Об основном уравнении для обратного оператора Штурма—Лиувилля с разрывным коэффициентом

Обложка

Цитировать

Полный текст

Аннотация

В работе рассматривается краевая задача для оператора Штурма—Лиувилля с разрывным коэффициентом. Получено основное уравнение обратной задачи для краевой задачи и доказана единственность его решения.

Полный текст

1. Введение. Рассмотрим краевую задачу

y +q(x)y= λ 2 ρ(x)y,0xπ, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Iabm yEayaafyaafaGaey4kaSIaamyCaiaaiIcacaWG4bGaaGykaiaadMha caaI9aGaeq4UdW2aaWbaaSqabeaacaaIYaaaaOGaeqyWdiNaaGikai aadIhacaaIPaGaamyEaiaaiYcacaaMf8UaaGimaiabgsMiJkaadIha cqGHKjYOcqaHapaCcaaISaaaaa@4F93@  (1)

y(0)= y (π)=0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiaaiI cacaaIWaGaaGykaiaai2daceWG5bGbauaacaaIOaGaeqiWdaNaaGyk aiaai2dacaaIWaGaaGilaaaa@403A@  (2)

где q(x) L 2,ρ (0,π) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiaaiI cacaWG4bGaaGykaiabgIGiolaadYeadaWgaaWcbaGaaGOmaiaaiYca cqaHbpGCaeqaaOGaaGikaiaaicdacaaISaGaeqiWdaNaaGykaaaa@439A@ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@ вещественнозначная функция, λ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWgaaa@37A7@ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@ комплексный параметр и

ρ(x)= 1, 0<xa, α 2 , a<xπ, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdiNaaG ikaiaadIhacaaIPaGaaGypamaaceaabaqbaeqabiGaaaqaaiaaigda caaISaaabaGaaGimaiaaiYdacaWG4bGaeyizImQaamyyaiaaiYcaae aacqaHXoqydaahaaWcbeqaaiaaikdaaaGccaaISaaabaGaamyyaiaa iYdacaWG4bGaeyizImQaeqiWdaNaaGilaaaaaiaawUhaaaaa@4D5E@  (3)

MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@ кусочно постоянная функция. Предположим, что a(1+α)>πα MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaaiI cacaaIXaGaey4kaSIaeqySdeMaaGykaiaai6dacqaHapaCcqaHXoqy aaa@3F9E@ .

Математические модели физических проблем, связанных с неоднородными средами, колебаниями, диффузией и т. д. представляют собой дифференциальные уравнения с разрывными коэффициентами (см. [1, 7–9, 12, 15, 20, 25]). Анализ таких проблем основан на спектральных свойствах задачи Штурма MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Лиувилля с разрывными коэффициентами (см. [3, 16, 17, 19, 24]). Случай ρ(x)1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdiNaaG ikaiaadIhacaaIPaGaeyyyIORaaGymaaaa@3C99@ был рассмотрен в [2, 4, 6, 18, 22]. Спектральные свойства оператора Штурма MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Лиувилля с разрывными коэффициентами при различных граничных условиях были рассмотрены в [10, 11, 13, 14, 21, 23]. В [21] были рассмотрены спектральные свойства краевой задачи (1), (2), построен резольвентный оператор, получено разложение по собственным функциям и проведено обсуждение решения Вейля и функции Вейля.

В данной работе получено основное уравнение для краевой задачи (1), (2) и доказана единственность её решения. Кроме того, получена теорема единственности для решения обратной задачи со спектральными данными и функцией Вейля (см. [21]). Аналогичные задачи для уравнения (1) с различными граничными условиями анализировались в [11].

В [10] доказано, что решение φ(x,λ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOMaaG ikaiaadIhacaaISaGaeq4UdWMaaGykaaaa@3C7C@  уравнения (1) с начальными данными φ(0,λ)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOMaaG ikaiaaicdacaaISaGaeq4UdWMaaGykaiaai2dacaaIWaaaaa@3DBA@  и φ (0,λ)=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqOXdOMbau aacaaIOaGaaGimaiaaiYcacqaH7oaBcaaIPaGaaGypaiaaigdaaaa@3DC7@  можно представить следующим образом:

φ(x,λ)= φ 0 (x,λ)+ 0 μ + (x) A(x,t) sinλt λ dt, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOMaaG ikaiaadIhacaaISaGaeq4UdWMaaGykaiaai2dacqaHgpGAdaWgaaWc baGaaGimaaqabaGccaaIOaGaamiEaiaaiYcacqaH7oaBcaaIPaGaey 4kaSYaa8qmaeqaleaacaaIWaaabaGaeqiVd02aaWbaaeqabaGaey4k aScaaiaaiIcacaWG4bGaaGykaaqdcqGHRiI8aOGaamyqaiaaiIcaca WG4bGaaGilaiaadshacaaIPaWaaSaaaeaaciGGZbGaaiyAaiaac6ga cqaH7oaBcaWG0baabaGaeq4UdWgaaiaadsgacaWG0bGaaGilaaaa@5C60@  (4)

где A(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaaiI cacaWG4bGaaGilaiaadshacaaIPaaaaa@3ACA@  лежит в классе L 2 (0,π) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaaIYaaabeaakiaaiIcacaaIWaGaaGilaiabec8aWjaaiMca aaa@3C48@  для каждого фиксированного x(0,π] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI GiolaaiIcacaaIWaGaaGilaiabec8aWjaai2faaaa@3D3A@ . Эта функция выражается через коэффициент q(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiaaiI cacaWG4bGaaGykaaaa@394B@  уравнения (1) формулой

d dx A(x, μ + (x))= 1 4 ρ(x) 1+ 1 ρ(x) q(x), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGKbaabaGaamizaiaadIhaaaGaamyqaiaaiIcacaWG4bGaaGilaiab eY7aTnaaCaaaleqabaGaey4kaScaaOGaaGikaiaadIhacaaIPaGaaG ykaiaai2dadaWcaaqaaiaaigdaaeaacaaI0aWaaOaaaeaacqaHbpGC caaIOaGaamiEaiaaiMcaaSqabaaaaOWaaeWaaeaacaaIXaGaey4kaS YaaSaaaeaacaaIXaaabaWaaOaaaeaacqaHbpGCcaaIOaGaamiEaiaa iMcaaSqabaaaaaGccaGLOaGaayzkaaGaamyCaiaaiIcacaWG4bGaaG ykaiaaiYcaaaa@54BE@  (5)

где

φ 0 (x,λ)= 1 2 1+ 1 ρ(x) sinλ μ + (x) λ + 1 2 1 1 ρ(x) sinλ μ (x) λ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdO2aaS baaSqaaiaaicdaaeqaaOGaaGikaiaadIhacaaISaGaeq4UdWMaaGyk aiaai2dadaWcaaqaaiaaigdaaeaacaaIYaaaamaabmaabaGaaGymai abgUcaRmaalaaabaGaaGymaaqaamaakaaabaGaeqyWdiNaaGikaiaa dIhacaaIPaaaleqaaaaaaOGaayjkaiaawMcaamaalaaabaGaci4Cai aacMgacaGGUbGaeq4UdWMaeqiVd02aaWbaaSqabeaacqGHRaWkaaGc caaIOaGaamiEaiaaiMcaaeaacqaH7oaBaaGaey4kaSYaaSaaaeaaca aIXaaabaGaaGOmaaaadaqadaqaaiaaigdacqGHsisldaWcaaqaaiaa igdaaeaadaGcaaqaaiabeg8aYjaaiIcacaWG4bGaaGykaaWcbeaaaa aakiaawIcacaGLPaaadaWcaaqaaiGacohacaGGPbGaaiOBaiabeU7a SjabeY7aTnaaCaaaleqabaGaeyOeI0caaOGaaGikaiaadIhacaaIPa aabaGaeq4UdWgaaaaa@69AB@  (6)

MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@ решение уравнения (1) при q(x)0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiaaiI cacaWG4bGaaGykaiabggMi6kaaicdaaaa@3BCE@ ,

μ + (x)=±x ρ(x) +a(1 ρ(x) ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aaW baaSqabeaacqGHRaWkaaGccaaIOaGaamiEaiaaiMcacaaI9aGaeyyS aeRaamiEamaakaaabaGaeqyWdiNaaGikaiaadIhacaaIPaaaleqaaO Gaey4kaSIaamyyaiaaiIcacaaIXaGaeS4eI02aaOaaaeaacqaHbpGC caaIOaGaamiEaiaaiMcaaSqabaGccaaIPaGaaGOlaaaa@4D37@  (7)

Характеристическая функция Δ(λ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ikaiabeU7aSjaaiMcaaaa@3A72@  задачи (1), (2) имеет вид

Δ(λ):=<φ(x,λ),ψ(x,λ)>=φ(x,λ) ψ (x,λ) φ (x,λ)ψ(x,λ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ikaiabeU7aSjaaiMcacaaI6aGaaGypaiaaiYdacqaHgpGAcaaIOaGa amiEaiaaiYcacqaH7oaBcaaIPaGaaGilaiabeI8a5jaaiIcacaWG4b GaaGilaiabeU7aSjaaiMcacaaI+aGaaGypaiabeA8aQjaaiIcacaWG 4bGaaGilaiabeU7aSjaaiMcacuaHipqEgaqbaiaaiIcacaWG4bGaaG ilaiabeU7aSjaaiMcacqGHsislcuaHgpGAgaqbaiaaiIcacaWG4bGa aGilaiabeU7aSjaaiMcacqaHipqEcaaIOaGaamiEaiaaiYcacqaH7o aBcaaIPaGaaGilaaaa@682C@

где Δ(λ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ikaiabeU7aSjaaiMcaaaa@3A72@  не зависит от x[0,π] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI GiolaaiUfacaaIWaGaaGilaiabec8aWjaai2faaaa@3D6D@ . Подставляя x=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaai2 dacaaIWaaaaa@3871@  и x=π MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaai2 dacqaHapaCaaa@3974@  в уравнение, получим

Δ(λ)=ψ(0,λ)= φ (π,λ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ikaiabeU7aSjaaiMcacaaI9aGaeqiYdKNaaGikaiaaicdacaaISaGa eq4UdWMaaGykaiaai2dacuaHgpGAgaqbaiaaiIcacqaHapaCcaaISa Gaeq4UdWMaaGykaiaai6caaaa@4A64@

Квадраты нулей λ n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaad6gaaeqaaaaa@38C6@  характеристической функции совпадают с собственными значениями краевой задачи (1), (2). Краевая задача (1), (2) имеет счетное множество простых собственных значений { λ n 2 } MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiabeU 7aSnaaDaaaleaacaWGUbaabaGaaGOmaaaakiaai2haaaa@3B99@ . Для каждого λ n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaad6gaaeqaaaaa@38C6@  существует такая последовательность β n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdi2aaS baaSqaaiaad6gaaeqaaaaa@38B3@ , что

