3aaabeaaaOqa aiaadggadaWgaaWcbaGaaGioaaqabaaakeaacaWGHbWaaSbaaSqaai aaiMdaaeqaaaGcbaGaamyyamaaBaaaleaacaaIXaGaaGimaaqabaaa keaacaWGHbWaaSbaaSqaaiaaigdacaaIXaaabeaaaOqaaiaadggada WgaaWcbaGaaGymaiaaikdaaeqaaaGcbaGaamyyamaaBaaaleaacaaI XaGaaG4maaqabaaakeaacaWGHbWaaSbaaSqaaiaaigdacaaI0aaabe aaaOqaaiaadggadaWgaaWcbaGaaGymaiaaiwdaaeqaaaGcbaGaamyy amaaBaaaleaacaaIXaGaaGOnaaqabaaaaaGccaGLOaGaayzkaaGaaG Olaaaa@5CB3@

Получаем

T 1 TT T 1 = a 5 a 1 a 6 a 2 a 7 a 3 a 8 a 9 a 5 a 10 a 6 a 11 a 7 a 12 a 13 a 9 a 14 a 10 a 15 a 11 a 16 0 a 15 a 14 a 15 =0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIXaaabeaakiaadsfacqGHsislcaWGubGaamivamaaBaaa leaacaaIXaaabeaakiaai2dadaqadaqaauaabeqaeqaaaaaabaGaey OeI0IaamyyamaaBaaaleaacaaI1aaabeaaaOqaaiaadggadaWgaaWc baGaaGymaaqabaGccqGHsislcaWGHbWaaSbaaSqaaiaaiAdaaeqaaa GcbaGaamyyamaaBaaaleaacaaIYaaabeaakiabgkHiTiaadggadaWg aaWcbaGaaG4naaqabaaakeaacaWGHbWaaSbaaSqaaiaaiodaaeqaaO GaeyOeI0IaamyyamaaBaaaleaacaaI4aaabeaaaOqaaiabgkHiTiaa dggadaWgaaWcbaGaaGyoaaqabaaakeaacaWGHbWaaSbaaSqaaiaaiw daaeqaaOGaeyOeI0IaamyyamaaBaaaleaacaaIXaGaaGimaaqabaaa keaacaWGHbWaaSbaaSqaaiaaiAdaaeqaaOGaeyOeI0IaamyyamaaBa aaleaacaaIXaGaaGymaaqabaaakeaacaWGHbWaaSbaaSqaaiaaiEda aeqaaOGaeyOeI0IaamyyamaaBaaaleaacaaIXaGaaGOmaaqabaaake aacqGHsislcaWGHbWaaSbaaSqaaiaaigdacaaIZaaabeaaaOqaaiaa dggadaWgaaWcbaGaaGyoaaqabaGccqGHsislcaWGHbWaaSbaaSqaai aaigdacaaI0aaabeaaaOqaaiaadggadaWgaaWcbaGaaGymaiaaicda aeqaaOGaeyOeI0IaamyyamaaBaaaleaacaaIXaGaaGynaaqabaaake aacaWGHbWaaSbaaSqaaiaaigdacaaIXaaabeaakiabgkHiTiaadgga daWgaaWcbaGaaGymaiaaiAdaaeqaaaGcbaGaaGimaaqaaiaadggada WgaaWcbaGaaGymaiaaiwdaaeqaaaGcbaGaamyyamaaBaaaleaacaaI XaGaaGinaaqabaaakeaacaWGHbWaaSbaaSqaaiaaigdacaaI1aaabe aaaaaakiaawIcacaGLPaaacaaI9aGaaGimaiaai6caaaa@81E1@

Видно, что

a 5 = a 9 = a 10 = a 13 = a 14 = a 15 =0, a 1 = a 6 = a 11 = a 16 , a 7 = a 2 = a 12 , a 3 = a b . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaaI1aaabeaakiaai2dacaWGHbWaaSbaaSqaaiaaiMdaaeqa aOGaaGypaiaadggadaWgaaWcbaGaaGymaiaaicdaaeqaaOGaaGypai aadggadaWgaaWcbaGaaGymaiaaiodaaeqaaOGaaGypaiaadggadaWg aaWcbaGaaGymaiaaisdaaeqaaOGaaGypaiaadggadaWgaaWcbaGaaG ymaiaaiwdaaeqaaOGaaGypaiaaicdacaaISaGaaGzbVlaadggadaWg aaWcbaGaaGymaaqabaGccaaI9aGaamyyamaaBaaaleaacaaI2aaabe aakiaai2dacaWGHbWaaSbaaSqaaiaaigdacaaIXaaabeaakiaai2da caWGHbWaaSbaaSqaaiaaigdacaaI2aaabeaakiaaiYcacaaMf8Uaam yyamaaBaaaleaacaaI3aaabeaakiaai2dacaWGHbWaaSbaaSqaaiaa ikdaaeqaaOGaaGypaiaadggadaWgaaWcbaGaaGymaiaaikdaaeqaaO GaaGilaiaaywW7caWGHbWaaSbaaSqaaiaaiodaaeqaaOGaaGypaiaa dggadaWgaaWcbaGaamOyaaqabaGccaaIUaaaaa@688F@

В результате матрица T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36CC@  принимает вид (3.13). Аналогично получаем (3.6) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (3.12).

Теоремы 3 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ 5 дают существенные ограничения на матрицы коэффициентов T 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIYaaabeaaaaa@37B4@ , T 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIZaaabeaaaaa@37B5@  и T 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaI0aaabeaaaaa@37B6@  из системы (3.1). Несложно установить, что матрицы T 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIXaaabeaaaaa@37B3@ , T 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIYaaabeaaaaa@37B4@ , T 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIZaaabeaaaaa@37B5@  и T 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaI0aaabeaaaaa@37B6@  могут принимать следующие неупорядоченные четвёрки значений:

1. λ 1 0 0 0 0 λ 2 0 0 0 0 λ 3 0 0 0 0 λ 4 , μ 1 0 0 0 0 μ 2 0 0 0 0 μ 3 0 0 0 0 μ 4 , ν 1 0 0 0 0 ν 2 0 0 0 0 ν 3 0 0 0 0 ν 4 , ρ 1 0 0 0 0 ρ 2 0 0 0 0 ρ 3 0 0 0 0 ρ 4 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaai6 cacaaMf8+aaeWaaeaafaqabeabeaaaaaqaaiabeU7aSnaaBaaaleaa caaIXaaabeaaaOqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaic daaeaacqaH7oaBdaWgaaWcbaGaaGOmaaqabaaakeaacaaIWaaabaGa aGimaaqaaiaaicdaaeaacaaIWaaabaGaeq4UdW2aaSbaaSqaaiaaio daaeqaaaGcbaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqa aiabeU7aSnaaBaaaleaacaaI0aaabeaaaaaakiaawIcacaGLPaaaca aISaWaaeWaaeaafaqabeabeaaaaaqaaiabeY7aTnaaBaaaleaacaaI XaaabeaaaOqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaae aacqaH8oqBdaWgaaWcbaGaaGOmaaqabaaakeaacaaIWaaabaGaaGim aaqaaiaaicdaaeaacaaIWaaabaGaeqiVd02aaSbaaSqaaiaaiodaae qaaaGcbaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiab eY7aTnaaBaaaleaacaaI0aaabeaaaaaakiaawIcacaGLPaaacaaISa WaaeWaaeaafaqabeabeaaaaaqaaiabe27aUnaaBaaaleaacaaIXaaa beaaaOqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacq aH9oGBdaWgaaWcbaGaaGOmaaqabaaakeaacaaIWaaabaGaaGimaaqa aiaaicdaaeaacaaIWaaabaGaeqyVd42aaSbaaSqaaiaaiodaaeqaaa GcbaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiabe27a UnaaBaaaleaacaaI0aaabeaaaaaakiaawIcacaGLPaaacaaISaWaae Waaeaafaqabeabeaaaaaqaaiabeg8aYnaaBaaaleaacaaIXaaabeaa aOqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacqaHbp GCdaWgaaWcbaGaaGOmaaqabaaakeaacaaIWaaabaGaaGimaaqaaiaa icdaaeaacaaIWaaabaGaeqyWdi3aaSbaaSqaaiaaiodaaeqaaaGcba GaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiabeg8aYnaa BaaaleaacaaI0aaabeaaaaaakiaawIcacaGLPaaacaaI7aaaaa@900F@

 

2. λ 1 0 0 0 0 λ 2 0 0 0 0 λ 3 λ 4 0 0 λ 4 λ 3 , μ 1 0 0 0 0 μ 2 0 0 0 0 μ 3 μ 4 0 0 μ 4 μ 3 , ν 1 0 0 0 0 ν 2 0 0 0 0 ν 3 ν 4 0 0 ν 4 ν 3 , ρ 1 0 0 0 0 ρ 2 0 0 0 0 ρ 3 ρ 4 0 0 ρ 4 ρ 3 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaai6 cacaaMf8+aaeWaaeaafaqabeabeaaaaaqaaiabeU7aSnaaBaaaleaa caaIXaaabeaaaOqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaic daaeaacqaH7oaBdaWgaaWcbaGaaGOmaaqabaaakeaacaaIWaaabaGa aGimaaqaaiaaicdaaeaacaaIWaaabaGaeq4UdW2aaSbaaSqaaiaaio daaeqaaaGcbaGaeyOeI0Iaeq4UdW2aaSbaaSqaaiaaisdaaeqaaaGc baGaaGimaaqaaiaaicdaaeaacqaH7oaBdaWgaaWcbaGaaGinaaqaba aakeaacqaH7oaBdaWgaaWcbaGaaG4maaqabaaaaaGccaGLOaGaayzk aaGaaGilamaabmaabaqbaeqabqabaaaaaeaacqaH8oqBdaWgaaWcba GaaGymaaqabaaakeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaI WaaabaGaeqiVd02aaSbaaSqaaiaaikdaaeqaaaGcbaGaaGimaaqaai aaicdaaeaacaaIWaaabaGaaGimaaqaaiabeY7aTnaaBaaaleaacaaI ZaaabeaaaOqaaiabgkHiTiabeY7aTnaaBaaaleaacaaI0aaabeaaaO qaaiaaicdaaeaacaaIWaaabaGaeqiVd02aaSbaaSqaaiaaisdaaeqa aaGcbaGaeqiVd02aaSbaaSqaaiaaiodaaeqaaaaaaOGaayjkaiaawM caaiaaiYcadaqadaqaauaabeqaeqaaaaaabaGaeqyVd42aaSbaaSqa aiaaigdaaeqaaaGcbaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaG imaaqaaiabe27aUnaaBaaaleaacaaIYaaabeaaaOqaaiaaicdaaeaa caaIWaaabaGaaGimaaqaaiaaicdaaeaacqaH9oGBdaWgaaWcbaGaaG 4maaqabaaakeaacqGHsislcqaH9oGBdaWgaaWcbaGaaGinaaqabaaa keaacaaIWaaabaGaaGimaaqaaiabe27aUnaaBaaaleaacaaI0aaabe aaaOqaaiabe27aUnaaBaaaleaacaaIZaaabeaaaaaakiaawIcacaGL PaaacaaISaWaaeWaaeaafaqabeabeaaaaaqaaiabeg8aYnaaBaaale aacaaIXaaabeaaaOqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaa icdaaeaacqaHbpGCdaWgaaWcbaGaaGOmaaqabaaakeaacaaIWaaaba GaaGimaaqaaiaaicdaaeaacaaIWaaabaGaeqyWdi3aaSbaaSqaaiaa iodaaeqaaaGcbaGaeyOeI0IaeqyWdi3aaSbaaSqaaiaaisdaaeqaaa GcbaGaaGimaaqaaiaaicdaaeaacqaHbpGCdaWgaaWcbaGaaGinaaqa baaakeaacqaHbpGCdaWgaaWcbaGaaG4maaqabaaaaaGccaGLOaGaay zkaaGaaGilaaaa@A345@

  λ 4 0; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlaayw W7cqaH7oaBdaWgaaWcbaGaaGinaaqabaGccqGHGjsUcaaIWaGaaG4o aaaa@3EFD@

3. λ 1 λ 2 0 0 λ 2 λ 1 0 0 0 0 λ 3 λ 4 0 0 λ 4 λ 3 , μ 1 μ 2 0 0 μ 2 μ 1 0 0 0 0 μ 3 μ 4 0 0 μ 4 μ 3 , ν 1 ν 2 0 0 ν 2 ν 1 0 0 0 0 ν 3 ν 4 0 0 ν 4 ν 3 , ρ 1 ρ 2 0 0 ρ 2 ρ 1 0 0 0 0 ρ 3 ρ 4 0 0 ρ 4 ρ 3 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4maiaai6 cacaaMf8+aaeWaaeaafaqabeabeaaaaaqaaiabeU7aSnaaBaaaleaa caaIXaaabeaaaOqaaiabgkHiTiabeU7aSnaaBaaaleaacaaIYaaabe aaaOqaaiaaicdaaeaacaaIWaaabaGaeq4UdW2aaSbaaSqaaiaaikda aeqaaaGcbaGaeq4UdW2aaSbaaSqaaiaaigdaaeqaaaGcbaGaaGimaa qaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiabeU7aSnaaBaaaleaa caaIZaaabeaaaOqaaiabgkHiTiabeU7aSnaaBaaaleaacaaI0aaabe aaaOqaaiaaicdaaeaacaaIWaaabaGaeq4UdW2aaSbaaSqaaiaaisda aeqaaaGcbaGaeq4UdW2aaSbaaSqaaiaaiodaaeqaaaaaaOGaayjkai aawMcaaiaaiYcadaqadaqaauaabeqaeqaaaaaabaGaeqiVd02aaSba aSqaaiaaigdaaeqaaaGcbaGaeyOeI0IaeqiVd02aaSbaaSqaaiaaik daaeqaaaGcbaGaaGimaaqaaiaaicdaaeaacqaH8oqBdaWgaaWcbaGa aGOmaaqabaaakeaacqaH8oqBdaWgaaWcbaGaaGymaaqabaaakeaaca aIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaeqiVd02aaSba aSqaaiaaiodaaeqaaaGcbaGaeyOeI0IaeqiVd02aaSbaaSqaaiaais daaeqaaaGcbaGaaGimaaqaaiaaicdaaeaacqaH8oqBdaWgaaWcbaGa aGinaaqabaaakeaacqaH8oqBdaWgaaWcbaGaaG4maaqabaaaaaGcca GLOaGaayzkaaGaaGilamaabmaabaqbaeqabqabaaaaaeaacqaH9oGB daWgaaWcbaGaaGymaaqabaaakeaacqGHsislcqaH9oGBdaWgaaWcba GaaGOmaaqabaaakeaacaaIWaaabaGaaGimaaqaaiabe27aUnaaBaaa leaacaaIYaaabeaaaOqaaiabe27aUnaaBaaaleaacaaIXaaabeaaaO qaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacqaH9oGB daWgaaWcbaGaaG4maaqabaaakeaacqGHsislcqaH9oGBdaWgaaWcba GaaGinaaqabaaakeaacaaIWaaabaGaaGimaaqaaiabe27aUnaaBaaa leaacaaI0aaabeaaaOqaaiabe27aUnaaBaaaleaacaaIZaaabeaaaa aakiaawIcacaGLPaaacaaISaWaaeWaaeaafaqabeabeaaaaaqaaiab eg8aYnaaBaaaleaacaaIXaaabeaaaOqaaiabgkHiTiabeg8aYnaaBa aaleaacaaIYaaabeaaaOqaaiaaicdaaeaacaaIWaaabaGaeqyWdi3a aSbaaSqaaiaaikdaaeqaaaGcbaGaeqyWdi3aaSbaaSqaaiaaigdaae qaaaGcbaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiab eg8aYnaaBaaaleaacaaIZaaabeaaaOqaaiabgkHiTiabeg8aYnaaBa aaleaacaaI0aaabeaaaOqaaiaaicdaaeaacaaIWaaabaGaeqyWdi3a aSbaaSqaaiaaisdaaeqaaaGcbaGaeqyWdi3aaSbaaSqaaiaaiodaae qaaaaaaOGaayjkaiaawMcaaiaaiYcaaaa@B67A@   λ 2 0, λ 4 0; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlaayw W7cqaH7oaBdaWgaaWcbaGaaGOmaaqabaGccqGHGjsUcaaIWaGaaGil aiaaysW7cqaH7oaBdaWgaaWcbaGaaGinaaqabaGccqGHGjsUcaaIWa GaaG4oaaaa@4667@

4. λ 1 λ 2 0 0 0 λ 1 0 0 0 0 λ 3 0 0 0 0 λ 4 , μ 1 μ 2 0 0 0 μ 1 0 0 0 0 μ 3 0 0 0 0 μ 4 , ν 1 ν 2 0 0 0 ν 1 0 0 0 0 ν 3 0 0 0 0 ν 4 , ρ 1 ρ 2 0 0 0 ρ 1 0 0 0 0 ρ 3 0 0 0 0 ρ 4 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGinaiaai6 cacaaMf8+aaeWaaeaafaqabeabeaaaaaqaaiabeU7aSnaaBaaaleaa caaIXaaabeaaaOqaaiabeU7aSnaaBaaaleaacaaIYaaabeaaaOqaai aaicdaaeaacaaIWaaabaGaaGimaaqaaiabeU7aSnaaBaaaleaacaaI XaaabeaaaOqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaae aacqaH7oaBdaWgaaWcbaGaaG4maaqabaaakeaacaaIWaaabaGaaGim aaqaaiaaicdaaeaacaaIWaaabaGaeq4UdW2aaSbaaSqaaiaaisdaae qaaaaaaOGaayjkaiaawMcaaiaaiYcadaqadaqaauaabeqaeqaaaaaa baGaeqiVd02aaSbaaSqaaiaaigdaaeqaaaGcbaGaeqiVd02aaSbaaS qaaiaaikdaaeqaaaGcbaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGa eqiVd02aaSbaaSqaaiaaigdaaeqaaaGcbaGaaGimaaqaaiaaicdaae aacaaIWaaabaGaaGimaaqaaiabeY7aTnaaBaaaleaacaaIZaaabeaa aOqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacqaH8o qBdaWgaaWcbaGaaGinaaqabaaaaaGccaGLOaGaayzkaaGaaGilamaa bmaabaqbaeqabqabaaaaaeaacqaH9oGBdaWgaaWcbaGaaGymaaqaba aakeaacqaH9oGBdaWgaaWcbaGaaGOmaaqabaaakeaacaaIWaaabaGa aGimaaqaaiaaicdaaeaacqaH9oGBdaWgaaWcbaGaaGymaaqabaaake aacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaeqyVd42a aSbaaSqaaiaaiodaaeqaaaGcbaGaaGimaaqaaiaaicdaaeaacaaIWa aabaGaaGimaaqaaiabe27aUnaaBaaaleaacaaI0aaabeaaaaaakiaa wIcacaGLPaaacaaISaWaaeWaaeaafaqabeabeaaaaaqaaiabeg8aYn aaBaaaleaacaaIXaaabeaaaOqaaiabeg8aYnaaBaaaleaacaaIYaaa beaaaOqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiabeg8aYnaaBa aaleaacaaIXaaabeaaaOqaaiaaicdaaeaacaaIWaaabaGaaGimaaqa aiaaicdaaeaacqaHbpGCdaWgaaWcbaGaaG4maaqabaaakeaacaaIWa aabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaeqyWdi3aaSbaaSqa aiaaisdaaeqaaaaaaOGaayjkaiaawMcaaiaaiYcaaaa@97C1@

λ 2 2 + μ 2 2 + ν 2 2 + ρ 2 2 0; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlaayw W7cqaH7oaBdaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccqGHRaWkcqaH 8oqBdaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccqGHRaWkcqaH9oGBda qhaaWcbaGaaGOmaaqaaiaaikdaaaGccqGHRaWkcqaHbpGCdaqhaaWc baGaaGOmaaqaaiaaikdaaaGccqGHGjsUcaaIWaGaaG4oaaaa@4C99@

5. λ 1 λ 2 0 0 0 λ 1 0 0 0 0 λ 3 λ 4 0 0 λ 4 λ 3 , μ 1 μ 2 0 0 0 μ 1 0 0 0 0 μ 3 μ 4 0 0 μ 4 μ 3 , ν 1 ν 2 0 0 0 ν 1 0 0 0 0 ν 3 ν 4 0 0 ν 4 ν 3 , ρ 1 ρ 2 0 0 0 ρ 1 0 0 0 0 ρ 3 ρ 4 0 0 ρ 4 ρ 3 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGynaiaai6 cacaaMf8+aaeWaaeaafaqabeabeaaaaaqaaiabeU7aSnaaBaaaleaa caaIXaaabeaaaOqaaiabeU7aSnaaBaaaleaacaaIYaaabeaaaOqaai aaicdaaeaacaaIWaaabaGaaGimaaqaaiabeU7aSnaaBaaaleaacaaI XaaabeaaaOqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaae aacqaH7oaBdaWgaaWcbaGaaG4maaqabaaakeaacqGHsislcqaH7oaB daWgaaWcbaGaaGinaaqabaaakeaacaaIWaaabaGaaGimaaqaaiabeU 7aSnaaBaaaleaacaaI0aaabeaaaOqaaiabeU7aSnaaBaaaleaacaaI ZaaabeaaaaaakiaawIcacaGLPaaacaaISaWaaeWaaeaafaqabeabea aaaaqaaiabeY7aTnaaBaaaleaacaaIXaaabeaaaOqaaiabeY7aTnaa BaaaleaacaaIYaaabeaaaOqaaiaaicdaaeaacaaIWaaabaGaaGimaa qaaiabeY7aTnaaBaaaleaacaaIXaaabeaaaOqaaiaaicdaaeaacaaI WaaabaGaaGimaaqaaiaaicdaaeaacqaH8oqBdaWgaaWcbaGaaG4maa qabaaakeaacqGHsislcqaH8oqBdaWgaaWcbaGaaGinaaqabaaakeaa caaIWaaabaGaaGimaaqaaiabeY7aTnaaBaaaleaacaaI0aaabeaaaO qaaiabeY7aTnaaBaaaleaacaaIZaaabeaaaaaakiaawIcacaGLPaaa caaISaWaaeWaaeaafaqabeabeaaaaaqaaiabe27aUnaaBaaaleaaca aIXaaabeaaaOqaaiabe27aUnaaBaaaleaacaaIYaaabeaaaOqaaiaa icdaaeaacaaIWaaabaGaaGimaaqaaiabe27aUnaaBaaaleaacaaIXa aabeaaaOqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaa cqaH9oGBdaWgaaWcbaGaaG4maaqabaaakeaacqGHsislcqaH9oGBda WgaaWcbaGaaGinaaqabaaakeaacaaIWaaabaGaaGimaaqaaiabe27a UnaaBaaaleaacaaI0aaabeaaaOqaaiabe27aUnaaBaaaleaacaaIZa aabeaaaaaakiaawIcacaGLPaaacaaISaWaaeWaaeaafaqabeabeaaa aaqaaiabeg8aYnaaBaaaleaacaaIXaaabeaaaOqaaiabeg8aYnaaBa aaleaacaaIYaaabeaaaOqaaiaaicdaaeaacaaIWaaabaGaaGimaaqa aiabeg8aYnaaBaaaleaacaaIXaaabeaaaOqaaiaaicdaaeaacaaIWa aabaGaaGimaaqaaiaaicdaaeaacqaHbpGCdaWgaaWcbaGaaG4maaqa baaakeaacqGHsislcqaHbpGCdaWgaaWcbaGaaGinaaqabaaakeaaca aIWaaabaGaaGimaaqaaiabeg8aYnaaBaaaleaacaaI0aaabeaaaOqa aiabeg8aYnaaBaaaleaacaaIZaaabeaaaaaakiaawIcacaGLPaaaca aISaaaaa@AB06@

λ 4 0; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlaayw W7cqaH7oaBdaWgaaWcbaGaaGinaaqabaGccqGHGjsUcaaIWaGaaG4o aaaa@3EFD@

6. λ 1 λ 2 0 0 0 λ 1 0 0 0 0 λ 3 λ 4 0 0 0 λ 3 , μ 1 μ 2 0 0 0 μ 1 0 0 0 0 μ 3 μ 4 0 0 0 μ 3 , ν 1 ν 2 0 0 0 ν 1 0 0 0 0 ν 3 ν 4 0 0 0 ν 3 , ρ 1 ρ 2 0 0 0 ρ 1 0 0 0 0 ρ 3 ρ 4 0 0 0 ρ 3 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOnaiaai6 cacaaMf8+aaeWaaeaafaqabeabeaaaaaqaaiabeU7aSnaaBaaaleaa caaIXaaabeaaaOqaaiabeU7aSnaaBaaaleaacaaIYaaabeaaaOqaai aaicdaaeaacaaIWaaabaGaaGimaaqaaiabeU7aSnaaBaaaleaacaaI XaaabeaaaOqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaae aacqaH7oaBdaWgaaWcbaGaaG4maaqabaaakeaacqaH7oaBdaWgaaWc baGaaGinaaqabaaakeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacq aH7oaBdaWgaaWcbaGaaG4maaqabaaaaaGccaGLOaGaayzkaaGaaGil amaabmaabaqbaeqabqabaaaaaeaacqaH8oqBdaWgaaWcbaGaaGymaa qabaaakeaacqaH8oqBdaWgaaWcbaGaaGOmaaqabaaakeaacaaIWaaa baGaaGimaaqaaiaaicdaaeaacqaH8oqBdaWgaaWcbaGaaGymaaqaba aakeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaeqiV d02aaSbaaSqaaiaaiodaaeqaaaGcbaGaeqiVd02aaSbaaSqaaiaais daaeqaaaGcbaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaeqiVd02a aSbaaSqaaiaaiodaaeqaaaaaaOGaayjkaiaawMcaaiaaiYcadaqada qaauaabeqaeqaaaaaabaGaeqyVd42aaSbaaSqaaiaaigdaaeqaaaGc baGaeqyVd42aaSbaaSqaaiaaikdaaeqaaaGcbaGaaGimaaqaaiaaic daaeaacaaIWaaabaGaeqyVd42aaSbaaSqaaiaaigdaaeqaaaGcbaGa aGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiabe27aUnaaBa aaleaacaaIZaaabeaaaOqaaiabe27aUnaaBaaaleaacaaI0aaabeaa aOqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiabe27aUnaaBaaale aacaaIZaaabeaaaaaakiaawIcacaGLPaaacaaISaWaaeWaaeaafaqa beabeaaaaaqaaiabeg8aYnaaBaaaleaacaaIXaaabeaaaOqaaiabeg 8aYnaaBaaaleaacaaIYaaabeaaaOqaaiaaicdaaeaacaaIWaaabaGa aGimaaqaaiabeg8aYnaaBaaaleaacaaIXaaabeaaaOqaaiaaicdaae aacaaIWaaabaGaaGimaaqaaiaaicdaaeaacqaHbpGCdaWgaaWcbaGa aG4maaqabaaakeaacqaHbpGCdaWgaaWcbaGaaGinaaqabaaakeaaca aIWaaabaGaaGimaaqaaiaaicdaaeaacqaHbpGCdaWgaaWcbaGaaG4m aaqabaaaaaGccaGLOaGaayzkaaGaaGilaaaa@9F89@

λ 2 2 + μ 2 2 + ν 2 2 + ρ 2 2 0, λ 4 2 + μ 4 2 + ν 4 2 + ρ 4 2 0; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlaayw W7cqaH7oaBdaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccqGHRaWkcqaH 8oqBdaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccqGHRaWkcqaH9oGBda qhaaWcbaGaaGOmaaqaaiaaikdaaaGccqGHRaWkcqaHbpGCdaqhaaWc baGaaGOmaaqaaiaaikdaaaGccqGHGjsUcaaIWaGaaGilaiaaysW7cq aH7oaBdaqhaaWcbaGaaGinaaqaaiaaikdaaaGccqGHRaWkcqaH8oqB daqhaaWcbaGaaGinaaqaaiaaikdaaaGccqGHRaWkcqaH9oGBdaqhaa WcbaGaaGinaaqaaiaaikdaaaGccqGHRaWkcqaHbpGCdaqhaaWcbaGa aGinaaqaaiaaikdaaaGccqGHGjsUcaaIWaGaaG4oaaaa@61A9@

7. λ 1 λ 2 λ 3 0 0 λ 1 λ 2 0 0 0 λ 1 0 0 0 0 λ 4 , μ 1 μ 2 μ 3 0 0 μ 1 μ 2 0 0 0 μ 1 0 0 0 0 μ 4 , ν 1 ν 2 ν 3 0 0 ν 1 ν 2 0 0 0 ν 1 0 0 0 0 ν 4 , ρ 1 ρ 2 ρ 3 0 0 ρ 1 ρ 2 0 0 0 ρ 1 0 0 0 0 ρ 4 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4naiaai6 cacaaMf8+aaeWaaeaafaqabeabeaaaaaqaaiabeU7aSnaaBaaaleaa caaIXaaabeaaaOqaaiabeU7aSnaaBaaaleaacaaIYaaabeaaaOqaai abeU7aSnaaBaaaleaacaaIZaaabeaaaOqaaiaaicdaaeaacaaIWaaa baGaeq4UdW2aaSbaaSqaaiaaigdaaeqaaaGcbaGaeq4UdW2aaSbaaS qaaiaaikdaaeqaaaGcbaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGa eq4UdW2aaSbaaSqaaiaaigdaaeqaaaGcbaGaaGimaaqaaiaaicdaae aacaaIWaaabaGaaGimaaqaaiabeU7aSnaaBaaaleaacaaI0aaabeaa aaaakiaawIcacaGLPaaacaaISaWaaeWaaeaafaqabeabeaaaaaqaai abeY7aTnaaBaaaleaacaaIXaaabeaaaOqaaiabeY7aTnaaBaaaleaa caaIYaaabeaaaOqaaiabeY7aTnaaBaaaleaacaaIZaaabeaaaOqaai aaicdaaeaacaaIWaaabaGaeqiVd02aaSbaaSqaaiaaigdaaeqaaaGc baGaeqiVd02aaSbaaSqaaiaaikdaaeqaaaGcbaGaaGimaaqaaiaaic daaeaacaaIWaaabaGaeqiVd02aaSbaaSqaaiaaigdaaeqaaaGcbaGa aGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiabeY7aTnaaBa aaleaacaaI0aaabeaaaaaakiaawIcacaGLPaaacaaISaWaaeWaaeaa faqabeabeaaaaaqaaiabe27aUnaaBaaaleaacaaIXaaabeaaaOqaai abe27aUnaaBaaaleaacaaIYaaabeaaaOqaaiabe27aUnaaBaaaleaa caaIZaaabeaaaOqaaiaaicdaaeaacaaIWaaabaGaeqyVd42aaSbaaS qaaiaaigdaaeqaaaGcbaGaeqyVd42aaSbaaSqaaiaaikdaaeqaaaGc baGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaeqyVd42aaSbaaSqaai aaigdaaeqaaaGcbaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGim aaqaaiabe27aUnaaBaaaleaacaaI0aaabeaaaaaakiaawIcacaGLPa aacaaISaWaaeWaaeaafaqabeabeaaaaaqaaiabeg8aYnaaBaaaleaa caaIXaaabeaaaOqaaiabeg8aYnaaBaaaleaacaaIYaaabeaaaOqaai abeg8aYnaaBaaaleaacaaIZaaabeaaaOqaaiaaicdaaeaacaaIWaaa baGaeqyWdi3aaSbaaSqaaiaaigdaaeqaaaGcbaGaeqyWdi3aaSbaaS qaaiaaikdaaeqaaaGcbaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGa eqyWdi3aaSbaaSqaaiaaigdaaeqaaaGcbaGaaGimaaqaaiaaicdaae aacaaIWaaabaGaaGimaaqaaiabeg8aYnaaBaaaleaacaaI0aaabeaa aaaakiaawIcacaGLPaaacaaISaaaaa@A744@

λ 2 2 + μ 2 2 + ν 2 2 + ρ 2 2 0; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlaayw W7cqaH7oaBdaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccqGHRaWkcqaH 8oqBdaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccqGHRaWkcqaH9oGBda qhaaWcbaGaaGOmaaqaaiaaikdaaaGccqGHRaWkcqaHbpGCdaqhaaWc baGaaGOmaaqaaiaaikdaaaGccqGHGjsUcaaIWaGaaG4oaaaa@4C99@

8. λ 1 λ 2 λ 3 λ 4 0 λ 1 λ 2 λ 3 0 0 λ 1 λ 2 0 0 0 λ 1 , μ 1 μ 2 μ 3 μ 4 0 μ 1 μ 2 μ 3 0 0 μ 1 μ 2 0 0 0 μ 1 , ν 1 ν 2 ν 3 ν 4 0 ν 1 ν 2 ν 3 0 0 ν 1 ν 2 0 0 0 ν 1 , ρ 1 ρ 2 ρ 3 ρ 4 0 ρ 1 ρ 2 ρ 3 0 0 ρ 1 ρ 2 0 0 0 ρ 1 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGioaiaai6 cacaaMf8+aaeWaaeaafaqabeabeaaaaaqaaiabeU7aSnaaBaaaleaa caaIXaaabeaaaOqaaiabeU7aSnaaBaaaleaacaaIYaaabeaaaOqaai abeU7aSnaaBaaaleaacaaIZaaabeaaaOqaaiabeU7aSnaaBaaaleaa caaI0aaabeaaaOqaaiaaicdaaeaacqaH7oaBdaWgaaWcbaGaaGymaa qabaaakeaacqaH7oaBdaWgaaWcbaGaaGOmaaqabaaakeaacqaH7oaB daWgaaWcbaGaaG4maaqabaaakeaacaaIWaaabaGaaGimaaqaaiabeU 7aSnaaBaaaleaacaaIXaaabeaaaOqaaiabeU7aSnaaBaaaleaacaaI YaaabeaaaOqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiabeU7aSn aaBaaaleaacaaIXaaabeaaaaaakiaawIcacaGLPaaacaaISaWaaeWa aeaafaqabeabeaaaaaqaaiabeY7aTnaaBaaaleaacaaIXaaabeaaaO qaaiabeY7aTnaaBaaaleaacaaIYaaabeaaaOqaaiabeY7aTnaaBaaa leaacaaIZaaabeaaaOqaaiabeY7aTnaaBaaaleaacaaI0aaabeaaaO qaaiaaicdaaeaacqaH8oqBdaWgaaWcbaGaaGymaaqabaaakeaacqaH 8oqBdaWgaaWcbaGaaGOmaaqabaaakeaacqaH8oqBdaWgaaWcbaGaaG 4maaqabaaakeaacaaIWaaabaGaaGimaaqaaiabeY7aTnaaBaaaleaa caaIXaaabeaaaOqaaiabeY7aTnaaBaaaleaacaaIYaaabeaaaOqaai aaicdaaeaacaaIWaaabaGaaGimaaqaaiabeY7aTnaaBaaaleaacaaI XaaabeaaaaaakiaawIcacaGLPaaacaaISaWaaeWaaeaafaqabeabea aaaaqaaiabe27aUnaaBaaaleaacaaIXaaabeaaaOqaaiabe27aUnaa BaaaleaacaaIYaaabeaaaOqaaiabe27aUnaaBaaaleaacaaIZaaabe aaaOqaaiabe27aUnaaBaaaleaacaaI0aaabeaaaOqaaiaaicdaaeaa cqaH9oGBdaWgaaWcbaGaaGymaaqabaaakeaacqaH9oGBdaWgaaWcba GaaGOmaaqabaaakeaacqaH9oGBdaWgaaWcbaGaaG4maaqabaaakeaa caaIWaaabaGaaGimaaqaaiabe27aUnaaBaaaleaacaaIXaaabeaaaO qaaiabe27aUnaaBaaaleaacaaIYaaabeaaaOqaaiaaicdaaeaacaaI WaaabaGaaGimaaqaaiabe27aUnaaBaaaleaacaaIXaaabeaaaaaaki aawIcacaGLPaaacaaISaWaaeWaaeaafaqabeabeaaaaaqaaiabeg8a YnaaBaaaleaacaaIXaaabeaaaOqaaiabeg8aYnaaBaaaleaacaaIYa aabeaaaOqaaiabeg8aYnaaBaaaleaacaaIZaaabeaaaOqaaiabeg8a YnaaBaaaleaacaaI0aaabeaaaOqaaiaaicdaaeaacqaHbpGCdaWgaa WcbaGaaGymaaqabaaakeaacqaHbpGCdaWgaaWcbaGaaGOmaaqabaaa keaacqaHbpGCdaWgaaWcbaGaaG4maaqabaaakeaacaaIWaaabaGaaG imaaqaaiabeg8aYnaaBaaaleaacaaIXaaabeaaaOqaaiabeg8aYnaa BaaaleaacaaIYaaabeaaaOqaaiaaicdaaeaacaaIWaaabaGaaGimaa qaaiabeg8aYnaaBaaaleaacaaIXaaabeaaaaaakiaawIcacaGLPaaa caaISaaaaa@BE8B@

λ 2 2 + μ 2 2 + ν 2 2 + ρ 2 2 0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlaayw W7cqaH7oaBdaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccqGHRaWkcqaH 8oqBdaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccqGHRaWkcqaH9oGBda qhaaWcbaGaaGOmaaqaaiaaikdaaaGccqGHRaWkcqaHbpGCdaqhaaWc baGaaGOmaaqaaiaaikdaaaGccqGHGjsUcaaIWaGaaGOlaaaa@4C8C@

4. Разложимая алгебра Ли

Решение системы дифференциальных уравнений (3.1) с нулевыми матрицами T 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIXaaabeaaaaa@37B3@ , T 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIYaaabeaaaaa@37B4@ , T 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIZaaabeaaaaa@37B5@  и T 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaI0aaabeaaaaa@37B6@  в подходящем базисе принимает следующий вид:

A = U 1 x y z w + C 1 , B = U 2 x y z w + C 2 , C = U 3 x y z w + C 3 , D = U 4 x y z w + C 4 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGbbaacaGLxdcacaaI9aGaamyvamaaCaaaleqabaGaaGymaaaakmaa bmaabaqbaeqabqqaaaaabaGaamiEaaqaaiaadMhaaeaacaWG6baaba Gaam4DaaaaaiaawIcacaGLPaaacqGHRaWkcaWGdbWaaWbaaSqabeaa caaIXaaaaOGaaGilaiaaywW7daWhbaqaaiaadkeaaiaawEniaiaai2 dacaWGvbWaaWbaaSqabeaacaaIYaaaaOWaaeWaaeaafaqabeabbaaa aeaacaWG4baabaGaamyEaaqaaiaadQhaaeaacaWG3baaaaGaayjkai aawMcaaiabgUcaRiaadoeadaahaaWcbeqaaiaaikdaaaGccaaISaGa aGzbVpaaFeaabaGaam4qaaGaay51GaGaaGypaiaadwfadaahaaWcbe qaaiaaiodaaaGcdaqadaqaauaabeqaeeaaaaqaaiaadIhaaeaacaWG 5baabaGaamOEaaqaaiaadEhaaaaacaGLOaGaayzkaaGaey4kaSIaam 4qamaaCaaaleqabaGaaG4maaaakiaaiYcacaaMf8+aa8raaeaacaWG ebaacaGLxdcacaaI9aGaamyvamaaCaaaleqabaGaaGinaaaakmaabm aabaqbaeqabqqaaaaabaGaamiEaaqaaiaadMhaaeaacaWG6baabaGa am4DaaaaaiaawIcacaGLPaaacqGHRaWkcaWGdbWaaWbaaSqabeaaca aI0aaaaOGaaGilaaaa@7267@