ψ(x, λ n )= β n φ(x, λ n ), β n 0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdKNaaG ikaiaadIhacaaISaGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaOGaaGyk aiaai2dacqaHYoGydaWgaaWcbaGaamOBaaqabaGccqaHgpGAcaaIOa GaamiEaiaaiYcacqaH7oaBdaWgaaWcbaGaamOBaaqabaGccaaIPaGa aGilaiaaywW7cqaHYoGydaWgaaWcbaGaamOBaaqabaGccqGHGjsUca aIWaGaaGilaaaa@513E@  (8)

где ψ(x, λ n ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdKNaaG ikaiaadIhacaaISaGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaOGaaGyk aaaa@3DB6@  и φ(x, λ n ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOMaaG ikaiaadIhacaaISaGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaOGaaGyk aaaa@3DA5@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@ собственные функции краевой задачи (1), (2), соответствующие собственному значению λ n 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aa0 baaSqaaiaad6gaaeaacaaIYaaaaaaa@3983@ . Нормировочные коэффициенты равны

α n := 0 π ρ(x) φ 2 (x, λ n )dx. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaad6gaaeqaaOGaaGOoaiaai2dadaWdXaqabSqaaiaaicda aeaacqaHapaCa0Gaey4kIipakiabeg8aYjaaiIcacaWG4bGaaGykai abeA8aQnaaCaaaleqabaGaaGOmaaaakiaaiIcacaWG4bGaaGilaiab eU7aSnaaBaaaleaacaWGUbaabeaakiaaiMcacaWGKbGaamiEaiaai6 caaaa@4E56@

Собственные функции, соответствующие различным собственным значениям, ортогональны. Собственные значения краевой задачи (1), (2) простые и

Δ ˙ ( λ n )=2 λ n α n β n , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafuiLdqKbai aacaaIOaGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaOGaaGykaiaai2da cqGHsislcaaIYaGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaOGaeqySde 2aaSbaaSqaaiaad6gaaeqaaOGaeqOSdi2aaSbaaSqaaiaad6gaaeqa aOGaaGilaaaa@4739@  (9)

где Δ ˙ (λ)= d dλ Δ(λ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafuiLdqKbai aacaaIOaGaeq4UdWMaaGykaiaai2dadaWcaaqaaiaadsgaaeaacaWG KbGaeq4UdWgaaiabfs5aejaaiIcacqaH7oaBcaaIPaaaaa@4357@ .

Теорема 1 (см. 21). Нули λ n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaad6gaaeqaaaaa@38C6@  характеристической функции Δ(λ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ikaiabeU7aSjaaiMcaaaa@3A72@  имеют следующее асимптотическое разложение:

λ n = λ n 0 + d n λ n 0 + k n n , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaad6gaaeqaaOGaaGypaiabeU7aSnaaDaaaleaacaWGUbaa baGaaGimaaaakiabgUcaRmaalaaabaGaamizamaaBaaaleaacaWGUb aabeaaaOqaaiabeU7aSnaaDaaaleaacaWGUbaabaGaaGimaaaaaaGc cqGHRaWkdaWcaaqaaiaadUgadaWgaaWcbaGaamOBaaqabaaakeaaca WGUbaaaiaaiYcaaaa@487F@

где λ n 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aa0 baaSqaaiaad6gaaeaacaaIWaaaaaaa@3981@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@ нули функции

Δ 0 (λ)= 1 2 (α+1)cosλ μ + (π) 1 2 (α1)cosλ μ (π) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdq0aaS baaSqaaiaaicdaaeqaaOGaaGikaiabeU7aSjaaiMcacaaI9aWaaSaa aeaacaaIXaaabaGaaGOmaaaacaaIOaGaeqySdeMaey4kaSIaaGymai aaiMcaciGGJbGaai4BaiaacohacqaH7oaBcqaH8oqBdaahaaWcbeqa aiabgUcaRaaakiaaiIcacqaHapaCcaaIPaGaeyOeI0YaaSaaaeaaca aIXaaabaGaaGOmaaaacaaIOaGaeqySdeMaeyOeI0IaaGymaiaaiMca ciGGJbGaai4BaiaacohacqaH7oaBcqaH8oqBdaahaaWcbeqaaiabgk HiTaaakiaaiIcacqaHapaCcaaIPaaaaa@5E6C@

и

d n = h + sin λ n 0 μ + (π)+ h sin λ n 0 μ (π) 1 2 (α+1) μ + (π)sin λ n 0 μ + (π)+ 1 2 (α1) μ (π)sin λ n 0 μ (π) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaWGUbaabeaakiaai2dacqGHsisldaWcaaqaaiaadIgadaah aaWcbeqaaiabgUcaRaaakiGacohacaGGPbGaaiOBaiabeU7aSnaaDa aaleaacaWGUbaabaGaaGimaaaakiabeY7aTnaaCaaaleqabaGaey4k aScaaOGaaGikaiabec8aWjaaiMcacqGHRaWkcaWGObWaaWbaaSqabe aacqGHsislaaGcciGGZbGaaiyAaiaac6gacqaH7oaBdaqhaaWcbaGa amOBaaqaaiaaicdaaaGccqaH8oqBdaahaaWcbeqaaiabgkHiTaaaki aaiIcacqaHapaCcaaIPaaabaGaeyOeI0YaaSaaaeaacaaIXaaabaGa aGOmaaaacaaIOaGaeqySdeMaey4kaSIaaGymaiaaiMcacqaH8oqBda ahaaWcbeqaaiabgUcaRaaakiaaiIcacqaHapaCcaaIPaGaci4Caiaa cMgacaGGUbGaeq4UdW2aa0baaSqaaiaad6gaaeaacaaIWaaaaOGaeq iVd02aaWbaaSqabeaacqGHRaWkaaGccaaIOaGaeqiWdaNaaGykaiab gUcaRmaalaaabaGaaGymaaqaaiaaikdaaaGaaGikaiabeg7aHjabgk HiTiaaigdacaaIPaGaeqiVd02aaWbaaSqabeaacqGHsislaaGccaaI OaGaeqiWdaNaaGykaiGacohacaGGPbGaaiOBaiabeU7aSnaaDaaale aacaWGUbaabaGaaGimaaaakiabeY7aTnaaCaaaleqabaGaeyOeI0ca aOGaaGikaiabec8aWjaaiMcaaaaaaa@8A73@

MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@ ограниченная последовательность, { k n } l 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiaadU gadaWgaaWcbaGaamOBaaqabaGccaaI9bGaeyicI4SaamiBamaaBaaa leaacaaIYaaabeaaaaa@3D75@ .

Теорема 2 (см. 21).

1. Система собственных функций {φ(x, λ n )} n1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiabeA 8aQjaaiIcacaWG4bGaaGilaiabeU7aSnaaBaaaleaacaWGUbaabeaa kiaaiMcacaaI9bWaaSbaaSqaaiaad6gacqGHLjYScaaIXaaabeaaaa a@4351@  краевой задачи (1), (2) полна в L 2,ρ (0,π) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaaIYaGaaGilaiabeg8aYbqabaGccaaIOaGaaGimaiaaiYca cqaHapaCcaaIPaaaaa@3EBE@ .

2. Если f(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGykaaaa@3940@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@ абсолютно непрерывная функция на отрезке [0,π] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaaic dacaaISaGaeqiWdaNaaGyxaaaa@3AEC@  и f(0)= f (π)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaaIWaGaaGykaiaai2daceWGMbGbauaacaaIOaGaeqiWdaNaaGyk aiaai2dacaaIWaaaaa@3F5E@ , то

f(x)= n=1 a n φ(x, λ n ), a n = 1 α n 0 π f(t)φ(t, λ n )ρ(t)dt, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGykaiaai2dadaaeWbqabSqaaiaad6gacaaI9aGaaGym aaqaaiabg6HiLcqdcqGHris5aOGaamyyamaaBaaaleaacaWGUbaabe aakiabeA8aQjaaiIcacaWG4bGaaGilaiabeU7aSnaaBaaaleaacaWG UbaabeaakiaaiMcacaaISaGaaGzbVlaadggadaWgaaWcbaGaamOBaa qabaGccaaI9aWaaSaaaeaacaaIXaaabaGaeqySde2aaSbaaSqaaiaa d6gaaeqaaaaakmaapedabeWcbaGaaGimaaqaaiabec8aWbqdcqGHRi I8aOGaamOzaiaaiIcacaWG0bGaaGykaiabeA8aQjaaiIcacaWG0bGa aGilaiabeU7aSnaaBaaaleaacaWGUbaabeaakiaaiMcacqaHbpGCca aIOaGaamiDaiaaiMcacaWGKbGaamiDaiaaiYcaaaa@6900@  (10)

причем ряд сходится равномерно на [0,π] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaaic dacaaISaGaeqiWdaNaaGyxaaaa@3AEC@ .

3. При f(x) L 2,ρ (0,π) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGykaiabgIGiolaadYeadaWgaaWcbaGaaGOmaiaaiYca cqaHbpGCaeqaaOGaaGikaiaaicdacaaISaGaeqiWdaNaaGykaaaa@438F@  ряд в (10) сходится в L 2,ρ (0,π) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaaIYaGaaGilaiabeg8aYbqabaGccaaIOaGaaGimaiaaiYca cqaHapaCcaaIPaaaaa@3EBE@  и, кроме того, выполняется равенство Парсеваля:

0 π |f(x )| 2 ρ(x)dx= n=1 α n a n 2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaeqiWdahaniabgUIiYdGccaaI8bGaamOzaiaaiIca caWG4bGaaGykaiaaiYhadaahaaWcbeqaaiaaikdaaaGccqaHbpGCca aIOaGaamiEaiaaiMcacaWGKbGaamiEaiaai2dadaaeWbqabSqaaiaa d6gacaaI9aGaaGymaaqaaiabg6HiLcqdcqGHris5aOGaeqySde2aaS baaSqaaiaad6gaaeqaaOWaaqWaaeaacaWGHbWaaSbaaSqaaiaad6ga aeqaaaGccaGLhWUaayjcSdWaaWbaaSqabeaacaaIYaaaaOGaaGOlaa aa@5790@

2. Основное уравнение.