где

U i = g 1 i p 1 i q 1 i r 1 i g 2 i p 2 i q 2 i r 2 i g 3 i p 3 i q 3 i r 3 i g 4 i p 4 i q 4 i r 4 i , C i = c 1 i c 2 i c 3 i c 4 i ,i=1,2,3,4, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvamaaCa aaleqabaGaamyAaaaakiaai2dadaqadaqaauaabeqaeqaaaaaabaGa am4zamaaDaaaleaacaaIXaaabaGaamyAaaaaaOqaaiaadchadaqhaa WcbaGaaGymaaqaaiaadMgaaaaakeaacaWGXbWaa0baaSqaaiaaigda aeaacaWGPbaaaaGcbaGaamOCamaaDaaaleaacaaIXaaabaGaamyAaa aaaOqaaiaadEgadaqhaaWcbaGaaGOmaaqaaiaadMgaaaaakeaacaWG WbWaa0baaSqaaiaaikdaaeaacaWGPbaaaaGcbaGaamyCamaaDaaale aacaaIYaaabaGaamyAaaaaaOqaaiaadkhadaqhaaWcbaGaaGOmaaqa aiaadMgaaaaakeaacaWGNbWaa0baaSqaaiaaiodaaeaacaWGPbaaaa GcbaGaamiCamaaDaaaleaacaaIZaaabaGaamyAaaaaaOqaaiaadgha daqhaaWcbaGaaG4maaqaaiaadMgaaaaakeaacaWGYbWaa0baaSqaai aaiodaaeaacaWGPbaaaaGcbaGaam4zamaaDaaaleaacaaI0aaabaGa amyAaaaaaOqaaiaadchadaqhaaWcbaGaaGinaaqaaiaadMgaaaaake aacaWGXbWaa0baaSqaaiaaisdaaeaacaWGPbaaaaGcbaGaamOCamaa DaaaleaacaaI0aaabaGaamyAaaaaaaaakiaawIcacaGLPaaacaaISa GaaGzbVlaadoeadaahaaWcbeqaaiaadMgaaaGccaaI9aWaaeWaaeaa faqabeabbaaaaeaacaWGJbWaa0baaSqaaiaaigdaaeaacaWGPbaaaa GcbaGaam4yamaaDaaaleaacaaIYaaabaGaamyAaaaaaOqaaiaadoga daqhaaWcbaGaaG4maaqaaiaadMgaaaaakeaacaWGJbWaa0baaSqaai aaisdaaeaacaWGPbaaaaaaaOGaayjkaiaawMcaaiaaiYcacaaMf8Ua amyAaiaai2dacaaIXaGaaGilaiaaikdacaaISaGaaG4maiaaiYcaca aI0aGaaGilaaaa@832D@

MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  постоянные матрицы. По найденным решениям запишем базисные операторы (2.3) восьмимерных линейных пространств, добиваясь при этом исключения свободных членов выбором линейных комбинаций с постоянными коэффициентами операторов Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@ , Y 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIYaaabeaaaaa@37B9@ , Y 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIZaaabeaaaaa@37BA@  и Y 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaI0aaabeaaaaa@37BB@  с операторами X 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIXaaabeaaaaa@37B7@ , X 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIYaaabeaaaaa@37B8@ , X 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIZaaabeaaaaa@37B9@  и X 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaI0aaabeaaaaa@37BA@ :

X 1 = x , X 2 = y , X 3 = z , X 4 = w , Y i = U i x y z w , x y z w , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIXaaabeaakiaai2dacqGHciITdaWgaaWcbaGaamiEaaqa baGccaaISaGaaGzbVlaadIfadaWgaaWcbaGaaGOmaaqabaGccaaI9a GaeyOaIy7aaSbaaSqaaiaadMhaaeqaaOGaaGilaiaaywW7caWGybWa aSbaaSqaaiaaiodaaeqaaOGaaGypaiabgkGi2oaaBaaaleaacaWG6b aabeaakiaaiYcacaaMf8UaamiwamaaBaaaleaacaaI0aaabeaakiaa i2dacqGHciITdaWgaaWcbaGaam4DaaqabaGccaaISaGaaGzbVlaadM fadaWgaaWcbaGaamyAaaqabaGccaaI9aWaaaWaaeaacaWGvbWaaSba aSqaaiaadMgaaeqaaOWaaeWaaeaafaqabeabbaaaaeaacaWG4baaba GaamyEaaqaaiaadQhaaeaacaWG3baaaaGaayjkaiaawMcaaiaaiYca daqadaqaauaabeqaeeaaaaqaaiabgkGi2oaaBaaaleaacaWG4baabe aaaOqaaiabgkGi2oaaBaaaleaacaWG5baabeaaaOqaaiabgkGi2oaa BaaaleaacaWG6baabeaaaOqaaiabgkGi2oaaBaaaleaacaWG3baabe aaaaaakiaawIcacaGLPaaaaiaawMYicaGLQmcacaaISaaaaa@6D56@  (4.1)

где

\ U i = g i 1 p i 1 q i 1 r i 1 g i 2 p i 2 q i 2 r i 2 g i 3 p i 3 q i 3 r i 3 g i 4 p i 4 q i 4 r i 4 ,i=1,2,3,4, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvamaaBa aaleaacaWGPbaabeaakiaai2dadaqadaqaauaabeqaeqaaaaaabaGa am4zamaaDaaaleaacaWGPbaabaGaaGymaaaaaOqaaiaadchadaqhaa WcbaGaamyAaaqaaiaaigdaaaaakeaacaWGXbWaa0baaSqaaiaadMga aeaacaaIXaaaaaGcbaGaamOCamaaDaaaleaacaWGPbaabaGaaGymaa aaaOqaaiaadEgadaqhaaWcbaGaamyAaaqaaiaaikdaaaaakeaacaWG WbWaa0baaSqaaiaadMgaaeaacaaIYaaaaaGcbaGaamyCamaaDaaale aacaWGPbaabaGaaGOmaaaaaOqaaiaadkhadaqhaaWcbaGaamyAaaqa aiaaikdaaaaakeaacaWGNbWaa0baaSqaaiaadMgaaeaacaaIZaaaaa GcbaGaamiCamaaDaaaleaacaWGPbaabaGaaG4maaaaaOqaaiaadgha daqhaaWcbaGaamyAaaqaaiaaiodaaaaakeaacaWGYbWaa0baaSqaai aadMgaaeaacaaIZaaaaaGcbaGaam4zamaaDaaaleaacaWGPbaabaGa aGinaaaaaOqaaiaadchadaqhaaWcbaGaamyAaaqaaiaaisdaaaaake aacaWGXbWaa0baaSqaaiaadMgaaeaacaaI0aaaaaGcbaGaamOCamaa DaaaleaacaWGPbaabaGaaGinaaaaaaaakiaawIcacaGLPaaacaaISa GaaGzbVlaadMgacaaI9aGaaGymaiaaiYcacaaIYaGaaGilaiaaioda caaISaGaaGinaiaaiYcaaaa@7174@

и , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyykJeUaey yXICTaaGilaiabgwSixlabgQYiXdaa@3EC0@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  скалярное произведение векторов. Несложно вычислить коммутатор:

[ Y i , Y j ]= ( U j U i U i U j ) x y z w , x y z w = [ U i , U j ] x y z w , x y z w , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaadM fadaWgaaWcbaGaamyAaaqabaGccaaISaGaamywamaaBaaaleaacaWG Qbaabeaakiaai2facaaI9aWaaaWaaeaacaaIOaGaamyvamaaBaaale aacaWGQbaabeaakiaadwfadaWgaaWcbaGaamyAaaqabaGccqGHsisl caWGvbWaaSbaaSqaaiaadMgaaeqaaOGaamyvamaaBaaaleaacaWGQb aabeaakiaaiMcadaqadaqaauaabeqaeeaaaaqaaiaadIhaaeaacaWG 5baabaGaamOEaaqaaiaadEhaaaaacaGLOaGaayzkaaGaaGilamaabm aabaqbaeqabqqaaaaabaGaeyOaIy7aaSbaaSqaaiaadIhaaeqaaaGc baGaeyOaIy7aaSbaaSqaaiaadMhaaeqaaaGcbaGaeyOaIy7aaSbaaS qaaiaadQhaaeqaaaGcbaGaeyOaIy7aaSbaaSqaaiaadEhaaeqaaaaa aOGaayjkaiaawMcaaaGaayzkJiaawQYiaiaai2dacqGHsisldaaada qaaiaaiUfacaWGvbWaaSbaaSqaaiaadMgaaeqaaOGaaGilaiaadwfa daWgaaWcbaGaamOAaaqabaGccaaIDbWaaeWaaeaafaqabeabbaaaae aacaWG4baabaGaamyEaaqaaiaadQhaaeaacaWG3baaaaGaayjkaiaa wMcaaiaaiYcadaqadaqaauaabeqaeeaaaaqaaiabgkGi2oaaBaaale aacaWG4baabeaaaOqaaiabgkGi2oaaBaaaleaacaWG5baabeaaaOqa aiabgkGi2oaaBaaaleaacaWG6baabeaaaOqaaiabgkGi2oaaBaaale aacaWG3baabeaaaaaakiaawIcacaGLPaaaaiaawMYicaGLQmcacaaI Saaaaa@78A2@  (4.2)

где [ U i , U j ]= U i U j U j U i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaadw fadaWgaaWcbaGaamyAaaqabaGccaaISaGaamyvamaaBaaaleaacaWG Qbaabeaakiaai2facaaI9aGaamyvamaaBaaaleaacaWGPbaabeaaki aadwfadaWgaaWcbaGaamOAaaqabaGccqGHsislcaWGvbWaaSbaaSqa aiaadQgaaeqaaOGaamyvamaaBaaaleaacaWGPbaabeaaaaa@4616@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  коммутатор матриц U i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvamaaBa aaleaacaWGPbaabeaaaaa@37E7@  и U j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvamaaBa aaleaacaWGQbaabeaaaaa@37E8@ , i,j=1,2,3,4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaaiY cacaWGQbGaaGypaiaaigdacaaISaGaaGOmaiaaiYcacaaIZaGaaGil aiaaisdaaaa@3E61@ .

Тождество Якоби в нашем случае это свойство выполняется автоматически, поскольку X 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIXaaabeaaaaa@37B7@ , X 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIYaaabeaaaaa@37B8@ , X 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIZaaabeaaaaa@37B9@ , X 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaI0aaabeaaaaa@37BA@ , Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@ , Y 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIYaaabeaaaaa@37B9@ , Y 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIZaaabeaaaaa@37BA@ , Y 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaI0aaabeaaaaa@37BB@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  векторные поля (см. [12, с. 88]).

Далее выясним, при каких условиях на коэффициенты операторы (0.3.1) становятся базисными операторами восьмимерных алгебр Ли. Очевидно, алгебра Ли L=JI MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaai2 dacaWGkbWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaa cqWFjlI4caWGjbaaaa@4504@  разложима, так как является полупрямой суммой коммутативного трехмерного идеала J MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaaaa@36C2@ , образованного операторами X 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIXaaabeaaaaa@37B7@ , X 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIYaaabeaaaaa@37B8@ , X 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIZaaabeaaaaa@37B9@ , X 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaI0aaabeaaaaa@37BA@ , и четырёхмерной подалгебры Ли I MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaaaa@36C1@ , образованной операторами Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@ , Y 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIYaaabeaaaaa@37B9@ , Y 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIZaaabeaaaaa@37BA@ , Y 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaI0aaabeaaaaa@37BB@ . Следуя классификации абстрактных четырехмерных вещественных алгебр Ли (см. [11, с.138]), приведем полный список (с точностью до изоморфизма) подалгебр Ли I MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaaaa@36C1@ :

 

[Y1, Y2]

[Y1, Y3]

[Y2, Y3]

[Y1, Y4]

[Y2, Y4]

[Y3, Y4]

0

0

0

εY1

kY2

lY3

1.

0

0

0

kY1 + Y2

Y1 + kY2

lY3

2.

0

0

0

kY1 + Y2

kY2

εY3

3.

0

0

0

kY1 + Y2

kY2 + Y3

εY3

4.

0

0

Y1

cY1

Y2

(c 1)Y3

5.

0

0

Y1

2Y1

Y2

Y2 + Y3

6.

0

0

Y1

qY1

Y3

Y2 + qY3

7.

0

Y1

0

0

Y

0

8.

0

Y1

Y2

Y2

Y1

0

9.

Y3

Y2

Y1

0

0

0

10.

Y3

Y2

Y1

0

0

0

11.

 (4.3)

где ε=0,1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaaG ypaiaaicdacaaISaGaaGymaaaa@3A8C@ ; k,l,c,q=const MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiaaiY cacaWGSbGaaGilaiaadogacaaISaGaamyCaiaai2dacaWGJbGaam4B aiaad6gacaWGZbGaamiDaaaa@415B@  и 2<q<2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaaG OmaiaaiYdacaWGXbGaaGipaiaaikdaaaa@3ADA@ .

 

Теорема 6 Для локальной ограниченно точно дважды транзитивной группы Ли преобразований с разложимой алгеброй Ли L=JI MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaai2 dacaWGkbWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaa cqWFjlI4caWGjbaaaa@4504@ , базис которой задается операторами (3.1), матрица коэффициентов K MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saaaa@36C3@  операторов Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@ , Y 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIYaaabeaaaaa@37B9@ , Y 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIZaaabeaaaaa@37BA@ , Y 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaI0aaabeaaaaa@37BB@  невырождена.

Доказательство. Согласно теореме 1 матрица, составленная по коэффициентам операторов, невырождена; значит

E E K(u) K(v) =|K(v)K(u)|0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaafa qabeGacaaabaGaamyraaqaaiaadweaaeaacaWGlbGaaGikaiaadwha caaIPaaabaGaam4saiaaiIcacaWG2bGaaGykaaaaaiaawEa7caGLiW oacaaI9aGaaGiFaiaadUeacaaIOaGaamODaiaaiMcacqGHsislcaWG lbGaaGikaiaadwhacaaIPaGaaGiFaiabgcMi5kaaicdacaaIUaaaaa@4E70@

Тогда матрица

K(v)K(u)= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaaiI cacaWG2bGaaGykaiabgkHiTiaadUeacaaIOaGaamyDaiaaiMcacaaI 9aaaaa@3E06@

null

= g 1 1 , vu g 1 2 , vu g 1 3 , vu g 1 4 , v g 2 1 , vu g 2 2 , vu g 2 3 , vu g 2 4 , v g 3 1 , vu g 3 2 , vu g 3 3 , vu g 3 4 , vu g 4 1 , vu g 4 2 , vu g 4 3 , vu g 4 4 , vu MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaabm aabaqbaeqabuabaaaaaeaacqGHPms4daWhbaqaaiaadEgaaiaawEni amaaDaaaleaacaaIXaaabaGaaGymaaaakiaaiYcadaWhbaqaaiaadA hacaWG1baacaGLxdcacqGHQms8aeaacqGHPms4daWhbaqaaiaadEga aiaawEniamaaDaaaleaacaaIXaaabaGaaGOmaaaakiaaiYcadaWhba qaaiaadAhacaWG1baacaGLxdcacqGHQms8aeaacqGHPms4daWhbaqa aiaadEgaaiaawEniamaaDaaaleaacaaIXaaabaGaaG4maaaakiaaiY cadaWhbaqaaiaadAhacaWG1baacaGLxdcacqGHQms8aeaacqGHPms4 daWhbaqaaiaadEgaaiaawEniamaaDaaaleaacaaIXaaabaGaaGinaa aakiaaiYcadaWhbaqaaiaadAhaaiaawEniaiabgQYiXdqaaiabgMYi HpaaFeaabaGaam4zaaGaay51GaWaa0baaSqaaiaaikdaaeaacaaIXa aaaOGaaGilamaaFeaabaGaamODaiaadwhaaiaawEniaiabgQYiXdqa aiabgMYiHpaaFeaabaGaam4zaaGaay51GaWaa0baaSqaaiaaikdaae aacaaIYaaaaOGaaGilamaaFeaabaGaamODaiaadwhaaiaawEniaiab gQYiXdqaaiabgMYiHpaaFeaabaGaam4zaaGaay51GaWaa0baaSqaai aaikdaaeaacaaIZaaaaOGaaGilamaaFeaabaGaamODaiaadwhaaiaa wEniaiabgQYiXdqaaiabgMYiHpaaFeaabaGaam4zaaGaay51GaWaa0 baaSqaaiaaikdaaeaacaaI0aaaaOGaaGilamaaFeaabaGaamODaaGa ay51GaGaeyOkJepabaGaeyykJe+aa8raaeaacaWGNbaacaGLxdcada qhaaWcbaGaaG4maaqaaiaaigdaaaGccaaISaWaa8raaeaacaWG2bGa amyDaaGaay51GaGaeyOkJepabaGaeyykJe+aa8raaeaacaWGNbaaca GLxdcadaqhaaWcbaGaaG4maaqaaiaaikdaaaGccaaISaWaa8raaeaa caWG2bGaamyDaaGaay51GaGaeyOkJepabaGaeyykJe+aa8raaeaaca WGNbaacaGLxdcadaqhaaWcbaGaaG4maaqaaiaaiodaaaGccaaISaWa a8raaeaacaWG2bGaamyDaaGaay51GaGaeyOkJepabaGaeyykJe+aa8 raaeaacaWGNbaacaGLxdcadaqhaaWcbaGaaG4maaqaaiaaisdaaaGc caaISaWaa8raaeaacaWG2bGaamyDaaGaay51GaGaeyOkJepabaGaey ykJe+aa8raaeaacaWGNbaacaGLxdcadaqhaaWcbaGaaGinaaqaaiaa igdaaaGccaaISaWaa8raaeaacaWG2bGaamyDaaGaay51GaGaeyOkJe pabaGaeyykJe+aa8raaeaacaWGNbaacaGLxdcadaqhaaWcbaGaaGin aaqaaiaaikdaaaGccaaISaWaa8raaeaacaWG2bGaamyDaaGaay51Ga GaeyOkJepabaGaeyykJe+aa8raaeaacaWGNbaacaGLxdcadaqhaaWc baGaaGinaaqaaiaaiodaaaGccaaISaWaa8raaeaacaWG2bGaamyDaa Gaay51GaGaeyOkJepabaGaeyykJe+aa8raaeaacaWGNbaacaGLxdca daqhaaWcbaGaaGinaaqaaiaaisdaaaGccaaISaWaa8raaeaacaWG2b GaamyDaaGaay51GaGaeyOkJepabaaabaaabaaabaaaaaGaayjkaiaa wMcaaaaa@F974@

невырождена; здесь

u =( x u , y u , z u , w u ), v =( x v , y v , z v , w v ), vu =( x vu , y vu , z vu , w vu ), g i j =( g i j , p i j , q i j , r i j ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WG1baacaGLxdcacaaI9aGaaGikaiaadIhadaWgaaWcbaGaamyDaaqa baGccaaISaGaamyEamaaBaaaleaacaWG1baabeaakiaaiYcacaWG6b WaaSbaaSqaaiaadwhaaeqaaOGaaGilaiaadEhadaWgaaWcbaGaamyD aaqabaGccaaIPaGaaGilaiaaywW7daWhbaqaaiaadAhaaiaawEniai aai2dacaaIOaGaamiEamaaBaaaleaacaWG2baabeaakiaaiYcacaWG 5bWaaSbaaSqaaiaadAhaaeqaaOGaaGilaiaadQhadaWgaaWcbaGaam ODaaqabaGccaaISaGaam4DamaaBaaaleaacaWG2baabeaakiaaiMca caaISaGaaGzbVpaaFeaabaGaamODaiaadwhaaiaawEniaiaai2daca aIOaGaamiEamaaBaaaleaacaWG2bGaamyDaaqabaGccaaISaGaamyE amaaBaaaleaacaWG2bGaamyDaaqabaGccaaISaGaamOEamaaBaaale aacaWG2bGaamyDaaqabaGccaaISaGaam4DamaaBaaaleaacaWG2bGa amyDaaqabaGccaaIPaGaaGilaiaaywW7daWhbaqaaiaadEgaaiaawE niamaaDaaaleaacaWGPbaabaGaamOAaaaakiaai2dacaaIOaGaam4z amaaDaaaleaacaWGPbaabaGaamOAaaaakiaaiYcacaWGWbWaa0baaS qaaiaadMgaaeaacaWGQbaaaOGaaGilaiaadghadaqhaaWcbaGaamyA aaqaaiaadQgaaaGccaaISaGaamOCamaaDaaaleaacaWGPbaabaGaam OAaaaakiaaiMcacaaISaaaaa@8693@

i,j=1,2,3,4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaaiY cacaWGQbGaaGypaiaaigdacaaISaGaaGOmaiaaiYcacaaIZaGaaGil aiaaisdaaaa@3E61@ . Точки u=( x u , y u , z u , w u ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaai2 dacaaIOaGaamiEamaaBaaaleaacaWG1baabeaakiaaiYcacaWG5bWa aSbaaSqaaiaadwhaaeqaaOGaaGilaiaadQhadaWgaaWcbaGaamyDaa qabaGccaaISaGaam4DamaaBaaaleaacaWG1baabeaakiaaiMcaaaa@43F1@  и v=( x v , y v , z v , w v ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiaai2 dacaaIOaGaamiEamaaBaaaleaacaWG2baabeaakiaaiYcacaWG5bWa aSbaaSqaaiaadAhaaeqaaOGaaGilaiaadQhadaWgaaWcbaGaamODaa qabaGccaaISaGaam4DamaaBaaaleaacaWG2baabeaakiaaiMcaaaa@43F6@  выбираются произвольно, поэтому матрица K MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saaaa@36C3@  невырождена.

5. Вычисление алгебр Ли. Здесь и ниже рассматривается случай, когда для матрицы U 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvamaaBa aaleaacaaIXaaabeaaaaa@37B4@  из (4.1) характеристический многочлен и минимальный многочлен совпадают, а её собственные значения различны и вещественны. В данном разделе из линейных пространств с базисными операторами вида (4.1) необходимо выделить алгебры Ли. Для этого пользуемся возможностью перехода к новому базису, заменой координат, а также замкнутостью коммутаторов базисных операторов. Последнее означает, что сам коммутатор должен принадлежать этой же алгебре Ли (см. [12, §13]). Также учитывается теорема 6.

Теорема 7 Из системы (4.1), для которой матрица U 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvamaaBa aaleaacaaIXaaabeaaaaa@37B4@  оператора Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@  имеет различные вещественные собственные значения, причём её характеристический многочлен совпадает с минимальным, с точностью до линейной замены координат, выделяются операторы X 1 = x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIXaaabeaakiaai2dacqGHciITdaWgaaWcbaGaamiEaaqa baaaaa@3B17@ , X 2 = y MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIYaaabeaakiaai2dacqGHciITdaWgaaWcbaGaamyEaaqa baaaaa@3B19@ , X 3 = z MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIZaaabeaakiaai2dacqGHciITdaWgaaWcbaGaamOEaaqa baaaaa@3B1B@ , X 4 = w MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaI0aaabeaakiaai2dacqGHciITdaWgaaWcbaGaam4Daaqa baaaaa@3B19@ , Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@ , Y 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIYaaabeaaaaa@37B9@ , Y 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIZaaabeaaaaa@37BA@ , Y 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaI0aaabeaaaaa@37BB@ , образующие базисы восьмимерных линейных пространств; при этом операторы Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@ , Y 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIYaaabeaaaaa@37B9@ , Y 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIZaaabeaaaaa@37BA@ , Y 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaI0aaabeaaaaa@37BB@  образуют подпространство, являющееся алгеброй Ли, из списка (4.3):

для алгебры Ли 1:

Y 1 = λ 1 x x + λ 2 y y + λ 3 z z + λ 4 w w , Y 2 = b 1 x x + b 2 y y + b 3 z z + b 4 w w , Y 3 = c 1 x x + c 2 y y + c 3 z z + c 4 w w , Y 4 = d 1 x x + d 2 y y + d 3 z z + d 4 w w , λ 1 λ 2 , λ 1 λ 3 , λ 1 λ 4 , λ 2 λ 3 , λ 2 λ 4 , λ 3 λ 4 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabmqaaa qaaiaadMfadaWgaaWcbaGaaGymaaqabaGccaaI9aGaeq4UdW2aaSba aSqaaiaaigdaaeqaaOGaamiEaiabgkGi2oaaBaaaleaacaWG4baabe aakiabgUcaRiabeU7aSnaaBaaaleaacaaIYaaabeaakiaadMhacqGH ciITdaWgaaWcbaGaamyEaaqabaGccqGHRaWkcqaH7oaBdaWgaaWcba GaaG4maaqabaGccaWG6bGaeyOaIy7aaSbaaSqaaiaadQhaaeqaaOGa ey4kaSIaeq4UdW2aaSbaaSqaaiaaisdaaeqaaOGaam4DaiabgkGi2o aaBaaaleaacaWG3baabeaakiaaiYcacaaMf8UaamywamaaBaaaleaa caaIYaaabeaakiaai2dacaWGIbWaaSbaaSqaaiaaigdaaeqaaOGaam iEaiabgkGi2oaaBaaaleaacaWG4baabeaakiabgUcaRiaadkgadaWg aaWcbaGaaGOmaaqabaGccaWG5bGaeyOaIy7aaSbaaSqaaiaadMhaae qaaOGaey4kaSIaamOyamaaBaaaleaacaaIZaaabeaakiaadQhacqGH ciITdaWgaaWcbaGaamOEaaqabaGccqGHRaWkcaWGIbWaaSbaaSqaai aaisdaaeqaaOGaam4DaiabgkGi2oaaBaaaleaacaWG3baabeaakiaa iYcaaeaacaWGzbWaaSbaaSqaaiaaiodaaeqaaOGaaGypaiaadogada WgaaWcbaGaaGymaaqabaGccaWG4bGaeyOaIy7aaSbaaSqaaiaadIha aeqaaOGaey4kaSIaam4yamaaBaaaleaacaaIYaaabeaakiaadMhacq GHciITdaWgaaWcbaGaamyEaaqabaGccqGHRaWkcaWGJbWaaSbaaSqa aiaaiodaaeqaaOGaamOEaiabgkGi2oaaBaaaleaacaWG6baabeaaki abgUcaRiaadogadaWgaaWcbaGaaGinaaqabaGccaWG3bGaeyOaIy7a aSbaaSqaaiaadEhaaeqaaOGaaGilaiaaywW7caWGzbWaaSbaaSqaai aaisdaaeqaaOGaaGypaiaadsgadaWgaaWcbaGaaGymaaqabaGccaWG 4bGaeyOaIy7aaSbaaSqaaiaadIhaaeqaaOGaey4kaSIaamizamaaBa aaleaacaaIYaaabeaakiaadMhacqGHciITdaWgaaWcbaGaamyEaaqa baGccqGHRaWkcaWGKbWaaSbaaSqaaiaaiodaaeqaaOGaamOEaiabgk Gi2oaaBaaaleaacaWG6baabeaakiabgUcaRiaadsgadaWgaaWcbaGa aGinaaqabaGccaWG3bGaeyOaIy7aaSbaaSqaaiaadEhaaeqaaOGaaG ilaaqaaiabeU7aSnaaBaaaleaacaaIXaaabeaakiabgcMi5kabeU7a SnaaBaaaleaacaaIYaaabeaakiaaiYcacqaH7oaBdaWgaaWcbaGaaG ymaaqabaGccqGHGjsUcqaH7oaBdaWgaaWcbaGaaG4maaqabaGccaaI SaGaeq4UdW2aaSbaaSqaaiaaigdaaeqaaOGaeyiyIKRaeq4UdW2aaS baaSqaaiaaisdaaeqaaOGaaGilaiabeU7aSnaaBaaaleaacaaIYaaa beaakiabgcMi5kabeU7aSnaaBaaaleaacaaIZaaabeaakiaaiYcacq aH7oaBdaWgaaWcbaGaaGOmaaqabaGccqGHGjsUcqaH7oaBdaWgaaWc baGaaGinaaqabaGccaaISaGaeq4UdW2aaSbaaSqaaiaaiodaaeqaaO GaeyiyIKRaeq4UdW2aaSbaaSqaaiaaisdaaeqaaOGaaG4oaaaaaaa@D9FF@  (5.1)

Y 1 =( λ 5 x+y) x + λ 5 y y + λ 6 z z + λ 7 w w , Y 2 =( b 1 x+ b 2 y) x + b 1 y y + b 11 z z + b 16 w w , Y 3 =( c 1 x+ c 2 y) x + c 1 y y + c 11 z z + c 16 w w , Y 4 =( d 1 x+ d 2 y) x + d 1 y y + d 11 z z + d 16 w w , λ 5 λ 6 , λ 5 λ 7 , λ 6 λ 7 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabuqaaa aabaGaamywamaaBaaaleaacaaIXaaabeaakiaai2dacaaIOaGaeq4U dW2aaSbaaSqaaiaaiwdaaeqaaOGaamiEaiabgUcaRiaadMhacaaIPa GaeyOaIy7aaSbaaSqaaiaadIhaaeqaaOGaey4kaSIaeq4UdW2aaSba aSqaaiaaiwdaaeqaaOGaamyEaiabgkGi2oaaBaaaleaacaWG5baabe aakiabgUcaRiabeU7aSnaaBaaaleaacaaI2aaabeaakiaadQhacqGH ciITdaWgaaWcbaGaamOEaaqabaGccqGHRaWkcqaH7oaBdaWgaaWcba GaaG4naaqabaGccaWG3bGaeyOaIy7aaSbaaSqaaiaadEhaaeqaaOGa aGilaaqaaiaadMfadaWgaaWcbaGaaGOmaaqabaGccaaI9aGaaGikai aadkgadaWgaaWcbaGaaGymaaqabaGccaWG4bGaey4kaSIaamOyamaa BaaaleaacaaIYaaabeaakiaadMhacaaIPaGaeyOaIy7aaSbaaSqaai aadIhaaeqaaOGaey4kaSIaamOyamaaBaaaleaacaaIXaaabeaakiaa dMhacqGHciITdaWgaaWcbaGaamyEaaqabaGccqGHRaWkcaWGIbWaaS baaSqaaiaaigdacaaIXaaabeaakiaadQhacqGHciITdaWgaaWcbaGa amOEaaqabaGccqGHRaWkcaWGIbWaaSbaaSqaaiaaigdacaaI2aaabe aakiaadEhacqGHciITdaWgaaWcbaGaam4DaaqabaGccaaISaaabaGa amywamaaBaaaleaacaaIZaaabeaakiaai2dacaaIOaGaam4yamaaBa aaleaacaaIXaaabeaakiaadIhacqGHRaWkcaWGJbWaaSbaaSqaaiaa ikdaaeqaaOGaamyEaiaaiMcacqGHciITdaWgaaWcbaGaamiEaaqaba GccqGHRaWkcaWGJbWaaSbaaSqaaiaaigdaaeqaaOGaamyEaiabgkGi 2oaaBaaaleaacaWG5baabeaakiabgUcaRiaadogadaWgaaWcbaGaaG ymaiaaigdaaeqaaOGaamOEaiabgkGi2oaaBaaaleaacaWG6baabeaa kiabgUcaRiaadogadaWgaaWcbaGaaGymaiaaiAdaaeqaaOGaam4Dai abgkGi2oaaBaaaleaacaWG3baabeaakiaaiYcaaeaacaWGzbWaaSba aSqaaiaaisdaaeqaaOGaaGypaiaaiIcacaWGKbWaaSbaaSqaaiaaig daaeqaaOGaamiEaiabgUcaRiaadsgadaWgaaWcbaGaaGOmaaqabaGc caWG5bGaaGykaiabgkGi2oaaBaaaleaacaWG4baabeaakiabgUcaRi aadsgadaWgaaWcbaGaaGymaaqabaGccaWG5bGaeyOaIy7aaSbaaSqa aiaadMhaaeqaaOGaey4kaSIaamizamaaBaaaleaacaaIXaGaaGymaa qabaGccaWG6bGaeyOaIy7aaSbaaSqaaiaadQhaaeqaaOGaey4kaSIa amizamaaBaaaleaacaaIXaGaaGOnaaqabaGccaWG3bGaeyOaIy7aaS baaSqaaiaadEhaaeqaaOGaaGilaaqaaiabeU7aSnaaBaaaleaacaaI 1aaabeaakiabgcMi5kabeU7aSnaaBaaaleaacaaI2aaabeaakiaaiY cacqaH7oaBdaWgaaWcbaGaaGynaaqabaGccqGHGjsUcqaH7oaBdaWg aaWcbaGaaG4naaqabaGccaaISaGaeq4UdW2aaSbaaSqaaiaaiAdaae qaaOGaeyiyIKRaeq4UdW2aaSbaaSqaaiaaiEdaaeqaaOGaaG4oaaaa aaa@D6AC@  (5.2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGjbVdaa@3780@

Y 1 =( λ 5 x+y) x + λ 5 y y +( λ 8 z+w) z + λ 8 w w , Y 2 =( b 1 x+ b 2 y) x + b 1 y y +( b 11 z+ b 12 w) z + b 11 w w , Y 3 =( c 1 x+ c 2 y) x + c 1 y y +( c 11 z+ c 12 w) z + c 11 w w , Y 4 =( d 1 x+ d 2 y) x + d 1 y y +( d 11 z+ d 12 w) z + d 11 w w , λ 5 λ 8 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabqqaaa aabaGaamywamaaBaaaleaacaaIXaaabeaakiaai2dacaaIOaGaeq4U dW2aaSbaaSqaaiaaiwdaaeqaaOGaamiEaiabgUcaRiaadMhacaaIPa GaeyOaIy7aaSbaaSqaaiaadIhaaeqaaOGaey4kaSIaeq4UdW2aaSba aSqaaiaaiwdaaeqaaOGaamyEaiabgkGi2oaaBaaaleaacaWG5baabe aakiabgUcaRiaaiIcacqaH7oaBdaWgaaWcbaGaaGioaaqabaGccaWG 6bGaey4kaSIaam4DaiaaiMcacqGHciITdaWgaaWcbaGaamOEaaqaba GccqGHRaWkcqaH7oaBdaWgaaWcbaGaaGioaaqabaGccaWG3bGaeyOa Iy7aaSbaaSqaaiaadEhaaeqaaOGaaGilaaqaaiaadMfadaWgaaWcba GaaGOmaaqabaGccaaI9aGaaGikaiaadkgadaWgaaWcbaGaaGymaaqa baGccaWG4bGaey4kaSIaamOyamaaBaaaleaacaaIYaaabeaakiaadM hacaaIPaGaeyOaIy7aaSbaaSqaaiaadIhaaeqaaOGaey4kaSIaamOy amaaBaaaleaacaaIXaaabeaakiaadMhacqGHciITdaWgaaWcbaGaam yEaaqabaGccqGHRaWkcaaIOaGaamOyamaaBaaaleaacaaIXaGaaGym aaqabaGccaWG6bGaey4kaSIaamOyamaaBaaaleaacaaIXaGaaGOmaa qabaGccaWG3bGaaGykaiabgkGi2oaaBaaaleaacaWG6baabeaakiab gUcaRiaadkgadaWgaaWcbaGaaGymaiaaigdaaeqaaOGaam4Daiabgk Gi2oaaBaaaleaacaWG3baabeaakiaaiYcaaeaacaWGzbWaaSbaaSqa aiaaiodaaeqaaOGaaGypaiaaiIcacaWGJbWaaSbaaSqaaiaaigdaae qaaOGaamiEaiabgUcaRiaadogadaWgaaWcbaGaaGOmaaqabaGccaWG 5bGaaGykaiabgkGi2oaaBaaaleaacaWG4baabeaakiabgUcaRiaado gadaWgaaWcbaGaaGymaaqabaGccaWG5bGaeyOaIy7aaSbaaSqaaiaa dMhaaeqaaOGaey4kaSIaaGikaiaadogadaWgaaWcbaGaaGymaiaaig daaeqaaOGaamOEaiabgUcaRiaadogadaWgaaWcbaGaaGymaiaaikda aeqaaOGaam4DaiaaiMcacqGHciITdaWgaaWcbaGaamOEaaqabaGccq GHRaWkcaWGJbWaaSbaaSqaaiaaigdacaaIXaaabeaakiaadEhacqGH ciITdaWgaaWcbaGaam4DaaqabaGccaaISaaabaGaamywamaaBaaale aacaaI0aaabeaakiaai2dacaaIOaGaamizamaaBaaaleaacaaIXaaa beaakiaadIhacqGHRaWkcaWGKbWaaSbaaSqaaiaaikdaaeqaaOGaam yEaiaaiMcacqGHciITdaWgaaWcbaGaamiEaaqabaGccqGHRaWkcaWG KbWaaSbaaSqaaiaaigdaaeqaaOGaamyEaiabgkGi2oaaBaaaleaaca WG5baabeaakiabgUcaRiaaiIcacaWGKbWaaSbaaSqaaiaaigdacaaI XaaabeaakiaadQhacqGHRaWkcaWGKbWaaSbaaSqaaiaaigdacaaIYa aabeaakiaadEhacaaIPaGaeyOaIy7aaSbaaSqaaiaadQhaaeqaaOGa ey4kaSIaamizamaaBaaaleaacaaIXaGaaGymaaqabaGccaWG3bGaey OaIy7aaSbaaSqaaiaadEhaaeqaaOGaaGilaiaaywW7cqaH7oaBdaWg aaWcbaGaaGynaaqabaGccqGHGjsUcqaH7oaBdaWgaaWcbaGaaGioaa qabaGccaaI7aaaaaaa@DD56@  (5.3)

Y 1 =( λ 9 x+y) x +( λ 9 y+z) y + λ 9 z z + λ 10 w w , Y 2 =( b 1 x+ b 2 y+ b 3 z) x +( b 1 y+ b 2 z) y + b 1 z z + b 16 w w , Y 3 =( c 1 x+ c 2 y+ c 3 z) x +( c 1 y+ c 2 z) y + c 1 z z + c 16 w w , Y 4 =( d 1 x+ d 2 y+ d 3 z) x +( d 1 y+ d 2 z) y + d 1 z z + d 16 w w , λ 9 λ 10 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabqqaaa aabaGaamywamaaBaaaleaacaaIXaaabeaakiaai2dacaaIOaGaeq4U dW2aaSbaaSqaaiaaiMdaaeqaaOGaamiEaiabgUcaRiaadMhacaaIPa GaeyOaIy7aaSbaaSqaaiaadIhaaeqaaOGaey4kaSIaaGikaiabeU7a SnaaBaaaleaacaaI5aaabeaakiaadMhacqGHRaWkcaWG6bGaaGykai abgkGi2oaaBaaaleaacaWG5baabeaakiabgUcaRiabeU7aSnaaBaaa leaacaaI5aaabeaakiaadQhacqGHciITdaWgaaWcbaGaamOEaaqaba GccqGHRaWkcqaH7oaBdaWgaaWcbaGaaGymaiaaicdaaeqaaOGaam4D aiabgkGi2oaaBaaaleaacaWG3baabeaakiaaiYcaaeaacaWGzbWaaS baaSqaaiaaikdaaeqaaOGaaGypaiaaiIcacaWGIbWaaSbaaSqaaiaa igdaaeqaaOGaamiEaiabgUcaRiaadkgadaWgaaWcbaGaaGOmaaqaba GccaWG5bGaey4kaSIaamOyamaaBaaaleaacaaIZaaabeaakiaadQha caaIPaGaeyOaIy7aaSbaaSqaaiaadIhaaeqaaOGaey4kaSIaaGikai aadkgadaWgaaWcbaGaaGymaaqabaGccaWG5bGaey4kaSIaamOyamaa BaaaleaacaaIYaaabeaakiaadQhacaaIPaGaeyOaIy7aaSbaaSqaai aadMhaaeqaaOGaey4kaSIaamOyamaaBaaaleaacaaIXaaabeaakiaa dQhacqGHciITdaWgaaWcbaGaamOEaaqabaGccqGHRaWkcaWGIbWaaS baaSqaaiaaigdacaaI2aaabeaakiaadEhacqGHciITdaWgaaWcbaGa am4DaaqabaGccaaISaaabaGaamywamaaBaaaleaacaaIZaaabeaaki aai2dacaaIOaGaam4yamaaBaaaleaacaaIXaaabeaakiaadIhacqGH RaWkcaWGJbWaaSbaaSqaaiaaikdaaeqaaOGaamyEaiabgUcaRiaado gadaWgaaWcbaGaaG4maaqabaGccaWG6bGaaGykaiabgkGi2oaaBaaa leaacaWG4baabeaakiabgUcaRiaaiIcacaWGJbWaaSbaaSqaaiaaig daaeqaaOGaamyEaiabgUcaRiaadogadaWgaaWcbaGaaGOmaaqabaGc caWG6bGaaGykaiabgkGi2oaaBaaaleaacaWG5baabeaakiabgUcaRi aadogadaWgaaWcbaGaaGymaaqabaGccaWG6bGaeyOaIy7aaSbaaSqa aiaadQhaaeqaaOGaey4kaSIaam4yamaaBaaaleaacaaIXaGaaGOnaa qabaGccaWG3bGaeyOaIy7aaSbaaSqaaiaadEhaaeqaaOGaaGilaaqa aiaadMfadaWgaaWcbaGaaGinaaqabaGccaaI9aGaaGikaiaadsgada WgaaWcbaGaaGymaaqabaGccaWG4bGaey4kaSIaamizamaaBaaaleaa caaIYaaabeaakiaadMhacqGHRaWkcaWGKbWaaSbaaSqaaiaaiodaae qaaOGaamOEaiaaiMcacqGHciITdaWgaaWcbaGaamiEaaqabaGccqGH RaWkcaaIOaGaamizamaaBaaaleaacaaIXaaabeaakiaadMhacqGHRa WkcaWGKbWaaSbaaSqaaiaaikdaaeqaaOGaamOEaiaaiMcacqGHciIT daWgaaWcbaGaamyEaaqabaGccqGHRaWkcaWGKbWaaSbaaSqaaiaaig daaeqaaOGaamOEaiabgkGi2oaaBaaaleaacaWG6baabeaakiabgUca RiaadsgadaWgaaWcbaGaaGymaiaaiAdaaeqaaOGaam4DaiabgkGi2o aaBaaaleaacaWG3baabeaakiaaiYcacaaMf8Uaeq4UdW2aaSbaaSqa aiaaiMdaaeqaaOGaeyiyIKRaeq4UdW2aaSbaaSqaaiaaigdacaaIWa aabeaakiaaiUdaaaaaaa@E5B6@  (5.4)