Теорема 3. Для каждого фиксированного x(0,π] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI GiolaaiIcacaaIWaGaaGilaiabec8aWjaai2faaaa@3D3A@  ядро A(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaaiI cacaWG4bGaaGilaiaadshacaaIPaaaaa@3ACA@ из представления (4) удовлетворяет следующему линейному функционально-интегральному уравнению:

2 1+ ρ(t) A(x, μ + (t))+ 1 ρ(2at) 1+ ρ(2at) A(x,2at)+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIYaaabaGaaGymaiabgUcaRmaakaaabaGaeqyWdiNaaGikaiaadsha caaIPaaaleqaaaaakiaadgeacaaIOaGaamiEaiaaiYcacqaH8oqBda ahaaWcbeqaaiabgUcaRaaakiaaiIcacaWG0bGaaGykaiaaiMcacqGH RaWkdaWcaaqaaiaaigdacqGHsisldaGcaaqaaiabeg8aYjaaiIcaca aIYaGaamyyaiabgkHiTiaadshacaaIPaaaleqaaaGcbaGaaGymaiab gUcaRmaakaaabaGaeqyWdiNaaGikaiaaikdacaWGHbGaeyOeI0Iaam iDaiaaiMcaaSqabaaaaOGaamyqaiaaiIcacaWG4bGaaGilaiaaikda caWGHbGaeyOeI0IaamiDaiaaiMcacqGHRaWkaaa@5FCD@

+F(x,t)+ 0 μ + (x) A(x,ξ) F 0 (ξ,t)dξ=0,0<t<x, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSIaam OraiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaey4kaSYaa8qmaeqa leaacaaIWaaabaGaeqiVd02aaWbaaeqabaGaey4kaScaaiaaiIcaca WG4bGaaGykaaqdcqGHRiI8aOGaamyqaiaaiIcacaWG4bGaaGilaiab e67a4jaaiMcacaWGgbWaaSbaaSqaaiaaicdaaeqaaOGaaGikaiabe6 7a4jaaiYcacaWG0bGaaGykaiaadsgacqaH+oaEcaaI9aGaaGimaiaa iYcacaaMf8UaaGimaiaaiYdacaWG0bGaaGipaiaadIhacaaISaaaaa@5C33@ (11)

где

F 0 (x,t)= n=1 φ 0 (t, λ n )sin λ n x α n λ n φ 0 (t, λ n 0 )sin λ n 0 x α n 0 λ n 0 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaaIWaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGa aGypamaaqahabeWcbaGaamOBaiaai2dacaaIXaaabaGaeyOhIukani abggHiLdGcdaqadaqaamaalaaabaGaeqOXdO2aaSbaaSqaaiaaicda aeqaaOGaaGikaiaadshacaaISaGaeq4UdW2aaSbaaSqaaiaad6gaae qaaOGaaGykaiGacohacaGGPbGaaiOBaiabeU7aSnaaBaaaleaacaWG UbaabeaakiaadIhaaeaacqaHXoqydaWgaaWcbaGaamOBaaqabaGccq aH7oaBdaWgaaWcbaGaamOBaaqabaaaaOGaeyOeI0YaaSaaaeaacqaH gpGAdaWgaaWcbaGaaGimaaqabaGccaaIOaGaamiDaiaaiYcacqaH7o aBdaqhaaWcbaGaamOBaaqaaiaaicdaaaGccaaIPaGaci4CaiaacMga caGGUbGaeq4UdW2aa0baaSqaaiaad6gaaeaacaaIWaaaaOGaamiEaa qaaiabeg7aHnaaDaaaleaacaWGUbaabaGaaGimaaaakiabeU7aSnaa DaaaleaacaWGUbaabaGaaGimaaaaaaaakiaawIcacaGLPaaacaaISa aaaa@72DB@  (12)

F(x,t)= 1 2 1+ 1 ρ(x) F 0 ( μ + (x),t)+ 1 2 1 1 ρ(x) F 0 ( μ (x),t), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaaGypamaalaaabaGaaGymaaqa aiaaikdaaaWaaeWaaeaacaaIXaGaey4kaSYaaSaaaeaacaaIXaaaba WaaOaaaeaacqaHbpGCcaaIOaGaamiEaiaaiMcaaSqabaaaaaGccaGL OaGaayzkaaGaamOramaaBaaaleaacaaIWaaabeaakiaaiIcacqaH8o qBdaahaaWcbeqaaiabgUcaRaaakiaaiIcacaWG4bGaaGykaiaaiYca caWG0bGaaGykaiabgUcaRmaalaaabaGaaGymaaqaaiaaikdaaaWaae WaaeaacaaIXaGaeyOeI0YaaSaaaeaacaaIXaaabaWaaOaaaeaacqaH bpGCcaaIOaGaamiEaiaaiMcaaSqabaaaaaGccaGLOaGaayzkaaGaam OramaaBaaaleaacaaIWaaabeaakiaaiIcacqaH8oqBdaahaaWcbeqa aiabgkHiTaaakiaaiIcacaWG4bGaaGykaiaaiYcacaWG0bGaaGykai aaiYcaaaa@64C2@  (13)

λ n 0 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aa0 baaSqaaiaad6gaaeaacaaIWaWaaWbaaeqabaGaaGOmaaaaaaaaaa@3A5F@ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@ собственные значения, α n 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aa0 baaSqaaiaad6gaaeaacaaIWaaaaaaa@396C@ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@ нормировочные константы краевой задачи (1), (2) с q(x)0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiaaiI cacaWG4bGaaGykaiabggMi6kaaicdaaaa@3BCE@ .

Доказательство. Согласно (4) имеем

φ 0 (x,λ)=φ(x,λ) 0 μ + (x) A(x,t) sinλt λ dt. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdO2aaS baaSqaaiaaicdaaeqaaOGaaGikaiaadIhacaaISaGaeq4UdWMaaGyk aiaai2dacqaHgpGAcaaIOaGaamiEaiaaiYcacqaH7oaBcaaIPaGaey OeI0Yaa8qmaeqaleaacaaIWaaabaGaeqiVd02aaWbaaeqabaGaey4k aScaaiaaiIcacaWG4bGaaGykaaqdcqGHRiI8aOGaamyqaiaaiIcaca WG4bGaaGilaiaadshacaaIPaWaaSaaaeaaciGGZbGaaiyAaiaac6ga cqaH7oaBcaWG0baabaGaeq4UdWgaaiaadsgacaWG0bGaaGOlaaaa@5C6D@  (14)

Из (4) и (14) получаем:

n=1 N φ(x, λ n ) φ 0 (t, λ n ) α n = MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeqale aacaWGUbGaaGypaiaaigdaaeaacaWGobaaniabggHiLdGcdaWcaaqa aiabeA8aQjaaiIcacaWG4bGaaGilaiabeU7aSnaaBaaaleaacaWGUb aabeaakiaaiMcacqaHgpGAdaWgaaWcbaGaaGimaaqabaGccaaIOaGa amiDaiaaiYcacqaH7oaBdaWgaaWcbaGaamOBaaqabaGccaaIPaaaba GaeqySde2aaSbaaSqaaiaad6gaaeqaaaaakiaai2daaaa@4F77@

= n=1 N φ 0 (x, λ n ) φ 0 (t, λ n ) α n + φ 0 (t, λ n ) α n 0 μ + (x) A(x,ξ) sin λ n ξ λ n dξ = MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaaqa habeWcbaGaamOBaiaai2dacaaIXaaabaGaamOtaaqdcqGHris5aOWa aeWaaeaadaWcaaqaaiabeA8aQnaaBaaaleaacaaIWaaabeaakiaaiI cacaWG4bGaaGilaiabeU7aSnaaBaaaleaacaWGUbaabeaakiaaiMca cqaHgpGAdaWgaaWcbaGaaGimaaqabaGccaaIOaGaamiDaiaaiYcacq aH7oaBdaWgaaWcbaGaamOBaaqabaGccaaIPaaabaGaeqySde2aaSba aSqaaiaad6gaaeqaaaaakiabgUcaRmaalaaabaGaeqOXdO2aaSbaaS qaaiaaicdaaeqaaOGaaGikaiaadshacaaISaGaeq4UdW2aaSbaaSqa aiaad6gaaeqaaOGaaGykaaqaaiabeg7aHnaaBaaaleaacaWGUbaabe aaaaGcdaWdXaqabSqaaiaaicdaaeaacqaH8oqBdaahaaqabeaacqGH RaWkaaGaaGikaiaadIhacaaIPaaaniabgUIiYdGccaWGbbGaaGikai aadIhacaaISaGaeqOVdGNaaGykamaalaaabaGaci4CaiaacMgacaGG UbGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaOGaeqOVdGhabaGaeq4UdW 2aaSbaaSqaaiaad6gaaeqaaaaakiaadsgacqaH+oaEaiaawIcacaGL PaaacaaI9aaaaa@79CB@

= n=1 N φ 0 (x, λ n ) φ 0 (t, λ n ) α n φ 0 (x, λ n 0 ) φ 0 (t, λ n 0 ) α n 0 + n=1 N φ 0 (x, λ n 0 ) φ 0 (t, λ n 0 ) α n 0 + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaaqa habeWcbaGaamOBaiaai2dacaaIXaaabaGaamOtaaqdcqGHris5aOWa aeWaaeaadaWcaaqaaiabeA8aQnaaBaaaleaacaaIWaaabeaakiaaiI cacaWG4bGaaGilaiabeU7aSnaaBaaaleaacaWGUbaabeaakiaaiMca cqaHgpGAdaWgaaWcbaGaaGimaaqabaGccaaIOaGaamiDaiaaiYcacq aH7oaBdaWgaaWcbaGaamOBaaqabaGccaaIPaaabaGaeqySde2aaSba aSqaaiaad6gaaeqaaaaakiabgkHiTmaalaaabaGaeqOXdO2aaSbaaS qaaiaaicdaaeqaaOGaaGikaiaadIhacaaISaGaeq4UdW2aa0baaSqa aiaad6gaaeaacaaIWaaaaOGaaGykaiabeA8aQnaaBaaaleaacaaIWa aabeaakiaaiIcacaWG0bGaaGilaiabeU7aSnaaDaaaleaacaWGUbaa baGaaGimaaaakiaaiMcaaeaacqaHXoqydaqhaaWcbaGaamOBaaqaai aaicdaaaaaaaGccaGLOaGaayzkaaGaey4kaSYaaabCaeqaleaacaWG UbGaaGypaiaaigdaaeaacaWGobaaniabggHiLdGcdaWcaaqaaiabeA 8aQnaaBaaaleaacaaIWaaabeaakiaaiIcacaWG4bGaaGilaiabeU7a SnaaDaaaleaacaWGUbaabaGaaGimaaaakiaaiMcacqaHgpGAdaWgaa WcbaGaaGimaaqabaGccaaIOaGaamiDaiaaiYcacqaH7oaBdaqhaaWc baGaamOBaaqaaiaaicdaaaGccaaIPaaabaGaeqySde2aa0baaSqaai aad6gaaeaacaaIWaaaaaaakiabgUcaRaaa@86C8@