Y 1 =( λ 9 x+y) x +( λ 9 y+z) y +( λ 9 z+w) z + λ 9 w w , Y 2 =( b 1 x+ b 2 y+ b 3 z+ b 4 w) x +( b 1 y+ b 2 z+ b 3 w) y +( b 1 z+ b 2 w) z + b 1 w w , Y 3 =( c 1 x+ c 2 y+ c 3 z+ c 4 w) x +( c 1 y+ c 2 z+ c 3 w) y +( c 1 z+ c 2 w) z + c 1 w w , Y 4 =( d 1 x+ d 2 y+ d 3 z+ d 4 w) x +( d 1 y+ d 2 z+ d 3 w) y +( d 1 z+ d 2 w) z + d 1 w w ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabqqaaa aabaGaamywamaaBaaaleaacaaIXaaabeaakiaai2dacaaIOaGaeq4U dW2aaSbaaSqaaiaaiMdaaeqaaOGaamiEaiabgUcaRiaadMhacaaIPa GaeyOaIy7aaSbaaSqaaiaadIhaaeqaaOGaey4kaSIaaGikaiabeU7a SnaaBaaaleaacaaI5aaabeaakiaadMhacqGHRaWkcaWG6bGaaGykai abgkGi2oaaBaaaleaacaWG5baabeaakiabgUcaRiaaiIcacqaH7oaB daWgaaWcbaGaaGyoaaqabaGccaWG6bGaey4kaSIaam4DaiaaiMcacq GHciITdaWgaaWcbaGaamOEaaqabaGccqGHRaWkcqaH7oaBdaWgaaWc baGaaGyoaaqabaGccaWG3bGaeyOaIy7aaSbaaSqaaiaadEhaaeqaaO GaaGilaaqaaiaadMfadaWgaaWcbaGaaGOmaaqabaGccaaI9aGaaGik aiaadkgadaWgaaWcbaGaaGymaaqabaGccaWG4bGaey4kaSIaamOyam aaBaaaleaacaaIYaaabeaakiaadMhacqGHRaWkcaWGIbWaaSbaaSqa aiaaiodaaeqaaOGaamOEaiabgUcaRiaadkgadaWgaaWcbaGaaGinaa qabaGccaWG3bGaaGykaiabgkGi2oaaBaaaleaacaWG4baabeaakiab gUcaRiaaiIcacaWGIbWaaSbaaSqaaiaaigdaaeqaaOGaamyEaiabgU caRiaadkgadaWgaaWcbaGaaGOmaaqabaGccaWG6bGaey4kaSIaamOy amaaBaaaleaacaaIZaaabeaakiaadEhacaaIPaGaeyOaIy7aaSbaaS qaaiaadMhaaeqaaOGaey4kaSIaaGikaiaadkgadaWgaaWcbaGaaGym aaqabaGccaWG6bGaey4kaSIaamOyamaaBaaaleaacaaIYaaabeaaki aadEhacaaIPaGaeyOaIy7aaSbaaSqaaiaadQhaaeqaaOGaey4kaSIa amOyamaaBaaaleaacaaIXaaabeaakiaadEhacqGHciITdaWgaaWcba Gaam4DaaqabaGccaaISaaabaGaamywamaaBaaaleaacaaIZaaabeaa kiaai2dacaaIOaGaam4yamaaBaaaleaacaaIXaaabeaakiaadIhacq GHRaWkcaWGJbWaaSbaaSqaaiaaikdaaeqaaOGaamyEaiabgUcaRiaa dogadaWgaaWcbaGaaG4maaqabaGccaWG6bGaey4kaSIaam4yamaaBa aaleaacaaI0aaabeaakiaadEhacaaIPaGaeyOaIy7aaSbaaSqaaiaa dIhaaeqaaOGaey4kaSIaaGikaiaadogadaWgaaWcbaGaaGymaaqaba GccaWG5bGaey4kaSIaam4yamaaBaaaleaacaaIYaaabeaakiaadQha cqGHRaWkcaWGJbWaaSbaaSqaaiaaiodaaeqaaOGaam4DaiaaiMcacq GHciITdaWgaaWcbaGaamyEaaqabaGccqGHRaWkcaaIOaGaam4yamaa BaaaleaacaaIXaaabeaakiaadQhacqGHRaWkcaWGJbWaaSbaaSqaai aaikdaaeqaaOGaam4DaiaaiMcacqGHciITdaWgaaWcbaGaamOEaaqa baGccqGHRaWkcaWGJbWaaSbaaSqaaiaaigdaaeqaaOGaam4Daiabgk Gi2oaaBaaaleaacaWG3baabeaakiaaiYcaaeaacaWGzbWaaSbaaSqa aiaaisdaaeqaaOGaaGypaiaaiIcacaWGKbWaaSbaaSqaaiaaigdaae qaaOGaamiEaiabgUcaRiaadsgadaWgaaWcbaGaaGOmaaqabaGccaWG 5bGaey4kaSIaamizamaaBaaaleaacaaIZaaabeaakiaadQhacqGHRa WkcaWGKbWaaSbaaSqaaiaaisdaaeqaaOGaam4DaiaaiMcacqGHciIT daWgaaWcbaGaamiEaaqabaGccqGHRaWkcaaIOaGaamizamaaBaaale aacaaIXaaabeaakiaadMhacqGHRaWkcaWGKbWaaSbaaSqaaiaaikda aeqaaOGaamOEaiabgUcaRiaadsgadaWgaaWcbaGaaG4maaqabaGcca WG3bGaaGykaiabgkGi2oaaBaaaleaacaWG5baabeaakiabgUcaRiaa iIcacaWGKbWaaSbaaSqaaiaaigdaaeqaaOGaamOEaiabgUcaRiaads gadaWgaaWcbaGaaGOmaaqabaGccaWG3bGaaGykaiabgkGi2oaaBaaa leaacaWG6baabeaakiabgUcaRiaadsgadaWgaaWcbaGaaGymaaqaba GccaWG3bGaeyOaIy7aaSbaaSqaaiaadEhaaeqaaOGaaG4oaaaaaaa@01A0@  (5.5)

Y 1 =y x +z y +w z , Y 2 =x x +y y +z z +w w , Y 3 =z x +w y , Y 4 =( d 1 x+ d 2 y+ d 3 z+ d 4 w) x +( d 1 yy+ d 2 z+ d 3 w) y + +( d 1 z2z+ d 2 w) z +( d 1 w3w) w ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabmqaaa qaaiaadMfadaWgaaWcbaGaaGymaaqabaGccaaI9aGaamyEaiabgkGi 2oaaBaaaleaacaWG4baabeaakiabgUcaRiaadQhacqGHciITdaWgaa WcbaGaamyEaaqabaGccqGHRaWkcaWG3bGaeyOaIy7aaSbaaSqaaiaa dQhaaeqaaOGaaGilaiaaywW7caWGzbWaaSbaaSqaaiaaikdaaeqaaO GaaGypaiaadIhacqGHciITdaWgaaWcbaGaamiEaaqabaGccqGHRaWk caWG5bGaeyOaIy7aaSbaaSqaaiaadMhaaeqaaOGaey4kaSIaamOEai abgkGi2oaaBaaaleaacaWG6baabeaakiabgUcaRiaadEhacqGHciIT daWgaaWcbaGaam4DaaqabaGccaaISaGaaGzbVlaadMfadaWgaaWcba GaaG4maaqabaGccaaI9aGaamOEaiabgkGi2oaaBaaaleaacaWG4baa beaakiabgUcaRiaadEhacqGHciITdaWgaaWcbaGaamyEaaqabaGcca aISaaabaGaamywamaaBaaaleaacaaI0aaabeaakiaai2dacaaIOaGa amizamaaBaaaleaacaaIXaaabeaakiaadIhacqGHRaWkcaWGKbWaaS baaSqaaiaaikdaaeqaaOGaamyEaiabgUcaRiaadsgadaWgaaWcbaGa aG4maaqabaGccaWG6bGaey4kaSIaamizamaaBaaaleaacaaI0aaabe aakiaadEhacaaIPaGaeyOaIy7aaSbaaSqaaiaadIhaaeqaaOGaey4k aSIaaGikaiaadsgadaWgaaWcbaGaaGymaaqabaGccaWG5bGaeyOeI0 IaamyEaiabgUcaRiaadsgadaWgaaWcbaGaaGOmaaqabaGccaWG6bGa ey4kaSIaamizamaaBaaaleaacaaIZaaabeaakiaadEhacaaIPaGaey OaIy7aaSbaaSqaaiaadMhaaeqaaOGaey4kaScabaGaey4kaSIaaGik aiaadsgadaWgaaWcbaGaaGymaaqabaGccaWG6bGaeyOeI0IaaGOmai aadQhacqGHRaWkcaWGKbWaaSbaaSqaaiaaikdaaeqaaOGaam4Daiaa iMcacqGHciITdaWgaaWcbaGaamOEaaqabaGccqGHRaWkcaaIOaGaam izamaaBaaaleaacaaIXaaabeaakiaadEhacqGHsislcaaIZaGaam4D aiaaiMcacqGHciITdaWgaaWcbaGaam4DaaqabaGccaaI7aaaaaaa@A87B@  (5.6)

Y 1 =y x +z y +w z , Y 2 =x x +y y +z z +w w , Y 3 =w x , Y 4 =( d 1 x+ d 2 y+ d 3 z+ d 4 w) x +( d 1 yy+ d 2 z+ d 3 w) y + +( d 1 z2z+ d 2 w) z +( d 1 w3w) w ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabmqaaa qaaiaadMfadaWgaaWcbaGaaGymaaqabaGccaaI9aGaamyEaiabgkGi 2oaaBaaaleaacaWG4baabeaakiabgUcaRiaadQhacqGHciITdaWgaa WcbaGaamyEaaqabaGccqGHRaWkcaWG3bGaeyOaIy7aaSbaaSqaaiaa dQhaaeqaaOGaaGilaiaaywW7caWGzbWaaSbaaSqaaiaaikdaaeqaaO GaaGypaiaadIhacqGHciITdaWgaaWcbaGaamiEaaqabaGccqGHRaWk caWG5bGaeyOaIy7aaSbaaSqaaiaadMhaaeqaaOGaey4kaSIaamOEai abgkGi2oaaBaaaleaacaWG6baabeaakiabgUcaRiaadEhacqGHciIT daWgaaWcbaGaam4DaaqabaGccaaISaGaaGzbVlaadMfadaWgaaWcba GaaG4maaqabaGccaaI9aGaam4DaiabgkGi2oaaBaaaleaacaWG4baa beaakiaaiYcaaeaacaWGzbWaaSbaaSqaaiaaisdaaeqaaOGaaGypai aaiIcacaWGKbWaaSbaaSqaaiaaigdaaeqaaOGaamiEaiabgUcaRiaa dsgadaWgaaWcbaGaaGOmaaqabaGccaWG5bGaey4kaSIaamizamaaBa aaleaacaaIZaaabeaakiaadQhacqGHRaWkcaWGKbWaaSbaaSqaaiaa isdaaeqaaOGaam4DaiaaiMcacqGHciITdaWgaaWcbaGaamiEaaqaba GccqGHRaWkcaaIOaGaamizamaaBaaaleaacaaIXaaabeaakiaadMha cqGHsislcaWG5bGaey4kaSIaamizamaaBaaaleaacaaIYaaabeaaki aadQhacqGHRaWkcaWGKbWaaSbaaSqaaiaaiodaaeqaaOGaam4Daiaa iMcacqGHciITdaWgaaWcbaGaamyEaaqabaGccqGHRaWkaeaacqGHRa WkcaaIOaGaamizamaaBaaaleaacaaIXaaabeaakiaadQhacqGHsisl caaIYaGaamOEaiabgUcaRiaadsgadaWgaaWcbaGaaGOmaaqabaGcca WG3bGaaGykaiabgkGi2oaaBaaaleaacaWG6baabeaakiabgUcaRiaa iIcacaWGKbWaaSbaaSqaaiaaigdaaeqaaOGaam4DaiabgkHiTiaaio dacaWG3bGaaGykaiabgkGi2oaaBaaaleaacaWG3baabeaakiaaiUda aaaaaa@A400@  (5.7)

Y 1 =y x +z y +w z , Y 2 =z x +w y , Y 3 =w x , Y 4 =( d 1 x+ d 2 y+ d 3 z+ d 4 w) x +( d 1 yy+ d 2 z+ d 3 w) y + +( d 1 z2z+ d 2 w) z +( d 1 w3w) w ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabmqaaa qaaiaadMfadaWgaaWcbaGaaGymaaqabaGccaaI9aGaamyEaiabgkGi 2oaaBaaaleaacaWG4baabeaakiabgUcaRiaadQhacqGHciITdaWgaa WcbaGaamyEaaqabaGccqGHRaWkcaWG3bGaeyOaIy7aaSbaaSqaaiaa dQhaaeqaaOGaaGilaiaaywW7caWGzbWaaSbaaSqaaiaaikdaaeqaaO GaaGypaiaadQhacqGHciITdaWgaaWcbaGaamiEaaqabaGccqGHRaWk caWG3bGaeyOaIy7aaSbaaSqaaiaadMhaaeqaaOGaaGilaiaaywW7ca WGzbWaaSbaaSqaaiaaiodaaeqaaOGaaGypaiaadEhacqGHciITdaWg aaWcbaGaamiEaaqabaGccaaISaaabaGaamywamaaBaaaleaacaaI0a aabeaakiaai2dacaaIOaGaamizamaaBaaaleaacaaIXaaabeaakiaa dIhacqGHRaWkcaWGKbWaaSbaaSqaaiaaikdaaeqaaOGaamyEaiabgU caRiaadsgadaWgaaWcbaGaaG4maaqabaGccaWG6bGaey4kaSIaamiz amaaBaaaleaacaaI0aaabeaakiaadEhacaaIPaGaeyOaIy7aaSbaaS qaaiaadIhaaeqaaOGaey4kaSIaaGikaiaadsgadaWgaaWcbaGaaGym aaqabaGccaWG5bGaeyOeI0IaamyEaiabgUcaRiaadsgadaWgaaWcba GaaGOmaaqabaGccaWG6bGaey4kaSIaamizamaaBaaaleaacaaIZaaa beaakiaadEhacaaIPaGaeyOaIy7aaSbaaSqaaiaadMhaaeqaaOGaey 4kaScabaGaey4kaSIaaGikaiaadsgadaWgaaWcbaGaaGymaaqabaGc caWG6bGaeyOeI0IaaGOmaiaadQhacqGHRaWkcaWGKbWaaSbaaSqaai aaikdaaeqaaOGaam4DaiaaiMcacqGHciITdaWgaaWcbaGaamOEaaqa baGccqGHRaWkcaaIOaGaamizamaaBaaaleaacaaIXaaabeaakiaadE hacqGHsislcaaIZaGaam4DaiaaiMcacqGHciITdaWgaaWcbaGaam4D aaqabaGccaaI7aaaaaaa@9B0E@  (5.8)

для алгебры Ли 3:

Y 1 =( λ 9 x+y) x +( λ 9 y+z) y + λ 9 z z + λ 10 w w , Y 2 =( d 2 d 7 )z x , Y 3 =( c 1 x+ c 3 z) x + c 1 y y + c 1 z z + c 16 w w , Y 4 =( d 1 x+ d 2 y+ d 3 z) x +( d 1 y+ d 7 z) y + d 1 z z + d 16 w w , λ 9 λ 10 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabmqaaa qaaiaadMfadaWgaaWcbaGaaGymaaqabaGccaaI9aGaaGikaiabeU7a SnaaBaaaleaacaaI5aaabeaakiaadIhacqGHRaWkcaWG5bGaaGykai abgkGi2oaaBaaaleaacaWG4baabeaakiabgUcaRiaaiIcacqaH7oaB daWgaaWcbaGaaGyoaaqabaGccaWG5bGaey4kaSIaamOEaiaaiMcacq GHciITdaWgaaWcbaGaamyEaaqabaGccqGHRaWkcqaH7oaBdaWgaaWc baGaaGyoaaqabaGccaWG6bGaeyOaIy7aaSbaaSqaaiaadQhaaeqaaO Gaey4kaSIaeq4UdW2aaSbaaSqaaiaaigdacaaIWaaabeaakiaadEha cqGHciITdaWgaaWcbaGaam4DaaqabaGccaaISaGaaGzbVlaadMfada WgaaWcbaGaaGOmaaqabaGccaaI9aGaaGikaiaadsgadaWgaaWcbaGa aGOmaaqabaGccqGHsislcaWGKbWaaSbaaSqaaiaaiEdaaeqaaOGaaG ykaiaadQhacqGHciITdaWgaaWcbaGaamiEaaqabaGccaaISaaabaGa amywamaaBaaaleaacaaIZaaabeaakiaai2dacaaIOaGaam4yamaaBa aaleaacaaIXaaabeaakiaadIhacqGHRaWkcaWGJbWaaSbaaSqaaiaa iodaaeqaaOGaamOEaiaaiMcacqGHciITdaWgaaWcbaGaamiEaaqaba GccqGHRaWkcaWGJbWaaSbaaSqaaiaaigdaaeqaaOGaamyEaiabgkGi 2oaaBaaaleaacaWG5baabeaakiabgUcaRiaadogadaWgaaWcbaGaaG ymaaqabaGccaWG6bGaeyOaIy7aaSbaaSqaaiaadQhaaeqaaOGaey4k aSIaam4yamaaBaaaleaacaaIXaGaaGOnaaqabaGccaWG3bGaeyOaIy 7aaSbaaSqaaiaadEhaaeqaaOGaaGilaaqaaiaadMfadaWgaaWcbaGa aGinaaqabaGccaaI9aGaaGikaiaadsgadaWgaaWcbaGaaGymaaqaba GccaWG4bGaey4kaSIaamizamaaBaaaleaacaaIYaaabeaakiaadMha cqGHRaWkcaWGKbWaaSbaaSqaaiaaiodaaeqaaOGaamOEaiaaiMcacq GHciITdaWgaaWcbaGaamiEaaqabaGccqGHRaWkcaaIOaGaamizamaa BaaaleaacaaIXaaabeaakiaadMhacqGHRaWkcaWGKbWaaSbaaSqaai aaiEdaaeqaaOGaamOEaiaaiMcacqGHciITdaWgaaWcbaGaamyEaaqa baGccqGHRaWkcaWGKbWaaSbaaSqaaiaaigdaaeqaaOGaamOEaiabgk Gi2oaaBaaaleaacaWG6baabeaakiabgUcaRiaadsgadaWgaaWcbaGa aGymaiaaiAdaaeqaaOGaam4DaiabgkGi2oaaBaaaleaacaWG3baabe aakiaaiYcacqaH7oaBdaWgaaWcbaGaaGyoaaqabaGccqGHGjsUcqaH 7oaBdaWgaaWcbaGaaGymaiaaicdaaeqaaOGaaG4oaaaaaaa@BF6A@  (5.9)

Y 1 =( λ 9 x+y) x +( λ 9 y+z) y +( λ 9 z+w) z + λ 9 w w , Y 2 = b 4 w x , Y 3 =( c 1 x+ c 3 z+ c 4 w) x +( c 1 y+ c 3 w) y + c 1 z z + c 1 w w , Y 4 =( d 1 x+ d 7 y+ d 3 z+ d 4 w) x +( d 1 y+ d 7 z+( d 3 b 4 )w) y +( d 1 z+ d 7 w) z + d 1 w w ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabmqaaa qaaiaadMfadaWgaaWcbaGaaGymaaqabaGccaaI9aGaaGikaiabeU7a SnaaBaaaleaacaaI5aaabeaakiaadIhacqGHRaWkcaWG5bGaaGykai abgkGi2oaaBaaaleaacaWG4baabeaakiabgUcaRiaaiIcacqaH7oaB daWgaaWcbaGaaGyoaaqabaGccaWG5bGaey4kaSIaamOEaiaaiMcacq GHciITdaWgaaWcbaGaamyEaaqabaGccqGHRaWkcaaIOaGaeq4UdW2a aSbaaSqaaiaaiMdaaeqaaOGaamOEaiabgUcaRiaadEhacaaIPaGaey OaIy7aaSbaaSqaaiaadQhaaeqaaOGaey4kaSIaeq4UdW2aaSbaaSqa aiaaiMdaaeqaaOGaam4DaiabgkGi2oaaBaaaleaacaWG3baabeaaki aaiYcaaeaacaWGzbWaaSbaaSqaaiaaikdaaeqaaOGaaGypaiaadkga daWgaaWcbaGaaGinaaqabaGccaWG3bGaeyOaIy7aaSbaaSqaaiaadI haaeqaaOGaaGilaiaaywW7caWGzbWaaSbaaSqaaiaaiodaaeqaaOGa aGypaiaaiIcacaWGJbWaaSbaaSqaaiaaigdaaeqaaOGaamiEaiabgU caRiaadogadaWgaaWcbaGaaG4maaqabaGccaWG6bGaey4kaSIaam4y amaaBaaaleaacaaI0aaabeaakiaadEhacaaIPaGaeyOaIy7aaSbaaS qaaiaadIhaaeqaaOGaey4kaSIaaGikaiaadogadaWgaaWcbaGaaGym aaqabaGccaWG5bGaey4kaSIaam4yamaaBaaaleaacaaIZaaabeaaki aadEhacaaIPaGaeyOaIy7aaSbaaSqaaiaadMhaaeqaaOGaey4kaSIa am4yamaaBaaaleaacaaIXaaabeaakiaadQhacqGHciITdaWgaaWcba GaamOEaaqabaGccqGHRaWkcaWGJbWaaSbaaSqaaiaaigdaaeqaaOGa am4DaiabgkGi2oaaBaaaleaacaWG3baabeaakiaaiYcaaeaacaWGzb WaaSbaaSqaaiaaisdaaeqaaOGaaGypaiaaiIcacaWGKbWaaSbaaSqa aiaaigdaaeqaaOGaamiEaiabgUcaRiaadsgadaWgaaWcbaGaaG4naa qabaGccaWG5bGaey4kaSIaamizamaaBaaaleaacaaIZaaabeaakiaa dQhacqGHRaWkcaWGKbWaaSbaaSqaaiaaisdaaeqaaOGaam4DaiaaiM cacqGHciITdaWgaaWcbaGaamiEaaqabaGccqGHRaWkcaaIOaGaamiz amaaBaaaleaacaaIXaaabeaakiaadMhacqGHRaWkcaWGKbWaaSbaaS qaaiaaiEdaaeqaaOGaamOEaiabgUcaRiaaiIcacaWGKbWaaSbaaSqa aiaaiodaaeqaaOGaeyOeI0IaamOyamaaBaaaleaacaaI0aaabeaaki aaiMcacaWG3bGaaGykaiabgkGi2oaaBaaaleaacaWG5baabeaakiab gUcaRiaaiIcacaWGKbWaaSbaaSqaaiaaigdaaeqaaOGaamOEaiabgU caRiaadsgadaWgaaWcbaGaaG4naaqabaGccaWG3bGaaGykaiabgkGi 2oaaBaaaleaacaWG6baabeaakiabgUcaRiaadsgadaWgaaWcbaGaaG ymaaqabaGccaWG3bGaeyOaIy7aaSbaaSqaaiaadEhaaeqaaOGaaG4o aaaaaaa@CD5F@  (5.10)

для алгебры Ли 4:

Y 1 =( λ 9 x+y) x +( λ 9 y+z) y +( λ 9 z+w) z + λ 9 w w , Y 2 =( b 3 z+ b 4 w) x + b 3 w y , Y 3 =2 b 3 2 w x , Y 4 =( d 1 x+ d 2 y+ d 3 z+ d 4 w) x +( d 1 y+( d 2 b 3 )z+( d 3 b 4 )w) y + +( d 1 z+( d 2 2 b 3 )w) z + d 1 w w , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabqqaaa aabaGaamywamaaBaaaleaacaaIXaaabeaakiaai2dacaaIOaGaeq4U dW2aaSbaaSqaaiaaiMdaaeqaaOGaamiEaiabgUcaRiaadMhacaaIPa GaeyOaIy7aaSbaaSqaaiaadIhaaeqaaOGaey4kaSIaaGikaiabeU7a SnaaBaaaleaacaaI5aaabeaakiaadMhacqGHRaWkcaWG6bGaaGykai abgkGi2oaaBaaaleaacaWG5baabeaakiabgUcaRiaaiIcacqaH7oaB daWgaaWcbaGaaGyoaaqabaGccaWG6bGaey4kaSIaam4DaiaaiMcacq GHciITdaWgaaWcbaGaamOEaaqabaGccqGHRaWkcqaH7oaBdaWgaaWc baGaaGyoaaqabaGccaWG3bGaeyOaIy7aaSbaaSqaaiaadEhaaeqaaO GaaGilaaqaaiaadMfadaWgaaWcbaGaaGOmaaqabaGccaaI9aGaaGik aiaadkgadaWgaaWcbaGaaG4maaqabaGccaWG6bGaey4kaSIaamOyam aaBaaaleaacaaI0aaabeaakiaadEhacaaIPaGaeyOaIy7aaSbaaSqa aiaadIhaaeqaaOGaey4kaSIaamOyamaaBaaaleaacaaIZaaabeaaki aadEhacqGHciITdaWgaaWcbaGaamyEaaqabaGccaaISaGaaGzbVlaa dMfadaWgaaWcbaGaaG4maaqabaGccaaI9aGaaGOmaiaadkgadaqhaa WcbaGaaG4maaqaaiaaikdaaaGccaWG3bGaeyOaIy7aaSbaaSqaaiaa dIhaaeqaaOGaaGilaaqaaiaadMfadaWgaaWcbaGaaGinaaqabaGcca aI9aGaaGikaiaadsgadaWgaaWcbaGaaGymaaqabaGccaWG4bGaey4k aSIaamizamaaBaaaleaacaaIYaaabeaakiaadMhacqGHRaWkcaWGKb WaaSbaaSqaaiaaiodaaeqaaOGaamOEaiabgUcaRiaadsgadaWgaaWc baGaaGinaaqabaGccaWG3bGaaGykaiabgkGi2oaaBaaaleaacaWG4b aabeaakiabgUcaRiaaiIcacaWGKbWaaSbaaSqaaiaaigdaaeqaaOGa amyEaiabgUcaRiaaiIcacaWGKbWaaSbaaSqaaiaaikdaaeqaaOGaey OeI0IaamOyamaaBaaaleaacaaIZaaabeaakiaaiMcacaWG6bGaey4k aSIaaGikaiaadsgadaWgaaWcbaGaaG4maaqabaGccqGHsislcaWGIb WaaSbaaSqaaiaaisdaaeqaaOGaaGykaiaadEhacaaIPaGaeyOaIy7a aSbaaSqaaiaadMhaaeqaaOGaey4kaScabaGaey4kaSIaaGikaiaads gadaWgaaWcbaGaaGymaaqabaGccaWG6bGaey4kaSIaaGikaiaadsga daWgaaWcbaGaaGOmaaqabaGccqGHsislcaaIYaGaamOyamaaBaaale aacaaIZaaabeaakiaaiMcacaWG3bGaaGykaiabgkGi2oaaBaaaleaa caWG6baabeaakiabgUcaRiaadsgadaWgaaWcbaGaaGymaaqabaGcca WG3bGaeyOaIy7aaSbaaSqaaiaadEhaaeqaaOGaaGilaaaaaaa@C334@  (5.11)

причем все коэффициенты перед переменными MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  постоянные.

Остальные алгебры не реализуются.

Операторы Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@ , Y 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIYaaabeaaaaa@37B9@ , Y 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIZaaabeaaaaa@37BA@  и Y 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaI0aaabeaaaaa@37BB@ , приведенные в формулировке теоремы 7, линейнонезависимы и ненулевые. При доказательстве этой теоремы допускается линейная замена координат, линейная комбинация операторов и применение условия замкнутости коммутаторов базисных операторов.

Доказательство. В операторах (0.4.1) произведем линейную замену координат

( x y z w ) T =A (xyzw) T , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiqadI hagaqbaiaaysW7ceWG5bGbauaacaaMe8UabmOEayaafaGaaGjbVlqa dEhagaqbaiaaiMcadaahaaWcbeqaaiaadsfaaaGccaaI9aGaamyqai aaiIcacaWG4bGaaGjbVlaadMhacaaMe8UaamOEaiaaysW7caWG3bGa aGykamaaCaaaleqabaGaamivaaaakiaaiYcaaaa@4E8A@

где A MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaaaa@36B9@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  произвольная невырожденная матрица четвёртого порядка с постоянными элементами, T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaWbaaSqabe aacaWGubaaaaaa@36F9@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  знак транспонирования. Тогда для операторов дифференцирования относительно старых и новых координат получим связь

( x y z w ) T = A T ( x y z w ) T . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiabgk Gi2oaaBaaaleaacaWG4baabeaakiaaysW7cqGHciITdaWgaaWcbaGa amyEaaqabaGccaaMe8UaeyOaIy7aaSbaaSqaaiaadQhaaeqaaOGaaG jbVlabgkGi2oaaBaaaleaacaWG3baabeaakiaaiMcadaahaaWcbeqa aiaadsfaaaGccaaI9aGaamyqamaaCaaaleqabaGaamivaaaakiaaiI cacqGHciITdaWgaaWcbaGabmiEayaafaaabeaakiaaysW7cqGHciIT daWgaaWcbaGabmyEayaafaaabeaakiaaysW7cqGHciITdaWgaaWcba GabmOEayaafaaabeaakiaaysW7cqGHciITdaWgaaWcbaGabm4Dayaa faaabeaakiaaiMcadaahaaWcbeqaaiaadsfaaaGccaaIUaaaaa@5C7C@

В новых координатах операторы X 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIXaaabeaaaaa@37B7@ , X 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIYaaabeaaaaa@37B8@ , X 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIZaaabeaaaaa@37B9@ , X 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaI0aaabeaaaaa@37BA@ , Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@ , Y 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIYaaabeaaaaa@37B9@ , Y 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIZaaabeaaaaa@37BA@  и Y 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaI0aaabeaaaaa@37BB@  принимают следующий вид:

X 1 X 2 X 3 X 4 = A T X 1 X 2 X 3 X 4 , Y i = A U i A 1 x y z w , x y z w ,i=1,2,3,4. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafa qabeabbaaaaeaacaWGybWaaSbaaSqaaiaaigdaaeqaaaGcbaGaamiw amaaBaaaleaacaaIYaaabeaaaOqaaiaadIfadaWgaaWcbaGaaG4maa qabaaakeaacaWGybWaaSbaaSqaaiaaisdaaeqaaaaaaOGaayjkaiaa wMcaaiaai2dacaWGbbWaaWbaaSqabeaacaWGubaaaOWaaeWaaeaafa qabeabbaaaaeaaceWGybGbauaadaWgaaWcbaGaaGymaaqabaaakeaa ceWGybGbauaadaWgaaWcbaGaaGOmaaqabaaakeaaceWGybGbauaada WgaaWcbaGaaG4maaqabaaakeaaceWGybGbauaadaWgaaWcbaGaaGin aaqabaaaaaGccaGLOaGaayzkaaGaaGilaiaaywW7caWGzbWaaSbaaS qaaiaadMgaaeqaaOGaaGypamaaamaabaGaamyqaiaadwfadaWgaaWc baGaamyAaaqabaGccaWGbbWaaWbaaSqabeaacqGHsislcaaIXaaaaO WaaeWaaeaafaqabeabbaaaaeaaceWG4bGbauaaaeaaceWG5bGbauaa aeaaceWG6bGbauaaaeaaceWG3bGbauaaaaaacaGLOaGaayzkaaGaaG ilamaabmaabaqbaeqabqqaaaaabaGaeyOaIy7aaSbaaSqaaiqadIha gaqbaaqabaaakeaacqGHciITdaWgaaWcbaGabmyEayaafaaabeaaaO qaaiabgkGi2oaaBaaaleaaceWG6bGbauaaaeqaaaGcbaGaeyOaIy7a aSbaaSqaaiqadEhagaqbaaqabaaaaaGccaGLOaGaayzkaaaacaGLPm IaayPkJaGaaGilaiaaywW7caWGPbGaaGypaiaaigdacaaISaGaaGOm aiaaiYcacaaIZaGaaGilaiaaisdacaaIUaaaaa@7321@

Линейной комбинацией переходим от операторов X 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIXaaabeaaaaa@37B7@ , X 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIYaaabeaaaaa@37B8@ , X 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIZaaabeaaaaa@37B9@ , X 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaI0aaabeaaaaa@37BA@  к операторам X 1 = x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiwayaafa WaaSbaaSqaaiaaigdaaeqaaOGaaGypaiabgkGi2oaaBaaaleaaceWG 4bGbauaaaeqaaaaa@3B2F@ , X 2 = y MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiwayaafa WaaSbaaSqaaiaaikdaaeqaaOGaaGypaiabgkGi2oaaBaaaleaaceWG 5bGbauaaaeqaaaaa@3B31@ , X 3 = z MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiwayaafa WaaSbaaSqaaiaaiodaaeqaaOGaaGypaiabgkGi2oaaBaaaleaaceWG 6bGbauaaaeqaaaaa@3B33@ , X 4 = w MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiwayaafa WaaSbaaSqaaiaaisdaaeqaaOGaaGypaiabgkGi2oaaBaaaleaaceWG 3bGbauaaaeqaaaaa@3B31@ . Возвращаясь к прежним обозначениям координат и базисных операторов, получим:

X 1 = x , X 2 = y , X 3 = z , X 4 = w , Y i = U i x y z w , x y z w , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIXaaabeaakiaai2dacqGHciITdaWgaaWcbaGaamiEaaqa baGccaaISaGaaGzbVlaadIfadaWgaaWcbaGaaGOmaaqabaGccaaI9a GaeyOaIy7aaSbaaSqaaiaadMhaaeqaaOGaaGilaiaaywW7caWGybWa aSbaaSqaaiaaiodaaeqaaOGaaGypaiabgkGi2oaaBaaaleaacaWG6b aabeaakiaaiYcacaaMf8UaamiwamaaBaaaleaacaaI0aaabeaakiaa i2dacqGHciITdaWgaaWcbaGaam4DaaqabaGccaaISaGaaGzbVlaadM fadaWgaaWcbaGaamyAaaqabaGccaaI9aWaaaWaaeaaceWGvbGbauaa daWgaaWcbaGaamyAaaqabaGcdaqadaqaauaabeqaeeaaaaqaaiaadI haaeaacaWG5baabaGaamOEaaqaaiaadEhaaaaacaGLOaGaayzkaaGa aGilamaabmaabaqbaeqabqqaaaaabaGaeyOaIy7aaSbaaSqaaiaadI haaeqaaaGcbaGaeyOaIy7aaSbaaSqaaiaadMhaaeqaaaGcbaGaeyOa Iy7aaSbaaSqaaiaadQhaaeqaaaGcbaGaeyOaIy7aaSbaaSqaaiaadE haaeqaaaaaaOGaayjkaiaawMcaaaGaayzkJiaawQYiaiaaiYcaaaa@6D62@

где введены обозначения

U i =A U i A 1 ,i=1,2,3,4. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyvayaafa WaaSbaaSqaaiaadMgaaeqaaOGaaGypaiaadgeacaWGvbWaaSbaaSqa aiaadMgaaeqaaOGaamyqamaaCaaaleqabaGaeyOeI0IaaGymaaaaki aaiYcacaaMf8UaamyAaiaai2dacaaIXaGaaGilaiaaikdacaaISaGa aG4maiaaiYcacaaI0aGaaGOlaaaa@47F2@

Известно, что матрица U 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvamaaBa aaleaaceaIXaGbauaaaeqaaaaa@37C0@  приводится к канонической вещественной форме (см. [12]). Возможны следующие варианты:

I. λ 1 0 0 0 0 λ 2 0 0 0 0 λ 3 0 0 0 0 λ 4 ,II. , λ 5 1 0 0 0 λ 5 0 0 0 0 λ 6 0 0 0 0 λ 7 ,III. , λ 5 1 0 0 0 λ 5 0 0 0 0 λ 8 1 0 0 0 λ 8 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeysaiaai6 cadaqadaqaauaabeqafqaaaaaabaGaeq4UdW2aaSbaaSqaaiaaigda aeqaaaGcbaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaai abeU7aSnaaBaaaleaacaaIYaaabeaaaOqaaiaaicdaaeaacaaIWaaa baGaaGimaaqaaiaaicdaaeaacqaH7oaBdaWgaaWcbaGaaG4maaqaba aakeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaeq4U dW2aaSbaaSqaaiaaisdaaeqaaaGcbaaabaaabaaabaaaaaGaayjkai aawMcaaiaaiYcacaaMf8UaaeysaiaabMeacaaIUaWaaeWaaeaafaqa beqbeaaaaaqaaiaaiYcacqaH7oaBdaWgaaWcbaGaaGynaaqabaaake aacaaIXaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaeq4UdW2a aSbaaSqaaiaaiwdaaeqaaaGcbaGaaGimaaqaaiaaicdaaeaacaaIWa aabaGaaGimaaqaaiabeU7aSnaaBaaaleaacaaI2aaabeaaaOqaaiaa icdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacqaH7oaBdaWgaa WcbaGaaG4naaqabaaakeaaaeaaaeaaaeaaaaaacaGLOaGaayzkaaGa aGilaiaaywW7caqGjbGaaeysaiaabMeacaaIUaWaaeWaaeaafaqabe qbeaaaaaqaaiaaiYcacqaH7oaBdaWgaaWcbaGaaGynaaqabaaakeaa caaIXaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaeq4UdW2aaS baaSqaaiaaiwdaaeqaaaGcbaGaaGimaaqaaiaaicdaaeaacaaIWaaa baGaaGimaaqaaiabeU7aSnaaBaaaleaacaaI4aaabeaaaOqaaiaaig daaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacqaH7oaBdaWgaaWc baGaaGioaaqabaaakeaaaeaaaeaaaeaaaaaacaGLOaGaayzkaaGaaG ilaaaa@82AD@