+ 0 μ + (x) A(x,ξ) n=1 N φ 0 (t, λ n )sin λ n ξ α n λ n φ 0 (t, λ n 0 )sin λ n 0 ξ α n 0 λ n 0 dξ+ 0 μ + (x) A(x,ξ) n=1 N φ 0 (t, λ n 0 )sin λ n 0 ξ α n 0 λ n 0 dξ, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaeqiVd02aaWbaaeqabaGaey4kaScaaiaa iIcacaWG4bGaaGykaaqdcqGHRiI8aOGaamyqaiaaiIcacaWG4bGaaG ilaiabe67a4jaaiMcadaaeWbqabSqaaiaad6gacaaI9aGaaGymaaqa aiaad6eaa0GaeyyeIuoakmaabmaabaWaaSaaaeaacqaHgpGAdaWgaa WcbaGaaGimaaqabaGccaaIOaGaamiDaiaaiYcacqaH7oaBdaWgaaWc baGaamOBaaqabaGccaaIPaGaci4CaiaacMgacaGGUbGaeq4UdW2aaS baaSqaaiaad6gaaeqaaOGaeqOVdGhabaGaeqySde2aaSbaaSqaaiaa d6gaaeqaaOGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaaaakiabgkHiTm aalaaabaGaeqOXdO2aaSbaaSqaaiaaicdaaeqaaOGaaGikaiaadsha caaISaGaeq4UdW2aa0baaSqaaiaad6gaaeaacaaIWaaaaOGaaGykai GacohacaGGPbGaaiOBaiabeU7aSnaaDaaaleaacaWGUbaabaGaaGim aaaakiabe67a4bqaaiabeg7aHnaaDaaaleaacaWGUbaabaGaaGimaa aakiabeU7aSnaaDaaaleaacaWGUbaabaGaaGimaaaaaaaakiaawIca caGLPaaacaWGKbGaeqOVdGNaey4kaSYaa8qmaeqaleaacaaIWaaaba GaeqiVd02aaWbaaeqabaGaey4kaScaaiaaiIcacaWG4bGaaGykaaqd cqGHRiI8aOGaamyqaiaaiIcacaWG4bGaaGilaiabe67a4jaaiMcada aeWbqabSqaaiaad6gacaaI9aGaaGymaaqaaiaad6eaa0GaeyyeIuoa kmaalaaabaGaeqOXdO2aaSbaaSqaaiaaicdaaeqaaOGaaGikaiaads hacaaISaGaeq4UdW2aa0baaSqaaiaad6gaaeaacaaIWaaaaOGaaGyk aiGacohacaGGPbGaaiOBaiabeU7aSnaaDaaaleaacaWGUbaabaGaaG imaaaakiabe67a4bqaaiabeg7aHnaaDaaaleaacaWGUbaabaGaaGim aaaakiabeU7aSnaaDaaaleaacaWGUbaabaGaaGimaaaaaaGccaWGKb GaeqOVdGNaaGilaaaa@ADF4@

n=1 N φ(x, λ n ) φ 0 (t, λ n ) α n = n=1 N φ(x, λ n )φ(t, λ n ) α n 0 μ + (t) A(t,ξ) n=1 N φ(x, λ n )sin λ n ξ α n λ n dξ. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeqale aacaWGUbGaaGypaiaaigdaaeaacaWGobaaniabggHiLdGcdaWcaaqa aiabeA8aQjaaiIcacaWG4bGaaGilaiabeU7aSnaaBaaaleaacaWGUb aabeaakiaaiMcacqaHgpGAdaWgaaWcbaGaaGimaaqabaGccaaIOaGa amiDaiaaiYcacqaH7oaBdaWgaaWcbaGaamOBaaqabaGccaaIPaaaba GaeqySde2aaSbaaSqaaiaad6gaaeqaaaaakiaai2dadaaeWbqabSqa aiaad6gacaaI9aGaaGymaaqaaiaad6eaa0GaeyyeIuoakmaalaaaba GaeqOXdOMaaGikaiaadIhacaaISaGaeq4UdW2aaSbaaSqaaiaad6ga aeqaaOGaaGykaiabeA8aQjaaiIcacaWG0bGaaGilaiabeU7aSnaaBa aaleaacaWGUbaabeaakiaaiMcaaeaacqaHXoqydaWgaaWcbaGaamOB aaqabaaaaOGaeyOeI0Yaa8qmaeqaleaacaaIWaaabaGaeqiVd02aaW baaeqabaGaey4kaScaaiaaiIcacaWG0bGaaGykaaqdcqGHRiI8aOGa amyqaiaaiIcacaWG0bGaaGilaiabe67a4jaaiMcadaaeWbqabSqaai aad6gacaaI9aGaaGymaaqaaiaad6eaa0GaeyyeIuoakmaalaaabaGa eqOXdOMaaGikaiaadIhacaaISaGaeq4UdW2aaSbaaSqaaiaad6gaae qaaOGaaGykaiGacohacaGGPbGaaiOBaiabeU7aSnaaBaaaleaacaWG Ubaabeaakiabe67a4bqaaiabeg7aHnaaBaaaleaacaWGUbaabeaaki abeU7aSnaaBaaaleaacaWGUbaabeaaaaGccaWGKbGaeqOVdGNaaGOl aaaa@93AC@

Используя последние два соотношения, находим

n=1 N φ(x, λ n )φ(t, λ n ) α n φ 0 (x, λ n 0 ) φ 0 (t, λ n 0 ) α n 0 = MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeqale aacaWGUbGaaGypaiaaigdaaeaacaWGobaaniabggHiLdGcdaqadaqa amaalaaabaGaeqOXdOMaaGikaiaadIhacaaISaGaeq4UdW2aaSbaaS qaaiaad6gaaeqaaOGaaGykaiabeA8aQjaaiIcacaWG0bGaaGilaiab eU7aSnaaBaaaleaacaWGUbaabeaakiaaiMcaaeaacqaHXoqydaWgaa WcbaGaamOBaaqabaaaaOGaeyOeI0YaaSaaaeaacqaHgpGAdaWgaaWc baGaaGimaaqabaGccaaIOaGaamiEaiaaiYcacqaH7oaBdaqhaaWcba GaamOBaaqaaiaaicdaaaGccaaIPaGaeqOXdO2aaSbaaSqaaiaaicda aeqaaOGaaGikaiaadshacaaISaGaeq4UdW2aa0baaSqaaiaad6gaae aacaaIWaaaaOGaaGykaaqaaiabeg7aHnaaDaaaleaacaWGUbaabaGa aGimaaaaaaaakiaawIcacaGLPaaacaaI9aaaaa@6746@

= n=1 N φ 0 (x, λ n ) φ 0 (t, λ n ) α n φ 0 (x, λ n 0 ) φ 0 (t, λ n 0 ) α n 0 + 0 μ + (x) A(x,ξ) n=1 N φ 0 (t, λ n 0 )sin λ n 0 ξ α n 0 λ n 0 dξ+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaaqa habeWcbaGaamOBaiaai2dacaaIXaaabaGaamOtaaqdcqGHris5aOWa aeWaaeaadaWcaaqaaiabeA8aQnaaBaaaleaacaaIWaaabeaakiaaiI cacaWG4bGaaGilaiabeU7aSnaaBaaaleaacaWGUbaabeaakiaaiMca cqaHgpGAdaWgaaWcbaGaaGimaaqabaGccaaIOaGaamiDaiaaiYcacq aH7oaBdaWgaaWcbaGaamOBaaqabaGccaaIPaaabaGaeqySde2aaSba aSqaaiaad6gaaeqaaaaakiabgkHiTmaalaaabaGaeqOXdO2aaSbaaS qaaiaaicdaaeqaaOGaaGikaiaadIhacaaISaGaeq4UdW2aa0baaSqa aiaad6gaaeaacaaIWaaaaOGaaGykaiabeA8aQnaaBaaaleaacaaIWa aabeaakiaaiIcacaWG0bGaaGilaiabeU7aSnaaDaaaleaacaWGUbaa baGaaGimaaaakiaaiMcaaeaacqaHXoqydaqhaaWcbaGaamOBaaqaai aaicdaaaaaaaGccaGLOaGaayzkaaGaey4kaSYaa8qmaeqaleaacaaI WaaabaGaeqiVd02aaWbaaeqabaGaey4kaScaaiaaiIcacaWG4bGaaG ykaaqdcqGHRiI8aOGaamyqaiaaiIcacaWG4bGaaGilaiabe67a4jaa iMcadaaeWbqabSqaaiaad6gacaaI9aGaaGymaaqaaiaad6eaa0Gaey yeIuoakmaalaaabaGaeqOXdO2aaSbaaSqaaiaaicdaaeqaaOGaaGik aiaadshacaaISaGaeq4UdW2aa0baaSqaaiaad6gaaeaacaaIWaaaaO GaaGykaiGacohacaGGPbGaaiOBaiabeU7aSnaaDaaaleaacaWGUbaa baGaaGimaaaakiabe67a4bqaaiabeg7aHnaaDaaaleaacaWGUbaaba GaaGimaaaakiabeU7aSnaaDaaaleaacaWGUbaabaGaaGimaaaaaaGc caWGKbGaeqOVdGNaey4kaScaaa@998D@

+ 0 μ + (x) A(x,ξ) n=1 N φ 0 (t, λ n )sin λ n ξ α n λ n φ 0 (t, λ n 0 )sin λ n 0 ξ α n 0 λ n 0 dξ+ 0 μ + (t) A(t,ξ) n=1 N φ(x, λ n )sin λ n ξ α n λ n dξ, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaeqiVd02aaWbaaeqabaGaey4kaScaaiaa iIcacaWG4bGaaGykaaqdcqGHRiI8aOGaamyqaiaaiIcacaWG4bGaaG ilaiabe67a4jaaiMcadaaeWbqabSqaaiaad6gacaaI9aGaaGymaaqa aiaad6eaa0GaeyyeIuoakmaabmaabaWaaSaaaeaacqaHgpGAdaWgaa WcbaGaaGimaaqabaGccaaIOaGaamiDaiaaiYcacqaH7oaBdaWgaaWc baGaamOBaaqabaGccaaIPaGaci4CaiaacMgacaGGUbGaeq4UdW2aaS baaSqaaiaad6gaaeqaaOGaeqOVdGhabaGaeqySde2aaSbaaSqaaiaa d6gaaeqaaOGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaaaakiabgkHiTm aalaaabaGaeqOXdO2aaSbaaSqaaiaaicdaaeqaaOGaaGikaiaadsha caaISaGaeq4UdW2aa0baaSqaaiaad6gaaeaacaaIWaaaaOGaaGykai GacohacaGGPbGaaiOBaiabeU7aSnaaDaaaleaacaWGUbaabaGaaGim aaaakiabe67a4bqaaiabeg7aHnaaDaaaleaacaWGUbaabaGaaGimaa aakiabeU7aSnaaDaaaleaacaWGUbaabaGaaGimaaaaaaaakiaawIca caGLPaaacaWGKbGaeqOVdGNaey4kaSYaa8qmaeqaleaacaaIWaaaba GaeqiVd02aaWbaaeqabaGaey4kaScaaiaaiIcacaWG0bGaaGykaaqd cqGHRiI8aOGaamyqaiaaiIcacaWG0bGaaGilaiabe67a4jaaiMcada aeWbqabSqaaiaad6gacaaI9aGaaGymaaqaaiaad6eaa0GaeyyeIuoa kmaalaaabaGaeqOXdOMaaGikaiaadIhacaaISaGaeq4UdW2aaSbaaS qaaiaad6gaaeqaaOGaaGykaiGacohacaGGPbGaaiOBaiabeU7aSnaa BaaaleaacaWGUbaabeaakiabe67a4bqaaiabeg7aHnaaBaaaleaaca WGUbaabeaakiabeU7aSnaaBaaaleaacaWGUbaabeaaaaGccaWGKbGa eqOVdGNaaGilaaaa@AA14@