IV. λ 9 1 0 0 0 λ 9 1 0 0 0 λ 9 0 0 0 0 λ 10 ,V. λ 4 1 0 0 0 λ 4 1 0 0 0 λ 4 1 0 0 0 λ 4 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeysaiaabA facaaIUaWaaeWaaeaafaqabeqbeaaaaaqaaiabeU7aSnaaBaaaleaa caaI5aaabeaaaOqaaiaaigdaaeaacaaIWaaabaGaaGimaaqaaiaaic daaeaacqaH7oaBdaWgaaWcbaGaaGyoaaqabaaakeaacaaIXaaabaGa aGimaaqaaiaaicdaaeaacaaIWaaabaGaeq4UdW2aaSbaaSqaaiaaiM daaeqaaaGcbaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqa aiabeU7aSnaaBaaaleaacaaIXaGaaGimaaqabaaakeaaaeaaaeaaae aaaaaacaGLOaGaayzkaaGaaGilaiaaywW7caqGwbGaaGOlamaabmaa baqbaeqabuabaaaaaeaacqaH7oaBdaWgaaWcbaGaaGinaaqabaaake aacaaIXaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaeq4UdW2a aSbaaSqaaiaaisdaaeqaaaGcbaGaaGymaaqaaiaaicdaaeaacaaIWa aabaGaaGimaaqaaiabeU7aSnaaBaaaleaacaaI0aaabeaaaOqaaiaa igdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacqaH7oaBdaWgaa WcbaGaaGinaaqabaaakeaaaeaaaeaaaeaaaaaacaGLOaGaayzkaaGa aGilaaaa@67B2@

причем все элементы в данных матрицах вещественны,

λ 1 λ 2 , λ 1 λ 3 , λ 1 λ 4 , λ 2 λ 3 , λ 2 λ 4 , λ 3 λ 4 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaaigdaaeqaaOGaeyiyIKRaeq4UdW2aaSbaaSqaaiaaikda aeqaaOGaaGilaiaaywW7cqaH7oaBdaWgaaWcbaGaaGymaaqabaGccq GHGjsUcqaH7oaBdaWgaaWcbaGaaG4maaqabaGccaaISaGaaGzbVlab eU7aSnaaBaaaleaacaaIXaaabeaakiabgcMi5kabeU7aSnaaBaaale aacaaI0aaabeaakiaaiYcacaaMf8Uaeq4UdW2aaSbaaSqaaiaaikda aeqaaOGaeyiyIKRaeq4UdW2aaSbaaSqaaiaaiodaaeqaaOGaaGilai aaywW7cqaH7oaBdaWgaaWcbaGaaGOmaaqabaGccqGHGjsUcqaH7oaB daWgaaWcbaGaaGinaaqabaGccaaISaGaaGzbVlabeU7aSnaaBaaale aacaaIZaaabeaakiabgcMi5kabeU7aSnaaBaaaleaacaaI0aaabeaa kiaaiYcaaaa@6C75@

λ 5 λ 6 , λ 5 λ 7 , λ 6 λ 7 , λ 7 λ 8 , λ 9 λ 10 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaaiwdaaeqaaOGaeyiyIKRaeq4UdW2aaSbaaSqaaiaaiAda aeqaaOGaaGilaiaaywW7cqaH7oaBdaWgaaWcbaGaaGynaaqabaGccq GHGjsUcqaH7oaBdaWgaaWcbaGaaG4naaqabaGccaaISaGaaGzbVlab eU7aSnaaBaaaleaacaaI2aaabeaakiabgcMi5kabeU7aSnaaBaaale aacaaI3aaabeaakiaaiYcacaaMf8Uaeq4UdW2aaSbaaSqaaiaaiEda aeqaaOGaeyiyIKRaeq4UdW2aaSbaaSqaaiaaiIdaaeqaaOGaaGilai aaywW7cqaH7oaBdaWgaaWcbaGaaGyoaaqabaGccqGHGjsUcqaH7oaB daWgaaWcbaGaaGymaiaaicdaaeqaaOGaaGOlaaaa@63FD@

В таком случае ненулевой оператор Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@  приводится к одному из четырех видов:

Y 1 = λ 1 x x + λ 2 y y + λ 3 z z + λ 4 w w , λ 1 λ 2 , λ 1 λ 3 , λ 1 λ 4 , λ 2 λ 3 , λ 2 λ 4 , λ 3 λ 4 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaiaadMfadaWgaaWcbaGaaGymaaqabaGccaaI9aGaeq4UdW2aaSba aSqaaiaaigdaaeqaaOGaamiEaiabgkGi2oaaBaaaleaacaWG4baabe aakiabgUcaRiabeU7aSnaaBaaaleaacaaIYaaabeaakiaadMhacqGH ciITdaWgaaWcbaGaamyEaaqabaGccqGHRaWkcqaH7oaBdaWgaaWcba GaaG4maaqabaGccaWG6bGaeyOaIy7aaSbaaSqaaiaadQhaaeqaaOGa ey4kaSIaeq4UdW2aaSbaaSqaaiaaisdaaeqaaOGaam4DaiabgkGi2o aaBaaaleaacaWG3baabeaakiaaiYcaaeaacqaH7oaBdaWgaaWcbaGa aGymaaqabaGccqGHGjsUcqaH7oaBdaWgaaWcbaGaaGOmaaqabaGcca aISaGaeq4UdW2aaSbaaSqaaiaaigdaaeqaaOGaeyiyIKRaeq4UdW2a aSbaaSqaaiaaiodaaeqaaOGaaGilaiabeU7aSnaaBaaaleaacaaIXa aabeaakiabgcMi5kabeU7aSnaaBaaaleaacaaI0aaabeaakiaaiYca cqaH7oaBdaWgaaWcbaGaaGOmaaqabaGccqGHGjsUcqaH7oaBdaWgaa WcbaGaaG4maaqabaGccaaISaGaeq4UdW2aaSbaaSqaaiaaikdaaeqa aOGaeyiyIKRaeq4UdW2aaSbaaSqaaiaaisdaaeqaaOGaaGilaiabeU 7aSnaaBaaaleaacaaIZaaabeaakiabgcMi5kabeU7aSnaaBaaaleaa caaI0aaabeaakiaaiUdaaaaaaa@83B3@ (5.12)

Y 1 =( λ 5 x+y) x + λ 5 y y + λ 6 z z + λ 7 w w , λ 5 λ 6 , λ 5 λ 7 , λ 6 λ 7 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaakiaai2dacaaIOaGaeq4UdW2aaSbaaSqaaiaa iwdaaeqaaOGaamiEaiabgUcaRiaadMhacaaIPaGaeyOaIy7aaSbaaS qaaiaadIhaaeqaaOGaey4kaSIaeq4UdW2aaSbaaSqaaiaaiwdaaeqa aOGaamyEaiabgkGi2oaaBaaaleaacaWG5baabeaakiabgUcaRiabeU 7aSnaaBaaaleaacaaI2aaabeaakiaadQhacqGHciITdaWgaaWcbaGa amOEaaqabaGccqGHRaWkcqaH7oaBdaWgaaWcbaGaaG4naaqabaGcca WG3bGaeyOaIy7aaSbaaSqaaiaadEhaaeqaaOGaaGilaiaaywW7cqaH 7oaBdaWgaaWcbaGaaGynaaqabaGccqGHGjsUcqaH7oaBdaWgaaWcba GaaGOnaaqabaGccaaISaGaeq4UdW2aaSbaaSqaaiaaiwdaaeqaaOGa eyiyIKRaeq4UdW2aaSbaaSqaaiaaiEdaaeqaaOGaaGilaiabeU7aSn aaBaaaleaacaaI2aaabeaakiabgcMi5kabeU7aSnaaBaaaleaacaaI 3aaabeaakiaaiUdaaaa@713D@  (5.13)

Y 1 =( λ 5 x+y) x + λ 5 y y +( λ 8 z+w) z + λ 8 w w , λ 7 λ 8 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaakiaai2dacaaIOaGaeq4UdW2aaSbaaSqaaiaa iwdaaeqaaOGaamiEaiabgUcaRiaadMhacaaIPaGaeyOaIy7aaSbaaS qaaiaadIhaaeqaaOGaey4kaSIaeq4UdW2aaSbaaSqaaiaaiwdaaeqa aOGaamyEaiabgkGi2oaaBaaaleaacaWG5baabeaakiabgUcaRiaaiI cacqaH7oaBdaWgaaWcbaGaaGioaaqabaGccaWG6bGaey4kaSIaam4D aiaaiMcacqGHciITdaWgaaWcbaGaamOEaaqabaGccqGHRaWkcqaH7o aBdaWgaaWcbaGaaGioaaqabaGccaWG3bGaeyOaIy7aaSbaaSqaaiaa dEhaaeqaaOGaaGilaiaaywW7cqaH7oaBdaWgaaWcbaGaaG4naaqaba GccqGHGjsUcqaH7oaBdaWgaaWcbaGaaGioaaqabaGccaaI7aaaaa@64E4@  (5.14)

Y 1 =( λ 9 x+y) x +( λ 9 y+z) y + λ 9 z z + λ 10 w w , λ 9 λ 10 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaakiaai2dacaaIOaGaeq4UdW2aaSbaaSqaaiaa iMdaaeqaaOGaamiEaiabgUcaRiaadMhacaaIPaGaeyOaIy7aaSbaaS qaaiaadIhaaeqaaOGaey4kaSIaaGikaiabeU7aSnaaBaaaleaacaaI 5aaabeaakiaadMhacqGHRaWkcaWG6bGaaGykaiabgkGi2oaaBaaale aacaWG5baabeaakiabgUcaRiabeU7aSnaaBaaaleaacaaI5aaabeaa kiaadQhacqGHciITdaWgaaWcbaGaamOEaaqabaGccqGHRaWkcqaH7o aBdaWgaaWcbaGaaGymaiaaicdaaeqaaOGaam4DaiabgkGi2oaaBaaa leaacaWG3baabeaakiaaiYcacaaMf8Uaeq4UdW2aaSbaaSqaaiaaiM daaeqaaOGaeyiyIKRaeq4UdW2aaSbaaSqaaiaaigdacaaIWaaabeaa kiaaiUdaaaa@6658@  (5.15)

Y 1 =( λ 9 x+y) x +( λ 9 y+z) y +( λ 9 z+w) z + λ 9 w w . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaakiaai2dacaaIOaGaeq4UdW2aaSbaaSqaaiaa iMdaaeqaaOGaamiEaiabgUcaRiaadMhacaaIPaGaeyOaIy7aaSbaaS qaaiaadIhaaeqaaOGaey4kaSIaaGikaiabeU7aSnaaBaaaleaacaaI 5aaabeaakiaadMhacqGHRaWkcaWG6bGaaGykaiabgkGi2oaaBaaale aacaWG5baabeaakiabgUcaRiaaiIcacqaH7oaBdaWgaaWcbaGaaGyo aaqabaGccaWG6bGaey4kaSIaam4DaiaaiMcacqGHciITdaWgaaWcba GaamOEaaqabaGccqGHRaWkcqaH7oaBdaWgaaWcbaGaaGyoaaqabaGc caWG3bGaeyOaIy7aaSbaaSqaaiaadEhaaeqaaOGaaGOlaaaa@5EC5@  (5.16)

Докажем вспомогательные утверждения.

Лемма 1 Пусть ненулевые операторы Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@ , принимающий один из видов (5.12) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ (5.16), и

Y 2 =( b 1 x+ b 2 y+ b 3 z+ b 4 w) x +( b 5 x+ b 6 y+ b 7 z+ b 8 w) y + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIYaaabeaakiaai2dacaaIOaGaamOyamaaBaaaleaacaaI XaaabeaakiaadIhacqGHRaWkcaWGIbWaaSbaaSqaaiaaikdaaeqaaO GaamyEaiabgUcaRiaadkgadaWgaaWcbaGaaG4maaqabaGccaWG6bGa ey4kaSIaamOyamaaBaaaleaacaaI0aaabeaakiaadEhacaaIPaGaey OaIy7aaSbaaSqaaiaadIhaaeqaaOGaey4kaSIaaGikaiaadkgadaWg aaWcbaGaaGynaaqabaGccaWG4bGaey4kaSIaamOyamaaBaaaleaaca aI2aaabeaakiaadMhacqGHRaWkcaWGIbWaaSbaaSqaaiaaiEdaaeqa aOGaamOEaiabgUcaRiaadkgadaWgaaWcbaGaaGioaaqabaGccaWG3b GaaGykaiabgkGi2oaaBaaaleaacaWG5baabeaakiabgUcaRaaa@5E5F@

+( b 9 x+ b 10 y+ b 11 z+ b 12 w) z +( b 13 x+ b 14 y+ b 15 z+ b 16 w) w , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSIaaG ikaiaadkgadaWgaaWcbaGaaGyoaaqabaGccaWG4bGaey4kaSIaamOy amaaBaaaleaacaaIXaGaaGimaaqabaGccaWG5bGaey4kaSIaamOyam aaBaaaleaacaaIXaGaaGymaaqabaGccaWG6bGaey4kaSIaamOyamaa BaaaleaacaaIXaGaaGOmaaqabaGccaWG3bGaaGykaiabgkGi2oaaBa aaleaacaWG6baabeaakiabgUcaRiaaiIcacaWGIbWaaSbaaSqaaiaa igdacaaIZaaabeaakiaadIhacqGHRaWkcaWGIbWaaSbaaSqaaiaaig dacaaI0aaabeaakiaadMhacqGHRaWkcaWGIbWaaSbaaSqaaiaaigda caaI1aaabeaakiaadQhacqGHRaWkcaWGIbWaaSbaaSqaaiaaigdaca aI2aaabeaakiaadEhacaaIPaGaeyOaIy7aaSbaaSqaaiaadEhaaeqa aOGaaGilaaaa@6195@

удовлетворяют коммутационному соотношению [ Y 1 , Y 2 ]=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaadM fadaWgaaWcbaGaaGymaaqabaGccaaISaGaamywamaaBaaaleaacaaI Yaaabeaakiaai2facaaI9aGaaGimaaaa@3D95@ . Тогда, с точностью до линейной замены координат, возможны следующие варианты для этих операторов:

Y 1 = λ 1 x x + λ 2 y y + λ 3 z z + λ 4 w w , Y 2 = b 1 x x + b 2 y y + b 3 z z + b 4 w w , λ 1 λ 2 , λ 1 λ 3 , λ 1 λ 4 , λ 2 λ 3 , λ 2 λ 4 , λ 3 λ 4 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaiaadMfadaWgaaWcbaGaaGymaaqabaGccaaI9aGaeq4UdW2aaSba aSqaaiaaigdaaeqaaOGaamiEaiabgkGi2oaaBaaaleaacaWG4baabe aakiabgUcaRiabeU7aSnaaBaaaleaacaaIYaaabeaakiaadMhacqGH ciITdaWgaaWcbaGaamyEaaqabaGccqGHRaWkcqaH7oaBdaWgaaWcba GaaG4maaqabaGccaWG6bGaeyOaIy7aaSbaaSqaaiaadQhaaeqaaOGa ey4kaSIaeq4UdW2aaSbaaSqaaiaaisdaaeqaaOGaam4DaiabgkGi2o aaBaaaleaacaWG3baabeaakiaaiYcacaaMf8UaamywamaaBaaaleaa caaIYaaabeaakiaai2dacaWGIbWaaSbaaSqaaiaaigdaaeqaaOGaam iEaiabgkGi2oaaBaaaleaacaWG4baabeaakiabgUcaRiaadkgadaWg aaWcbaGaaGOmaaqabaGccaWG5bGaeyOaIy7aaSbaaSqaaiaadMhaae qaaOGaey4kaSIaamOyamaaBaaaleaacaaIZaaabeaakiaadQhacqGH ciITdaWgaaWcbaGaamOEaaqabaGccqGHRaWkcaWGIbWaaSbaaSqaai aaisdaaeqaaOGaam4DaiabgkGi2oaaBaaaleaacaWG3baabeaakiaa iYcaaeaacqaH7oaBdaWgaaWcbaGaaGymaaqabaGccqGHGjsUcqaH7o aBdaWgaaWcbaGaaGOmaaqabaGccaaISaGaeq4UdW2aaSbaaSqaaiaa igdaaeqaaOGaeyiyIKRaeq4UdW2aaSbaaSqaaiaaiodaaeqaaOGaaG ilaiabeU7aSnaaBaaaleaacaaIXaaabeaakiabgcMi5kabeU7aSnaa BaaaleaacaaI0aaabeaakiaaiYcacqaH7oaBdaWgaaWcbaGaaGOmaa qabaGccqGHGjsUcqaH7oaBdaWgaaWcbaGaaG4maaqabaGccaaISaGa eq4UdW2aaSbaaSqaaiaaikdaaeqaaOGaeyiyIKRaeq4UdW2aaSbaaS qaaiaaisdaaeqaaOGaaGilaiabeU7aSnaaBaaaleaacaaIZaaabeaa kiabgcMi5kabeU7aSnaaBaaaleaacaaI0aaabeaakiaaiUdaaaaaaa@A0F6@  (5.17)

Y 1 =( λ 5 x+y) x + λ 5 y y + λ 6 z z + λ 7 w w , Y 2 =( b 1 x+ b 2 y) x + b 1 y y + b 11 z z + b 16 w w , λ 5 λ 6 , λ 5 λ 7 , λ 6 λ 7 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabmqaaa qaaiaadMfadaWgaaWcbaGaaGymaaqabaGccaaI9aGaaGikaiabeU7a SnaaBaaaleaacaaI1aaabeaakiaadIhacqGHRaWkcaWG5bGaaGykai abgkGi2oaaBaaaleaacaWG4baabeaakiabgUcaRiabeU7aSnaaBaaa leaacaaI1aaabeaakiaadMhacqGHciITdaWgaaWcbaGaamyEaaqaba GccqGHRaWkcqaH7oaBdaWgaaWcbaGaaGOnaaqabaGccaWG6bGaeyOa Iy7aaSbaaSqaaiaadQhaaeqaaOGaey4kaSIaeq4UdW2aaSbaaSqaai aaiEdaaeqaaOGaam4DaiabgkGi2oaaBaaaleaacaWG3baabeaakiaa iYcaaeaacaWGzbWaaSbaaSqaaiaaikdaaeqaaOGaaGypaiaaiIcaca WGIbWaaSbaaSqaaiaaigdaaeqaaOGaamiEaiabgUcaRiaadkgadaWg aaWcbaGaaGOmaaqabaGccaWG5bGaaGykaiabgkGi2oaaBaaaleaaca WG4baabeaakiabgUcaRiaadkgadaWgaaWcbaGaaGymaaqabaGccaWG 5bGaeyOaIy7aaSbaaSqaaiaadMhaaeqaaOGaey4kaSIaamOyamaaBa aaleaacaaIXaGaaGymaaqabaGccaWG6bGaeyOaIy7aaSbaaSqaaiaa dQhaaeqaaOGaey4kaSIaamOyamaaBaaaleaacaaIXaGaaGOnaaqaba GccaWG3bGaeyOaIy7aaSbaaSqaaiaadEhaaeqaaOGaaGilaaqaaiab eU7aSnaaBaaaleaacaaI1aaabeaakiabgcMi5kabeU7aSnaaBaaale aacaaI2aaabeaakiaaiYcacqaH7oaBdaWgaaWcbaGaaGynaaqabaGc cqGHGjsUcqaH7oaBdaWgaaWcbaGaaG4naaqabaGccaaISaGaeq4UdW 2aaSbaaSqaaiaaiAdaaeqaaOGaeyiyIKRaeq4UdW2aaSbaaSqaaiaa iEdaaeqaaOGaaG4oaaaaaaa@9206@  (5.18)

Y 1 =( λ 5 x+y) x + λ 5 y y +( λ 8 z+w) z + λ 8 w w , Y 2 =( b 1 x+ b 2 y) x + b 1 y y +( b 11 z+ b 12 w) z + b 11 w w , λ 5 λ 8 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaiaadMfadaWgaaWcbaGaaGymaaqabaGccaaI9aGaaGikaiabeU7a SnaaBaaaleaacaaI1aaabeaakiaadIhacqGHRaWkcaWG5bGaaGykai abgkGi2oaaBaaaleaacaWG4baabeaakiabgUcaRiabeU7aSnaaBaaa leaacaaI1aaabeaakiaadMhacqGHciITdaWgaaWcbaGaamyEaaqaba GccqGHRaWkcaaIOaGaeq4UdW2aaSbaaSqaaiaaiIdaaeqaaOGaamOE aiabgUcaRiaadEhacaaIPaGaeyOaIy7aaSbaaSqaaiaadQhaaeqaaO Gaey4kaSIaeq4UdW2aaSbaaSqaaiaaiIdaaeqaaOGaam4DaiabgkGi 2oaaBaaaleaacaWG3baabeaakiaaiYcaaeaacaWGzbWaaSbaaSqaai aaikdaaeqaaOGaaGypaiaaiIcacaWGIbWaaSbaaSqaaiaaigdaaeqa aOGaamiEaiabgUcaRiaadkgadaWgaaWcbaGaaGOmaaqabaGccaWG5b GaaGykaiabgkGi2oaaBaaaleaacaWG4baabeaakiabgUcaRiaadkga daWgaaWcbaGaaGymaaqabaGccaWG5bGaeyOaIy7aaSbaaSqaaiaadM haaeqaaOGaey4kaSIaaGikaiaadkgadaWgaaWcbaGaaGymaiaaigda aeqaaOGaamOEaiabgUcaRiaadkgadaWgaaWcbaGaaGymaiaaikdaae qaaOGaam4DaiaaiMcacqGHciITdaWgaaWcbaGaamOEaaqabaGccqGH RaWkcaWGIbWaaSbaaSqaaiaaigdacaaIXaaabeaakiaadEhacqGHci ITdaWgaaWcbaGaam4DaaqabaGccaaISaGaaGzbVlabeU7aSnaaBaaa leaacaaI1aaabeaakiabgcMi5kabeU7aSnaaBaaaleaacaaI4aaabe aakiaaiUdaaaaaaa@8D09@  (5.19) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGjbVdaa@3780@

Y 1 =( λ 9 x+y) x +( λ 9 y+z) y + λ 9 z z + λ 10 w w , Y 2 =( b 1 x+ b 2 y+ b 3 z) x +( b 1 y+ b 2 z) y + b 1 z z + b 16 w w , λ 9 λ 10 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaiaadMfadaWgaaWcbaGaaGymaaqabaGccaaI9aGaaGikaiabeU7a SnaaBaaaleaacaaI5aaabeaakiaadIhacqGHRaWkcaWG5bGaaGykai abgkGi2oaaBaaaleaacaWG4baabeaakiabgUcaRiaaiIcacqaH7oaB daWgaaWcbaGaaGyoaaqabaGccaWG5bGaey4kaSIaamOEaiaaiMcacq GHciITdaWgaaWcbaGaamyEaaqabaGccqGHRaWkcqaH7oaBdaWgaaWc baGaaGyoaaqabaGccaWG6bGaeyOaIy7aaSbaaSqaaiaadQhaaeqaaO Gaey4kaSIaeq4UdW2aaSbaaSqaaiaaigdacaaIWaaabeaakiaadEha cqGHciITdaWgaaWcbaGaam4DaaqabaGccaaISaaabaGaamywamaaBa aaleaacaaIYaaabeaakiaai2dacaaIOaGaamOyamaaBaaaleaacaaI XaaabeaakiaadIhacqGHRaWkcaWGIbWaaSbaaSqaaiaaikdaaeqaaO GaamyEaiabgUcaRiaadkgadaWgaaWcbaGaaG4maaqabaGccaWG6bGa aGykaiabgkGi2oaaBaaaleaacaWG4baabeaakiabgUcaRiaaiIcaca WGIbWaaSbaaSqaaiaaigdaaeqaaOGaamyEaiabgUcaRiaadkgadaWg aaWcbaGaaGOmaaqabaGccaWG6bGaaGykaiabgkGi2oaaBaaaleaaca WG5baabeaakiabgUcaRiaadkgadaWgaaWcbaGaaGymaaqabaGccaWG 6bGaeyOaIy7aaSbaaSqaaiaadQhaaeqaaOGaey4kaSIaamOyamaaBa aaleaacaaIXaGaaGOnaaqabaGccaWG3bGaeyOaIy7aaSbaaSqaaiaa dEhaaeqaaOGaaGilaiaaywW7cqaH7oaBdaWgaaWcbaGaaGyoaaqaba GccqGHGjsUcqaH7oaBdaWgaaWcbaGaaGymaiaaicdaaeqaaOGaaG4o aaaaaaa@90CC@  (5.20)

Y 1 =( λ 9 x+y) x +( λ 9 y+z) y +( λ 9 z+w) z + λ 9 w w , Y 2 =( b 1 x+ b 2 y+ b 3 z+ b 4 w) x +( b 1 y+ b 2 z+ b 3 w) y +( b 1 z+ b 2 w) z + b 1 w w . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaiaadMfadaWgaaWcbaGaaGymaaqabaGccaaI9aGaaGikaiabeU7a SnaaBaaaleaacaaI5aaabeaakiaadIhacqGHRaWkcaWG5bGaaGykai abgkGi2oaaBaaaleaacaWG4baabeaakiabgUcaRiaaiIcacqaH7oaB daWgaaWcbaGaaGyoaaqabaGccaWG5bGaey4kaSIaamOEaiaaiMcacq GHciITdaWgaaWcbaGaamyEaaqabaGccqGHRaWkcaaIOaGaeq4UdW2a aSbaaSqaaiaaiMdaaeqaaOGaamOEaiabgUcaRiaadEhacaaIPaGaey OaIy7aaSbaaSqaaiaadQhaaeqaaOGaey4kaSIaeq4UdW2aaSbaaSqa aiaaiMdaaeqaaOGaam4DaiabgkGi2oaaBaaaleaacaWG3baabeaaki aaiYcaaeaacaWGzbWaaSbaaSqaaiaaikdaaeqaaOGaaGypaiaaiIca caWGIbWaaSbaaSqaaiaaigdaaeqaaOGaamiEaiabgUcaRiaadkgada WgaaWcbaGaaGOmaaqabaGccaWG5bGaey4kaSIaamOyamaaBaaaleaa caaIZaaabeaakiaadQhacqGHRaWkcaWGIbWaaSbaaSqaaiaaisdaae qaaOGaam4DaiaaiMcacqGHciITdaWgaaWcbaGaamiEaaqabaGccqGH RaWkcaaIOaGaamOyamaaBaaaleaacaaIXaaabeaakiaadMhacqGHRa WkcaWGIbWaaSbaaSqaaiaaikdaaeqaaOGaamOEaiabgUcaRiaadkga daWgaaWcbaGaaG4maaqabaGccaWG3bGaaGykaiabgkGi2oaaBaaale aacaWG5baabeaakiabgUcaRiaaiIcacaWGIbWaaSbaaSqaaiaaigda aeqaaOGaamOEaiabgUcaRiaadkgadaWgaaWcbaGaaGOmaaqabaGcca WG3bGaaGykaiabgkGi2oaaBaaaleaacaWG6baabeaakiabgUcaRiaa dkgadaWgaaWcbaGaaGymaaqabaGccaWG3bGaeyOaIy7aaSbaaSqaai aadEhaaeqaaOGaaGOlaaaaaaa@9506@  (5.21)

Доказательство. Вычислим коммутатор [ Y 1 , Y 2 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaadM fadaWgaaWcbaGaaGymaaqabaGccaaISaGaamywamaaBaaaleaacaaI Yaaabeaakiaai2faaaa@3C14@  при помощи формулы (4.2) и приравняем его к нулю. Подробно рассмотрим случай, когда оператор Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@  принимает вид (5.12). Используем матричные обозначения:

Y 1 = λ 1 0 0 0 0 λ 2 0 0 0 0 λ 3 0 0 0 0 λ 4 x y z w , x y z w , Y 2 = b 1 b 2 b 3 b 4 b 5 b 6 b 7 b 8 b 9 b 10 b 11 b 12 b 13 b 14 b 15 b 16 x y z w , x y z w , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaakiaai2dadaaadaqaamaabmaabaqbaeqabqab aaaaaeaacqaH7oaBdaWgaaWcbaGaaGymaaqabaaakeaacaaIWaaaba GaaGimaaqaaiaaicdaaeaacaaIWaaabaGaeq4UdW2aaSbaaSqaaiaa ikdaaeqaaaGcbaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaa qaaiabeU7aSnaaBaaaleaacaaIZaaabeaaaOqaaiaaicdaaeaacaaI WaaabaGaaGimaaqaaiaaicdaaeaacqaH7oaBdaWgaaWcbaGaaGinaa qabaaaaaGccaGLOaGaayzkaaWaaeWaaeaafaqabeabbaaaaeaacaWG 4baabaGaamyEaaqaaiaadQhaaeaacaWG3baaaaGaayjkaiaawMcaai aaiYcadaqadaqaauaabeqaeeaaaaqaaiabgkGi2oaaBaaaleaacaWG 4baabeaaaOqaaiabgkGi2oaaBaaaleaacaWG5baabeaaaOqaaiabgk Gi2oaaBaaaleaacaWG6baabeaaaOqaaiabgkGi2oaaBaaaleaacaWG 3baabeaaaaaakiaawIcacaGLPaaaaiaawMYicaGLQmcacaaISaGaaG zbVlaadMfadaWgaaWcbaGaaGOmaaqabaGccaaI9aWaaaWaaeaadaqa daqaauaabeqaeqaaaaaabaGaamOyamaaBaaaleaacaaIXaaabeaaaO qaaiaadkgadaWgaaWcbaGaaGOmaaqabaaakeaacaWGIbWaaSbaaSqa aiaaiodaaeqaaaGcbaGaamOyamaaBaaaleaacaaI0aaabeaaaOqaai aadkgadaWgaaWcbaGaaGynaaqabaaakeaacaWGIbWaaSbaaSqaaiaa iAdaaeqaaaGcbaGaamOyamaaBaaaleaacaaI3aaabeaaaOqaaiaadk gadaWgaaWcbaGaaGioaaqabaaakeaacaWGIbWaaSbaaSqaaiaaiMda aeqaaaGcbaGaamOyamaaBaaaleaacaaIXaGaaGimaaqabaaakeaaca WGIbWaaSbaaSqaaiaaigdacaaIXaaabeaaaOqaaiaadkgadaWgaaWc baGaaGymaiaaikdaaeqaaaGcbaGaamOyamaaBaaaleaacaaIXaGaaG 4maaqabaaakeaacaWGIbWaaSbaaSqaaiaaigdacaaI0aaabeaaaOqa aiaadkgadaWgaaWcbaGaaGymaiaaiwdaaeqaaaGcbaGaamOyamaaBa aaleaacaaIXaGaaGOnaaqabaaaaaGccaGLOaGaayzkaaWaaeWaaeaa faqabeabbaaaaeaacaWG4baabaGaamyEaaqaaiaadQhaaeaacaWG3b aaaaGaayjkaiaawMcaaiaaiYcadaqadaqaauaabeqaeeaaaaqaaiab gkGi2oaaBaaaleaacaWG4baabeaaaOqaaiabgkGi2oaaBaaaleaaca WG5baabeaaaOqaaiabgkGi2oaaBaaaleaacaWG6baabeaaaOqaaiab gkGi2oaaBaaaleaacaWG3baabeaaaaaakiaawIcacaGLPaaaaiaawM YicaGLQmcacaaISaaaaa@9FB9@

[ Y 1 , Y 2 ]= 0 ( λ 1 λ 2 ) b 2 ( λ 1 λ 3 ) b 3 ( λ 1 λ 4 ) b 4 ( λ 2 λ 1 ) b 5 0 ( λ 2 λ 3 ) b 7 ( λ 2 λ 4 ) b 8 ( λ 3 λ 1 ) b 9 ( λ 3 λ 2 ) b 10 0 ( λ 3 λ 4 ) b 12 ( λ 2 λ 1 ) b 13 ( λ 4 λ 2 ) b 14 ( λ 4 λ 3 ) b 15 0 x y z w , x y z w =0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaadM fadaWgaaWcbaGaaGymaaqabaGccaaISaGaamywamaaBaaaleaacaaI Yaaabeaakiaai2facaaI9aGaeyOeI0YaaaWaaeaadaqadaqaauaabe qaeqaaaaaabaGaaGimaaqaaiaaiIcacqaH7oaBdaWgaaWcbaGaaGym aaqabaGccqGHsislcqaH7oaBdaWgaaWcbaGaaGOmaaqabaGccaaIPa GaamOyamaaBaaaleaacaaIYaaabeaaaOqaaiaaiIcacqaH7oaBdaWg aaWcbaGaaGymaaqabaGccqGHsislcqaH7oaBdaWgaaWcbaGaaG4maa qabaGccaaIPaGaamOyamaaBaaaleaacaaIZaaabeaaaOqaaiaaiIca cqaH7oaBdaWgaaWcbaGaaGymaaqabaGccqGHsislcqaH7oaBdaWgaa WcbaGaaGinaaqabaGccaaIPaGaamOyamaaBaaaleaacaaI0aaabeaa aOqaaiaaiIcacqaH7oaBdaWgaaWcbaGaaGOmaaqabaGccqGHsislcq aH7oaBdaWgaaWcbaGaaGymaaqabaGccaaIPaGaamOyamaaBaaaleaa caaI1aaabeaaaOqaaiaaicdaaeaacaaIOaGaeq4UdW2aaSbaaSqaai aaikdaaeqaaOGaeyOeI0Iaeq4UdW2aaSbaaSqaaiaaiodaaeqaaOGa aGykaiaadkgadaWgaaWcbaGaaG4naaqabaaakeaacaaIOaGaeq4UdW 2aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0Iaeq4UdW2aaSbaaSqaaiaa isdaaeqaaOGaaGykaiaadkgadaWgaaWcbaGaaGioaaqabaaakeaaca aIOaGaeq4UdW2aaSbaaSqaaiaaiodaaeqaaOGaeyOeI0Iaeq4UdW2a aSbaaSqaaiaaigdaaeqaaOGaaGykaiaadkgadaWgaaWcbaGaaGyoaa qabaaakeaacaaIOaGaeq4UdW2aaSbaaSqaaiaaiodaaeqaaOGaeyOe I0Iaeq4UdW2aaSbaaSqaaiaaikdaaeqaaOGaaGykaiaadkgadaWgaa WcbaGaaGymaiaaicdaaeqaaaGcbaGaaGimaaqaaiaaiIcacqaH7oaB daWgaaWcbaGaaG4maaqabaGccqGHsislcqaH7oaBdaWgaaWcbaGaaG inaaqabaGccaaIPaGaamOyamaaBaaaleaacaaIXaGaaGOmaaqabaaa keaacaaIOaGaeq4UdW2aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0Iaeq 4UdW2aaSbaaSqaaiaaigdaaeqaaOGaaGykaiaadkgadaWgaaWcbaGa aGymaiaaiodaaeqaaaGcbaGaaGikaiabeU7aSnaaBaaaleaacaaI0a aabeaakiabgkHiTiabeU7aSnaaBaaaleaacaaIYaaabeaakiaaiMca caWGIbWaaSbaaSqaaiaaigdacaaI0aaabeaaaOqaaiaaiIcacqaH7o aBdaWgaaWcbaGaaGinaaqabaGccqGHsislcqaH7oaBdaWgaaWcbaGa aG4maaqabaGccaaIPaGaamOyamaaBaaaleaacaaIXaGaaGynaaqaba aakeaacaaIWaaaaaGaayjkaiaawMcaamaabmaabaqbaeqabqqaaaaa baGaamiEaaqaaiaadMhaaeaacaWG6baabaGaam4DaaaaaiaawIcaca GLPaaacaaISaWaaeWaaeaafaqabeabbaaaaeaacqGHciITdaWgaaWc baGaamiEaaqabaaakeaacqGHciITdaWgaaWcbaGaamyEaaqabaaake aacqGHciITdaWgaaWcbaGaamOEaaqabaaakeaacqGHciITdaWgaaWc baGaam4DaaqabaaaaaGccaGLOaGaayzkaaaacaGLPmIaayPkJaGaaG ypaiaaicdacaaIUaaaaa@CE09@

Поскольку элементы λ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWgaaa@37A7@  попарно различны, имеем систему (5.17). Доказательство для (5.18) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@  (5.21) аналогично.