или

Φ N (x,t)= I N1 (x,t)+ I N2 (x,t)+ I N3 (x,t)+ I N4 (x,t), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuOPdy0aaS baaSqaaiaad6eaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMca caaI9aGaamysamaaBaaaleaacaWGobGaaGymaaqabaGccaaIOaGaam iEaiaaiYcacaWG0bGaaGykaiabgUcaRiaadMeadaWgaaWcbaGaamOt aiaaikdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacqGHRa WkcaWGjbWaaSbaaSqaaiaad6eacaaIZaaabeaakiaaiIcacaWG4bGa aGilaiaadshacaaIPaGaey4kaSIaamysamaaBaaaleaacaWGobGaaG inaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaaiYcaaaa@5B3C@  (15)

где

Φ N (x,t)= n=1 N φ(x, λ n )φ(t, λ n ) α n φ 0 (x, λ n 0 ) φ 0 (t, λ n 0 ) α n 0 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuOPdy0aaS baaSqaaiaad6eaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMca caaI9aWaaabCaeqaleaacaWGUbGaaGypaiaaigdaaeaacaWGobaani abggHiLdGcdaqadaqaamaalaaabaGaeqOXdOMaaGikaiaadIhacaaI SaGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaOGaaGykaiabeA8aQjaaiI cacaWG0bGaaGilaiabeU7aSnaaBaaaleaacaWGUbaabeaakiaaiMca aeaacqaHXoqydaWgaaWcbaGaamOBaaqabaaaaOGaeyOeI0YaaSaaae aacqaHgpGAdaWgaaWcbaGaaGimaaqabaGccaaIOaGaamiEaiaaiYca cqaH7oaBdaqhaaWcbaGaamOBaaqaaiaaicdaaaGccaaIPaGaeqOXdO 2aaSbaaSqaaiaaicdaaeqaaOGaaGikaiaadshacaaISaGaeq4UdW2a a0baaSqaaiaad6gaaeaacaaIWaaaaOGaaGykaaqaaiabeg7aHnaaDa aaleaacaWGUbaabaGaaGimaaaaaaaakiaawIcacaGLPaaacaaISaaa aa@6E90@

I N1 (x,t)= n=1 N φ 0 (x, λ n ) φ 0 (t, λ n ) α n φ 0 (x, λ n 0 ) φ 0 (t, λ n 0 ) α n 0 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaBa aaleaacaWGobGaaGymaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGa aGykaiaai2dadaaeWbqabSqaaiaad6gacaaI9aGaaGymaaqaaiaad6 eaa0GaeyyeIuoakmaabmaabaWaaSaaaeaacqaHgpGAdaWgaaWcbaGa aGimaaqabaGccaaIOaGaamiEaiaaiYcacqaH7oaBdaWgaaWcbaGaam OBaaqabaGccaaIPaGaeqOXdO2aaSbaaSqaaiaaicdaaeqaaOGaaGik aiaadshacaaISaGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaOGaaGykaa qaaiabeg7aHnaaBaaaleaacaWGUbaabeaaaaGccqGHsisldaWcaaqa aiabeA8aQnaaBaaaleaacaaIWaaabeaakiaaiIcacaWG4bGaaGilai abeU7aSnaaDaaaleaacaWGUbaabaGaaGimaaaakiaaiMcacqaHgpGA daWgaaWcbaGaaGimaaqabaGccaaIOaGaamiDaiaaiYcacqaH7oaBda qhaaWcbaGaamOBaaqaaiaaicdaaaGccaaIPaaabaGaeqySde2aa0ba aSqaaiaad6gaaeaacaaIWaaaaaaaaOGaayjkaiaawMcaaiaaiYcaaa a@707F@

I N2 (x,t)= 0 μ + (x) A(x,ξ) n=1 N φ 0 (t, λ n 0 )sin λ n 0 ξ α n 0 λ n 0 dξ, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaBa aaleaacaWGobGaaGOmaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGa aGykaiaai2dadaWdXaqabSqaaiaaicdaaeaacqaH8oqBdaahaaqabe aacqGHRaWkaaGaaGikaiaadIhacaaIPaaaniabgUIiYdGccaWGbbGa aGikaiaadIhacaaISaGaeqOVdGNaaGykamaaqahabeWcbaGaamOBai aai2dacaaIXaaabaGaamOtaaqdcqGHris5aOWaaSaaaeaacqaHgpGA daWgaaWcbaGaaGimaaqabaGccaaIOaGaamiDaiaaiYcacqaH7oaBda qhaaWcbaGaamOBaaqaaiaaicdaaaGccaaIPaGaci4CaiaacMgacaGG UbGaeq4UdW2aa0baaSqaaiaad6gaaeaacaaIWaaaaOGaeqOVdGhaba GaeqySde2aa0baaSqaaiaad6gaaeaacaaIWaaaaOGaeq4UdW2aa0ba aSqaaiaad6gaaeaacaaIWaaaaaaakiaadsgacqaH+oaEcaaISaaaaa@6CB7@

I N3 (x,t)= 0 μ + (x) A(x,ξ) n=1 N φ 0 (t, λ n )sin λ n ξ α n λ n φ 0 (t, λ n 0 )sin λ n 0 ξ α n 0 λ n 0 dξ, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaBa aaleaacaWGobGaaG4maaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGa aGykaiaai2dadaWdXaqabSqaaiaaicdaaeaacqaH8oqBdaahaaqabe aacqGHRaWkaaGaaGikaiaadIhacaaIPaaaniabgUIiYdGccaWGbbGa aGikaiaadIhacaaISaGaeqOVdGNaaGykamaaqahabeWcbaGaamOBai aai2dacaaIXaaabaGaamOtaaqdcqGHris5aOWaaeWaaeaadaWcaaqa aiabeA8aQnaaBaaaleaacaaIWaaabeaakiaaiIcacaWG0bGaaGilai abeU7aSnaaBaaaleaacaWGUbaabeaakiaaiMcaciGGZbGaaiyAaiaa c6gacqaH7oaBdaWgaaWcbaGaamOBaaqabaGccqaH+oaEaeaacqaHXo qydaWgaaWcbaGaamOBaaqabaGccqaH7oaBdaWgaaWcbaGaamOBaaqa baaaaOGaeyOeI0YaaSaaaeaacqaHgpGAdaWgaaWcbaGaaGimaaqaba GccaaIOaGaamiDaiaaiYcacqaH7oaBdaqhaaWcbaGaamOBaaqaaiaa icdaaaGccaaIPaGaci4CaiaacMgacaGGUbGaeq4UdW2aa0baaSqaai aad6gaaeaacaaIWaaaaOGaeqOVdGhabaGaeqySde2aa0baaSqaaiaa d6gaaeaacaaIWaaaaOGaeq4UdW2aa0baaSqaaiaad6gaaeaacaaIWa aaaaaaaOGaayjkaiaawMcaaiaadsgacqaH+oaEcaaISaaaaa@84F9@

I N4 (x,t)= 0 μ + (t) A(t,ξ) n=1 N φ(x, λ n )sin λ n ξ α n λ n dξ. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaBa aaleaacaWGobGaaGinaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGa aGykaiaai2dadaWdXaqabSqaaiaaicdaaeaacqaH8oqBdaahaaqabe aacqGHRaWkaaGaaGikaiaadshacaaIPaaaniabgUIiYdGccaWGbbGa aGikaiaadshacaaISaGaeqOVdGNaaGykamaaqahabeWcbaGaamOBai aai2dacaaIXaaabaGaamOtaaqdcqGHris5aOWaaSaaaeaacqaHgpGA caaIOaGaamiEaiaaiYcacqaH7oaBdaWgaaWcbaGaamOBaaqabaGcca aIPaGaci4CaiaacMgacaGGUbGaeq4UdW2aaSbaaSqaaiaad6gaaeqa aOGaeqOVdGhabaGaeqySde2aaSbaaSqaaiaad6gaaeqaaOGaeq4UdW 2aaSbaaSqaaiaad6gaaeqaaaaakiaadsgacqaH+oaEcaaIUaaaaa@68DB@

Из (12) и (13) легко находим

F(x,t)= n=1 φ 0 (x, λ n ) φ 0 (t, λ n ) α n φ 0 (x, λ n 0 ) φ 0 (t, λ n 0 ) α n 0 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaaGypamaaqahabeWcbaGaamOB aiaai2dacaaIXaaabaGaeyOhIukaniabggHiLdGcdaqadaqaamaala aabaGaeqOXdO2aaSbaaSqaaiaaicdaaeqaaOGaaGikaiaadIhacaaI SaGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaOGaaGykaiabeA8aQnaaBa aaleaacaaIWaaabeaakiaaiIcacaWG0bGaaGilaiabeU7aSnaaBaaa leaacaWGUbaabeaakiaaiMcaaeaacqaHXoqydaWgaaWcbaGaamOBaa qabaaaaOGaeyOeI0YaaSaaaeaacqaHgpGAdaWgaaWcbaGaaGimaaqa baGccaaIOaGaamiEaiaaiYcacqaH7oaBdaqhaaWcbaGaamOBaaqaai aaicdaaaGccaaIPaGaeqOXdO2aaSbaaSqaaiaaicdaaeqaaOGaaGik aiaadshacaaISaGaeq4UdW2aa0baaSqaaiaad6gaaeaacaaIWaaaaO GaaGykaaqaaiabeg7aHnaaDaaaleaacaWGUbaabaGaaGimaaaaaaaa kiaawIcacaGLPaaacaaIUaaaaa@6F58@

Пусть f(x)AC(0,π] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGykaiabgIGiolaadgeacaWGdbGaaGikaiaaicdacaaI SaGaeqiWdaNaaGyxaaaa@4118@ , f(0)= f (π)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaaIWaGaaGykaiaai2daceWGMbGbauaacaaIOaGaeqiWdaNaaGyk aiaai2dacaaIWaaaaa@3F5E@ . Согласно формуле разложения (10) получаем, что

n=1 0 π f(t)ρ(t) φ(x, λ n )φ(t, λ n ) α n dt=f(x), n=1 0 π f(t)ρ(t) φ 0 (x, λ n 0 ) φ 0 (t, λ n 0 ) α n 0 dt=f(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeqale aacaWGUbGaaGypaiaaigdaaeaacqGHEisPa0GaeyyeIuoakmaapeda beWcbaGaaGimaaqaaiabec8aWbqdcqGHRiI8aOGaamOzaiaaiIcaca WG0bGaaGykaiabeg8aYjaaiIcacaWG0bGaaGykamaalaaabaGaeqOX dOMaaGikaiaadIhacaaISaGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaO GaaGykaiabeA8aQjaaiIcacaWG0bGaaGilaiabeU7aSnaaBaaaleaa caWGUbaabeaakiaaiMcaaeaacqaHXoqydaWgaaWcbaGaamOBaaqaba aaaOGaamizaiaadshacaaI9aGaamOzaiaaiIcacaWG4bGaaGykaiaa iYcacaaMf8+aaabCaeqaleaacaWGUbGaaGypaiaaigdaaeaacqGHEi sPa0GaeyyeIuoakmaapedabeWcbaGaaGimaaqaaiabec8aWbqdcqGH RiI8aOGaamOzaiaaiIcacaWG0bGaaGykaiabeg8aYjaaiIcacaWG0b GaaGykamaalaaabaGaeqOXdO2aaSbaaSqaaiaaicdaaeqaaOGaaGik aiaadIhacaaISaGaeq4UdW2aa0baaSqaaiaad6gaaeaacaaIWaaaaO GaaGykaiabeA8aQnaaBaaaleaacaaIWaaabeaakiaaiIcacaWG0bGa aGilaiabeU7aSnaaDaaaleaacaWGUbaabaGaaGimaaaakiaaiMcaae aacqaHXoqydaqhaaWcbaGaamOBaaqaaiaaicdaaaaaaOGaamizaiaa dshacaaI9aGaamOzaiaaiIcacaWG4bGaaGykaaaa@912E@   (16)

равномерно на x(0,π] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI GiolaaiIcacaaIWaGaaGilaiabec8aWjaai2faaaa@3D3A@ . Согласно (16) имеем

lim N max 0xπ 0 π f(t)ρ(t) Φ N (x,t)dt = MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqale aacaWGobGaeyOKH4QaeyOhIukabeGcbaGaciiBaiaacMgacaGGTbaa amaawafabeWcbaGaaGimaiabgsMiJkaadIhacqGHKjYOcqaHapaCae qakeaaciGGTbGaaiyyaiaacIhaaaWaaqWaaeaadaWdXaqabSqaaiaa icdaaeaacqaHapaCa0Gaey4kIipakiaadAgacaaIOaGaamiDaiaaiM cacqaHbpGCcaaIOaGaamiDaiaaiMcacqqHMoGrdaWgaaWcbaGaamOt aaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadsgacaWG0b aacaGLhWUaayjcSdGaaGypaaaa@601F@

= lim N max 0xπ 0 π f(t)ρ(t) n=1 N φ(x, λ n )φ(t, λ n ) α n φ 0 (x, λ n 0 ) φ 0 (t, λ n 0 ) α n 0 dt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaawa fabeWcbaGaamOtaiabgkziUkabg6HiLcqabOqaaiGacYgacaGGPbGa aiyBaaaadaGfqbqabSqaaiaaicdacqGHKjYOcaWG4bGaeyizImQaeq iWdahabeGcbaGaciyBaiaacggacaGG4baaamaaemaabaWaa8qmaeqa leaacaaIWaaabaGaeqiWdahaniabgUIiYdGccaWGMbGaaGikaiaads hacaaIPaGaeqyWdiNaaGikaiaadshacaaIPaWaaabCaeqaleaacaWG UbGaaGypaiaaigdaaeaacaWGobaaniabggHiLdGcdaqadaqaamaala aabaGaeqOXdOMaaGikaiaadIhacaaISaGaeq4UdW2aaSbaaSqaaiaa d6gaaeqaaOGaaGykaiabeA8aQjaaiIcacaWG0bGaaGilaiabeU7aSn aaBaaaleaacaWGUbaabeaakiaaiMcaaeaacqaHXoqydaWgaaWcbaGa amOBaaqabaaaaOGaeyOeI0YaaSaaaeaacqaHgpGAdaWgaaWcbaGaaG imaaqabaGccaaIOaGaamiEaiaaiYcacqaH7oaBdaqhaaWcbaGaamOB aaqaaiaaicdaaaGccaaIPaGaeqOXdO2aaSbaaSqaaiaaicdaaeqaaO GaaGikaiaadshacaaISaGaeq4UdW2aa0baaSqaaiaad6gaaeaacaaI WaaaaOGaaGykaaqaaiabeg7aHnaaDaaaleaacaWGUbaabaGaaGimaa aaaaaakiaawIcacaGLPaaacaWGKbGaamiDaaGaay5bSlaawIa7aiab gsMiJcaa@8BCC@

lim N max 0xπ 0 π f(t)ρ(t) n=1 N φ(x, λ n )φ(t, λ n ) α n dtf(x) + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aay buaeqaleaacaWGobGaeyOKH4QaeyOhIukabeGcbaGaciiBaiaacMga caGGTbaaamaaceaabaWaaybuaeqaleaacaaIWaGaeyizImQaamiEai abgsMiJkabec8aWbqabOqaaiGac2gacaGGHbGaaiiEaaaadaabdaqa amaapedabeWcbaGaaGimaaqaaiabec8aWbqdcqGHRiI8aOGaamOzai aaiIcacaWG0bGaaGykaiabeg8aYjaaiIcacaWG0bGaaGykamaaqaha beWcbaGaamOBaiaai2dacaaIXaaabaGaamOtaaqdcqGHris5aOWaaS aaaeaacqaHgpGAcaaIOaGaamiEaiaaiYcacqaH7oaBdaWgaaWcbaGa amOBaaqabaGccaaIPaGaeqOXdOMaaGikaiaadshacaaISaGaeq4UdW 2aaSbaaSqaaiaad6gaaeqaaOGaaGykaaqaaiabeg7aHnaaBaaaleaa caWGUbaabeaaaaGccaWGKbGaamiDaiabgkHiTiaadAgacaaIOaGaam iEaiaaiMcaaiaawEa7caGLiWoaaiaawUhaaiabgUcaRaaa@787C@

+ max 0xπ 0 π f(t)ρ(t) n=1 N φ 0 (x, λ n 0 ) φ 0 (t, λ n 0 ) α n 0 dtf(x) =0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiGaaeaacq GHRaWkdaGfqbqabSqaaiaaicdacqGHKjYOcaWG4bGaeyizImQaeqiW dahabeGcbaGaciyBaiaacggacaGG4baaamaaemaabaWaa8qmaeqale aacaaIWaaabaGaeqiWdahaniabgUIiYdGccaWGMbGaaGikaiaadsha caaIPaGaeqyWdiNaaGikaiaadshacaaIPaWaaabCaeqaleaacaWGUb GaaGypaiaaigdaaeaacaWGobaaniabggHiLdGcdaWcaaqaaiabeA8a QnaaBaaaleaacaaIWaaabeaakiaaiIcacaWG4bGaaGilaiabeU7aSn aaDaaaleaacaWGUbaabaGaaGimaaaakiaaiMcacqaHgpGAdaWgaaWc baGaaGimaaqabaGccaaIOaGaamiDaiaaiYcacqaH7oaBdaqhaaWcba GaamOBaaqaaiaaicdaaaGccaaIPaaabaGaeqySde2aa0baaSqaaiaa d6gaaeaacaaIWaaaaaaakiaadsgacaWG0bGaeyOeI0IaamOzaiaaiI cacaWG4bGaaGykaaGaay5bSlaawIa7aaGaayzFaaGaaGypaiaaicda caaIUaaaaa@758F@  (17)

 Ясно, что

lim N 0 π f(t)ρ(t) I N1 (x,t)dt= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqale aacaWGobGaeyOKH4QaeyOhIukabeGcbaGaciiBaiaacMgacaGGTbaa amaapedabeWcbaGaaGimaaqaaiabec8aWbqdcqGHRiI8aOGaamOzai aaiIcacaWG0bGaaGykaiabeg8aYjaaiIcacaWG0bGaaGykaiaadMea daWgaaWcbaGaamOtaiaaigdaaeqaaOGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaWGKbGaamiDaiaai2daaaa@52D6@

= lim N 0 π f(t)ρ(t) n=1 N φ 0 (x, λ n ) φ 0 (t, λ n ) α n φ 0 (x, λ n 0 ) φ 0 (t, λ n 0 ) α n 0 dt= 0 π f(t)ρ(t)F(x,t)dt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaawa fabeWcbaGaamOtaiabgkziUkabg6HiLcqabOqaaiGacYgacaGGPbGa aiyBaaaadaWdXaqabSqaaiaaicdaaeaacqaHapaCa0Gaey4kIipaki aadAgacaaIOaGaamiDaiaaiMcacqaHbpGCcaaIOaGaamiDaiaaiMca daaeWbqabSqaaiaad6gacaaI9aGaaGymaaqaaiaad6eaa0GaeyyeIu oakmaabmaabaWaaSaaaeaacqaHgpGAdaWgaaWcbaGaaGimaaqabaGc caaIOaGaamiEaiaaiYcacqaH7oaBdaWgaaWcbaGaamOBaaqabaGcca aIPaGaeqOXdO2aaSbaaSqaaiaaicdaaeqaaOGaaGikaiaadshacaaI SaGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaOGaaGykaaqaaiabeg7aHn aaBaaaleaacaWGUbaabeaaaaGccqGHsisldaWcaaqaaiabeA8aQnaa BaaaleaacaaIWaaabeaakiaaiIcacaWG4bGaaGilaiabeU7aSnaaDa aaleaacaWGUbaabaGaaGimaaaakiaaiMcacqaHgpGAdaWgaaWcbaGa aGimaaqabaGccaaIOaGaamiDaiaaiYcacqaH7oaBdaqhaaWcbaGaam OBaaqaaiaaicdaaaGccaaIPaaabaGaeqySde2aa0baaSqaaiaad6ga aeaacaaIWaaaaaaaaOGaayjkaiaawMcaaiaadsgacaWG0bGaaGypam aapedabeWcbaGaaGimaaqaaiabec8aWbqdcqGHRiI8aOGaamOzaiaa iIcacaWG0bGaaGykaiabeg8aYjaaiIcacaWG0bGaaGykaiaadAeaca aIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadsgacaWG0baaaa@9236@  (18)

равномерно на x(0,π] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI GiolaaiIcacaaIWaGaaGilaiabec8aWjaai2faaaa@3D3A@ . Из (6) получаем, что

sinλξ λ = φ 0 (ξ,λ), ξ<a, 2α 1+α φ 0 ξ α +a a α ,λ + 1α 1+α φ 0 (2aξ,λ), ξ>a. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaci GGZbGaaiyAaiaac6gacqaH7oaBcqaH+oaEaeaacqaH7oaBaaGaaGyp amaaceaabaqbaeaabiabaaaabaaabaGaeqOXdO2aaSbaaSqaaiaaic daaeqaaOGaaGikaiabe67a4jaaiYcacqaH7oaBcaaIPaGaaGilaaqa aiaaywW7aeaacqaH+oaEcaaI8aGaamyyaiaaiYcaaeaaaeaadaWcaa qaaiaaikdacqaHXoqyaeaacaaIXaGaey4kaSIaeqySdegaaiabeA8a QnaaBaaaleaacaaIWaaabeaakmaabmaabaWaaSaaaeaacqaH+oaEae aacqaHXoqyaaGaey4kaSIaamyyaiabgkHiTmaalaaabaGaamyyaaqa aiabeg7aHbaacaaISaGaeq4UdWgacaGLOaGaayzkaaGaey4kaSYaaS aaaeaacaaIXaGaeyOeI0IaeqySdegabaGaaGymaiabgUcaRiabeg7a HbaacqaHgpGAdaWgaaWcbaGaaGimaaqabaGccaaIOaGaaGOmaiaadg gacqGHsislcqaH+oaEcaaISaGaeq4UdWMaaGykaiaaiYcaaeaacaaM f8oabaGaeqOVdGNaaGOpaiaadggacaaIUaaaaaGaay5Eaaaaaa@7C57@  (19)