Лемма 2 Пусть ненулевые операторы Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@ , принимающий один из видов (5.12) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ (5.16), и

Y 2 =( b 1 x+ b 2 y+ b 3 z+ b 4 w) x +( b 5 x+ b 6 y+ b 7 z+ b 8 w) y + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIYaaabeaakiaai2dacaaIOaGaamOyamaaBaaaleaacaaI XaaabeaakiaadIhacqGHRaWkcaWGIbWaaSbaaSqaaiaaikdaaeqaaO GaamyEaiabgUcaRiaadkgadaWgaaWcbaGaaG4maaqabaGccaWG6bGa ey4kaSIaamOyamaaBaaaleaacaaI0aaabeaakiaadEhacaaIPaGaey OaIy7aaSbaaSqaaiaadIhaaeqaaOGaey4kaSIaaGikaiaadkgadaWg aaWcbaGaaGynaaqabaGccaWG4bGaey4kaSIaamOyamaaBaaaleaaca aI2aaabeaakiaadMhacqGHRaWkcaWGIbWaaSbaaSqaaiaaiEdaaeqa aOGaamOEaiabgUcaRiaadkgadaWgaaWcbaGaaGioaaqabaGccaWG3b GaaGykaiabgkGi2oaaBaaaleaacaWG5baabeaakiabgUcaRaaa@5E5F@

+( b 9 x+ b 10 y+ b 11 z+ b 12 w) z +( b 13 x+ b 14 y+ b 15 z+ b 16 w) w , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSIaaG ikaiaadkgadaWgaaWcbaGaaGyoaaqabaGccaWG4bGaey4kaSIaamOy amaaBaaaleaacaaIXaGaaGimaaqabaGccaWG5bGaey4kaSIaamOyam aaBaaaleaacaaIXaGaaGymaaqabaGccaWG6bGaey4kaSIaamOyamaa BaaaleaacaaIXaGaaGOmaaqabaGccaWG3bGaaGykaiabgkGi2oaaBa aaleaacaWG6baabeaakiabgUcaRiaaiIcacaWGIbWaaSbaaSqaaiaa igdacaaIZaaabeaakiaadIhacqGHRaWkcaWGIbWaaSbaaSqaaiaaig dacaaI0aaabeaakiaadMhacqGHRaWkcaWGIbWaaSbaaSqaaiaaigda caaI1aaabeaakiaadQhacqGHRaWkcaWGIbWaaSbaaSqaaiaaigdaca aI2aaabeaakiaadEhacaaIPaGaeyOaIy7aaSbaaSqaaiaadEhaaeqa aOGaaGilaaaa@6195@

удовлетворяют коммутационному соотношению [ Y 1 , Y 2 ]= Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaadM fadaWgaaWcbaGaaGymaaqabaGccaaISaGaamywamaaBaaaleaacaaI Yaaabeaakiaai2facaaI9aGaamywamaaBaaaleaacaaIXaaabeaaaa a@3EA0@ . Тогда, с точностью до линейной замены координат, возможен единственный варианты для этих операторов:

Y 1 =y x +z y +w z , Y 2 =( b 1 x+ b 2 y+ b 3 z+ b 4 w) x +( b 1 yy+ b 2 z+ b 3 w) y + +( b 1 z2z+ b 2 w) z +( b 1 w3w) w . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaa qaaaqaaiaadMfadaWgaaWcbaGaaGymaaqabaGccaaI9aGaamyEaiab gkGi2oaaBaaaleaacaWG4baabeaakiabgUcaRiaadQhacqGHciITda WgaaWcbaGaamyEaaqabaGccqGHRaWkcaWG3bGaeyOaIy7aaSbaaSqa aiaadQhaaeqaaOGaaGilaaqaaaqaaiaadMfadaWgaaWcbaGaaGOmaa qabaGccaaI9aGaaGikaiaadkgadaWgaaWcbaGaaGymaaqabaGccaWG 4bGaey4kaSIaamOyamaaBaaaleaacaaIYaaabeaakiaadMhacqGHRa WkcaWGIbWaaSbaaSqaaiaaiodaaeqaaOGaamOEaiabgUcaRiaadkga daWgaaWcbaGaaGinaaqabaGccaWG3bGaaGykaiabgkGi2oaaBaaale aacaWG4baabeaakiabgUcaRiaaiIcacaWGIbWaaSbaaSqaaiaaigda aeqaaOGaamyEaiabgkHiTiaadMhacqGHRaWkcaWGIbWaaSbaaSqaai aaikdaaeqaaOGaamOEaiabgUcaRiaadkgadaWgaaWcbaGaaG4maaqa baGccaWG3bGaaGykaiabgkGi2oaaBaaaleaacaWG5baabeaakiabgU caRaqaaaqaaiaaywW7caaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlab gUcaRiaaiIcacaWGIbWaaSbaaSqaaiaaigdaaeqaaOGaamOEaiabgk HiTiaaikdacaWG6bGaey4kaSIaamOyamaaBaaaleaacaaIYaaabeaa kiaadEhacaaIPaGaeyOaIy7aaSbaaSqaaiaadQhaaeqaaOGaey4kaS IaaGikaiaadkgadaWgaaWcbaGaaGymaaqabaGccaWG3bGaeyOeI0Ia aG4maiaadEhacaaIPaGaeyOaIy7aaSbaaSqaaiaadEhaaeqaaOGaaG Olaaaaaaa@8EE6@  (5.22)

Доказательство. Вычислим коммутатор [ Y 1 , Y 2 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaadM fadaWgaaWcbaGaaGymaaqabaGccaaISaGaamywamaaBaaaleaacaaI Yaaabeaakiaai2faaaa@3C14@  и приравняем его к нулю. При вычислении этого коммутатора используем формулу (0.4.2),

Y 2 = b 1 b 2 b 3 b 4 b 5 b 6 b 7 b 8 b 9 b 10 b 11 b 12 b 13 b 14 b 15 b 16 x y z w , x y z w . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIYaaabeaakiaai2dadaaadaqaamaabmaabaqbaeqabqab aaaaaeaacaWGIbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaamOyamaaBa aaleaacaaIYaaabeaaaOqaaiaadkgadaWgaaWcbaGaaG4maaqabaaa keaacaWGIbWaaSbaaSqaaiaaisdaaeqaaaGcbaGaamOyamaaBaaale aacaaI1aaabeaaaOqaaiaadkgadaWgaaWcbaGaaGOnaaqabaaakeaa caWGIbWaaSbaaSqaaiaaiEdaaeqaaaGcbaGaamOyamaaBaaaleaaca aI4aaabeaaaOqaaiaadkgadaWgaaWcbaGaaGyoaaqabaaakeaacaWG IbWaaSbaaSqaaiaaigdacaaIWaaabeaaaOqaaiaadkgadaWgaaWcba GaaGymaiaaigdaaeqaaaGcbaGaamOyamaaBaaaleaacaaIXaGaaGOm aaqabaaakeaacaWGIbWaaSbaaSqaaiaaigdacaaIZaaabeaaaOqaai aadkgadaWgaaWcbaGaaGymaiaaisdaaeqaaaGcbaGaamOyamaaBaaa leaacaaIXaGaaGynaaqabaaakeaacaWGIbWaaSbaaSqaaiaaigdaca aI2aaabeaaaaaakiaawIcacaGLPaaadaqadaqaauaabeqaeeaaaaqa aiaadIhaaeaacaWG5baabaGaamOEaaqaaiaadEhaaaaacaGLOaGaay zkaaGaaGilamaabmaabaqbaeqabqqaaaaabaGaeyOaIy7aaSbaaSqa aiaadIhaaeqaaaGcbaGaeyOaIy7aaSbaaSqaaiaadMhaaeqaaaGcba GaeyOaIy7aaSbaaSqaaiaadQhaaeqaaaGcbaGaeyOaIy7aaSbaaSqa aiaadEhaaeqaaaaaaOGaayjkaiaawMcaaaGaayzkJiaawQYiaiaai6 caaaa@71D0@

Подробно рассмотрим случай, когда оператор Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@  принимает вид (5.12). Используем матричные обозначения:

Y 1 = λ 1 0 0 0 0 λ 2 0 0 0 0 λ 3 0 0 0 0 λ 4 x y z w , x y z w , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaakiaai2dadaaadaqaamaabmaabaqbaeqabqab aaaaaeaacqaH7oaBdaWgaaWcbaGaaGymaaqabaaakeaacaaIWaaaba GaaGimaaqaaiaaicdaaeaacaaIWaaabaGaeq4UdW2aaSbaaSqaaiaa ikdaaeqaaaGcbaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaa qaaiabeU7aSnaaBaaaleaacaaIZaaabeaaaOqaaiaaicdaaeaacaaI WaaabaGaaGimaaqaaiaaicdaaeaacqaH7oaBdaWgaaWcbaGaaGinaa qabaaaaaGccaGLOaGaayzkaaWaaeWaaeaafaqabeabbaaaaeaacaWG 4baabaGaamyEaaqaaiaadQhaaeaacaWG3baaaaGaayjkaiaawMcaai aaiYcadaqadaqaauaabeqaeeaaaaqaaiabgkGi2oaaBaaaleaacaWG 4baabeaaaOqaaiabgkGi2oaaBaaaleaacaWG5baabeaaaOqaaiabgk Gi2oaaBaaaleaacaWG6baabeaaaOqaaiabgkGi2oaaBaaaleaacaWG 3baabeaaaaaakiaawIcacaGLPaaaaiaawMYicaGLQmcacaaISaaaaa@6250@

= 0 ( λ 1 λ 2 ) b 2 ( λ 1 λ 3 ) b 3 ( λ 1 λ 4 ) b 4 ( λ 2 λ 1 ) b 5 0 ( λ 2 λ 3 ) b 7 ( λ 2 λ 4 ) b 8 ( λ 3 λ 1 ) b 9 ( λ 3 λ 2 ) b 10 0 ( λ 3 λ 4 ) b 12 ( λ 2 λ 1 ) b 13 ( λ 4 λ 2 ) b 14 ( λ 4 λ 3 ) b 15 0 x y z w , x y z w = Y 1 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiabgk HiTmaaamaabaWaaeWaaeaafaqabeabeaaaaaqaaiaaicdaaeaacaaI OaGaeq4UdW2aaSbaaSqaaiaaigdaaeqaaOGaeyOeI0Iaeq4UdW2aaS baaSqaaiaaikdaaeqaaOGaaGykaiaadkgadaWgaaWcbaGaaGOmaaqa baaakeaacaaIOaGaeq4UdW2aaSbaaSqaaiaaigdaaeqaaOGaeyOeI0 Iaeq4UdW2aaSbaaSqaaiaaiodaaeqaaOGaaGykaiaadkgadaWgaaWc baGaaG4maaqabaaakeaacaaIOaGaeq4UdW2aaSbaaSqaaiaaigdaae qaaOGaeyOeI0Iaeq4UdW2aaSbaaSqaaiaaisdaaeqaaOGaaGykaiaa dkgadaWgaaWcbaGaaGinaaqabaaakeaacaaIOaGaeq4UdW2aaSbaaS qaaiaaikdaaeqaaOGaeyOeI0Iaeq4UdW2aaSbaaSqaaiaaigdaaeqa aOGaaGykaiaadkgadaWgaaWcbaGaaGynaaqabaaakeaacaaIWaaaba GaaGikaiabeU7aSnaaBaaaleaacaaIYaaabeaakiabgkHiTiabeU7a SnaaBaaaleaacaaIZaaabeaakiaaiMcacaWGIbWaaSbaaSqaaiaaiE daaeqaaaGcbaGaaGikaiabeU7aSnaaBaaaleaacaaIYaaabeaakiab gkHiTiabeU7aSnaaBaaaleaacaaI0aaabeaakiaaiMcacaWGIbWaaS baaSqaaiaaiIdaaeqaaaGcbaGaaGikaiabeU7aSnaaBaaaleaacaaI ZaaabeaakiabgkHiTiabeU7aSnaaBaaaleaacaaIXaaabeaakiaaiM cacaWGIbWaaSbaaSqaaiaaiMdaaeqaaaGcbaGaaGikaiabeU7aSnaa BaaaleaacaaIZaaabeaakiabgkHiTiabeU7aSnaaBaaaleaacaaIYa aabeaakiaaiMcacaWGIbWaaSbaaSqaaiaaigdacaaIWaaabeaaaOqa aiaaicdaaeaacaaIOaGaeq4UdW2aaSbaaSqaaiaaiodaaeqaaOGaey OeI0Iaeq4UdW2aaSbaaSqaaiaaisdaaeqaaOGaaGykaiaadkgadaWg aaWcbaGaaGymaiaaikdaaeqaaaGcbaGaaGikaiabeU7aSnaaBaaale aacaaIYaaabeaakiabgkHiTiabeU7aSnaaBaaaleaacaaIXaaabeaa kiaaiMcacaWGIbWaaSbaaSqaaiaaigdacaaIZaaabeaaaOqaaiaaiI cacqaH7oaBdaWgaaWcbaGaaGinaaqabaGccqGHsislcqaH7oaBdaWg aaWcbaGaaGOmaaqabaGccaaIPaGaamOyamaaBaaaleaacaaIXaGaaG inaaqabaaakeaacaaIOaGaeq4UdW2aaSbaaSqaaiaaisdaaeqaaOGa eyOeI0Iaeq4UdW2aaSbaaSqaaiaaiodaaeqaaOGaaGykaiaadkgada WgaaWcbaGaaGymaiaaiwdaaeqaaaGcbaGaaGimaaaaaiaawIcacaGL PaaadaqadaqaauaabeqaeeaaaaqaaiaadIhaaeaacaWG5baabaGaam OEaaqaaiaadEhaaaaacaGLOaGaayzkaaGaaGilamaabmaabaqbaeqa bqqaaaaabaGaeyOaIy7aaSbaaSqaaiaadIhaaeqaaaGcbaGaeyOaIy 7aaSbaaSqaaiaadMhaaeqaaaGcbaGaeyOaIy7aaSbaaSqaaiaadQha aeqaaaGcbaGaeyOaIy7aaSbaaSqaaiaadEhaaeqaaaaaaOGaayjkai aawMcaaaGaayzkJiaawQYiaiaai2dacaWGzbWaaSbaaSqaaiaaigda aeqaaOGaaGOlaaaa@C8FD@

Тогда Y 1 =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaakiaai2dacaaIWaaaaa@3943@ , что недопустимо.

Пусть оператор Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@  принимает вид (5.13); тогда

Y 1 = λ 1 1 0 0 0 λ 1 0 0 0 0 λ 3 0 0 0 0 λ 4 x y z w , x y z w ,[ Y 1 , Y 2 ]= V x y z w , x y z w = Y 1 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaakiaai2dadaaadaqaamaabmaabaqbaeqabqab aaaaaeaacqaH7oaBdaWgaaWcbaGaaGymaaqabaaakeaacaaIXaaaba GaaGimaaqaaiaaicdaaeaacaaIWaaabaGaeq4UdW2aaSbaaSqaaiaa igdaaeqaaaGcbaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaa qaaiabeU7aSnaaBaaaleaacaaIZaaabeaaaOqaaiaaicdaaeaacaaI WaaabaGaaGimaaqaaiaaicdaaeaacqaH7oaBdaWgaaWcbaGaaGinaa qabaaaaaGccaGLOaGaayzkaaWaaeWaaeaafaqabeabbaaaaeaacaWG 4baabaGaamyEaaqaaiaadQhaaeaacaWG3baaaaGaayjkaiaawMcaai aaiYcadaqadaqaauaabeqaeeaaaaqaaiabgkGi2oaaBaaaleaacaWG 4baabeaaaOqaaiabgkGi2oaaBaaaleaacaWG5baabeaaaOqaaiabgk Gi2oaaBaaaleaacaWG6baabeaaaOqaaiabgkGi2oaaBaaaleaacaWG 3baabeaaaaaakiaawIcacaGLPaaaaiaawMYicaGLQmcacaaISaGaaG zbVlaaiUfacaWGzbWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaadMfa daWgaaWcbaGaaGOmaaqabaGccaaIDbGaaGypamaaamaabaGaamOvam aabmaabaqbaeqabqqaaaaabaGaamiEaaqaaiaadMhaaeaacaWG6baa baGaam4DaaaaaiaawIcacaGLPaaacaaISaWaaeWaaeaafaqabeabba aaaeaacqGHciITdaWgaaWcbaGaamiEaaqabaaakeaacqGHciITdaWg aaWcbaGaamyEaaqabaaakeaacqGHciITdaWgaaWcbaGaamOEaaqaba aakeaacqGHciITdaWgaaWcbaGaam4DaaqabaaaaaGccaGLOaGaayzk aaaacaGLPmIaayPkJaGaaGypaiaadMfadaWgaaWcbaGaaGymaaqaba GccaaIUaaaaa@8305@

где

V= b 5 b 1 b 6 ( λ 3 λ 1 ) b 3 b 7 ( λ 4 λ 1 ) b 4 b 8 0 b 5 ( λ 3 λ 1 ) b 7 ( λ 4 λ 1 ) b 8 ( λ 1 λ 3 ) b 9 ( λ 1 λ 3 ) b 10 + b 9 0 ( λ 4 λ 3 ) b 12 ( λ 1 λ 4 ) b 13 ( λ 1 λ 4 ) b 14 + b 13 ( λ 3 λ 4 ) b 15 0 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvaiaai2 dadaqadaqaauaabeqaeqaaaaaabaGaeyOeI0IaamOyamaaBaaaleaa caaI1aaabeaaaOqaaiaadkgadaWgaaWcbaGaaGymaaqabaGccqGHsi slcaWGIbWaaSbaaSqaaiaaiAdaaeqaaaGcbaGaaGikaiabeU7aSnaa BaaaleaacaaIZaaabeaakiabgkHiTiabeU7aSnaaBaaaleaacaaIXa aabeaakiaaiMcacaWGIbWaaSbaaSqaaiaaiodaaeqaaOGaeyOeI0Ia amOyamaaBaaaleaacaaI3aaabeaaaOqaaiaaiIcacqaH7oaBdaWgaa WcbaGaaGinaaqabaGccqGHsislcqaH7oaBdaWgaaWcbaGaaGymaaqa baGccaaIPaGaamOyamaaBaaaleaacaaI0aaabeaakiabgkHiTiaadk gadaWgaaWcbaGaaGioaaqabaaakeaacaaIWaaabaGaamOyamaaBaaa leaacaaI1aaabeaaaOqaaiaaiIcacqaH7oaBdaWgaaWcbaGaaG4maa qabaGccqGHsislcqaH7oaBdaWgaaWcbaGaaGymaaqabaGccaaIPaGa amOyamaaBaaaleaacaaI3aaabeaaaOqaaiaaiIcacqaH7oaBdaWgaa WcbaGaaGinaaqabaGccqGHsislcqaH7oaBdaWgaaWcbaGaaGymaaqa baGccaaIPaGaamOyamaaBaaaleaacaaI4aaabeaaaOqaaiaaiIcacq aH7oaBdaWgaaWcbaGaaGymaaqabaGccqGHsislcqaH7oaBdaWgaaWc baGaaG4maaqabaGccaaIPaGaamOyamaaBaaaleaacaaI5aaabeaaaO qaaiaaiIcacqaH7oaBdaWgaaWcbaGaaGymaaqabaGccqGHsislcqaH 7oaBdaWgaaWcbaGaaG4maaqabaGccaaIPaGaamOyamaaBaaaleaaca aIXaGaaGimaaqabaGccqGHRaWkcaWGIbWaaSbaaSqaaiaaiMdaaeqa aaGcbaGaaGimaaqaaiaaiIcacqaH7oaBdaWgaaWcbaGaaGinaaqaba GccqGHsislcqaH7oaBdaWgaaWcbaGaaG4maaqabaGccaaIPaGaamOy amaaBaaaleaacaaIXaGaaGOmaaqabaaakeaacaaIOaGaeq4UdW2aaS baaSqaaiaaigdaaeqaaOGaeyOeI0Iaeq4UdW2aaSbaaSqaaiaaisda aeqaaOGaaGykaiaadkgadaWgaaWcbaGaaGymaiaaiodaaeqaaaGcba GaaGikaiabeU7aSnaaBaaaleaacaaIXaaabeaakiabgkHiTiabeU7a SnaaBaaaleaacaaI0aaabeaakiaaiMcacaWGIbWaaSbaaSqaaiaaig dacaaI0aaabeaakiabgUcaRiaadkgadaWgaaWcbaGaaGymaiaaioda aeqaaaGcbaGaaGikaiabeU7aSnaaBaaaleaacaaIZaaabeaakiabgk HiTiabeU7aSnaaBaaaleaacaaI0aaabeaakiaaiMcacaWGIbWaaSba aSqaaiaaigdacaaI1aaabeaaaOqaaiaaicdaaaaacaGLOaGaayzkaa GaaGOlaaaa@B3AB@

Тогда λ 6 = λ 7 =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaaiAdaaeqaaOGaaGypaiabeU7aSnaaBaaaleaacaaI3aaa beaakiaai2dacaaIWaaaaa@3D90@ , что недопустимо.

Если оператор Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@  имеет вид (5.14), то

Y 1 = λ 5 1 0 0 0 λ 5 0 0 0 0 λ 8 1 0 0 0 λ 8 x y z w , x y z w ,[ Y 1 , Y 2 ]= V x y z w , x y z w = Y 1 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaakiaai2dadaaadaqaamaabmaabaqbaeqabqab aaaaaeaacqaH7oaBdaWgaaWcbaGaaGynaaqabaaakeaacaaIXaaaba GaaGimaaqaaiaaicdaaeaacaaIWaaabaGaeq4UdW2aaSbaaSqaaiaa iwdaaeqaaaGcbaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaa qaaiabeU7aSnaaBaaaleaacaaI4aaabeaaaOqaaiaaigdaaeaacaaI WaaabaGaaGimaaqaaiaaicdaaeaacqaH7oaBdaWgaaWcbaGaaGioaa qabaaaaaGccaGLOaGaayzkaaWaaeWaaeaafaqabeabbaaaaeaacaWG 4baabaGaamyEaaqaaiaadQhaaeaacaWG3baaaaGaayjkaiaawMcaai aaiYcadaqadaqaauaabeqaeeaaaaqaaiabgkGi2oaaBaaaleaacaWG 4baabeaaaOqaaiabgkGi2oaaBaaaleaacaWG5baabeaaaOqaaiabgk Gi2oaaBaaaleaacaWG6baabeaaaOqaaiabgkGi2oaaBaaaleaacaWG 3baabeaaaaaakiaawIcacaGLPaaaaiaawMYicaGLQmcacaaISaGaaG zbVlaaiUfacaWGzbWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaadMfa daWgaaWcbaGaaGOmaaqabaGccaaIDbGaaGypaiabgkHiTmaaamaaba GaamOvamaabmaabaqbaeqabqqaaaaabaGaamiEaaqaaiaadMhaaeaa caWG6baabaGaam4DaaaaaiaawIcacaGLPaaacaaISaWaaeWaaeaafa qabeabbaaaaeaacqGHciITdaWgaaWcbaGaamiEaaqabaaakeaacqGH ciITdaWgaaWcbaGaamyEaaqabaaakeaacqGHciITdaWgaaWcbaGaam OEaaqabaaakeaacqGHciITdaWgaaWcbaGaam4DaaqabaaaaaGccaGL OaGaayzkaaaacaGLPmIaayPkJaGaaGypaiaadMfadaWgaaWcbaGaaG ymaaqabaGccaaISaaaaa@8402@

где

V= b 5 b 1 + b 6 ( λ 5 λ 8 ) b 3 + b 7 b 3 +( λ 5 λ 8 ) b 4 + b 8 0 b 5 ( λ 5 λ 8 ) b 7 b 7 +( λ 5 λ 8 ) b 8 b 13 +( λ 8 λ 5 ) b 9 ( λ 8 λ 5 ) b 10 + b 14 b 9 b 15 b 11 + b 16 ( λ 8 λ 5 ) b 13 b 13 +( λ 8 λ 5 ) b 14 0 b 15 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvaiaai2 dadaqadaqaauaabeqaeqaaaaaabaGaamOyamaaBaaaleaacaaI1aaa beaaaOqaaiabgkHiTiaadkgadaWgaaWcbaGaaGymaaqabaGccqGHRa WkcaWGIbWaaSbaaSqaaiaaiAdaaeqaaaGcbaGaaGikaiabeU7aSnaa BaaaleaacaaI1aaabeaakiabgkHiTiabeU7aSnaaBaaaleaacaaI4a aabeaakiaaiMcacaWGIbWaaSbaaSqaaiaaiodaaeqaaOGaey4kaSIa amOyamaaBaaaleaacaaI3aaabeaaaOqaaiabgkHiTiaadkgadaWgaa WcbaGaaG4maaqabaGccqGHRaWkcaaIOaGaeq4UdW2aaSbaaSqaaiaa iwdaaeqaaOGaeyOeI0Iaeq4UdW2aaSbaaSqaaiaaiIdaaeqaaOGaaG ykaiaadkgadaWgaaWcbaGaaGinaaqabaGccqGHRaWkcaWGIbWaaSba aSqaaiaaiIdaaeqaaaGcbaGaaGimaaqaaiabgkHiTiaadkgadaWgaa WcbaGaaGynaaqabaaakeaacaaIOaGaeq4UdW2aaSbaaSqaaiaaiwda aeqaaOGaeyOeI0Iaeq4UdW2aaSbaaSqaaiaaiIdaaeqaaOGaaGykai aadkgadaWgaaWcbaGaaG4naaqabaaakeaacqGHsislcaWGIbWaaSba aSqaaiaaiEdaaeqaaOGaey4kaSIaaGikaiabeU7aSnaaBaaaleaaca aI1aaabeaakiabgkHiTiabeU7aSnaaBaaaleaacaaI4aaabeaakiaa iMcacaWGIbWaaSbaaSqaaiaaiIdaaeqaaaGcbaGaamOyamaaBaaale aacaaIXaGaaG4maaqabaGccqGHRaWkcaaIOaGaeq4UdW2aaSbaaSqa aiaaiIdaaeqaaOGaeyOeI0Iaeq4UdW2aaSbaaSqaaiaaiwdaaeqaaO GaaGykaiaadkgadaWgaaWcbaGaaGyoaaqabaaakeaacaaIOaGaeq4U dW2aaSbaaSqaaiaaiIdaaeqaaOGaeyOeI0Iaeq4UdW2aaSbaaSqaai aaiwdaaeqaaOGaaGykaiaadkgadaWgaaWcbaGaaGymaiaaicdaaeqa aOGaey4kaSIaamOyamaaBaaaleaacaaIXaGaaGinaaqabaGccqGHsi slcaWGIbWaaSbaaSqaaiaaiMdaaeqaaaGcbaGaamOyamaaBaaaleaa caaIXaGaaGynaaqabaaakeaacqGHsislcaWGIbWaaSbaaSqaaiaaig dacaaIXaaabeaakiabgUcaRiaadkgadaWgaaWcbaGaaGymaiaaiAda aeqaaaGcbaGaaGikaiabeU7aSnaaBaaaleaacaaI4aaabeaakiabgk HiTiabeU7aSnaaBaaaleaacaaI1aaabeaakiaaiMcacaWGIbWaaSba aSqaaiaaigdacaaIZaaabeaaaOqaaiabgkHiTiaadkgadaWgaaWcba GaaGymaiaaiodaaeqaaOGaey4kaSIaaGikaiabeU7aSnaaBaaaleaa caaI4aaabeaakiabgkHiTiabeU7aSnaaBaaaleaacaaI1aaabeaaki aaiMcacaWGIbWaaSbaaSqaaiaaigdacaaI0aaabeaaaOqaaiaaicda aeaacqGHsislcaWGIbWaaSbaaSqaaiaaigdacaaI1aaabeaaaaaaki aawIcacaGLPaaacaaIUaaaaa@BBE6@

Тогда λ 5 = λ 8 =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaaiwdaaeqaaOGaaGypaiabeU7aSnaaBaaaleaacaaI4aaa beaakiaai2dacaaIWaaaaa@3D90@ , что также недопустимо.

Если оператор Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@  имеет вид (5.15), то

Y 1 = λ 9 1 0 0 0 λ 9 1 0 0 0 λ 9 0 0 0 0 λ 10 x y z w , x y z w ,[ Y 1 , Y 2 ]= V x y z w , x y z w = Y 1 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaakiaai2dadaaadaqaamaabmaabaqbaeqabqab aaaaaeaacqaH7oaBdaWgaaWcbaGaaGyoaaqabaaakeaacaaIXaaaba GaaGimaaqaaiaaicdaaeaacaaIWaaabaGaeq4UdW2aaSbaaSqaaiaa iMdaaeqaaaGcbaGaaGymaaqaaiaaicdaaeaacaaIWaaabaGaaGimaa qaaiabeU7aSnaaBaaaleaacaaI5aaabeaaaOqaaiaaicdaaeaacaaI WaaabaGaaGimaaqaaiaaicdaaeaacqaH7oaBdaWgaaWcbaGaaGymai aaicdaaeqaaaaaaOGaayjkaiaawMcaamaabmaabaqbaeqabqqaaaaa baGaamiEaaqaaiaadMhaaeaacaWG6baabaGaam4DaaaaaiaawIcaca GLPaaacaaISaWaaeWaaeaafaqabeabbaaaaeaacqGHciITdaWgaaWc baGaamiEaaqabaaakeaacqGHciITdaWgaaWcbaGaamyEaaqabaaake aacqGHciITdaWgaaWcbaGaamOEaaqabaaakeaacqGHciITdaWgaaWc baGaam4DaaqabaaaaaGccaGLOaGaayzkaaaacaGLPmIaayPkJaGaaG ilaiaaywW7caaIBbGaamywamaaBaaaleaacaaIXaaabeaakiaaiYca caWGzbWaaSbaaSqaaiaaikdaaeqaaOGaaGyxaiaai2dacqGHsislda aadaqaaiaadAfadaqadaqaauaabeqaeeaaaaqaaiaadIhaaeaacaWG 5baabaGaamOEaaqaaiaadEhaaaaacaGLOaGaayzkaaGaaGilamaabm aabaqbaeqabqqaaaaabaGaeyOaIy7aaSbaaSqaaiaadIhaaeqaaaGc baGaeyOaIy7aaSbaaSqaaiaadMhaaeqaaaGcbaGaeyOaIy7aaSbaaS qaaiaadQhaaeqaaaGcbaGaeyOaIy7aaSbaaSqaaiaadEhaaeqaaaaa aOGaayjkaiaawMcaaaGaayzkJiaawQYiaiaai2dacaWGzbWaaSbaaS qaaiaaigdaaeqaaOGaaGilaaaa@84BE@

где

V= b 5 b 1 + b 6 b 2 + b 7 ( λ 10 λ 9 ) b 4 + b 8 b 9 b 10 b 5 b 11 b 6 b 12 ( λ 10 λ 9 ) b 8 0 b 9 b 10 ( λ 10 λ 9 ) b 12 ( λ 10 λ 9 ) b 13 b 13 +( λ 10 λ 9 ) b 14 b 14 +( λ 10 λ 9 ) b 15 0 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvaiaai2 dadaqadaqaauaabeqaeqaaaaaabaGaamOyamaaBaaaleaacaaI1aaa beaaaOqaaiabgkHiTiaadkgadaWgaaWcbaGaaGymaaqabaGccqGHRa WkcaWGIbWaaSbaaSqaaiaaiAdaaeqaaaGcbaGaeyOeI0IaamOyamaa BaaaleaacaaIYaaabeaakiabgUcaRiaadkgadaWgaaWcbaGaaG4naa qabaaakeaacqGHsislcaaIOaGaeq4UdW2aaSbaaSqaaiaaigdacaaI WaaabeaakiabgkHiTiabeU7aSnaaBaaaleaacaaI5aaabeaakiaaiM cacaWGIbWaaSbaaSqaaiaaisdaaeqaaOGaey4kaSIaamOyamaaBaaa leaacaaI4aaabeaaaOqaaiaadkgadaWgaaWcbaGaaGyoaaqabaaake aacaWGIbWaaSbaaSqaaiaaigdacaaIWaaabeaakiabgkHiTiaadkga daWgaaWcbaGaaGynaaqabaaakeaacaWGIbWaaSbaaSqaaiaaigdaca aIXaaabeaakiabgkHiTiaadkgadaWgaaWcbaGaaGOnaaqabaaakeaa caWGIbWaaSbaaSqaaiaaigdacaaIYaaabeaakiabgkHiTiaaiIcacq aH7oaBdaWgaaWcbaGaaGymaiaaicdaaeqaaOGaeyOeI0Iaeq4UdW2a aSbaaSqaaiaaiMdaaeqaaOGaaGykaiaadkgadaWgaaWcbaGaaGioaa qabaaakeaacaaIWaaabaGaeyOeI0IaamOyamaaBaaaleaacaaI5aaa beaaaOqaaiabgkHiTiaadkgadaWgaaWcbaGaaGymaiaaicdaaeqaaa GcbaGaeyOeI0IaaGikaiabeU7aSnaaBaaaleaacaaIXaGaaGimaaqa baGccqGHsislcqaH7oaBdaWgaaWcbaGaaGyoaaqabaGccaaIPaGaam OyamaaBaaaleaacaaIXaGaaGOmaaqabaaakeaacaaIOaGaeq4UdW2a aSbaaSqaaiaaigdacaaIWaaabeaakiabgkHiTiabeU7aSnaaBaaale aacaaI5aaabeaakiaaiMcacaWGIbWaaSbaaSqaaiaaigdacaaIZaaa beaaaOqaaiabgkHiTiaadkgadaWgaaWcbaGaaGymaiaaiodaaeqaaO Gaey4kaSIaaGikaiabeU7aSnaaBaaaleaacaaIXaGaaGimaaqabaGc cqGHsislcqaH7oaBdaWgaaWcbaGaaGyoaaqabaGccaaIPaGaamOyam aaBaaaleaacaaIXaGaaGinaaqabaaakeaacqGHsislcaWGIbWaaSba aSqaaiaaigdacaaI0aaabeaakiabgUcaRiaaiIcacqaH7oaBdaWgaa WcbaGaaGymaiaaicdaaeqaaOGaeyOeI0Iaeq4UdW2aaSbaaSqaaiaa iMdaaeqaaOGaaGykaiaadkgadaWgaaWcbaGaaGymaiaaiwdaaeqaaa GcbaGaaGimaaaaaiaawIcacaGLPaaacaaIUaaaaa@AC5D@

Тогда λ 9 = λ 10 =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaaiMdaaeqaaOGaaGypaiabeU7aSnaaBaaaleaacaaIXaGa aGimaaqabaGccaaI9aGaaGimaaaa@3E47@ , что недопустимо.

Если оператор Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@  имеет вид (5.16), то

Y 1 = λ 9 1 0 0 0 λ 9 1 0 0 0 λ 9 1 0 0 0 λ 9 x y z w , x y z w , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaakiaai2dadaaadaqaamaabmaabaqbaeqabqab aaaaaeaacqaH7oaBdaWgaaWcbaGaaGyoaaqabaaakeaacaaIXaaaba GaaGimaaqaaiaaicdaaeaacaaIWaaabaGaeq4UdW2aaSbaaSqaaiaa iMdaaeqaaaGcbaGaaGymaaqaaiaaicdaaeaacaaIWaaabaGaaGimaa qaaiabeU7aSnaaBaaaleaacaaI5aaabeaaaOqaaiaaigdaaeaacaaI WaaabaGaaGimaaqaaiaaicdaaeaacqaH7oaBdaWgaaWcbaGaaGyoaa qabaaaaaGccaGLOaGaayzkaaWaaeWaaeaafaqabeabbaaaaeaacaWG 4baabaGaamyEaaqaaiaadQhaaeaacaWG3baaaaGaayjkaiaawMcaai aaiYcadaqadaqaauaabeqaeeaaaaqaaiabgkGi2oaaBaaaleaacaWG 4baabeaaaOqaaiabgkGi2oaaBaaaleaacaWG5baabeaaaOqaaiabgk Gi2oaaBaaaleaacaWG6baabeaaaOqaaiabgkGi2oaaBaaaleaacaWG 3baabeaaaaaakiaawIcacaGLPaaaaiaawMYicaGLQmcacaaISaaaaa@626D@

= b 5 b 1 + b 6 b 2 + b 7 b 3 + b 8 b 9 b 10 b 5 b 11 b 6 b 12 b 7 b 13 b 14 b 9 b 10 + b 15 b 11 + b 16 0 b 13 b 14 b 15 x y z w , x y z w = Y 1 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiabgk HiTmaaamaabaWaaeWaaeaafaqabeabeaaaaaqaaiaadkgadaWgaaWc baGaaGynaaqabaaakeaacqGHsislcaWGIbWaaSbaaSqaaiaaigdaae qaaOGaey4kaSIaamOyamaaBaaaleaacaaI2aaabeaaaOqaaiabgkHi TiaadkgadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaWGIbWaaSbaaS qaaiaaiEdaaeqaaaGcbaGaeyOeI0IaamOyamaaBaaaleaacaaIZaaa beaakiabgUcaRiaadkgadaWgaaWcbaGaaGioaaqabaaakeaacaWGIb WaaSbaaSqaaiaaiMdaaeqaaaGcbaGaamOyamaaBaaaleaacaaIXaGa aGimaaqabaGccqGHsislcaWGIbWaaSbaaSqaaiaaiwdaaeqaaaGcba GaamOyamaaBaaaleaacaaIXaGaaGymaaqabaGccqGHsislcaWGIbWa aSbaaSqaaiaaiAdaaeqaaaGcbaGaamOyamaaBaaaleaacaaIXaGaaG OmaaqabaGccqGHsislcaWGIbWaaSbaaSqaaiaaiEdaaeqaaaGcbaGa amOyamaaBaaaleaacaaIXaGaaG4maaqabaaakeaacaWGIbWaaSbaaS qaaiaaigdacaaI0aaabeaakiabgkHiTiaadkgadaWgaaWcbaGaaGyo aaqabaaakeaacqGHsislcaWGIbWaaSbaaSqaaiaaigdacaaIWaaabe aakiabgUcaRiaadkgadaWgaaWcbaGaaGymaiaaiwdaaeqaaaGcbaGa eyOeI0IaamOyamaaBaaaleaacaaIXaGaaGymaaqabaGccqGHRaWkca WGIbWaaSbaaSqaaiaaigdacaaI2aaabeaaaOqaaiaaicdaaeaacqGH sislcaWGIbWaaSbaaSqaaiaaigdacaaIZaaabeaaaOqaaiabgkHiTi aadkgadaWgaaWcbaGaaGymaiaaisdaaeqaaaGcbaGaeyOeI0IaamOy amaaBaaaleaacaaIXaGaaGynaaqabaaaaaGccaGLOaGaayzkaaWaae WaaeaafaqabeabbaaaaeaacaWG4baabaGaamyEaaqaaiaadQhaaeaa caWG3baaaaGaayjkaiaawMcaaiaaiYcadaqadaqaauaabeqaeeaaaa qaaiabgkGi2oaaBaaaleaacaWG4baabeaaaOqaaiabgkGi2oaaBaaa leaacaWG5baabeaaaOqaaiabgkGi2oaaBaaaleaacaWG6baabeaaaO qaaiabgkGi2oaaBaaaleaacaWG3baabeaaaaaakiaawIcacaGLPaaa aiaawMYicaGLQmcacaaI9aGaamywamaaBaaaleaacaaIXaaabeaaki aai6caaaa@9646@

Тогда допустимое решение получаем при λ 9 =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaaiMdaaeqaaOGaaGypaiaaicdaaaa@3A21@ . В итоге имеем операторы (5.22).