Принимая во внимание (19) и (16), находим

lim N 0 π f(t)ρ(t) I N2 (x,t)dt= lim N 0 π f(t)ρ(t) 0 μ + (x) A(x,ξ) n=1 N φ 0 (t, λ n 0 )sin λ n 0 ξ α n 0 λ n 0 dξdt= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqale aacaWGobGaeyOKH4QaeyOhIukabeGcbaGaciiBaiaacMgacaGGTbaa amaapedabeWcbaGaaGimaaqaaiabec8aWbqdcqGHRiI8aOGaamOzai aaiIcacaWG0bGaaGykaiabeg8aYjaaiIcacaWG0bGaaGykaiaadMea daWgaaWcbaGaamOtaiaaikdaaeqaaOGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaWGKbGaamiDaiaai2dadaGfqbqabSqaaiaad6eacqGH sgIRcqGHEisPaeqakeaaciGGSbGaaiyAaiaac2gaaaWaa8qmaeqale aacaaIWaaabaGaeqiWdahaniabgUIiYdGccaWGMbGaaGikaiaadsha caaIPaGaeqyWdiNaaGikaiaadshacaaIPaWaa8qmaeqaleaacaaIWa aabaGaeqiVd02aaWbaaeqabaGaey4kaScaaiaaiIcacaWG4bGaaGyk aaqdcqGHRiI8aOGaamyqaiaaiIcacaWG4bGaaGilaiabe67a4jaaiM cadaaeWbqabSqaaiaad6gacaaI9aGaaGymaaqaaiaad6eaa0Gaeyye IuoakmaalaaabaGaeqOXdO2aaSbaaSqaaiaaicdaaeqaaOGaaGikai aadshacaaISaGaeq4UdW2aa0baaSqaaiaad6gaaeaacaaIWaaaaOGa aGykaiGacohacaGGPbGaaiOBaiabeU7aSnaaDaaaleaacaWGUbaaba GaaGimaaaakiabe67a4bqaaiabeg7aHnaaDaaaleaacaWGUbaabaGa aGimaaaakiabeU7aSnaaDaaaleaacaWGUbaabaGaaGimaaaaaaGcca aMi8Uaamizaiabe67a4jaayIW7caWGKbGaamiDaiaai2daaaa@9ADC@

= lim N 0 π f(t)ρ(t) 0 a A(x,ξ) n=1 N φ 0 (t, λ n 0 )sin λ n 0 ξ α n 0 λ n 0 dξdt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaawa fabeWcbaGaamOtaiabgkziUkabg6HiLcqabOqaaiGacYgacaGGPbGa aiyBaaaadaWdXaqabSqaaiaaicdaaeaacqaHapaCa0Gaey4kIipaki aadAgacaaIOaGaamiDaiaaiMcacqaHbpGCcaaIOaGaamiDaiaaiMca daWdXaqabSqaaiaaicdaaeaacaWGHbaaniabgUIiYdGccaWGbbGaaG ikaiaadIhacaaISaGaeqOVdGNaaGykamaaqahabeWcbaGaamOBaiaa i2dacaaIXaaabaGaamOtaaqdcqGHris5aOWaaSaaaeaacqaHgpGAda WgaaWcbaGaaGimaaqabaGccaaIOaGaamiDaiaaiYcacqaH7oaBdaqh aaWcbaGaamOBaaqaaiaaicdaaaGccaaIPaGaci4CaiaacMgacaGGUb Gaeq4UdW2aa0baaSqaaiaad6gaaeaacaaIWaaaaOGaeqOVdGhabaGa eqySde2aa0baaSqaaiaad6gaaeaacaaIWaaaaOGaeq4UdW2aa0baaS qaaiaad6gaaeaacaaIWaaaaaaakiaayIW7caWGKbGaeqOVdGNaaGjc VlaadsgacaWG0bGaey4kaScaaa@7AA4@

+ 2α 1+α lim N 0 π f(t)ρ(t) a αxαa+a A(x,ξ) n=1 N φ 0 (t, λ n 0 ) φ 0 ξ α +a a α , λ n 0 α n 0 dξdt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaaS aaaeaacaaIYaGaeqySdegabaGaaGymaiabgUcaRiabeg7aHbaadaGf qbqabSqaaiaad6eacqGHsgIRcqGHEisPaeqakeaaciGGSbGaaiyAai aac2gaaaWaa8qmaeqaleaacaaIWaaabaGaeqiWdahaniabgUIiYdGc caWGMbGaaGikaiaadshacaaIPaGaeqyWdiNaaGikaiaadshacaaIPa Waa8qmaeqaleaacaWGHbaabaGaeqySdeMaamiEaiabgkHiTiabeg7a HjaadggacqGHRaWkcaWGHbaaniabgUIiYdGccaWGbbGaaGikaiaadI hacaaISaGaeqOVdGNaaGykamaaqahabeWcbaGaamOBaiaai2dacaaI XaaabaGaamOtaaqdcqGHris5aOWaaSaaaeaacqaHgpGAdaWgaaWcba GaaGimaaqabaGccaaIOaGaamiDaiaaiYcacqaH7oaBdaqhaaWcbaGa amOBaaqaaiaaicdaaaGccaaIPaGaeqOXdO2aaSbaaSqaaiaaicdaae qaaOWaaeWaaeaadaWcaaqaaiabe67a4bqaaiabeg7aHbaacqGHRaWk caWGHbGaeyOeI0YaaSaaaeaacaWGHbaabaGaeqySdegaaiaaiYcacq aH7oaBdaqhaaWcbaGaamOBaaqaaiaaicdaaaaakiaawIcacaGLPaaa aeaacqaHXoqydaqhaaWcbaGaamOBaaqaaiaaicdaaaaaaOGaaGjcVl aadsgacqaH+oaEcaaMi8UaamizaiaadshacqGHRaWkaaa@8CF7@

+ 1α 1+α lim N 0 π f(t)ρ(t) a αxαa+a A(x,ξ) n=1 N φ 0 (t, λ n 0 ) φ 0 (2aξ, λ n 0 ) α n 0 dξdt= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaaS aaaeaacaaIXaGaeyOeI0IaeqySdegabaGaaGymaiabgUcaRiabeg7a HbaadaGfqbqabSqaaiaad6eacqGHsgIRcqGHEisPaeqakeaaciGGSb GaaiyAaiaac2gaaaWaa8qmaeqaleaacaaIWaaabaGaeqiWdahaniab gUIiYdGccaWGMbGaaGikaiaadshacaaIPaGaeqyWdiNaaGikaiaads hacaaIPaWaa8qmaeqaleaacaWGHbaabaGaeqySdeMaamiEaiabgkHi Tiabeg7aHjaadggacqGHRaWkcaWGHbaaniabgUIiYdGccaWGbbGaaG ikaiaadIhacaaISaGaeqOVdGNaaGykamaaqahabeWcbaGaamOBaiaa i2dacaaIXaaabaGaamOtaaqdcqGHris5aOWaaSaaaeaacqaHgpGAda WgaaWcbaGaaGimaaqabaGccaaIOaGaamiDaiaaiYcacqaH7oaBdaqh aaWcbaGaamOBaaqaaiaaicdaaaGccaaIPaGaeqOXdO2aaSbaaSqaai aaicdaaeqaaOGaaGikaiaaikdacaWGHbGaeyOeI0IaeqOVdGNaaGil aiabeU7aSnaaDaaaleaacaWGUbaabaGaaGimaaaakiaaiMcaaeaacq aHXoqydaqhaaWcbaGaamOBaaqaaiaaicdaaaaaaOGaaGjcVlaadsga cqaH+oaEcaaMi8UaamizaiaadshacaaI9aaaaa@893A@

= 0 a A(x,ξ) 0 π f(t)ρ(t) n=1 φ 0 (t, λ n 0 ) φ 0 (ξ, λ n 0 ) α n 0 dtdξ+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaape dabeWcbaGaaGimaaqaaiaadggaa0Gaey4kIipakiaadgeacaaIOaGa amiEaiaaiYcacqaH+oaEcaaIPaWaa8qmaeqaleaacaaIWaaabaGaeq iWdahaniabgUIiYdGccaWGMbGaaGikaiaadshacaaIPaGaeqyWdiNa aGikaiaadshacaaIPaWaaabCaeqaleaacaWGUbGaaGypaiaaigdaae aacqGHEisPa0GaeyyeIuoakmaalaaabaGaeqOXdO2aaSbaaSqaaiaa icdaaeqaaOGaaGikaiaadshacaaISaGaeq4UdW2aa0baaSqaaiaad6 gaaeaacaaIWaaaaOGaaGykaiabeA8aQnaaBaaaleaacaaIWaaabeaa kiaaiIcacqaH+oaEcaaISaGaeq4UdW2aa0baaSqaaiaad6gaaeaaca aIWaaaaOGaaGykaaqaaiabeg7aHnaaDaaaleaacaWGUbaabaGaaGim aaaaaaGccaWGKbGaamiDaiaadsgacqaH+oaEcqGHRaWkaaa@6EF3@

+ 2α 1+α a αxαa+a A(x,ξ) 0 π f(t)ρ(t) n=1 φ 0 (t, λ n 0 ) φ 0 ξ α +a a α , λ n 0 α n 0 dtdξ+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaaS aaaeaacaaIYaGaeqySdegabaGaaGymaiabgUcaRiabeg7aHbaadaWd XaqabSqaaiaadggaaeaacqaHXoqycaWG4bGaeyOeI0IaeqySdeMaam yyaiabgUcaRiaadggaa0Gaey4kIipakiaadgeacaaIOaGaamiEaiaa iYcacqaH+oaEcaaIPaWaa8qmaeqaleaacaaIWaaabaGaeqiWdahani abgUIiYdGccaWGMbGaaGikaiaadshacaaIPaGaeqyWdiNaaGikaiaa dshacaaIPaWaaabCaeqaleaacaWGUbGaaGypaiaaigdaaeaacqGHEi sPa0GaeyyeIuoakmaalaaabaGaeqOXdO2aaSbaaSqaaiaaicdaaeqa aOGaaGikaiaadshacaaISaGaeq4UdW2aa0baaSqaaiaad6gaaeaaca aIWaaaaOGaaGykaiabeA8aQnaaBaaaleaacaaIWaaabeaakmaabmaa baWaaSaaaeaacqaH+oaEaeaacqaHXoqyaaGaey4kaSIaamyyaiabgk HiTmaalaaabaGaamyyaaqaaiabeg7aHbaacaaISaGaeq4UdW2aa0ba aSqaaiaad6gaaeaacaaIWaaaaaGccaGLOaGaayzkaaaabaGaeqySde 2aa0baaSqaaiaad6gaaeaacaaIWaaaaaaakiaadsgacaWG0bGaamiz aiabe67a4jabgUcaRaaa@82EE@