Лемма 3 Пусть ненулевые операторы: Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@ , принимающий один из видов (5.12) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ (5.16),

Y 2 =( b 1 x+ b 2 y+ b 3 z+ b 4 w) x +( b 5 x+ b 6 y+ b 7 z+ b 8 w) y + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIYaaabeaakiaai2dacaaIOaGaamOyamaaBaaaleaacaaI XaaabeaakiaadIhacqGHRaWkcaWGIbWaaSbaaSqaaiaaikdaaeqaaO GaamyEaiabgUcaRiaadkgadaWgaaWcbaGaaG4maaqabaGccaWG6bGa ey4kaSIaamOyamaaBaaaleaacaaI0aaabeaakiaadEhacaaIPaGaey OaIy7aaSbaaSqaaiaadIhaaeqaaOGaey4kaSIaaGikaiaadkgadaWg aaWcbaGaaGynaaqabaGccaWG4bGaey4kaSIaamOyamaaBaaaleaaca aI2aaabeaakiaadMhacqGHRaWkcaWGIbWaaSbaaSqaaiaaiEdaaeqa aOGaamOEaiabgUcaRiaadkgadaWgaaWcbaGaaGioaaqabaGccaWG3b GaaGykaiabgkGi2oaaBaaaleaacaWG5baabeaakiabgUcaRaaa@5E5F@

+( b 9 x+ b 10 y+ b 11 z+ b 12 w) z +( b 13 x+ b 14 y+ b 15 z+ b 16 w) w , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSIaaG ikaiaadkgadaWgaaWcbaGaaGyoaaqabaGccaWG4bGaey4kaSIaamOy amaaBaaaleaacaaIXaGaaGimaaqabaGccaWG5bGaey4kaSIaamOyam aaBaaaleaacaaIXaGaaGymaaqabaGccaWG6bGaey4kaSIaamOyamaa BaaaleaacaaIXaGaaGOmaaqabaGccaWG3bGaaGykaiabgkGi2oaaBa aaleaacaWG6baabeaakiabgUcaRiaaiIcacaWGIbWaaSbaaSqaaiaa igdacaaIZaaabeaakiaadIhacqGHRaWkcaWGIbWaaSbaaSqaaiaaig dacaaI0aaabeaakiaadMhacqGHRaWkcaWGIbWaaSbaaSqaaiaaigda caaI1aaabeaakiaadQhacqGHRaWkcaWGIbWaaSbaaSqaaiaaigdaca aI2aaabeaakiaadEhacaaIPaGaeyOaIy7aaSbaaSqaaiaadEhaaeqa aOGaaGilaaaa@6195@

Y 3 =( c 1 x+ c 2 y+ c 3 z+ c 4 w) x +( c 5 x+ c 6 y+ c 7 z+ c 8 w) y + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIZaaabeaakiaai2dacaaIOaGaam4yamaaBaaaleaacaaI XaaabeaakiaadIhacqGHRaWkcaWGJbWaaSbaaSqaaiaaikdaaeqaaO GaamyEaiabgUcaRiaadogadaWgaaWcbaGaaG4maaqabaGccaWG6bGa ey4kaSIaam4yamaaBaaaleaacaaI0aaabeaakiaadEhacaaIPaGaey OaIy7aaSbaaSqaaiaadIhaaeqaaOGaey4kaSIaaGikaiaadogadaWg aaWcbaGaaGynaaqabaGccaWG4bGaey4kaSIaam4yamaaBaaaleaaca aI2aaabeaakiaadMhacqGHRaWkcaWGJbWaaSbaaSqaaiaaiEdaaeqa aOGaamOEaiabgUcaRiaadogadaWgaaWcbaGaaGioaaqabaGccaWG3b GaaGykaiabgkGi2oaaBaaaleaacaWG5baabeaakiabgUcaRaaa@5E68@

+( c 9 x+ c 10 y+ c 11 z+ c 12 w) z +( c 13 x+ c 14 y+ c 15 z+ c 16 w) w , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSIaaG ikaiaadogadaWgaaWcbaGaaGyoaaqabaGccaWG4bGaey4kaSIaam4y amaaBaaaleaacaaIXaGaaGimaaqabaGccaWG5bGaey4kaSIaam4yam aaBaaaleaacaaIXaGaaGymaaqabaGccaWG6bGaey4kaSIaam4yamaa BaaaleaacaaIXaGaaGOmaaqabaGccaWG3bGaaGykaiabgkGi2oaaBa aaleaacaWG6baabeaakiabgUcaRiaaiIcacaWGJbWaaSbaaSqaaiaa igdacaaIZaaabeaakiaadIhacqGHRaWkcaWGJbWaaSbaaSqaaiaaig dacaaI0aaabeaakiaadMhacqGHRaWkcaWGJbWaaSbaaSqaaiaaigda caaI1aaabeaakiaadQhacqGHRaWkcaWGJbWaaSbaaSqaaiaaigdaca aI2aaabeaakiaadEhacaaIPaGaeyOaIy7aaSbaaSqaaiaadEhaaeqa aOGaaGilaaaa@619D@

удовлетворяют коммутационным соотношениям

[ Y 1 , Y 2 ]=0,[ Y 1 , Y 3 ]=0,[ Y 2 , Y 3 ]=0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaadM fadaWgaaWcbaGaaGymaaqabaGccaaISaGaamywamaaBaaaleaacaaI Yaaabeaakiaai2facaaI9aGaaGimaiaaiYcacaaMf8UaaG4waiaadM fadaWgaaWcbaGaaGymaaqabaGccaaISaGaamywamaaBaaaleaacaaI Zaaabeaakiaai2facaaI9aGaaGimaiaaiYcacaaMf8UaaG4waiaadM fadaWgaaWcbaGaaGOmaaqabaGccaaISaGaamywamaaBaaaleaacaaI Zaaabeaakiaai2facaaI9aGaaGimaiaai6caaaa@521C@

Тогда, с точностью до линейной замены координат в этих операторов, возможны следующие варианты:

Y 1 = λ 1 x x + λ 2 y y + λ 3 z z + λ 4 w w , Y 2 = b 1 x x + b 2 y y + b 3 z z + b 4 w w , Y 3 = c 1 x x + c 2 y y + c 3 z z + c 4 w w , λ 1 λ 2 , λ 1 λ 3 , λ 1 λ 4 , λ 2 λ 3 , λ 2 λ 4 , λ 3 λ 4 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabmqaaa qaaiaadMfadaWgaaWcbaGaaGymaaqabaGccaaI9aGaeq4UdW2aaSba aSqaaiaaigdaaeqaaOGaamiEaiabgkGi2oaaBaaaleaacaWG4baabe aakiabgUcaRiabeU7aSnaaBaaaleaacaaIYaaabeaakiaadMhacqGH ciITdaWgaaWcbaGaamyEaaqabaGccqGHRaWkcqaH7oaBdaWgaaWcba GaaG4maaqabaGccaWG6bGaeyOaIy7aaSbaaSqaaiaadQhaaeqaaOGa ey4kaSIaeq4UdW2aaSbaaSqaaiaaisdaaeqaaOGaam4DaiabgkGi2o aaBaaaleaacaWG3baabeaakiaaiYcacaaMf8UaamywamaaBaaaleaa caaIYaaabeaakiaai2dacaWGIbWaaSbaaSqaaiaaigdaaeqaaOGaam iEaiabgkGi2oaaBaaaleaacaWG4baabeaakiabgUcaRiaadkgadaWg aaWcbaGaaGOmaaqabaGccaWG5bGaeyOaIy7aaSbaaSqaaiaadMhaae qaaOGaey4kaSIaamOyamaaBaaaleaacaaIZaaabeaakiaadQhacqGH ciITdaWgaaWcbaGaamOEaaqabaGccqGHRaWkcaWGIbWaaSbaaSqaai aaisdaaeqaaOGaam4DaiabgkGi2oaaBaaaleaacaWG3baabeaakiaa iYcaaeaacaWGzbWaaSbaaSqaaiaaiodaaeqaaOGaaGypaiaadogada WgaaWcbaGaaGymaaqabaGccaWG4bGaeyOaIy7aaSbaaSqaaiaadIha aeqaaOGaey4kaSIaam4yamaaBaaaleaacaaIYaaabeaakiaadMhacq GHciITdaWgaaWcbaGaamyEaaqabaGccqGHRaWkcaWGJbWaaSbaaSqa aiaaiodaaeqaaOGaamOEaiabgkGi2oaaBaaaleaacaWG6baabeaaki abgUcaRiaadogadaWgaaWcbaGaaGinaaqabaGccaWG3bGaeyOaIy7a aSbaaSqaaiaadEhaaeqaaOGaaGilaaqaaiabeU7aSnaaBaaaleaaca aIXaaabeaakiabgcMi5kabeU7aSnaaBaaaleaacaaIYaaabeaakiaa iYcacqaH7oaBdaWgaaWcbaGaaGymaaqabaGccqGHGjsUcqaH7oaBda WgaaWcbaGaaG4maaqabaGccaaISaGaeq4UdW2aaSbaaSqaaiaaigda aeqaaOGaeyiyIKRaeq4UdW2aaSbaaSqaaiaaisdaaeqaaOGaaGilai abeU7aSnaaBaaaleaacaaIYaaabeaakiabgcMi5kabeU7aSnaaBaaa leaacaaIZaaabeaakiaaiYcacqaH7oaBdaWgaaWcbaGaaGOmaaqaba GccqGHGjsUcqaH7oaBdaWgaaWcbaGaaGinaaqabaGccaaISaGaeq4U dW2aaSbaaSqaaiaaiodaaeqaaOGaeyiyIKRaeq4UdW2aaSbaaSqaai aaisdaaeqaaOGaaG4oaaaaaaa@BCB2@  (5.23)

Y 1 =( λ 5 x+y) x + λ 5 y y + λ 6 z z + λ 7 w w , Y 2 =( b 1 x+ b 2 y) x + b 1 y y + b 11 z z + b 16 w w , Y 3 =( c 1 x+ c 2 y) x + c 1 y y + c 11 z z + c 16 w w , λ 5 λ 6 , λ 5 λ 7 , λ 6 λ 7 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabqqaaa aabaGaamywamaaBaaaleaacaaIXaaabeaakiaai2dacaaIOaGaeq4U dW2aaSbaaSqaaiaaiwdaaeqaaOGaamiEaiabgUcaRiaadMhacaaIPa GaeyOaIy7aaSbaaSqaaiaadIhaaeqaaOGaey4kaSIaeq4UdW2aaSba aSqaaiaaiwdaaeqaaOGaamyEaiabgkGi2oaaBaaaleaacaWG5baabe aakiabgUcaRiabeU7aSnaaBaaaleaacaaI2aaabeaakiaadQhacqGH ciITdaWgaaWcbaGaamOEaaqabaGccqGHRaWkcqaH7oaBdaWgaaWcba GaaG4naaqabaGccaWG3bGaeyOaIy7aaSbaaSqaaiaadEhaaeqaaOGa aGilaaqaaiaadMfadaWgaaWcbaGaaGOmaaqabaGccaaI9aGaaGikai aadkgadaWgaaWcbaGaaGymaaqabaGccaWG4bGaey4kaSIaamOyamaa BaaaleaacaaIYaaabeaakiaadMhacaaIPaGaeyOaIy7aaSbaaSqaai aadIhaaeqaaOGaey4kaSIaamOyamaaBaaaleaacaaIXaaabeaakiaa dMhacqGHciITdaWgaaWcbaGaamyEaaqabaGccqGHRaWkcaWGIbWaaS baaSqaaiaaigdacaaIXaaabeaakiaadQhacqGHciITdaWgaaWcbaGa amOEaaqabaGccqGHRaWkcaWGIbWaaSbaaSqaaiaaigdacaaI2aaabe aakiaadEhacqGHciITdaWgaaWcbaGaam4DaaqabaGccaaISaaabaGa amywamaaBaaaleaacaaIZaaabeaakiaai2dacaaIOaGaam4yamaaBa aaleaacaaIXaaabeaakiaadIhacqGHRaWkcaWGJbWaaSbaaSqaaiaa ikdaaeqaaOGaamyEaiaaiMcacqGHciITdaWgaaWcbaGaamiEaaqaba GccqGHRaWkcaWGJbWaaSbaaSqaaiaaigdaaeqaaOGaamyEaiabgkGi 2oaaBaaaleaacaWG5baabeaakiabgUcaRiaadogadaWgaaWcbaGaaG ymaiaaigdaaeqaaOGaamOEaiabgkGi2oaaBaaaleaacaWG6baabeaa kiabgUcaRiaadogadaWgaaWcbaGaaGymaiaaiAdaaeqaaOGaam4Dai abgkGi2oaaBaaaleaacaWG3baabeaakiaaiYcaaeaacqaH7oaBdaWg aaWcbaGaaGynaaqabaGccqGHGjsUcqaH7oaBdaWgaaWcbaGaaGOnaa qabaGccaaISaGaeq4UdW2aaSbaaSqaaiaaiwdaaeqaaOGaeyiyIKRa eq4UdW2aaSbaaSqaaiaaiEdaaeqaaOGaaGilaiabeU7aSnaaBaaale aacaaI2aaabeaakiabgcMi5kabeU7aSnaaBaaaleaacaaI3aaabeaa kiaaiUdaaaaaaa@B456@  (5.24)

Y 1 =( λ 5 x+y) x + λ 5 y y +( λ 8 z+w) z + λ 8 w w , Y 2 =( b 1 x+ b 2 y) x + b 1 y y +( b 11 z+ b 12 w) z + b 11 w w , Y 3 =( c 1 x+ c 2 y) x + c 1 y y +( c 11 z+ c 12 w) z + c 11 w w , λ 5 λ 8 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabmqaaa qaaiaadMfadaWgaaWcbaGaaGymaaqabaGccaaI9aGaaGikaiabeU7a SnaaBaaaleaacaaI1aaabeaakiaadIhacqGHRaWkcaWG5bGaaGykai abgkGi2oaaBaaaleaacaWG4baabeaakiabgUcaRiabeU7aSnaaBaaa leaacaaI1aaabeaakiaadMhacqGHciITdaWgaaWcbaGaamyEaaqaba GccqGHRaWkcaaIOaGaeq4UdW2aaSbaaSqaaiaaiIdaaeqaaOGaamOE aiabgUcaRiaadEhacaaIPaGaeyOaIy7aaSbaaSqaaiaadQhaaeqaaO Gaey4kaSIaeq4UdW2aaSbaaSqaaiaaiIdaaeqaaOGaam4DaiabgkGi 2oaaBaaaleaacaWG3baabeaakiaaiYcaaeaacaWGzbWaaSbaaSqaai aaikdaaeqaaOGaaGypaiaaiIcacaWGIbWaaSbaaSqaaiaaigdaaeqa aOGaamiEaiabgUcaRiaadkgadaWgaaWcbaGaaGOmaaqabaGccaWG5b GaaGykaiabgkGi2oaaBaaaleaacaWG4baabeaakiabgUcaRiaadkga daWgaaWcbaGaaGymaaqabaGccaWG5bGaeyOaIy7aaSbaaSqaaiaadM haaeqaaOGaey4kaSIaaGikaiaadkgadaWgaaWcbaGaaGymaiaaigda aeqaaOGaamOEaiabgUcaRiaadkgadaWgaaWcbaGaaGymaiaaikdaae qaaOGaam4DaiaaiMcacqGHciITdaWgaaWcbaGaamOEaaqabaGccqGH RaWkcaWGIbWaaSbaaSqaaiaaigdacaaIXaaabeaakiaadEhacqGHci ITdaWgaaWcbaGaam4DaaqabaGccaaISaaabaGaamywamaaBaaaleaa caaIZaaabeaakiaai2dacaaIOaGaam4yamaaBaaaleaacaaIXaaabe aakiaadIhacqGHRaWkcaWGJbWaaSbaaSqaaiaaikdaaeqaaOGaamyE aiaaiMcacqGHciITdaWgaaWcbaGaamiEaaqabaGccqGHRaWkcaWGJb WaaSbaaSqaaiaaigdaaeqaaOGaamyEaiabgkGi2oaaBaaaleaacaWG 5baabeaakiabgUcaRiaaiIcacaWGJbWaaSbaaSqaaiaaigdacaaIXa aabeaakiaadQhacqGHRaWkcaWGJbWaaSbaaSqaaiaaigdacaaIYaaa beaakiaadEhacaaIPaGaeyOaIy7aaSbaaSqaaiaadQhaaeqaaOGaey 4kaSIaam4yamaaBaaaleaacaaIXaGaaGymaaqabaGccaWG3bGaeyOa Iy7aaSbaaSqaaiaadEhaaeqaaOGaaGilaiaaywW7cqaH7oaBdaWgaa WcbaGaaGynaaqabaGccqGHGjsUcqaH7oaBdaWgaaWcbaGaaGioaaqa baGccaaI7aaaaaaa@B52C@  (5.25)

Y 1 =( λ 9 x+y) x +( λ 9 y+z) y + λ 9 z z + λ 10 w w , Y 2 =( b 1 x+ b 2 y+ b 3 z) x +( b 1 y+ b 2 z) y + b 1 z z + b 16 w w , Y 3 =( c 1 x+ c 2 y+ c 3 z) x +( c 1 y+ c 2 z) y + c 1 z z + c 16 w w , λ 9 λ 10 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabmqaaa qaaiaadMfadaWgaaWcbaGaaGymaaqabaGccaaI9aGaaGikaiabeU7a SnaaBaaaleaacaaI5aaabeaakiaadIhacqGHRaWkcaWG5bGaaGykai abgkGi2oaaBaaaleaacaWG4baabeaakiabgUcaRiaaiIcacqaH7oaB daWgaaWcbaGaaGyoaaqabaGccaWG5bGaey4kaSIaamOEaiaaiMcacq GHciITdaWgaaWcbaGaamyEaaqabaGccqGHRaWkcqaH7oaBdaWgaaWc baGaaGyoaaqabaGccaWG6bGaeyOaIy7aaSbaaSqaaiaadQhaaeqaaO Gaey4kaSIaeq4UdW2aaSbaaSqaaiaaigdacaaIWaaabeaakiaadEha cqGHciITdaWgaaWcbaGaam4DaaqabaGccaaISaaabaGaamywamaaBa aaleaacaaIYaaabeaakiaai2dacaaIOaGaamOyamaaBaaaleaacaaI XaaabeaakiaadIhacqGHRaWkcaWGIbWaaSbaaSqaaiaaikdaaeqaaO GaamyEaiabgUcaRiaadkgadaWgaaWcbaGaaG4maaqabaGccaWG6bGa aGykaiabgkGi2oaaBaaaleaacaWG4baabeaakiabgUcaRiaaiIcaca WGIbWaaSbaaSqaaiaaigdaaeqaaOGaamyEaiabgUcaRiaadkgadaWg aaWcbaGaaGOmaaqabaGccaWG6bGaaGykaiabgkGi2oaaBaaaleaaca WG5baabeaakiabgUcaRiaadkgadaWgaaWcbaGaaGymaaqabaGccaWG 6bGaeyOaIy7aaSbaaSqaaiaadQhaaeqaaOGaey4kaSIaamOyamaaBa aaleaacaaIXaGaaGOnaaqabaGccaWG3bGaeyOaIy7aaSbaaSqaaiaa dEhaaeqaaOGaaGilaaqaaiaadMfadaWgaaWcbaGaaG4maaqabaGcca aI9aGaaGikaiaadogadaWgaaWcbaGaaGymaaqabaGccaWG4bGaey4k aSIaam4yamaaBaaaleaacaaIYaaabeaakiaadMhacqGHRaWkcaWGJb WaaSbaaSqaaiaaiodaaeqaaOGaamOEaiaaiMcacqGHciITdaWgaaWc baGaamiEaaqabaGccqGHRaWkcaaIOaGaam4yamaaBaaaleaacaaIXa aabeaakiaadMhacqGHRaWkcaWGJbWaaSbaaSqaaiaaikdaaeqaaOGa amOEaiaaiMcacqGHciITdaWgaaWcbaGaamyEaaqabaGccqGHRaWkca WGJbWaaSbaaSqaaiaaigdaaeqaaOGaamOEaiabgkGi2oaaBaaaleaa caWG6baabeaakiabgUcaRiaadogadaWgaaWcbaGaaGymaiaaiAdaae qaaOGaam4DaiabgkGi2oaaBaaaleaacaWG3baabeaakiaaiYcacaaM f8Uaeq4UdW2aaSbaaSqaaiaaiMdaaeqaaOGaeyiyIKRaeq4UdW2aaS baaSqaaiaaigdacaaIWaaabeaakiaaiUdaaaaaaa@BB3D@  (5.26)

Y 1 =( λ 9 x+y) x +( λ 9 y+z) y +( λ 9 z+w) z + λ 9 w w , Y 2 =( b 1 x+ b 2 y+ b 3 z+ b 4 w) x +( b 1 y+ b 2 z+ b 3 w) y +( b 1 z+ b 2 w) z + b 1 w w , Y 3 =( c 1 x+ c 2 y+ c 3 z+ c 4 w) x +( c 1 y+ c 2 z+ c 3 w) y +( c 1 z+ c 2 w) z + c 1 w w . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabmqaaa qaaiaadMfadaWgaaWcbaGaaGymaaqabaGccaaI9aGaaGikaiabeU7a SnaaBaaaleaacaaI5aaabeaakiaadIhacqGHRaWkcaWG5bGaaGykai abgkGi2oaaBaaaleaacaWG4baabeaakiabgUcaRiaaiIcacqaH7oaB daWgaaWcbaGaaGyoaaqabaGccaWG5bGaey4kaSIaamOEaiaaiMcacq GHciITdaWgaaWcbaGaamyEaaqabaGccqGHRaWkcaaIOaGaeq4UdW2a aSbaaSqaaiaaiMdaaeqaaOGaamOEaiabgUcaRiaadEhacaaIPaGaey OaIy7aaSbaaSqaaiaadQhaaeqaaOGaey4kaSIaeq4UdW2aaSbaaSqa aiaaiMdaaeqaaOGaam4DaiabgkGi2oaaBaaaleaacaWG3baabeaaki aaiYcaaeaacaWGzbWaaSbaaSqaaiaaikdaaeqaaOGaaGypaiaaiIca caWGIbWaaSbaaSqaaiaaigdaaeqaaOGaamiEaiabgUcaRiaadkgada WgaaWcbaGaaGOmaaqabaGccaWG5bGaey4kaSIaamOyamaaBaaaleaa caaIZaaabeaakiaadQhacqGHRaWkcaWGIbWaaSbaaSqaaiaaisdaae qaaOGaam4DaiaaiMcacqGHciITdaWgaaWcbaGaamiEaaqabaGccqGH RaWkcaaIOaGaamOyamaaBaaaleaacaaIXaaabeaakiaadMhacqGHRa WkcaWGIbWaaSbaaSqaaiaaikdaaeqaaOGaamOEaiabgUcaRiaadkga daWgaaWcbaGaaG4maaqabaGccaWG3bGaaGykaiabgkGi2oaaBaaale aacaWG5baabeaakiabgUcaRiaaiIcacaWGIbWaaSbaaSqaaiaaigda aeqaaOGaamOEaiabgUcaRiaadkgadaWgaaWcbaGaaGOmaaqabaGcca WG3bGaaGykaiabgkGi2oaaBaaaleaacaWG6baabeaakiabgUcaRiaa dkgadaWgaaWcbaGaaGymaaqabaGccaWG3bGaeyOaIy7aaSbaaSqaai aadEhaaeqaaOGaaGilaaqaaiaadMfadaWgaaWcbaGaaG4maaqabaGc caaI9aGaaGikaiaadogadaWgaaWcbaGaaGymaaqabaGccaWG4bGaey 4kaSIaam4yamaaBaaaleaacaaIYaaabeaakiaadMhacqGHRaWkcaWG JbWaaSbaaSqaaiaaiodaaeqaaOGaamOEaiabgUcaRiaadogadaWgaa WcbaGaaGinaaqabaGccaWG3bGaaGykaiabgkGi2oaaBaaaleaacaWG 4baabeaakiabgUcaRiaaiIcacaWGJbWaaSbaaSqaaiaaigdaaeqaaO GaamyEaiabgUcaRiaadogadaWgaaWcbaGaaGOmaaqabaGccaWG6bGa ey4kaSIaam4yamaaBaaaleaacaaIZaaabeaakiaadEhacaaIPaGaey OaIy7aaSbaaSqaaiaadMhaaeqaaOGaey4kaSIaaGikaiaadogadaWg aaWcbaGaaGymaaqabaGccaWG6bGaey4kaSIaam4yamaaBaaaleaaca aIYaaabeaakiaadEhacaaIPaGaeyOaIy7aaSbaaSqaaiaadQhaaeqa aOGaey4kaSIaam4yamaaBaaaleaacaaIXaaabeaakiaadEhacqGHci ITdaWgaaWcbaGaam4DaaqabaGccaaIUaaaaaaa@CB47@  (5.27)

Доказательство. леммы 3 состоит в вычислении коммутаторов [ Y 1 , Y 2 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaadM fadaWgaaWcbaGaaGymaaqabaGccaaISaGaamywamaaBaaaleaacaaI Yaaabeaakiaai2faaaa@3C14@ , [ Y 1 , Y 3 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaadM fadaWgaaWcbaGaaGymaaqabaGccaaISaGaamywamaaBaaaleaacaaI Zaaabeaakiaai2faaaa@3C15@ , [ Y 2 , Y 3 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaadM fadaWgaaWcbaGaaGOmaaqabaGccaaISaGaamywamaaBaaaleaacaaI Zaaabeaakiaai2faaaa@3C16@ , приравнивания их к нулю и сравнения коэффициенты; при этом используются результаты леммы 1. Оператор Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@  берётся из системы (5.12) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (5.16), а операторы Y 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIYaaabeaaaaa@37B9@  и Y 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIZaaabeaaaaa@37BA@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  произвольного вида. В результате получаем соотношения (5.23) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (5.27).

Лемма 4 Рассмотрим ненулевые операторы Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@ , принимающий один из видов (5.12) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ (5.16),

Y 2 =( b 1 x+ b 2 y+ b 3 z+ b 4 w) x +( b 5 x+ b 6 y+ b 7 z+ b 8 w) y + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIYaaabeaakiaai2dacaaIOaGaamOyamaaBaaaleaacaaI XaaabeaakiaadIhacqGHRaWkcaWGIbWaaSbaaSqaaiaaikdaaeqaaO GaamyEaiabgUcaRiaadkgadaWgaaWcbaGaaG4maaqabaGccaWG6bGa ey4kaSIaamOyamaaBaaaleaacaaI0aaabeaakiaadEhacaaIPaGaey OaIy7aaSbaaSqaaiaadIhaaeqaaOGaey4kaSIaaGikaiaadkgadaWg aaWcbaGaaGynaaqabaGccaWG4bGaey4kaSIaamOyamaaBaaaleaaca aI2aaabeaakiaadMhacqGHRaWkcaWGIbWaaSbaaSqaaiaaiEdaaeqa aOGaamOEaiabgUcaRiaadkgadaWgaaWcbaGaaGioaaqabaGccaWG3b GaaGykaiabgkGi2oaaBaaaleaacaWG5baabeaakiabgUcaRaaa@5E5F@

+( b 9 x+ b 10 y+ b 11 z+ b 12 w) z +( b 13 x+ b 14 y+ b 15 z+ b 16 w) w , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSIaaG ikaiaadkgadaWgaaWcbaGaaGyoaaqabaGccaWG4bGaey4kaSIaamOy amaaBaaaleaacaaIXaGaaGimaaqabaGccaWG5bGaey4kaSIaamOyam aaBaaaleaacaaIXaGaaGymaaqabaGccaWG6bGaey4kaSIaamOyamaa BaaaleaacaaIXaGaaGOmaaqabaGccaWG3bGaaGykaiabgkGi2oaaBa aaleaacaWG6baabeaakiabgUcaRiaaiIcacaWGIbWaaSbaaSqaaiaa igdacaaIZaaabeaakiaadIhacqGHRaWkcaWGIbWaaSbaaSqaaiaaig dacaaI0aaabeaakiaadMhacqGHRaWkcaWGIbWaaSbaaSqaaiaaigda caaI1aaabeaakiaadQhacqGHRaWkcaWGIbWaaSbaaSqaaiaaigdaca aI2aaabeaakiaadEhacaaIPaGaeyOaIy7aaSbaaSqaaiaadEhaaeqa aOGaaGilaaaa@6195@

Y 3 =( c 1 x+ c 2 y+ c 3 z+ c 4 w) x +( c 5 x+ c 6 y+ c 7 z+ c 8 w) y + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIZaaabeaakiaai2dacaaIOaGaam4yamaaBaaaleaacaaI XaaabeaakiaadIhacqGHRaWkcaWGJbWaaSbaaSqaaiaaikdaaeqaaO GaamyEaiabgUcaRiaadogadaWgaaWcbaGaaG4maaqabaGccaWG6bGa ey4kaSIaam4yamaaBaaaleaacaaI0aaabeaakiaadEhacaaIPaGaey OaIy7aaSbaaSqaaiaadIhaaeqaaOGaey4kaSIaaGikaiaadogadaWg aaWcbaGaaGynaaqabaGccaWG4bGaey4kaSIaam4yamaaBaaaleaaca aI2aaabeaakiaadMhacqGHRaWkcaWGJbWaaSbaaSqaaiaaiEdaaeqa aOGaamOEaiabgUcaRiaadogadaWgaaWcbaGaaGioaaqabaGccaWG3b GaaGykaiabgkGi2oaaBaaaleaacaWG5baabeaakiabgUcaRaaa@5E68@

+( c 9 x+ c 10 y+ c 11 z+ c 12 w) z +( c 13 x+ c 14 y+ c 15 z+ c 16 w) w . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSIaaG ikaiaadogadaWgaaWcbaGaaGyoaaqabaGccaWG4bGaey4kaSIaam4y amaaBaaaleaacaaIXaGaaGimaaqabaGccaWG5bGaey4kaSIaam4yam aaBaaaleaacaaIXaGaaGymaaqabaGccaWG6bGaey4kaSIaam4yamaa BaaaleaacaaIXaGaaGOmaaqabaGccaWG3bGaaGykaiabgkGi2oaaBa aaleaacaWG6baabeaakiabgUcaRiaaiIcacaWGJbWaaSbaaSqaaiaa igdacaaIZaaabeaakiaadIhacqGHRaWkcaWGJbWaaSbaaSqaaiaaig dacaaI0aaabeaakiaadMhacqGHRaWkcaWGJbWaaSbaaSqaaiaaigda caaI1aaabeaakiaadQhacqGHRaWkcaWGJbWaaSbaaSqaaiaaigdaca aI2aaabeaakiaadEhacaaIPaGaeyOaIy7aaSbaaSqaaiaadEhaaeqa aOGaaGOlaaaa@619F@

Тогда для них коммутационные соотношения

[ Y 1 , Y 2 ]=0,[ Y 1 , Y 3 ]=0,[ Y 2 , Y 3 ]= Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaadM fadaWgaaWcbaGaaGymaaqabaGccaaISaGaamywamaaBaaaleaacaaI Yaaabeaakiaai2facaaI9aGaaGimaiaaiYcacaaMf8UaaG4waiaadM fadaWgaaWcbaGaaGymaaqabaGccaaISaGaamywamaaBaaaleaacaaI Zaaabeaakiaai2facaaI9aGaaGimaiaaiYcacaaMf8UaaG4waiaadM fadaWgaaWcbaGaaGOmaaqabaGccaaISaGaamywamaaBaaaleaacaaI Zaaabeaakiaai2facaaI9aGaamywamaaBaaaleaacaaIXaaabeaaaa a@526F@

не выполняются.

Доказательство. следует из леммы 1 и того факта, что операторы вида Y 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIYaaabeaaaaa@37B9@  в каждой системе коммутативны.

Лемма 5 Пусть ненулевые операторы Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@ , принимающий один из видов (5.12) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ (5.16),

Y 2 =( b 1 x+ b 2 y+ b 3 z+ b 4 w) x +( b 5 x+ b 6 y+ b 7 z+ b 8 w) y + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIYaaabeaakiaai2dacaaIOaGaamOyamaaBaaaleaacaaI XaaabeaakiaadIhacqGHRaWkcaWGIbWaaSbaaSqaaiaaikdaaeqaaO GaamyEaiabgUcaRiaadkgadaWgaaWcbaGaaG4maaqabaGccaWG6bGa ey4kaSIaamOyamaaBaaaleaacaaI0aaabeaakiaadEhacaaIPaGaey OaIy7aaSbaaSqaaiaadIhaaeqaaOGaey4kaSIaaGikaiaadkgadaWg aaWcbaGaaGynaaqabaGccaWG4bGaey4kaSIaamOyamaaBaaaleaaca aI2aaabeaakiaadMhacqGHRaWkcaWGIbWaaSbaaSqaaiaaiEdaaeqa aOGaamOEaiabgUcaRiaadkgadaWgaaWcbaGaaGioaaqabaGccaWG3b GaaGykaiabgkGi2oaaBaaaleaacaWG5baabeaakiabgUcaRaaa@5E5F@

+( b 9 x+ b 10 y+ b 11 z+ b 12 w) z +( b 13 x+ b 14 y+ b 15 z+ b 16 w) w , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSIaaG ikaiaadkgadaWgaaWcbaGaaGyoaaqabaGccaWG4bGaey4kaSIaamOy amaaBaaaleaacaaIXaGaaGimaaqabaGccaWG5bGaey4kaSIaamOyam aaBaaaleaacaaIXaGaaGymaaqabaGccaWG6bGaey4kaSIaamOyamaa BaaaleaacaaIXaGaaGOmaaqabaGccaWG3bGaaGykaiabgkGi2oaaBa aaleaacaWG6baabeaakiabgUcaRiaaiIcacaWGIbWaaSbaaSqaaiaa igdacaaIZaaabeaakiaadIhacqGHRaWkcaWGIbWaaSbaaSqaaiaaig dacaaI0aaabeaakiaadMhacqGHRaWkcaWGIbWaaSbaaSqaaiaaigda caaI1aaabeaakiaadQhacqGHRaWkcaWGIbWaaSbaaSqaaiaaigdaca aI2aaabeaakiaadEhacaaIPaGaeyOaIy7aaSbaaSqaaiaadEhaaeqa aOGaaGilaaaa@6195@

Y 3 =( c 1 x+ c 2 y+ c 3 z+ c 4 w) x +( c 5 x+ c 6 y+ c 7 z+ c 8 w) y + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIZaaabeaakiaai2dacaaIOaGaam4yamaaBaaaleaacaaI XaaabeaakiaadIhacqGHRaWkcaWGJbWaaSbaaSqaaiaaikdaaeqaaO GaamyEaiabgUcaRiaadogadaWgaaWcbaGaaG4maaqabaGccaWG6bGa ey4kaSIaam4yamaaBaaaleaacaaI0aaabeaakiaadEhacaaIPaGaey OaIy7aaSbaaSqaaiaadIhaaeqaaOGaey4kaSIaaGikaiaadogadaWg aaWcbaGaaGynaaqabaGccaWG4bGaey4kaSIaam4yamaaBaaaleaaca aI2aaabeaakiaadMhacqGHRaWkcaWGJbWaaSbaaSqaaiaaiEdaaeqa aOGaamOEaiabgUcaRiaadogadaWgaaWcbaGaaGioaaqabaGccaWG3b GaaGykaiabgkGi2oaaBaaaleaacaWG5baabeaakiabgUcaRaaa@5E68@

+( c 9 x+ c 10 y+ c 11 z+ c 12 w) z +( c 13 x+ c 14 y+ c 15 z+ c 16 w) w , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSIaaG ikaiaadogadaWgaaWcbaGaaGyoaaqabaGccaWG4bGaey4kaSIaam4y amaaBaaaleaacaaIXaGaaGimaaqabaGccaWG5bGaey4kaSIaam4yam aaBaaaleaacaaIXaGaaGymaaqabaGccaWG6bGaey4kaSIaam4yamaa BaaaleaacaaIXaGaaGOmaaqabaGccaWG3bGaaGykaiabgkGi2oaaBa aaleaacaWG6baabeaakiabgUcaRiaaiIcacaWGJbWaaSbaaSqaaiaa igdacaaIZaaabeaakiaadIhacqGHRaWkcaWGJbWaaSbaaSqaaiaaig dacaaI0aaabeaakiaadMhacqGHRaWkcaWGJbWaaSbaaSqaaiaaigda caaI1aaabeaakiaadQhacqGHRaWkcaWGJbWaaSbaaSqaaiaaigdaca aI2aaabeaakiaadEhacaaIPaGaeyOaIy7aaSbaaSqaaiaadEhaaeqa aOGaaGilaaaa@619D@

удовлетворяют коммутационным соотношениям

[ Y 1 , Y 2 ]=0,[ Y 1 , Y 3 ]= Y 1 ,[ Y 2 , Y 3 ]=0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaadM fadaWgaaWcbaGaaGymaaqabaGccaaISaGaamywamaaBaaaleaacaaI Yaaabeaakiaai2facaaI9aGaaGimaiaaiYcacaaMf8UaaG4waiaadM fadaWgaaWcbaGaaGymaaqabaGccaaISaGaamywamaaBaaaleaacaaI Zaaabeaakiaai2facaaI9aGaamywamaaBaaaleaacaaIXaaabeaaki aaiYcacaaMf8UaaG4waiaadMfadaWgaaWcbaGaaGOmaaqabaGccaaI SaGaamywamaaBaaaleaacaaIZaaabeaakiaai2facaaI9aGaaGimai aai6caaaa@5331@

Тогда, с точностью до линейной замены координат возможен единственный вариант для этих операторов:

Y 1 =y x +z y +w z , Y 2 =( b 1 x+ b 2 y+ b 3 z+ b 4 w) x +( b 1 yy+ b 2 z+ b 3 w) y + +( b 1 z2z+ b 2 w) z +( b 1 w3w) w , Y 3 =x x +y y +z z +w w . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqGaaa aabaGaamywamaaBaaaleaacaaIXaaabeaaaOqaaiaai2dacaWG5bGa eyOaIy7aaSbaaSqaaiaadIhaaeqaaOGaey4kaSIaamOEaiabgkGi2o aaBaaaleaacaWG5baabeaakiabgUcaRiaadEhacqGHciITdaWgaaWc baGaamOEaaqabaGccaaISaaabaGaamywamaaBaaaleaacaaIYaaabe aaaOqaaiaai2dacaaIOaGaamOyamaaBaaaleaacaaIXaaabeaakiaa dIhacqGHRaWkcaWGIbWaaSbaaSqaaiaaikdaaeqaaOGaamyEaiabgU caRiaadkgadaWgaaWcbaGaaG4maaqabaGccaWG6bGaey4kaSIaamOy amaaBaaaleaacaaI0aaabeaakiaadEhacaaIPaGaeyOaIy7aaSbaaS qaaiaadIhaaeqaaOGaey4kaSIaaGikaiaadkgadaWgaaWcbaGaaGym aaqabaGccaWG5bGaeyOeI0IaamyEaiabgUcaRiaadkgadaWgaaWcba GaaGOmaaqabaGccaWG6bGaey4kaSIaamOyamaaBaaaleaacaaIZaaa beaakiaadEhacaaIPaGaeyOaIy7aaSbaaSqaaiaadMhaaeqaaOGaey 4kaScabaaabaGaey4kaSIaaGikaiaadkgadaWgaaWcbaGaaGymaaqa baGccaWG6bGaeyOeI0IaaGOmaiaadQhacqGHRaWkcaWGIbWaaSbaaS qaaiaaikdaaeqaaOGaam4DaiaaiMcacqGHciITdaWgaaWcbaGaamOE aaqabaGccqGHRaWkcaaIOaGaamOyamaaBaaaleaacaaIXaaabeaaki aadEhacqGHsislcaaIZaGaam4DaiaaiMcacqGHciITdaWgaaWcbaGa am4DaaqabaGccaaISaaabaGaamywamaaBaaaleaacaaIZaaabeaaaO qaaiaai2dacaWG4bGaeyOaIy7aaSbaaSqaaiaadIhaaeqaaOGaey4k aSIaamyEaiabgkGi2oaaBaaaleaacaWG5baabeaakiabgUcaRiaadQ hacqGHciITdaWgaaWcbaGaamOEaaqabaGccqGHRaWkcaWG3bGaeyOa Iy7aaSbaaSqaaiaadEhaaeqaaOGaaGOlaaaaaaa@99E5@

Доказательство аналогично доказательству лемм 1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ 3.

Лемма 6 Рассмотрим ненулевые операторы Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@ , принимающий один из пяти видов (5.12) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ (5.16),

Y 2 =( b 1 x+ b 2 y+ b 3 z+ b 4 w) x +( b 5 x+ b 6 y+ b 7 z+ b 8 w) y + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIYaaabeaakiaai2dacaaIOaGaamOyamaaBaaaleaacaaI XaaabeaakiaadIhacqGHRaWkcaWGIbWaaSbaaSqaaiaaikdaaeqaaO GaamyEaiabgUcaRiaadkgadaWgaaWcbaGaaG4maaqabaGccaWG6bGa ey4kaSIaamOyamaaBaaaleaacaaI0aaabeaakiaadEhacaaIPaGaey OaIy7aaSbaaSqaaiaadIhaaeqaaOGaey4kaSIaaGikaiaadkgadaWg aaWcbaGaaGynaaqabaGccaWG4bGaey4kaSIaamOyamaaBaaaleaaca aI2aaabeaakiaadMhacqGHRaWkcaWGIbWaaSbaaSqaaiaaiEdaaeqa aOGaamOEaiabgUcaRiaadkgadaWgaaWcbaGaaGioaaqabaGccaWG3b GaaGykaiabgkGi2oaaBaaaleaacaWG5baabeaakiabgUcaRaaa@5E5F@

+( b 9 x+ b 10 y+ b 11 z+ b 12 w) z +( b 13 x+ b 14 y+ b 15 z+ b 16 w) w , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSIaaG ikaiaadkgadaWgaaWcbaGaaGyoaaqabaGccaWG4bGaey4kaSIaamOy amaaBaaaleaacaaIXaGaaGimaaqabaGccaWG5bGaey4kaSIaamOyam aaBaaaleaacaaIXaGaaGymaaqabaGccaWG6bGaey4kaSIaamOyamaa BaaaleaacaaIXaGaaGOmaaqabaGccaWG3bGaaGykaiabgkGi2oaaBa aaleaacaWG6baabeaakiabgUcaRiaaiIcacaWGIbWaaSbaaSqaaiaa igdacaaIZaaabeaakiaadIhacqGHRaWkcaWGIbWaaSbaaSqaaiaaig dacaaI0aaabeaakiaadMhacqGHRaWkcaWGIbWaaSbaaSqaaiaaigda caaI1aaabeaakiaadQhacqGHRaWkcaWGIbWaaSbaaSqaaiaaigdaca aI2aaabeaakiaadEhacaaIPaGaeyOaIy7aaSbaaSqaaiaadEhaaeqa aOGaaGilaaaa@6195@

Y 3 =( c 1 x+ c 2 y+ c 3 z+ c 4 w) x +( c 5 x+ c 6 y+ c 7 z+ c 8 w) y + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIZaaabeaakiaai2dacaaIOaGaam4yamaaBaaaleaacaaI XaaabeaakiaadIhacqGHRaWkcaWGJbWaaSbaaSqaaiaaikdaaeqaaO GaamyEaiabgUcaRiaadogadaWgaaWcbaGaaG4maaqabaGccaWG6bGa ey4kaSIaam4yamaaBaaaleaacaaI0aaabeaakiaadEhacaaIPaGaey OaIy7aaSbaaSqaaiaadIhaaeqaaOGaey4kaSIaaGikaiaadogadaWg aaWcbaGaaGynaaqabaGccaWG4bGaey4kaSIaam4yamaaBaaaleaaca aI2aaabeaakiaadMhacqGHRaWkcaWGJbWaaSbaaSqaaiaaiEdaaeqa aOGaamOEaiabgUcaRiaadogadaWgaaWcbaGaaGioaaqabaGccaWG3b GaaGykaiabgkGi2oaaBaaaleaacaWG5baabeaakiabgUcaRaaa@5E68@

+( c 9 x+ c 10 y+ c 11 z+ c 12 w) z +( c 13 x+ c 14 y+ c 15 z+ c 16 w) w . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSIaaG ikaiaadogadaWgaaWcbaGaaGyoaaqabaGccaWG4bGaey4kaSIaam4y amaaBaaaleaacaaIXaGaaGimaaqabaGccaWG5bGaey4kaSIaam4yam aaBaaaleaacaaIXaGaaGymaaqabaGccaWG6bGaey4kaSIaam4yamaa BaaaleaacaaIXaGaaGOmaaqabaGccaWG3bGaaGykaiabgkGi2oaaBa aaleaacaWG6baabeaakiabgUcaRiaaiIcacaWGJbWaaSbaaSqaaiaa igdacaaIZaaabeaakiaadIhacqGHRaWkcaWGJbWaaSbaaSqaaiaaig dacaaI0aaabeaakiaadMhacqGHRaWkcaWGJbWaaSbaaSqaaiaaigda caaI1aaabeaakiaadQhacqGHRaWkcaWGJbWaaSbaaSqaaiaaigdaca aI2aaabeaakiaadEhacaaIPaGaeyOaIy7aaSbaaSqaaiaadEhaaeqa aOGaaGOlaaaa@619F@

Тогда для них коммутационные соотношения

[ Y 1 , Y 2 ]=0,[ Y 1 , Y 3 ]= Y 1 ,[ Y 2 , Y 3 ]= Y 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaadM fadaWgaaWcbaGaaGymaaqabaGccaaISaGaamywamaaBaaaleaacaaI Yaaabeaakiaai2facaaI9aGaaGimaiaaiYcacaaMf8UaaG4waiaadM fadaWgaaWcbaGaaGymaaqabaGccaaISaGaamywamaaBaaaleaacaaI Zaaabeaakiaai2facaaI9aGaamywamaaBaaaleaacaaIXaaabeaaki aaiYcacaaMf8UaaG4waiaadMfadaWgaaWcbaGaaGOmaaqabaGccaaI SaGaamywamaaBaaaleaacaaIZaaabeaakiaai2facaaI9aGaamywam aaBaaaleaacaaIYaaabeaaaaa@5385@

не выполняются.

Доказательство. Оператор Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@  берётся из системы (5.12) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (5.16), а операторы Y 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIYaaabeaaaaa@37B9@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  согласно лемме 1, поскольку [ Y 1 , Y 2 ]=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaadM fadaWgaaWcbaGaaGymaaqabaGccaaISaGaamywamaaBaaaleaacaaI Yaaabeaakiaai2facaaI9aGaaGimaaaa@3D95@ . Далее, вычисляя коммутатор [ Y 1 , Y 3 ]= Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaadM fadaWgaaWcbaGaaGymaaqabaGccaaISaGaamywamaaBaaaleaacaaI Zaaabeaakiaai2facaaI9aGaamywamaaBaaaleaacaaIXaaabeaaaa a@3EA1@  (лемма 2), приходим в единственному варианту для этих трёх операторов:

Y 1 =y x +z y +w z , Y 2 =( b 1 x+ b 2 y+ b 3 z+ b 4 w) x +( b 1 y+ b 2 z+ b 3 w) y +( b 1 z+ b 2 w) z + b 1 w w , Y 3 =( c 1 x+ c 2 y+ c 3 z+ c 4 w) x +( c 1 yy+ c 2 z+ c 3 w) y +( c 1 z2z+ c 2 w) z +( c 1 w3w) w . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabmqaaa qaaiaadMfadaWgaaWcbaGaaGymaaqabaGccaaI9aGaamyEaiabgkGi 2oaaBaaaleaacaWG4baabeaakiabgUcaRiaadQhacqGHciITdaWgaa WcbaGaamyEaaqabaGccqGHRaWkcaWG3bGaeyOaIy7aaSbaaSqaaiaa dQhaaeqaaOGaaGilaaqaaiaadMfadaWgaaWcbaGaaGOmaaqabaGcca aI9aGaaGikaiaadkgadaWgaaWcbaGaaGymaaqabaGccaWG4bGaey4k aSIaamOyamaaBaaaleaacaaIYaaabeaakiaadMhacqGHRaWkcaWGIb WaaSbaaSqaaiaaiodaaeqaaOGaamOEaiabgUcaRiaadkgadaWgaaWc baGaaGinaaqabaGccaWG3bGaaGykaiabgkGi2oaaBaaaleaacaWG4b aabeaakiabgUcaRiaaiIcacaWGIbWaaSbaaSqaaiaaigdaaeqaaOGa amyEaiabgUcaRiaadkgadaWgaaWcbaGaaGOmaaqabaGccaWG6bGaey 4kaSIaamOyamaaBaaaleaacaaIZaaabeaakiaadEhacaaIPaGaeyOa Iy7aaSbaaSqaaiaadMhaaeqaaOGaey4kaSIaaGikaiaadkgadaWgaa WcbaGaaGymaaqabaGccaWG6bGaey4kaSIaamOyamaaBaaaleaacaaI YaaabeaakiaadEhacaaIPaGaeyOaIy7aaSbaaSqaaiaadQhaaeqaaO Gaey4kaSIaamOyamaaBaaaleaacaaIXaaabeaakiaadEhacqGHciIT daWgaaWcbaGaam4DaaqabaGccaaISaaabaGaamywamaaBaaaleaaca aIZaaabeaakiaai2dacaaIOaGaam4yamaaBaaaleaacaaIXaaabeaa kiaadIhacqGHRaWkcaWGJbWaaSbaaSqaaiaaikdaaeqaaOGaamyEai abgUcaRiaadogadaWgaaWcbaGaaG4maaqabaGccaWG6bGaey4kaSIa am4yamaaBaaaleaacaaI0aaabeaakiaadEhacaaIPaGaeyOaIy7aaS baaSqaaiaadIhaaeqaaOGaey4kaSIaaGikaiaadogadaWgaaWcbaGa aGymaaqabaGccaWG5bGaeyOeI0IaamyEaiabgUcaRiaadogadaWgaa WcbaGaaGOmaaqabaGccaWG6bGaey4kaSIaam4yamaaBaaaleaacaaI ZaaabeaakiaadEhacaaIPaGaeyOaIy7aaSbaaSqaaiaadMhaaeqaaO Gaey4kaSIaaGikaiaadogadaWgaaWcbaGaaGymaaqabaGccaWG6bGa eyOeI0IaaGOmaiaadQhacqGHRaWkcaWGJbWaaSbaaSqaaiaaikdaae qaaOGaam4DaiaaiMcacqGHciITdaWgaaWcbaGaamOEaaqabaGccqGH RaWkcaaIOaGaam4yamaaBaaaleaacaaIXaaabeaakiaadEhacqGHsi slcaaIZaGaam4DaiaaiMcacqGHciITdaWgaaWcbaGaam4DaaqabaGc caaIUaaaaaaa@BAEC@

Наконец, вычисляя коммутатор [ Y 2 , Y 3 ]= Y 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaadM fadaWgaaWcbaGaaGOmaaqabaGccaaISaGaamywamaaBaaaleaacaaI Zaaabeaakiaai2facaaI9aGaamywamaaBaaaleaacaaIYaaabeaaaa a@3EA3@ , получаем Y 2 = c 2 Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIYaaabeaakiaai2dacaWGJbWaaSbaaSqaaiaaikdaaeqa aOGaamywamaaBaaaleaacaaIXaaabeaaaaa@3C29@ , что недопустимо для базисных операторов.

Теперь возвращаемся к доказательству теоремы 7.

Сначала рассмотрим алгебру 1 из (4.3). Операторы Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@ , Y 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIYaaabeaaaaa@37B9@ , Y 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIZaaabeaaaaa@37BA@  берутся из леммы 1. Если ε=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaaG ypaiaaicdaaaa@391B@ , то по лемме 1 вычисляется оператор Y 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaI0aaabeaaaaa@37BB@ . В таком случае

[ Y 1 , Y 4 ]=[ Y 2 , Y 4 ]=[ Y 3 , Y 4 ]=0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaadM fadaWgaaWcbaGaaGymaaqabaGccaaISaGaamywamaaBaaaleaacaaI 0aaabeaakiaai2facaaI9aGaaG4waiaadMfadaWgaaWcbaGaaGOmaa qabaGccaaISaGaamywamaaBaaaleaacaaI0aaabeaakiaai2facaaI 9aGaaG4waiaadMfadaWgaaWcbaGaaG4maaqabaGccaaISaGaamywam aaBaaaleaacaaI0aaabeaakiaai2facaaI9aGaaGimaiaaiYcaaaa@4C24@

значит алгебра 1 коммутативна; тогда получаем системы (5.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (5.5). Если же ε=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaaG ypaiaaigdaaaa@391C@ , то согласно леммам 1 и 2 будем иметь

Y 1 =y x +z y +w z , Y 2 =( b 1 x+ b 2 y+ b 3 z+ b 4 w) x +( b 1 y+ b 2 z+ b 3 w) y +( b 1 z+ b 2 w) z + b 1 w w , Y 3 =( c 1 x+ c 2 y+ c 3 z+ c 4 w) x +( c 1 y+ c 2 z+ c 3 w) y +( c 1 z+ c 2 w) z + c 1 w w , Y 4 =( d 1 x+ d 2 y+ d 3 z+ d 4 w) x +( d 1 yy+ d 2 z+ d 3 w) y +( d 1 z2z+ d 2 w) z +( d 1 w3w) w . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabqqaaa aabaGaamywamaaBaaaleaacaaIXaaabeaakiaai2dacaWG5bGaeyOa Iy7aaSbaaSqaaiaadIhaaeqaaOGaey4kaSIaamOEaiabgkGi2oaaBa aaleaacaWG5baabeaakiabgUcaRiaadEhacqGHciITdaWgaaWcbaGa amOEaaqabaGccaaISaaabaGaamywamaaBaaaleaacaaIYaaabeaaki aai2dacaaIOaGaamOyamaaBaaaleaacaaIXaaabeaakiaadIhacqGH RaWkcaWGIbWaaSbaaSqaaiaaikdaaeqaaOGaamyEaiabgUcaRiaadk gadaWgaaWcbaGaaG4maaqabaGccaWG6bGaey4kaSIaamOyamaaBaaa leaacaaI0aaabeaakiaadEhacaaIPaGaeyOaIy7aaSbaaSqaaiaadI haaeqaaOGaey4kaSIaaGikaiaadkgadaWgaaWcbaGaaGymaaqabaGc caWG5bGaey4kaSIaamOyamaaBaaaleaacaaIYaaabeaakiaadQhacq GHRaWkcaWGIbWaaSbaaSqaaiaaiodaaeqaaOGaam4DaiaaiMcacqGH ciITdaWgaaWcbaGaamyEaaqabaGccqGHRaWkcaaIOaGaamOyamaaBa aaleaacaaIXaaabeaakiaadQhacqGHRaWkcaWGIbWaaSbaaSqaaiaa ikdaaeqaaOGaam4DaiaaiMcacqGHciITdaWgaaWcbaGaamOEaaqaba GccqGHRaWkcaWGIbWaaSbaaSqaaiaaigdaaeqaaOGaam4DaiabgkGi 2oaaBaaaleaacaWG3baabeaakiaaiYcaaeaacaWGzbWaaSbaaSqaai aaiodaaeqaaOGaaGypaiaaiIcacaWGJbWaaSbaaSqaaiaaigdaaeqa aOGaamiEaiabgUcaRiaadogadaWgaaWcbaGaaGOmaaqabaGccaWG5b Gaey4kaSIaam4yamaaBaaaleaacaaIZaaabeaakiaadQhacqGHRaWk caWGJbWaaSbaaSqaaiaaisdaaeqaaOGaam4DaiaaiMcacqGHciITda WgaaWcbaGaamiEaaqabaGccqGHRaWkcaaIOaGaam4yamaaBaaaleaa caaIXaaabeaakiaadMhacqGHRaWkcaWGJbWaaSbaaSqaaiaaikdaae qaaOGaamOEaiabgUcaRiaadogadaWgaaWcbaGaaG4maaqabaGccaWG 3bGaaGykaiabgkGi2oaaBaaaleaacaWG5baabeaakiabgUcaRiaaiI cacaWGJbWaaSbaaSqaaiaaigdaaeqaaOGaamOEaiabgUcaRiaadoga daWgaaWcbaGaaGOmaaqabaGccaWG3bGaaGykaiabgkGi2oaaBaaale aacaWG6baabeaakiabgUcaRiaadogadaWgaaWcbaGaaGymaaqabaGc caWG3bGaeyOaIy7aaSbaaSqaaiaadEhaaeqaaOGaaGilaaqaaiaadM fadaWgaaWcbaGaaGinaaqabaGccaaI9aGaaGikaiaadsgadaWgaaWc baGaaGymaaqabaGccaWG4bGaey4kaSIaamizamaaBaaaleaacaaIYa aabeaakiaadMhacqGHRaWkcaWGKbWaaSbaaSqaaiaaiodaaeqaaOGa amOEaiabgUcaRiaadsgadaWgaaWcbaGaaGinaaqabaGccaWG3bGaaG ykaiabgkGi2oaaBaaaleaacaWG4baabeaakiabgUcaRiaaiIcacaWG KbWaaSbaaSqaaiaaigdaaeqaaOGaamyEaiabgkHiTiaadMhacqGHRa WkcaWGKbWaaSbaaSqaaiaaikdaaeqaaOGaamOEaiabgUcaRiaadsga daWgaaWcbaGaaG4maaqabaGccaWG3bGaaGykaiabgkGi2oaaBaaale aacaWG5baabeaakiabgUcaRiaaiIcacaWGKbWaaSbaaSqaaiaaigda aeqaaOGaamOEaiabgkHiTiaaikdacaWG6bGaey4kaSIaamizamaaBa aaleaacaaIYaaabeaakiaadEhacaaIPaGaeyOaIy7aaSbaaSqaaiaa dQhaaeqaaOGaey4kaSIaaGikaiaadsgadaWgaaWcbaGaaGymaaqaba GccaWG3bGaeyOeI0IaaG4maiaadEhacaaIPaGaeyOaIy7aaSbaaSqa aiaadEhaaeqaaOGaaGOlaaaaaaa@F138@

Вычисляя остальные коммутаторы

[ Y 2 , Y 4 ]=k Y 2 ,[ Y 3 , Y 4 ]=l Y 3 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaadM fadaWgaaWcbaGaaGOmaaqabaGccaaISaGaamywamaaBaaaleaacaaI 0aaabeaakiaai2facaaI9aGaam4AaiaadMfadaWgaaWcbaGaaGOmaa qabaGccaaISaGaaGzbVlaaiUfacaWGzbWaaSbaaSqaaiaaiodaaeqa aOGaaGilaiaadMfadaWgaaWcbaGaaGinaaqabaGccaaIDbGaaGypai aadYgacaWGzbWaaSbaaSqaaiaaiodaaeqaaOGaaGilaaaa@4C46@

получаем (5.6) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (5.8).

Исследуем теперь алгебру 2 из (4.3). Операторы Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@ , Y 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIYaaabeaaaaa@37B9@ , Y 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIZaaabeaaaaa@37BA@  берутся из леммы 1, а Y 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaI0aaabeaaaaa@37BB@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  произвольного линейного вида. Если Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@  совпадает с (0.5.12), то из соотношения

[ Y 1 , Y 4 ]=k Y 1 + Y 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaadM fadaWgaaWcbaGaaGymaaqabaGccaaISaGaamywamaaBaaaleaacaaI 0aaabeaakiaai2facaaI9aGaam4AaiaadMfadaWgaaWcbaGaaGymaa qabaGccqGHRaWkcaWGzbWaaSbaaSqaaiaaikdaaeqaaaaa@4244@

получаем k Y 1 + Y 2 =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiaadM fadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGzbWaaSbaaSqaaiaa ikdaaeqaaOGaaGypaiaaicdaaaa@3CE5@ , что недопустимо. Пусть теперь Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@  совпадает с (5.13); тогда из

[ Y 1 , Y 4 ]=k Y 1 + Y 2 ,[ Y 2 , Y 4 ]= Y 1 +k Y 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaadM fadaWgaaWcbaGaaGymaaqabaGccaaISaGaamywamaaBaaaleaacaaI 0aaabeaakiaai2facaaI9aGaam4AaiaadMfadaWgaaWcbaGaaGymaa qabaGccqGHRaWkcaWGzbWaaSbaaSqaaiaaikdaaeqaaOGaaGilaiaa ywW7caaIBbGaamywamaaBaaaleaacaaIYaaabeaakiaaiYcacaWGzb WaaSbaaSqaaiaaisdaaeqaaOGaaGyxaiaai2dacqGHsislcaWGzbWa aSbaaSqaaiaaigdaaeqaaOGaey4kaSIaam4AaiaadMfadaWgaaWcba GaaGOmaaqabaaaaa@51D1@  (5.28)

 следует λ 5 = λ 6 = λ 7 =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaaiwdaaeqaaOGaaGypaiabeU7aSnaaBaaaleaacaaI2aaa beaakiaai2dacqaH7oaBdaWgaaWcbaGaaG4naaqabaGccaaI9aGaaG imaaaa@4100@ , что недопустимо. Если же Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@  совпадает с (5.14), то из (5.28) следует λ 5 = λ 8 =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaaiwdaaeqaaOGaaGypaiabeU7aSnaaBaaaleaacaaI4aaa beaakiaai2dacaaIWaaaaa@3D90@ , что недопустимо. Если Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@  совпадает с (5.15), то из (5.28) следует λ 9 = λ 10 =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaaiMdaaeqaaOGaaGypaiabeU7aSnaaBaaaleaacaaIXaGa aGimaaqabaGccaaI9aGaaGimaaaa@3E47@ , что также недопустимо. Если Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@  совпадает с (5.16), то получаем противоречие b 2 2 +1=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyamaaDa aaleaacaaIYaaabaGaaGOmaaaakiabgUcaRiaaigdacaaI9aGaaGim aaaa@3BA7@ .

Аналогично, из алгебры 3 получаем два положительных результата (5.9) и (5.10), а из 4 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  (5.11).

Из леммы 4 вытекает, что алгебры 5 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ 7 дают отрицательный результат, а из лемм 5 и 6 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  отрицательный результат для алгебр 8 и 9

Алгебры 10 и 11 также не реализуются. В этом легко убедиться, взяв Y 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaI0aaabeaaaaa@37BB@  из системы (5.12) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (5.16); тогда по лемме 1 находим операторы Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@ , Y 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIYaaabeaaaaa@37B9@ , Y 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIZaaabeaaaaa@37BA@ , которые между собой коммутативны.

Таким образом, теорема 7 доказана.

Далее из восьмимерных линейных пространств, найденных в теореме 7, выделим алгебры Ли локально ограниченно точно дважды транзитивных групп Ли преобразований пространства R 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaCa aaleqabaGaaGinaaaaaaa@37B5@ . Для этого применим теорему 6 и используем возможность перехода к новому базису (линейной комбинации базисных операторов).

Теорема 8 Из восьмимерных линейных пространств (5.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ (5.11) выделяются восьмимерные алгебры Ли локально ограниченно точно дважды транзитивных групп Ли преобразований пространстваЁ R 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaCa aaleqabaGaaGinaaaaaaa@37B5@ , полученных расширением группы параллельных переносов. Базис этих алгебр Ли, с точностью до линейных комбинаций операторов и линейных замен координат, состоит из операторов дифференцирования X 1 = x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIXaaabeaakiaai2dacqGHciITdaWgaaWcbaGaamiEaaqa baaaaa@3B17@ , X 2 = y MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIYaaabeaakiaai2dacqGHciITdaWgaaWcbaGaamyEaaqa baaaaa@3B19@ , X 3 = z MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIZaaabeaakiaai2dacqGHciITdaWgaaWcbaGaamOEaaqa baaaaa@3B1B@ , X 4 = w MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaI0aaabeaakiaai2dacqGHciITdaWgaaWcbaGaam4Daaqa baaaaa@3B19@ , а также из операторов Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@ , Y 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIYaaabeaaaaa@37B9@ , Y 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIZaaabeaaaaa@37BA@ , Y 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaI0aaabeaaaaa@37BB@ :

Y 1 =x x , Y 2 =y y , Y 3 =z z , Y 4 =w w ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaakiaai2dacaWG4bGaeyOaIy7aaSbaaSqaaiaa dIhaaeqaaOGaaGilaiaaywW7caWGzbWaaSbaaSqaaiaaikdaaeqaaO GaaGypaiaadMhacqGHciITdaWgaaWcbaGaamyEaaqabaGccaaISaGa aGzbVlaadMfadaWgaaWcbaGaaG4maaqabaGccaaI9aGaamOEaiabgk Gi2oaaBaaaleaacaWG6baabeaakiaaiYcacaaMf8UaamywamaaBaaa leaacaaI0aaabeaakiaai2dacaWG3bGaeyOaIy7aaSbaaSqaaiaadE haaeqaaOGaaG4oaaaa@563E@  (5.29) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGjbVdaa@3780@

Y 1 =(ax+y) x , Y 2 =bx x +y y , Y 3 =cx x +z z , Y 4 =dx x +w w ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaakiaai2dacaaIOaGaamyyaiaadIhacqGHRaWk caWG5bGaaGykaiabgkGi2oaaBaaaleaacaWG4baabeaakiaaiYcaca aMf8UaamywamaaBaaaleaacaaIYaaabeaakiaai2dacaWGIbGaamiE aiabgkGi2oaaBaaaleaacaWG4baabeaakiabgUcaRiaadMhacqGHci ITdaWgaaWcbaGaamyEaaqabaGccaaISaGaaGzbVlaadMfadaWgaaWc baGaaG4maaqabaGccaaI9aGaam4yaiaadIhacqGHciITdaWgaaWcba GaamiEaaqabaGccqGHRaWkcaWG6bGaeyOaIy7aaSbaaSqaaiaadQha aeqaaOGaaGilaiaaywW7caWGzbWaaSbaaSqaaiaaisdaaeqaaOGaaG ypaiaadsgacaWG4bGaeyOaIy7aaSbaaSqaaiaadIhaaeqaaOGaey4k aSIaam4DaiabgkGi2oaaBaaaleaacaWG3baabeaakiaaiUdaaaa@6A89@  (5.30) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGjbVdaa@3780@

Y 1 =w z , Y 2 =z z +w w , Y 3 =x x +y y , Y 4 =y x ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaakiaai2dacaWG3bGaeyOaIy7aaSbaaSqaaiaa dQhaaeqaaOGaaGilaiaaywW7caWGzbWaaSbaaSqaaiaaikdaaeqaaO GaaGypaiaadQhacqGHciITdaWgaaWcbaGaamOEaaqabaGccqGHRaWk caWG3bGaeyOaIy7aaSbaaSqaaiaadEhaaeqaaOGaaGilaiaaywW7ca WGzbWaaSbaaSqaaiaaiodaaeqaaOGaaGypaiaadIhacqGHciITdaWg aaWcbaGaamiEaaqabaGccqGHRaWkcaWG5bGaeyOaIy7aaSbaaSqaai aadMhaaeqaaOGaaGilaiaaywW7caWGzbWaaSbaaSqaaiaaisdaaeqa aOGaaGypaiaadMhacqGHciITdaWgaaWcbaGaamiEaaqabaGccaaI7a aaaa@5F30@  (5.31)

Y 1 =y x +z y , Y 2 =x x +y y +z z , Y 3 =z x , Y 4 =w w ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaakiaai2dacaWG5bGaeyOaIy7aaSbaaSqaaiaa dIhaaeqaaOGaey4kaSIaamOEaiabgkGi2oaaBaaaleaacaWG5baabe aakiaaiYcacaaMf8UaamywamaaBaaaleaacaaIYaaabeaakiaai2da caWG4bGaeyOaIy7aaSbaaSqaaiaadIhaaeqaaOGaey4kaSIaamyEai abgkGi2oaaBaaaleaacaWG5baabeaakiabgUcaRiaadQhacqGHciIT daWgaaWcbaGaamOEaaqabaGccaaISaGaaGzbVlaadMfadaWgaaWcba GaaG4maaqabaGccaaI9aGaamOEaiabgkGi2oaaBaaaleaacaWG4baa beaakiaaiYcacaaMf8UaamywamaaBaaaleaacaaI0aaabeaakiaai2 dacaWG3bGaeyOaIy7aaSbaaSqaaiaadEhaaeqaaOGaaG4oaaaa@63AC@  (5.32)

Y 1 =y x +z y +w z , Y 2 =x x +y y +z z +w w , Y 3 =z x +w y , Y 4 =w x ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaakiaai2dacaWG5bGaeyOaIy7aaSbaaSqaaiaa dIhaaeqaaOGaey4kaSIaamOEaiabgkGi2oaaBaaaleaacaWG5baabe aakiabgUcaRiaadEhacqGHciITdaWgaaWcbaGaamOEaaqabaGccaaI SaGaaGzbVlaadMfadaWgaaWcbaGaaGOmaaqabaGccaaI9aGaamiEai abgkGi2oaaBaaaleaacaWG4baabeaakiabgUcaRiaadMhacqGHciIT daWgaaWcbaGaamyEaaqabaGccqGHRaWkcaWG6bGaeyOaIy7aaSbaaS qaaiaadQhaaeqaaOGaey4kaSIaam4DaiabgkGi2oaaBaaaleaacaWG 3baabeaakiaaiYcacaaMf8UaamywamaaBaaaleaacaaIZaaabeaaki aai2dacaWG6bGaeyOaIy7aaSbaaSqaaiaadIhaaeqaaOGaey4kaSIa am4DaiabgkGi2oaaBaaaleaacaWG5baabeaakiaaiYcacaaMf8Uaam ywamaaBaaaleaacaaI0aaabeaakiaai2dacaWG3bGaeyOaIy7aaSba aSqaaiaadIhaaeqaaOGaaG4oaaaa@7114@  (5.33) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGjbVdaa@3780@

Y 1 =y x +z y +w z , Y 2 =x x +y y +z z +w w , Y 3 =z x +w y , Y 4 =aw x +y y +2z z +3w w ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaiaadMfadaWgaaWcbaGaaGymaaqabaGccaaI9aGaamyEaiabgkGi 2oaaBaaaleaacaWG4baabeaakiabgUcaRiaadQhacqGHciITdaWgaa WcbaGaamyEaaqabaGccqGHRaWkcaWG3bGaeyOaIy7aaSbaaSqaaiaa dQhaaeqaaOGaaGilaiaaywW7caWGzbWaaSbaaSqaaiaaikdaaeqaaO GaaGypaiaadIhacqGHciITdaWgaaWcbaGaamiEaaqabaGccqGHRaWk caWG5bGaeyOaIy7aaSbaaSqaaiaadMhaaeqaaOGaey4kaSIaamOEai abgkGi2oaaBaaaleaacaWG6baabeaakiabgUcaRiaadEhacqGHciIT daWgaaWcbaGaam4DaaqabaGccaaISaaabaGaamywamaaBaaaleaaca aIZaaabeaakiaai2dacaWG6bGaeyOaIy7aaSbaaSqaaiaadIhaaeqa aOGaey4kaSIaam4DaiabgkGi2oaaBaaaleaacaWG5baabeaakiaaiY cacaaMf8UaamywamaaBaaaleaacaaI0aaabeaakiaai2dacaWGHbGa am4DaiabgkGi2oaaBaaaleaacaWG4baabeaakiabgUcaRiaadMhacq GHciITdaWgaaWcbaGaamyEaaqabaGccqGHRaWkcaaIYaGaamOEaiab gkGi2oaaBaaaleaacaWG6baabeaakiabgUcaRiaaiodacaWG3bGaey OaIy7aaSbaaSqaaiaadEhaaeqaaOGaaG4oaaaaaaa@7F5E@  (5.34) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGjbVdaa@3780@

Y 1 =y x +z y +w z , Y 2 =x x +y y +z z +w w , Y 3 =w x , Y 4 =az x +(y+aw) y +2z z +3w w ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaiaadMfadaWgaaWcbaGaaGymaaqabaGccaaI9aGaamyEaiabgkGi 2oaaBaaaleaacaWG4baabeaakiabgUcaRiaadQhacqGHciITdaWgaa WcbaGaamyEaaqabaGccqGHRaWkcaWG3bGaeyOaIy7aaSbaaSqaaiaa dQhaaeqaaOGaaGilaiaaywW7caWGzbWaaSbaaSqaaiaaikdaaeqaaO GaaGypaiaadIhacqGHciITdaWgaaWcbaGaamiEaaqabaGccqGHRaWk caWG5bGaeyOaIy7aaSbaaSqaaiaadMhaaeqaaOGaey4kaSIaamOEai abgkGi2oaaBaaaleaacaWG6baabeaakiabgUcaRiaadEhacqGHciIT daWgaaWcbaGaam4DaaqabaGccaaISaaabaGaamywamaaBaaaleaaca aIZaaabeaakiaai2dacaWG3bGaeyOaIy7aaSbaaSqaaiaadIhaaeqa aOGaaGilaiaaywW7caWGzbWaaSbaaSqaaiaaisdaaeqaaOGaaGypai aadggacaWG6bGaeyOaIy7aaSbaaSqaaiaadIhaaeqaaOGaey4kaSIa aGikaiaadMhacqGHRaWkcaWGHbGaam4DaiaaiMcacqGHciITdaWgaa WcbaGaamyEaaqabaGccqGHRaWkcaaIYaGaamOEaiabgkGi2oaaBaaa leaacaWG6baabeaakiabgUcaRiaaiodacaWG3bGaeyOaIy7aaSbaaS qaaiaadEhaaeqaaOGaaG4oaaaaaaa@7F0F@  (5.35) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGjbVdaa@3780@

Y 1 =y x +z y +w z , Y 2 =z x +w y , Y 3 =w x , Y 4 =ax x +(a1)y y +(a2)z z +(a3)w w ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaiaadMfadaWgaaWcbaGaaGymaaqabaGccaaI9aGaamyEaiabgkGi 2oaaBaaaleaacaWG4baabeaakiabgUcaRiaadQhacqGHciITdaWgaa WcbaGaamyEaaqabaGccqGHRaWkcaWG3bGaeyOaIy7aaSbaaSqaaiaa dQhaaeqaaOGaaGilaiaaywW7caWGzbWaaSbaaSqaaiaaikdaaeqaaO GaaGypaiaadQhacqGHciITdaWgaaWcbaGaamiEaaqabaGccqGHRaWk caWG3bGaeyOaIy7aaSbaaSqaaiaadMhaaeqaaOGaaGilaiaaywW7ca WGzbWaaSbaaSqaaiaaiodaaeqaaOGaaGypaiaadEhacqGHciITdaWg aaWcbaGaamiEaaqabaGccaaISaaabaGaamywamaaBaaaleaacaaI0a aabeaakiaai2dacaWGHbGaamiEaiabgkGi2oaaBaaaleaacaWG4baa beaakiabgUcaRiaaiIcacaWGHbGaeyOeI0IaaGymaiaaiMcacaWG5b GaeyOaIy7aaSbaaSqaaiaadMhaaeqaaOGaey4kaSIaaGikaiaadgga cqGHsislcaaIYaGaaGykaiaadQhacqGHciITdaWgaaWcbaGaamOEaa qabaGccqGHRaWkcaaIOaGaamyyaiabgkHiTiaaiodacaaIPaGaam4D aiabgkGi2oaaBaaaleaacaWG3baabeaakiaaiUdaaaaaaa@7C55@  (5.36)

Y 1 =ay x +z y , Y 2 =z x , Y 3 =w w , Y 4 =(x+by) x +y y +z z ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaakiaai2dacaWGHbGaamyEaiabgkGi2oaaBaaa leaacaWG4baabeaakiabgUcaRiaadQhacqGHciITdaWgaaWcbaGaam yEaaqabaGccaaISaGaaGzbVlaadMfadaWgaaWcbaGaaGOmaaqabaGc caaI9aGaamOEaiabgkGi2oaaBaaaleaacaWG4baabeaakiaaiYcaca aMf8UaamywamaaBaaaleaacaaIZaaabeaakiaai2dacaWG3bGaeyOa Iy7aaSbaaSqaaiaadEhaaeqaaOGaaGilaiaaywW7caWGzbWaaSbaaS qaaiaaisdaaeqaaOGaaGypaiaaiIcacaWG4bGaey4kaSIaamOyaiaa dMhacaaIPaGaeyOaIy7aaSbaaSqaaiaadIhaaeqaaOGaey4kaSIaam yEaiabgkGi2oaaBaaaleaacaWG5baabeaakiabgUcaRiaadQhacqGH ciITdaWgaaWcbaGaamOEaaqabaGccaaI7aaaaa@68BE@  (5.37)

Y 1 =y x +z y +aw w , Y 2 =z x , Y 3 =x x +y y +z z +bw w , Y 4 =cy x +dw w ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaiaadMfadaWgaaWcbaGaaGymaaqabaGccaaI9aGaamyEaiabgkGi 2oaaBaaaleaacaWG4baabeaakiabgUcaRiaadQhacqGHciITdaWgaa WcbaGaamyEaaqabaGccqGHRaWkcaWGHbGaam4DaiabgkGi2oaaBaaa leaacaWG3baabeaakiaaiYcacaaMf8UaamywamaaBaaaleaacaaIYa aabeaakiaai2dacaWG6bGaeyOaIy7aaSbaaSqaaiaadIhaaeqaaOGa aGilaaqaaiaadMfadaWgaaWcbaGaaG4maaqabaGccaaI9aGaamiEai abgkGi2oaaBaaaleaacaWG4baabeaakiabgUcaRiaadMhacqGHciIT daWgaaWcbaGaamyEaaqabaGccqGHRaWkcaWG6bGaeyOaIy7aaSbaaS qaaiaadQhaaeqaaOGaey4kaSIaamOyaiaadEhacqGHciITdaWgaaWc baGaam4DaaqabaGccaaISaGaaGzbVlaadMfadaWgaaWcbaGaaGinaa qabaGccaaI9aGaam4yaiaadMhacqGHciITdaWgaaWcbaGaamiEaaqa baGccqGHRaWkcaWGKbGaam4DaiabgkGi2oaaBaaaleaacaWG3baabe aakiaaiUdaaaaaaa@732E@ (5.38) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGjbVdaa@3780@

Y 1 =y x +(z+aw) y +w z , Y 2 =w x , Y 3 =z x +w y , Y 4 =x x +(y+aw) y +z z +w w ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaiaadMfadaWgaaWcbaGaaGymaaqabaGccaaI9aGaamyEaiabgkGi 2oaaBaaaleaacaWG4baabeaakiabgUcaRiaaiIcacaWG6bGaey4kaS IaamyyaiaadEhacaaIPaGaeyOaIy7aaSbaaSqaaiaadMhaaeqaaOGa ey4kaSIaam4DaiabgkGi2oaaBaaaleaacaWG6baabeaakiaaiYcaca aMf8UaamywamaaBaaaleaacaaIYaaabeaakiaai2dacaWG3bGaeyOa Iy7aaSbaaSqaaiaadIhaaeqaaOGaaGilaaqaaiaadMfadaWgaaWcba GaaG4maaqabaGccaaI9aGaamOEaiabgkGi2oaaBaaaleaacaWG4baa beaakiabgUcaRiaadEhacqGHciITdaWgaaWcbaGaamyEaaqabaGcca aISaGaaGzbVlaadMfadaWgaaWcbaGaaGinaaqabaGccaaI9aGaamiE aiabgkGi2oaaBaaaleaacaWG4baabeaakiabgUcaRiaaiIcacaWG5b Gaey4kaSIaamyyaiaadEhacaaIPaGaeyOaIy7aaSbaaSqaaiaadMha aeqaaOGaey4kaSIaamOEaiabgkGi2oaaBaaaleaacaWG6baabeaaki abgUcaRiaadEhacqGHciITdaWgaaWcbaGaam4DaaqabaGccaaI7aaa aaaa@77E5@  (5.39)

Y 1 =(ax+y) x +(ay+z) y +(az+w) z +aw w , Y 2 =w x , Y 3 =(x+cz) x +(y+cw) y +z z +w w , Y 4 =dz x +bw y ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaiaadMfadaWgaaWcbaGaaGymaaqabaGccaaI9aGaaGikaiaadgga caWG4bGaey4kaSIaamyEaiaaiMcacqGHciITdaWgaaWcbaGaamiEaa qabaGccqGHRaWkcaaIOaGaamyyaiaadMhacqGHRaWkcaWG6bGaaGyk aiabgkGi2oaaBaaaleaacaWG5baabeaakiabgUcaRiaaiIcacaWGHb GaamOEaiabgUcaRiaadEhacaaIPaGaeyOaIy7aaSbaaSqaaiaadQha aeqaaOGaey4kaSIaamyyaiaadEhacqGHciITdaWgaaWcbaGaam4Daa qabaGccaaISaGaaGzbVlaadMfadaWgaaWcbaGaaGOmaaqabaGccaaI 9aGaam4DaiabgkGi2oaaBaaaleaacaWG4baabeaakiaaiYcaaeaaca WGzbWaaSbaaSqaaiaaiodaaeqaaOGaaGypaiaaiIcacaWG4bGaey4k aSIaam4yaiaadQhacaaIPaGaeyOaIy7aaSbaaSqaaiaadIhaaeqaaO Gaey4kaSIaaGikaiaadMhacqGHRaWkcaWGJbGaam4DaiaaiMcacqGH ciITdaWgaaWcbaGaamyEaaqabaGccqGHRaWkcaWG6bGaeyOaIy7aaS baaSqaaiaadQhaaeqaaOGaey4kaSIaam4DaiabgkGi2oaaBaaaleaa caWG3baabeaakiaaiYcacaaMf8UaamywamaaBaaaleaacaaI0aaabe aakiaai2dacaWGKbGaamOEaiabgkGi2oaaBaaaleaacaWG4baabeaa kiabgUcaRiaadkgacaWG3bGaeyOaIy7aaSbaaSqaaiaadMhaaeqaaO GaaG4oaaaaaaa@8B99@  (5.40)

Y 1 =(ax+y) x +(ay+z) y +(az+w) z +aw w ,q Y 2 =z x +w y , Y 3 =w x , Y 4 =bx x +(byczdw) y +(bz2cw) z +bw w , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaiaadMfadaWgaaWcbaGaaGymaaqabaGccaaI9aGaaGikaiaadgga caWG4bGaey4kaSIaamyEaiaaiMcacqGHciITdaWgaaWcbaGaamiEaa qabaGccqGHRaWkcaaIOaGaamyyaiaadMhacqGHRaWkcaWG6bGaaGyk aiabgkGi2oaaBaaaleaacaWG5baabeaakiabgUcaRiaaiIcacaWGHb GaamOEaiabgUcaRiaadEhacaaIPaGaeyOaIy7aaSbaaSqaaiaadQha aeqaaOGaey4kaSIaamyyaiaadEhacqGHciITdaWgaaWcbaGaam4Daa qabaGccaaISaGaamyCaiaaywW7caWGzbWaaSbaaSqaaiaaikdaaeqa aOGaaGypaiaadQhacqGHciITdaWgaaWcbaGaamiEaaqabaGccqGHRa WkcaWG3bGaeyOaIy7aaSbaaSqaaiaadMhaaeqaaOGaaGilaaqaaiaa dMfadaWgaaWcbaGaaG4maaqabaGccaaI9aGaam4DaiabgkGi2oaaBa aaleaacaWG4baabeaakiaaiYcacaaMf8UaamywamaaBaaaleaacaaI 0aaabeaakiaai2dacaWGIbGaamiEaiabgkGi2oaaBaaaleaacaWG4b aabeaakiabgUcaRiaaiIcacaWGIbGaamyEaiabgkHiTiaadogacaWG 6bGaeyOeI0IaamizaiaadEhacaaIPaGaeyOaIy7aaSbaaSqaaiaadM haaeqaaOGaey4kaSIaaGikaiaadkgacaWG6bGaeyOeI0IaaGOmaiaa dogacaWG3bGaaGykaiabgkGi2oaaBaaaleaacaWG6baabeaakiabgU caRiaadkgacaWG3bGaeyOaIy7aaSbaaSqaaiaadEhaaeqaaOGaaGil aaaaaaa@91F0@  (5.41)

причем коэффициенты a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaaaa@36D9@ , b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaaaa@36DA@ , c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaaaa@36DB@ , d MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaaaa@36DC@  постоянны.

Доказательство. этой теоремы проводится в два этапа. На первом этапе применяем теорему 6. Для этого исследуем на невырожденность матрицу K MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saaaa@36C3@ , составленную из коэффициентов операторов Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@ , Y 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIYaaabeaaaaa@37B9@ , Y 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIZaaabeaaaaa@37BA@  и Y 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaI0aaabeaaaaa@37BB@ . Например, для линейного пространства (5.1) эта матрица имеет вид

K= λ 1 x λ 2 y λ 3 z λ 4 w b 1 x b 2 y b 3 z b 4 w c 1 x c 2 y c 3 z c 4 w d 1 x d 2 y d 3 z d 4 w . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaai2 dadaqadaqaauaabeqafqaaaaaabaGaeq4UdW2aaSbaaSqaaiaaigda aeqaaOGaamiEaaqaaiabeU7aSnaaBaaaleaacaaIYaaabeaakiaadM haaeaacqaH7oaBdaWgaaWcbaGaaG4maaqabaGccaWG6baabaGaeq4U dW2aaSbaaSqaaiaaisdaaeqaaOGaam4DaaqaaiaadkgadaWgaaWcba GaaGymaaqabaGccaWG4baabaGaamOyamaaBaaaleaacaaIYaaabeaa kiaadMhaaeaacaWGIbWaaSbaaSqaaiaaiodaaeqaaOGaamOEaaqaai aadkgadaWgaaWcbaGaaGinaaqabaGccaWG3baabaGaam4yamaaBaaa leaacaaIXaaabeaakiaadIhaaeaacaWGJbWaaSbaaSqaaiaaikdaae qaaOGaamyEaaqaaiaadogadaWgaaWcbaGaaG4maaqabaGccaWG6baa baGaam4yamaaBaaaleaacaaI0aaabeaakiaadEhaaeaacaWGKbWaaS baaSqaaiaaigdaaeqaaOGaamiEaaqaaiaadsgadaWgaaWcbaGaaGOm aaqabaGccaWG5baabaGaamizamaaBaaaleaacaaIZaaabeaakiaadQ haaeaacaWGKbWaaSbaaSqaaiaaisdaaeqaaOGaam4Daaqaaaqaaaqa aaqaaaaaaiaawIcacaGLPaaacaaIUaaaaa@6AA0@

Требование невырожденности равносильно линейной независимости операторов Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@ , Y 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIYaaabeaaaaa@37B9@ , Y 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIZaaabeaaaaa@37BA@  и Y 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaI0aaabeaaaaa@37BB@ . На втором этапе линейно комбинируем операторы Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@ , Y 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIYaaabeaaaaa@37B9@ , Y 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIZaaabeaaaaa@37BA@  и Y 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaI0aaabeaaaaa@37BB@ , что приводит к упрощению базиса соответствующих алгебр Ли. Так, например, система (5.1) линейной комбинацией приводится к (5.29). Таким образом производится выделение алгебр Ли (5.29) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (5.41).

6. Вычисления локально ограниченно точно дважды транзитивных действий. Экспоненциальное отображение оператора Y MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywaaaa@36D1@  определяем формулой

x y z w =Exp(tY) x y z w = x y z w +tY x y z w + (tY) 2 2! x y z w +. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafa qabeabbaaaaeaaceWG4bGbauaaaeaaceWG5bGbauaaaeaaceWG6bGb auaaaeaaceWG3bGbauaaaaaacaGLOaGaayzkaaGaaGypaiaadweaca WG4bGaamiCaiaaiIcacaWG0bGaamywaiaaiMcadaqadaqaauaabeqa eeaaaaqaaiaadIhaaeaacaWG5baabaGaamOEaaqaaiaadEhaaaaaca GLOaGaayzkaaGaaGypamaabmaabaqbaeqabqqaaaaabaGaamiEaaqa aiaadMhaaeaacaWG6baabaGaam4DaaaaaiaawIcacaGLPaaacqGHRa WkcaWG0bGaamywamaabmaabaqbaeqabqqaaaaabaGaamiEaaqaaiaa dMhaaeaacaWG6baabaGaam4DaaaaaiaawIcacaGLPaaacqGHRaWkda WcaaqaaiaaiIcacaWG0bGaamywaiaaiMcadaahaaWcbeqaaiaaikda aaaakeaacaaIYaGaaGyiaaaadaqadaqaauaabeqaeeaaaaqaaiaadI haaeaacaWG5baabaGaamOEaaqaaiaadEhaaaaacaGLOaGaayzkaaGa ey4kaSIaeSOjGSKaaGOlaaaa@6576@  (6.1)

Теорема 9 Локальные группы Ли преобразований трехмерного пространства R 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaCa aaleqabaGaaGinaaaaaaa@37B5@ , задающие локально ограниченно точно дважды транзитивные действия в R 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaCa aaleqabaGaaGinaaaaaaa@37B5@ , в подходящих обозначениях параметров и координат принимают следующий вид:

x = a 1 x+ a 5 , y = a 2 y+ a 6 , z = a 3 z+ a 7 , w = a 4 z+ a 8 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaafa GaaGypaiaadggadaWgaaWcbaGaaGymaaqabaGccaWG4bGaey4kaSIa amyyamaaBaaaleaacaaI1aaabeaakiaaiYcacaaMf8UabmyEayaafa GaaGypaiaadggadaWgaaWcbaGaaGOmaaqabaGccaWG5bGaey4kaSIa amyyamaaBaaaleaacaaI2aaabeaakiaaiYcacaaMf8UabmOEayaafa GaaGypaiaadggadaWgaaWcbaGaaG4maaqabaGccaWG6bGaey4kaSIa amyyamaaBaaaleaacaaI3aaabeaakiaaiYcacaaMf8Uabm4Dayaafa GaaGypaiaadggadaWgaaWcbaGaaGinaaqabaGccaWG6bGaey4kaSIa amyyamaaBaaaleaacaaI4aaabeaakiaaiUdaaaa@5B1B@  (6.2)

x = a 1 a a 2 b a 3 c a 4 d x+ a 2 a 1 a 1 a + a 5 , y = a 2 y+ a 6 , z = a 3 z+ a 7 , w = a 4 w+ a 8 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaafa GaaGypaiaadggadaqhaaWcbaGaaGymaaqaaiaadggaaaGccaWGHbWa a0baaSqaaiaaikdaaeaacaWGIbaaaOGaamyyamaaDaaaleaacaaIZa aabaGaam4yaaaakiaadggadaqhaaWcbaGaaGinaaqaaiaadsgaaaGc caWG4bGaey4kaSIaamyyamaaBaaaleaacaaIYaaabeaakmaabmaaba WaaSaaaeaacaWGHbWaa0baaSqaaiaaigdaaeaacaWGHbaaaOGaeyOe I0IaaGymaaqaaiaadggaaaaacaGLOaGaayzkaaGaey4kaSIaamyyam aaBaaaleaacaaI1aaabeaakiaaiYcacaaMf8UabmyEayaafaGaaGyp aiaadggadaWgaaWcbaGaaGOmaaqabaGccaWG5bGaey4kaSIaamyyam aaBaaaleaacaaI2aaabeaakiaaiYcacaaMf8UabmOEayaafaGaaGyp aiaadggadaWgaaWcbaGaaG4maaqabaGccaWG6bGaey4kaSIaamyyam aaBaaaleaacaaI3aaabeaakiaaiYcacaaMf8Uabm4DayaafaGaaGyp aiaadggadaWgaaWcbaGaaGinaaqabaGccaWG3bGaey4kaSIaamyyam aaBaaaleaacaaI4aaabeaakiaaiUdaaaa@6DE4@  (6.3)

x = a 1 x+ a 2 y+ a 5 , y = a 1 y+ a 6 , z = a 3 z+ a 4 w+ a 7 , w = a 3 w+ a 8 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaafa GaaGypaiaadggadaWgaaWcbaGaaGymaaqabaGccaWG4bGaey4kaSIa amyyamaaBaaaleaacaaIYaaabeaakiaadMhacqGHRaWkcaWGHbWaaS baaSqaaiaaiwdaaeqaaOGaaGilaiaaywW7ceWG5bGbauaacaaI9aGa amyyamaaBaaaleaacaaIXaaabeaakiaadMhacqGHRaWkcaWGHbWaaS baaSqaaiaaiAdaaeqaaOGaaGilaiaaywW7ceWG6bGbauaacaaI9aGa amyyamaaBaaaleaacaaIZaaabeaakiaadQhacqGHRaWkcaWGHbWaaS baaSqaaiaaisdaaeqaaOGaam4DaiabgUcaRiaadggadaWgaaWcbaGa aG4naaqabaGccaaISaGaaGzbVlqadEhagaqbaiaai2dacaWGHbWaaS baaSqaaiaaiodaaeqaaOGaam4DaiabgUcaRiaadggadaWgaaWcbaGa aGioaaqabaGccaaI7aaaaa@6286@  (6.4)

x = a 2 x+ a 3 z+ a 1 y+ a 5 , y = a 2 y+ a 1 z+ a 6 , z = a 2 z+ a 7 , w = a 4 w+ a 8 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaafa GaaGypaiaadggadaWgaaWcbaGaaGOmaaqabaGccaWG4bGaey4kaSIa amyyamaaBaaaleaacaaIZaaabeaakiaadQhacqGHRaWkcaWGHbWaaS baaSqaaiaaigdaaeqaaOGaamyEaiabgUcaRiaadggadaWgaaWcbaGa aGynaaqabaGccaaISaGaaGzbVlqadMhagaqbaiaai2dacaWGHbWaaS baaSqaaiaaikdaaeqaaOGaamyEaiabgUcaRiaadggadaWgaaWcbaGa aGymaaqabaGccaWG6bGaey4kaSIaamyyamaaBaaaleaacaaI2aaabe aakiaaiYcacaaMf8UabmOEayaafaGaaGypaiaadggadaWgaaWcbaGa aGOmaaqabaGccaWG6bGaey4kaSIaamyyamaaBaaaleaacaaI3aaabe aakiaaiYcacaaMf8Uabm4DayaafaGaaGypaiaadggadaWgaaWcbaGa aGinaaqabaGccaWG3bGaey4kaSIaamyyamaaBaaaleaacaaI4aaabe aakiaaiUdaaaa@6641@  (6.5)

x = a 2 x+ a 3 z+ a 4 w+ a 1 y+ a 5 , y = a 2 y+ a 1 z+ a 3 w+ a 6 , z = a 2 z+ a 1 w+ a 7 , w = a 2 w+ a 8 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaiqadIhagaqbaiaai2dacaWGHbWaaSbaaSqaaiaaikdaaeqaaOGa amiEaiabgUcaRiaadggadaWgaaWcbaGaaG4maaqabaGccaWG6bGaey 4kaSIaamyyamaaBaaaleaacaaI0aaabeaakiaadEhacqGHRaWkcaWG HbWaaSbaaSqaaiaaigdaaeqaaOGaamyEaiabgUcaRiaadggadaWgaa WcbaGaaGynaaqabaGccaaISaGaaGzbVlqadMhagaqbaiaai2dacaWG HbWaaSbaaSqaaiaaikdaaeqaaOGaamyEaiabgUcaRiaadggadaWgaa WcbaGaaGymaaqabaGccaWG6bGaey4kaSIaamyyamaaBaaaleaacaaI ZaaabeaakiaadEhacqGHRaWkcaWGHbWaaSbaaSqaaiaaiAdaaeqaaO GaaGilaaqaaiqadQhagaqbaiaai2dacaWGHbWaaSbaaSqaaiaaikda aeqaaOGaamOEaiabgUcaRiaadggadaWgaaWcbaGaaGymaaqabaGcca WG3bGaey4kaSIaamyyamaaBaaaleaacaaI3aaabeaakiaaiYcacaaM f8Uabm4DayaafaGaaGypaiaadggadaWgaaWcbaGaaGOmaaqabaGcca WG3bGaey4kaSIaamyyamaaBaaaleaacaaI4aaabeaakiaaiUdaaaaa aa@6FE2@  (6.6)

x = a 2 x+ a 3 + 1 2 a 1 2 a 2 z+ a 1 a 3 + 1 6 a 1 3 + a 3 (1+ a 4 3 ) a 2 w+ a 1 a 2 y+ a 5 , y = a 2 a 4 y+ a 1 a 2 a 4 2 z+ a 3 + 1 2 a 1 2 a 2 a 4 w+ a 6 , z = a 2 a 4 2 z+ a 7 , w = a 2 a 4 3 w+ a 8 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaiqadIhagaqbaiaai2dacaWGHbWaaSbaaSqaaiaaikdaaeqaaOGa amiEaiabgUcaRmaabmaabaGaamyyamaaBaaaleaacaaIZaaabeaaki abgUcaRmaalaaabaGaaGymaaqaaiaaikdaaaGaamyyamaaDaaaleaa caaIXaaabaGaaGOmaaaaaOGaayjkaiaawMcaaiaadggadaWgaaWcba GaaGOmaaqabaGccaWG6bGaey4kaSYaaeWaaeaacaWGHbWaaSbaaSqa aiaaigdaaeqaaOGaamyyamaaBaaaleaacaaIZaaabeaakiabgUcaRm aalaaabaGaaGymaaqaaiaaiAdaaaGaamyyamaaDaaaleaacaaIXaaa baGaaG4maaaakiabgUcaRmaalaaabaGaamyyaaqaaiaaiodaaaGaaG ikaiaaigdacqGHRaWkcaWGHbWaa0baaSqaaiaaisdaaeaacaaIZaaa aOGaaGykaaGaayjkaiaawMcaaiaadggadaWgaaWcbaGaaGOmaaqaba GccaWG3bGaey4kaSIaamyyamaaBaaaleaacaaIXaaabeaakiaadgga daWgaaWcbaGaaGOmaaqabaGccaWG5bGaey4kaSIaamyyamaaBaaale aacaaI1aaabeaakiaaiYcaaeaaceWG5bGbauaacaaI9aGaamyyamaa BaaaleaacaaIYaaabeaakiaadggadaWgaaWcbaGaaGinaaqabaGcca WG5bGaey4kaSIaamyyamaaBaaaleaacaaIXaaabeaakiaadggadaWg aaWcbaGaaGOmaaqabaGccaWGHbWaa0baaSqaaiaaisdaaeaacaaIYa aaaOGaamOEaiabgUcaRmaabmaabaGaamyyamaaBaaaleaacaaIZaaa beaakiabgUcaRmaalaaabaGaaGymaaqaaiaaikdaaaGaamyyamaaDa aaleaacaaIXaaabaGaaGOmaaaaaOGaayjkaiaawMcaaiaadggadaWg aaWcbaGaaGOmaaqabaGccaWGHbWaaSbaaSqaaiaaisdaaeqaaOGaam 4DaiabgUcaRiaadggadaWgaaWcbaGaaGOnaaqabaGccaaISaGaaGzb VlqadQhagaqbaiaai2dacaWGHbWaaSbaaSqaaiaaikdaaeqaaOGaam yyamaaDaaaleaacaaI0aaabaGaaGOmaaaakiaadQhacqGHRaWkcaWG HbWaaSbaaSqaaiaaiEdaaeqaaOGaaGilaiaaywW7ceWG3bGbauaaca aI9aGaamyyamaaBaaaleaacaaIYaaabeaakiaadggadaqhaaWcbaGa aGinaaqaaiaaiodaaaGccaWG3bGaey4kaSIaamyyamaaBaaaleaaca aI4aaabeaakiaaiUdaaaaaaa@9E7B@  (6.7)

x = a 2 x+ a 2 ( a 4 2 1)+ 1 2 a 1 2 a 4 2 a 2 z+ a 3 w+ a 1 a 2 a 4 y+ a 5 , y = a 2 a 4 y+ a 1 a 2 a 4 2 z+ A( a 4 )+ 1 2 a 1 2 a 4 3 a 2 w+ a 6 , z = a 2 a 4 2 z+ a 1 a 2 a 4 3 w+ a 7 , w = a 2 a 4 3 w+ a 8 , A(a)=lna+4 ln 2 a 2 +13 ln 3 a 6 +40 ln 4 a 24 +; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabqqaaa aabaGabmiEayaafaGaaGypaiaadggadaWgaaWcbaGaaGOmaaqabaGc caWG4bGaey4kaSYaaeWaaeaadaWcaaqaaiaadggaaeaacaaIYaaaai aaiIcacaWGHbWaa0baaSqaaiaaisdaaeaacaaIYaaaaOGaeyOeI0Ia aGymaiaaiMcacqGHRaWkdaWcaaqaaiaaigdaaeaacaaIYaaaaiaadg gadaqhaaWcbaGaaGymaaqaaiaaikdaaaGccaWGHbWaa0baaSqaaiaa isdaaeaacaaIYaaaaaGccaGLOaGaayzkaaGaamyyamaaBaaaleaaca aIYaaabeaakiaadQhacqGHRaWkcaWGHbWaaSbaaSqaaiaaiodaaeqa aOGaam4DaiabgUcaRiaadggadaWgaaWcbaGaaGymaaqabaGccaWGHb WaaSbaaSqaaiaaikdaaeqaaOGaamyyamaaBaaaleaacaaI0aaabeaa kiaadMhacqGHRaWkcaWGHbWaaSbaaSqaaiaaiwdaaeqaaOGaaGilaa qaaiqadMhagaqbaiaai2dacaWGHbWaaSbaaSqaaiaaikdaaeqaaOGa amyyamaaBaaaleaacaaI0aaabeaakiaadMhacqGHRaWkcaWGHbWaaS baaSqaaiaaigdaaeqaaOGaamyyamaaBaaaleaacaaIYaaabeaakiaa dggadaqhaaWcbaGaaGinaaqaaiaaikdaaaGccaWG6bGaey4kaSYaae WaaeaacaWGbbGaaGikaiaadggadaWgaaWcbaGaaGinaaqabaGccaaI PaGaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaaaacaWGHbWaa0baaS qaaiaaigdaaeaacaaIYaaaaOGaamyyamaaDaaaleaacaaI0aaabaGa aG4maaaaaOGaayjkaiaawMcaaiaadggadaWgaaWcbaGaaGOmaaqaba GccaWG3bGaey4kaSIaamyyamaaBaaaleaacaaI2aaabeaakiaaiYca aeaaceWG6bGbauaacaaI9aGaamyyamaaBaaaleaacaaIYaaabeaaki aadggadaqhaaWcbaGaaGinaaqaaiaaikdaaaGccaWG6bGaey4kaSIa amyyamaaBaaaleaacaaIXaaabeaakiaadggadaWgaaWcbaGaaGOmaa qabaGccaWGHbWaa0baaSqaaiaaisdaaeaacaaIZaaaaOGaam4Daiab gUcaRiaadggadaWgaaWcbaGaaG4naaqabaGccaaISaGaaGzbVlqadE hagaqbaiaai2dacaWGHbWaaSbaaSqaaiaaikdaaeqaaOGaamyyamaa DaaaleaacaaI0aaabaGaaG4maaaakiaadEhacqGHRaWkcaWGHbWaaS baaSqaaiaaiIdaaeqaaOGaaGilaaqaaiaadgeacaaIOaGaamyyaiaa iMcacaaI9aGaciiBaiaac6gacaWGHbGaey4kaSIaaGinamaavacabe WcbeqaaiaaikdaaOqaaiGacYgacaGGUbaaamaalaaabaGaamyyaaqa aiaaikdaaaGaey4kaSIaaGymaiaaiodadaqfGaqabSqabeaacaaIZa aakeaaciGGSbGaaiOBaaaadaWcaaqaaiaadggaaeaacaaI2aaaaiab gUcaRiaaisdacaaIWaWaaubiaeqaleqabaGaaGinaaGcbaGaciiBai aac6gaaaWaaSaaaeaacaWGHbaabaGaaGOmaiaaisdaaaGaey4kaSIa eSOjGSKaaG4oaaaaaaa@BDE9@  (6.8)

x = a 4 4 x+ a 1 a 4 4 y+ a 2 a 4 4 z+ a 3 a 4 4 w+ a 1 y+ a 5 , y = a 4 3 y+ a 1 a 4 3 z+ a 2 a 4 3 w+ a 6 , z = a 4 2 z+ a 1 a 4 2 w+ a 7 , w = a 4 w+ a 8 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaiqadIhagaqbaiaai2dacaWGHbWaa0baaSqaaiaaisdaaeaacaaI 0aaaaOGaamiEaiabgUcaRiaadggadaWgaaWcbaGaaGymaaqabaGcca WGHbWaa0baaSqaaiaaisdaaeaacaaI0aaaaOGaamyEaiabgUcaRiaa dggadaWgaaWcbaGaaGOmaaqabaGccaWGHbWaa0baaSqaaiaaisdaae aacaaI0aaaaOGaamOEaiabgUcaRiaadggadaWgaaWcbaGaaG4maaqa baGccaWGHbWaa0baaSqaaiaaisdaaeaacaaI0aaaaOGaam4DaiabgU caRiaadggadaWgaaWcbaGaaGymaaqabaGccaWG5bGaey4kaSIaamyy amaaBaaaleaacaaI1aaabeaakiaaiYcaaeaaceWG5bGbauaacaaI9a GaamyyamaaDaaaleaacaaI0aaabaGaaG4maaaakiaadMhacqGHRaWk caWGHbWaaSbaaSqaaiaaigdaaeqaaOGaamyyamaaDaaaleaacaaI0a aabaGaaG4maaaakiaadQhacqGHRaWkcaWGHbWaaSbaaSqaaiaaikda aeqaaOGaamyyamaaDaaaleaacaaI0aaabaGaaG4maaaakiaadEhacq GHRaWkcaWGHbWaaSbaaSqaaiaaiAdaaeqaaOGaaGilaiaaywW7ceWG 6bGbauaacaaI9aGaamyyamaaDaaaleaacaaI0aaabaGaaGOmaaaaki aadQhacqGHRaWkcaWGHbWaaSbaaSqaaiaaigdaaeqaaOGaamyyamaa DaaaleaacaaI0aaabaGaaGOmaaaakiaadEhacqGHRaWkcaWGHbWaaS baaSqaaiaaiEdaaeqaaOGaaGilaiaaywW7ceWG3bGbauaacaaI9aGa amyyamaaBaaaleaacaaI0aaabeaakiaadEhacqGHRaWkcaWGHbWaaS baaSqaaiaaiIdaaeqaaOGaaG4oaaaaaaa@856A@  (6.9)

x = a 4 x+ a 3 z+(a a 1 +b a 4 ln a 4 )y+ a 5 , y = a 4 y+ a 1 z+ a 6 , z = a 4 z+ a 7 , w = a 3 w+ a 8 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaiqadIhagaqbaiaai2dacaWGHbWaaSbaaSqaaiaaisdaaeqaaOGa amiEaiabgUcaRiaadggadaWgaaWcbaGaaG4maaqabaGccaWG6bGaey 4kaSIaaGikaiaadggacaWGHbWaaSbaaSqaaiaaigdaaeqaaOGaey4k aSIaamOyaiaadggadaWgaaWcbaGaaGinaaqabaGcciGGSbGaaiOBai aadggadaWgaaWcbaGaaGinaaqabaGccaaIPaGaamyEaiabgUcaRiaa dggadaWgaaWcbaGaaGynaaqabaGccaaISaGaaGzbVlqadMhagaqbai aai2dacaWGHbWaaSbaaSqaaiaaisdaaeqaaOGaamyEaiabgUcaRiaa dggadaWgaaWcbaGaaGymaaqabaGccaWG6bGaey4kaSIaamyyamaaBa aaleaacaaI2aaabeaakiaaiYcaaeaaceWG6bGbauaacaaI9aGaamyy amaaBaaaleaacaaI0aaabeaakiaadQhacqGHRaWkcaWGHbWaaSbaaS qaaiaaiEdaaeqaaOGaaGilaiaaywW7ceWG3bGbauaacaaI9aGaamyy amaaBaaaleaacaaIZaaabeaakiaadEhacqGHRaWkcaWGHbWaaSbaaS qaaiaaiIdaaeqaaOGaaG4oaaaaaaa@6E71@  (6.10)

x = a 3 x+(ln a 1 +cln a 4 ) a 3 y+ a 2 z+ a 5 , y = a 3 y+ a 1 z+ a 6 , z = a 3 z+ a 7 , w = a 1 a a 3 b a 4 d w+ a 8 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaiqadIhagaqbaiaai2dacaWGHbWaaSbaaSqaaiaaiodaaeqaaOGa amiEaiabgUcaRiaaiIcaciGGSbGaaiOBaiaadggadaWgaaWcbaGaaG ymaaqabaGccqGHRaWkcaWGJbGaciiBaiaac6gacaWGHbWaaSbaaSqa aiaaisdaaeqaaOGaaGykaiaadggadaWgaaWcbaGaaG4maaqabaGcca WG5bGaey4kaSIaamyyamaaBaaaleaacaaIYaaabeaakiaadQhacqGH RaWkcaWGHbWaaSbaaSqaaiaaiwdaaeqaaOGaaGilaaqaaiqadMhaga qbaiaai2dacaWGHbWaaSbaaSqaaiaaiodaaeqaaOGaamyEaiabgUca RiaadggadaWgaaWcbaGaaGymaaqabaGccaWG6bGaey4kaSIaamyyam aaBaaaleaacaaI2aaabeaakiaaiYcacaaMf8UabmOEayaafaGaaGyp aiaadggadaWgaaWcbaGaaG4maaqabaGccaWG6bGaey4kaSIaamyyam aaBaaaleaacaaI3aaabeaakiaaiYcacaaMf8Uabm4DayaafaGaaGyp aiaadggadaqhaaWcbaGaaGymaaqaaiaadggaaaGccaWGHbWaa0baaS qaaiaaiodaaeaacaWGIbaaaOGaamyyamaaDaaaleaacaaI0aaabaGa amizaaaakiaadEhacqGHRaWkcaWGHbWaaSbaaSqaaiaaiIdaaeqaaO GaaG4oaaaaaaa@75D5@  (6.11)

x = a 4 x+ a 3 z+ a 2 w+ a 5 , y = a 4 y+ a 1 z+( a 3 +a a 1 +a a 4 ln a 4 )w+ a 6 , z = a 4 z+ a 7 , w = a 4 w+ a 8 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaiqadIhagaqbaiaai2dacaWGHbWaaSbaaSqaaiaaisdaaeqaaOGa amiEaiabgUcaRiaadggadaWgaaWcbaGaaG4maaqabaGccaWG6bGaey 4kaSIaamyyamaaBaaaleaacaaIYaaabeaakiaadEhacqGHRaWkcaWG HbWaaSbaaSqaaiaaiwdaaeqaaOGaaGilaiaaywW7ceWG5bGbauaaca aI9aGaamyyamaaBaaaleaacaaI0aaabeaakiaadMhacqGHRaWkcaWG HbWaaSbaaSqaaiaaigdaaeqaaOGaamOEaiabgUcaRiaaiIcacaWGHb WaaSbaaSqaaiaaiodaaeqaaOGaey4kaSIaamyyaiaadggadaWgaaWc baGaaGymaaqabaGccqGHRaWkcaWGHbGaamyyamaaBaaaleaacaaI0a aabeaakiGacYgacaGGUbGaamyyamaaBaaaleaacaaI0aaabeaakiaa iMcacaWG3bGaey4kaSIaamyyamaaBaaaleaacaaI2aaabeaakiaaiY caaeaaceWG6bGbauaacaaI9aGaamyyamaaBaaaleaacaaI0aaabeaa kiaadQhacqGHRaWkcaWGHbWaaSbaaSqaaiaaiEdaaeqaaOGaaGilai aaywW7ceWG3bGbauaacaaI9aGaamyyamaaBaaaleaacaaI0aaabeaa kiaadEhacqGHRaWkcaWGHbWaaSbaaSqaaiaaiIdaaeqaaOGaaG4oaa aaaaa@74E0@  (6.12)

x = a 1 a a 3 x+ a 1 a a 3 ln a 1 y+ a 1 a a 3 cln a 3 +d a 4 + ln 2 a 1 2 z+ a 1 a a 3 a 2 w+ a 5 , y = a 1 a a 3 y+ a 1 a ln a 1 a 3 z+ a 1 a a 3 b a 4 +cln a 3 + ln 2 a 1 2 w+ a 6 , z = a 1 a a 3 z+ a 1 a ln a 1 a 3 w+ a 7 , w = a a a 3 w+ a 8 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabmqaaa qaaiqadIhagaqbaiaai2dacaWGHbWaa0baaSqaaiaaigdaaeaacaWG HbaaaOGaamyyamaaBaaaleaacaaIZaaabeaakiaadIhacqGHRaWkca WGHbWaa0baaSqaaiaaigdaaeaacaWGHbaaaOGaamyyamaaBaaaleaa caaIZaaabeaakiGacYgacaGGUbGaamyyamaaBaaaleaacaaIXaaabe aakiaadMhacqGHRaWkcaWGHbWaa0baaSqaaiaaigdaaeaacaWGHbaa aOGaamyyamaaBaaaleaacaaIZaaabeaakmaabmaabaGaam4yaiGacY gacaGGUbGaamyyamaaBaaaleaacaaIZaaabeaakiabgUcaRiaadsga caWGHbWaaSbaaSqaaiaaisdaaeqaaOGaey4kaSYaaubiaeqaleqaba GaaGOmaaGcbaGaciiBaiaac6gaaaWaaSaaaeaacaWGHbWaaSbaaSqa aiaaigdaaeqaaaGcbaGaaGOmaaaaaiaawIcacaGLPaaacaWG6bGaey 4kaSIaamyyamaaDaaaleaacaaIXaaabaGaamyyaaaakiaadggadaWg aaWcbaGaaG4maaqabaGccaWGHbWaaSbaaSqaaiaaikdaaeqaaOGaam 4DaiabgUcaRiaadggadaWgaaWcbaGaaGynaaqabaGccaaISaaabaGa bmyEayaafaGaaGypaiaadggadaqhaaWcbaGaaGymaaqaaiaadggaaa GccaWGHbWaaSbaaSqaaiaaiodaaeqaaOGaamyEaiabgUcaRiaadgga daqhaaWcbaGaaGymaaqaaiaadggaaaGcciGGSbGaaiOBaiaadggada WgaaWcbaGaaGymaaqabaGccaWGHbWaaSbaaSqaaiaaiodaaeqaaOGa amOEaiabgUcaRiaadggadaqhaaWcbaGaaGymaaqaaiaadggaaaGcca WGHbWaaSbaaSqaaiaaiodaaeqaaOWaaeWaaeaacaWGIbGaamyyamaa BaaaleaacaaI0aaabeaakiabgUcaRiaadogaciGGSbGaaiOBaiaadg gadaWgaaWcbaGaaG4maaqabaGccqGHRaWkdaqfGaqabSqabeaacaaI YaaakeaaciGGSbGaaiOBaaaadaWcaaqaaiaadggadaWgaaWcbaGaaG ymaaqabaaakeaacaaIYaaaaaGaayjkaiaawMcaaiaadEhacqGHRaWk caWGHbWaaSbaaSqaaiaaiAdaaeqaaOGaaGilaaqaaiqadQhagaqbai aai2dacaWGHbWaa0baaSqaaiaaigdaaeaacaWGHbaaaOGaamyyamaa BaaaleaacaaIZaaabeaakiaadQhacqGHRaWkcaWGHbWaa0baaSqaai aaigdaaeaacaWGHbaaaOGaciiBaiaac6gacaWGHbWaaSbaaSqaaiaa igdaaeqaaOGaamyyamaaBaaaleaacaaIZaaabeaakiaadEhacqGHRa WkcaWGHbWaaSbaaSqaaiaaiEdaaeqaaOGaaGilaiaaywW7ceWG3bGb auaacaaI9aGaamyyamaaBaaaleaacaWGHbaabeaakiaadggadaWgaa WcbaGaaG4maaqabaGccaWG3bGaey4kaSIaamyyamaaBaaaleaacaaI 4aaabeaakiaaiUdaaaaaaa@B6AC@  (6.13)

x = a 1 a a 4 b x+ a 1 a ln a 1 a 4 b ln a 1 y+ a 1 a a 4 b a 2 z+ a 1 a a 4 b a 3 w+ a 5 , y = a 1 a a 4 b y+ a 1 a a 4 b (ln a 1 cln a 1 ln a 4 )z+ a 1 a a 4 b a 2 w+ a 6 , z = a 1 a a 4 b z+ a 1 a a 4 b (ln a 1 2cln a 4 )w+ a 7 , w = a a a 4 b w+ a 8 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabmqaaa qaaiqadIhagaqbaiaai2dacaWGHbWaa0baaSqaaiaaigdaaeaacaWG HbaaaOGaamyyamaaDaaaleaacaaI0aaabaGaamOyaaaakiaadIhacq GHRaWkcaWGHbWaa0baaSqaaiaaigdaaeaacaWGHbaaaOGaciiBaiaa c6gacaWGHbWaaSbaaSqaaiaaigdaaeqaaOGaamyyamaaDaaaleaaca aI0aaabaGaamOyaaaakiGacYgacaGGUbGaamyyamaaBaaaleaacaaI XaaabeaakiaadMhacqGHRaWkcaWGHbWaa0baaSqaaiaaigdaaeaaca WGHbaaaOGaamyyamaaDaaaleaacaaI0aaabaGaamOyaaaakiaadgga daWgaaWcbaGaaGOmaaqabaGccaWG6bGaey4kaSIaamyyamaaDaaale aacaaIXaaabaGaamyyaaaakiaadggadaqhaaWcbaGaaGinaaqaaiaa dkgaaaGccaWGHbWaaSbaaSqaaiaaiodaaeqaaOGaam4DaiabgUcaRi aadggadaWgaaWcbaGaaGynaaqabaGccaaISaaabaGabmyEayaafaGa aGypaiaadggadaqhaaWcbaGaaGymaaqaaiaadggaaaGccaWGHbWaa0 baaSqaaiaaisdaaeaacaWGIbaaaOGaamyEaiabgUcaRiaadggadaqh aaWcbaGaaGymaaqaaiaadggaaaGccaWGHbWaa0baaSqaaiaaisdaae aacaWGIbaaaOGaaGikaiGacYgacaGGUbGaamyyamaaBaaaleaacaaI XaaabeaakiabgkHiTiaadogaciGGSbGaaiOBaiaadggadaWgaaWcba GaaGymaaqabaGcciGGSbGaaiOBaiaadggadaWgaaWcbaGaaGinaaqa baGccaaIPaGaamOEaiabgUcaRiaadggadaqhaaWcbaGaaGymaaqaai aadggaaaGccaWGHbWaa0baaSqaaiaaisdaaeaacaWGIbaaaOGaamyy amaaBaaaleaacaaIYaaabeaakiaadEhacqGHRaWkcaWGHbWaaSbaaS qaaiaaiAdaaeqaaOGaaGilaaqaaiqadQhagaqbaiaai2dacaWGHbWa a0baaSqaaiaaigdaaeaacaWGHbaaaOGaamyyamaaDaaaleaacaaI0a aabaGaamOyaaaakiaadQhacqGHRaWkcaWGHbWaa0baaSqaaiaaigda aeaacaWGHbaaaOGaamyyamaaDaaaleaacaaI0aaabaGaamOyaaaaki aaiIcaciGGSbGaaiOBaiaadggadaWgaaWcbaGaaGymaaqabaGccqGH sislcaaIYaGaam4yaiGacYgacaGGUbGaamyyamaaBaaaleaacaaI0a aabeaakiaaiMcacaWG3bGaey4kaSIaamyyamaaBaaaleaacaaI3aaa beaakiaaiYcacaaMf8Uabm4DayaafaGaaGypaiaadggadaWgaaWcba GaamyyaaqabaGccaWGHbWaa0baaSqaaiaaisdaaeaacaWGIbaaaOGa am4DaiabgUcaRiaadggadaWgaaWcbaGaaGioaaqabaGccaaIUaaaaa aa@B8F8@  (6.14)

Доказательство. сводится к применению экспоненциального отображения (6.1) к базисным операторам алгебр Ли (5.29) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (5.41) и дальнейшему вычислению композиций получаемых действий.

7. Заключение. В работе решена задача локального расширения группы параллельных переносов пространства R 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaCa aaleqabaGaaGinaaaaaaa@37B5@  до локально ограниченно точно дважды транзитивной группы Ли преобразований этого же пространства при двух условиях: T 1 = T 2 = T 3 = T 4 =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIXaaabeaakiaai2dacaWGubWaaSbaaSqaaiaaikdaaeqa aOGaaGypaiaadsfadaWgaaWcbaGaaG4maaqabaGccaaI9aGaamivam aaBaaaleaacaaI0aaabeaakiaai2dacaaIWaaaaa@40F7@ ; матрица U 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvamaaBa aaleaacaaIXaaabeaaaaa@37B4@  имеет совпадающие характеристический и минимальный многочлены и вещественные собственные числа. Эта задача может быть распространена на случай произвольной матрицы U 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvamaaBa aaleaacaaIXaaabeaaaaa@37B4@ , а также на случай ненулевых матриц T 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIXaaabeaaaaa@37B3@ , T 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIYaaabeaaaaa@37B4@ , T 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIZaaabeaaaaa@37B5@ , T 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaI0aaabeaaaaa@37B6@ . Согласно одной из теорем Г. Г. Михайличенко (см. [10]) полученные локально ограниченно точно дважды транзитивные группы Ли преобразований задают двуметрическую феноменологически симметричную геометрию двух множеств (физическую структуру) ранга (3,2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaio dacaaISaGaaGOmaiaaiMcaaaa@3987@ .

×

Об авторах

Владимир Александрович Кыров

Горно-Алтайский государственный университет

Автор, ответственный за переписку.
Email: kyrovVA@yandex.ru
Россия, Горно-Алтайск

Список литературы

  1. Бредон Г. Введение в теорию компактных групп преобразований. — М.: Наука, 1980.
  2. Гантмахер Ф. Р. Теория матриц. — М.: Физматлит, 2010.
  3. Горбацевич В. В. О расширении транзитивных действий групп Ли// Изв. РАН. Сер. мат. — 2017. —81, № 6. — С. 86–99.
  4. Кострикин А. И. Введение в алгебру. — М.: Наука, 1977.
  5. Кыров В. А. К вопросу о локальном расширении группы параллельных переносов трехмерного пространства// Владикавказ. мат. ж. — 2021. — 23, № 1. — С. 32–42.
  6. Кыров В. А. Кратно транзитивная группа Ли преобразований как физическая структура// Мат. тр.— 2021. — 24, № 2. — С. 81–84.
  7. Кыров В. А. Локальное расширение группы параллельных переносов плоскости до локально дважды транзитивной группы Ли преобразований этой же плоскости// Итоги науки техн. Сер. Совр. мат. прилож. Темат. обз. — 2022. — 204. — С. 85–96.
  8. Кыров В. А. О локальном расширении группы параллельных переносов в трехмерном пространстве//Вестн. Удмурт. ун-та. Мат. Мех. Компьют. науки. — 2022. — 32, № 1. — С. 62–80.
  9. Кыров В. А., Михайличенко Г. Г. Вложение аддитивной двуметрической феноменологически симметричной геометрии двух множеств ранга (2, 2) в двуметрические феноменологически симметричные геометрии двух множеств ранга (3, 2)// 2018. — 28, № 3. — С. 305–327.
  10. Михайличенко Г. Г. Групповая симметрия физических cтруктур. — Барнаул, 2003.
  11. Михайличенко Г. Г., Мурадов Р. М. Физические структуры как геометрии двух множеств. — Горно-Алтайск, 2008.
  12. Овсянников Л. В. Групповой анализ дифференциальных уравнений. — М.: Наука, 1978.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Кыров В.А., 2023

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).