+ 1α 1+α a αxαa+a A(x,ξ) 0 π f(t)ρ(t) n=1 φ 0 (t, λ n 0 ) φ 0 (2aξ, λ n 0 ) α n 0 dtdξ= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaaS aaaeaacaaIXaGaeyOeI0IaeqySdegabaGaaGymaiabgUcaRiabeg7a HbaadaWdXaqabSqaaiaadggaaeaacqaHXoqycaWG4bGaeyOeI0Iaeq ySdeMaamyyaiabgUcaRiaadggaa0Gaey4kIipakiaadgeacaaIOaGa amiEaiaaiYcacqaH+oaEcaaIPaWaa8qmaeqaleaacaaIWaaabaGaeq iWdahaniabgUIiYdGccaWGMbGaaGikaiaadshacaaIPaGaeqyWdiNa aGikaiaadshacaaIPaWaaabCaeqaleaacaWGUbGaaGypaiaaigdaae aacqGHEisPa0GaeyyeIuoakmaalaaabaGaeqOXdO2aaSbaaSqaaiaa icdaaeqaaOGaaGikaiaadshacaaISaGaeq4UdW2aa0baaSqaaiaad6 gaaeaacaaIWaaaaOGaaGykaiabeA8aQnaaBaaaleaacaaIWaaabeaa kiaaiIcacaaIYaGaamyyaiabgkHiTiabe67a4jaaiYcacqaH7oaBda qhaaWcbaGaamOBaaqaaiaaicdaaaGccaaIPaaabaGaeqySde2aa0ba aSqaaiaad6gaaeaacaaIWaaaaaaakiaadsgacaWG0bGaamizaiabe6 7a4jaai2daaaa@7F31@

= 0 a A(x,ξ)f(ξ)dξ+ 2α 1+α a αxαa+a A(x,ξ)f ξ α +a a α dξ+ 1α 1+α a αxαa+a A(x,ξ)f(2aξ)dξ. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaape dabeWcbaGaaGimaaqaaiaadggaa0Gaey4kIipakiaadgeacaaIOaGa amiEaiaaiYcacqaH+oaEcaaIPaGaamOzaiaaiIcacqaH+oaEcaaIPa Gaamizaiabe67a4jabgUcaRmaalaaabaGaaGOmaiabeg7aHbqaaiaa igdacqGHRaWkcqaHXoqyaaWaa8qmaeqaleaacaWGHbaabaGaeqySde MaamiEaiabgkHiTiabeg7aHjaadggacqGHRaWkcaWGHbaaniabgUIi YdGccaWGbbGaaGikaiaadIhacaaISaGaeqOVdGNaaGykaiaadAgada qadaqaamaalaaabaGaeqOVdGhabaGaeqySdegaaiabgUcaRiaadgga cqGHsisldaWcaaqaaiaadggaaeaacqaHXoqyaaaacaGLOaGaayzkaa Gaamizaiabe67a4jabgUcaRmaalaaabaGaaGymaiabgkHiTiabeg7a HbqaaiaaigdacqGHRaWkcqaHXoqyaaWaa8qmaeqaleaacaWGHbaaba GaeqySdeMaamiEaiabgkHiTiabeg7aHjaadggacqGHRaWkcaWGHbaa niabgUIiYdGccaWGbbGaaGikaiaadIhacaaISaGaeqOVdGNaaGykai aadAgacaaIOaGaaGOmaiaadggacqGHsislcqaH+oaEcaaIPaGaamiz aiabe67a4jaai6caaaa@8DF0@

Выполнив подстановку

ξ α +a a α ξ ,2aξ ξ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq aH+oaEaeaacqaHXoqyaaGaey4kaSIaamyyaiabgkHiTmaalaaabaGa amyyaaqaaiabeg7aHbaacqGHsgIRcuaH+oaEgaqbaiaaiYcacaaMf8 UaaGOmaiaadggacqGHsislcqaH+oaEcqGHsgIRcuaH+oaEgaqbgaqb aaaa@4CC8@

получим

lim N 0 π f(t)ρ(t) I N2 (x,t)dt= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqale aacaWGobGaeyOKH4QaeyOhIukabeGcbaGaciiBaiaacMgacaGGTbaa amaapedabeWcbaGaaGimaaqaaiabec8aWbqdcqGHRiI8aOGaamOzai aaiIcacaWG0bGaaGykaiabeg8aYjaaiIcacaWG0bGaaGykaiaadMea daWgaaWcbaGaamOtaiaaikdaaeqaaOGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaWGKbGaamiDaiaai2daaaa@52D7@

= 0 a A(x,ξ)f(ξ)dξ+ 2 α 2 1+α a x A(x,α ξ αa+a)f( ξ )d ξ + 1α 1+α αx+αa+a a A(x,2a ξ )f( ξ )d ξ . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaape dabeWcbaGaaGimaaqaaiaadggaa0Gaey4kIipakiaadgeacaaIOaGa amiEaiaaiYcacqaH+oaEcaaIPaGaamOzaiaaiIcacqaH+oaEcaaIPa Gaamizaiabe67a4jabgUcaRmaalaaabaGaaGOmaiabeg7aHnaaCaaa leqabaGaaGOmaaaaaOqaaiaaigdacqGHRaWkcqaHXoqyaaWaa8qmae qaleaacaWGHbaabaGaamiEaaqdcqGHRiI8aOGaamyqaiaaiIcacaWG 4bGaaGilaiabeg7aHjqbe67a4zaafaGaeyOeI0IaeqySdeMaamyyai abgUcaRiaadggacaaIPaGaamOzaiaaiIcacuaH+oaEgaqbaiaaiMca caWGKbGafqOVdGNbauaacqGHRaWkdaWcaaqaaiaaigdacqGHsislcq aHXoqyaeaacaaIXaGaey4kaSIaeqySdegaamaapedabeWcbaGaeyOe I0IaeqySdeMaamiEaiabgUcaRiabeg7aHjaadggacqGHRaWkcaWGHb aabaGaamyyaaqdcqGHRiI8aOGaamyqaiaaiIcacaWG4bGaaGilaiaa ikdacaWGHbGaeyOeI0IafqOVdGNbauGbauaacaaIPaGaamOzaiaaiI cacuaH+oaEgaqbgaqbaiaaiMcacaWGKbGafqOVdGNbauGbauaacaaI Uaaaaa@8911@

Поскольку A(x,2a ξ )0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaaiI cacaWG4bGaaGilaiaaikdacaWGHbGaeyOeI0IafqOVdGNbauGbauaa caaIPaGaeyyyIORaaGimaaaa@40BD@  при 2aξ>αxαa+a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaadg gacqGHsislcqaH+oaEcaaI+aGaeqySdeMaamiEaiabgkHiTiabeg7a HjaadggacqGHRaWkcaWGHbaaaa@42E3@ , имеем

lim N 0 π f(t)ρ(t) I N2 (x,t)dt= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqale aacaWGobGaeyOKH4QaeyOhIukabeGcbaGaciiBaiaacMgacaGGTbaa amaapedabeWcbaGaaGimaaqaaiabec8aWbqdcqGHRiI8aOGaamOzai aaiIcacaWG0bGaaGykaiabeg8aYjaaiIcacaWG0bGaaGykaiaadMea daWgaaWcbaGaamOtaiaaikdaaeqaaOGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaWGKbGaamiDaiaai2daaaa@52D7@

= 0 a A(x,t)f(t)dt+ 2 α 2 1+α a x A(x,αtαa+a)f(t)dt+ 1α 1+α 0 a A(x,2at)f(t)dt. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaape dabeWcbaGaaGimaaqaaiaadggaa0Gaey4kIipakiaadgeacaaIOaGa amiEaiaaiYcacaWG0bGaaGykaiaadAgacaaIOaGaamiDaiaaiMcaca WGKbGaamiDaiabgUcaRmaalaaabaGaaGOmaiabeg7aHnaaCaaaleqa baGaaGOmaaaaaOqaaiaaigdacqGHRaWkcqaHXoqyaaWaa8qmaeqale aacaWGHbaabaGaamiEaaqdcqGHRiI8aOGaamyqaiaaiIcacaWG4bGa aGilaiabeg7aHjaadshacqGHsislcqaHXoqycaWGHbGaey4kaSIaam yyaiaaiMcacaWGMbGaaGikaiaadshacaaIPaGaamizaiaadshacqGH RaWkdaWcaaqaaiaaigdacqGHsislcqaHXoqyaeaacaaIXaGaey4kaS IaeqySdegaamaapedabeWcbaGaaGimaaqaaiaadggaa0Gaey4kIipa kiaadgeacaaIOaGaamiEaiaaiYcacaaIYaGaamyyaiabgkHiTiaads hacaaIPaGaamOzaiaaiIcacaWG0bGaaGykaiaadsgacaWG0bGaaGOl aaaa@7990@

Следовательно,

lim N 0 π f(t)ρ(t) I N2 (x,t)dt= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqale aacaWGobGaeyOKH4QaeyOhIukabeGcbaGaciiBaiaacMgacaGGTbaa amaapedabeWcbaGaaGimaaqaaiabec8aWbqdcqGHRiI8aOGaamOzai aaiIcacaWG0bGaaGykaiabeg8aYjaaiIcacaWG0bGaaGykaiaadMea daWgaaWcbaGaamOtaiaaikdaaeqaaOGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaWGKbGaamiDaiaai2daaaa@52D7@

= 0 x 2ρ(t) 1+ ρ(t) A(x, μ + (t))f(t)dt+ 0 x 1 ρ(2at) 1+ ρ(2at) A(x,2at)f(t)dt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaape dabeWcbaGaaGimaaqaaiaadIhaa0Gaey4kIipakmaalaaabaGaaGOm aiabeg8aYjaaiIcacaWG0bGaaGykaaqaaiaaigdacqGHRaWkdaGcaa qaaiabeg8aYjaaiIcacaWG0bGaaGykaaWcbeaaaaGccaWGbbGaaGik aiaadIhacaaISaGaeqiVd02aaWbaaSqabeaacqGHRaWkaaGccaaIOa GaamiDaiaaiMcacaaIPaGaamOzaiaaiIcacaWG0bGaaGykaiaadsga caWG0bGaey4kaSYaa8qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRi I8aOWaaSaaaeaacaaIXaGaeyOeI0YaaOaaaeaacqaHbpGCcaaIOaGa aGOmaiaadggacqGHsislcaWG0bGaaGykaaWcbeaaaOqaaiaaigdacq GHRaWkdaGcaaqaaiabeg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiaa dshacaaIPaaaleqaaaaakiaadgeacaaIOaGaamiEaiaaiYcacaaIYa GaamyyaiabgkHiTiaadshacaaIPaGaamOzaiaaiIcacaWG0bGaaGyk aiaadsgacaWG0baaaa@75FC@  (20)

равномерно на x(0,π] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI GiolaaiIcacaaIWaGaaGilaiabec8aWjaai2faaaa@3D3A@ . Из (12) заключаем, что следующее предельное соотношение выполняется равномерно на x(0,π] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI GiolaaiIcacaaIWaGaaGilaiabec8aWjaai2faaaa@3D3A@ :

lim N 0 π f(t)ρ(t) I N3 (x,t)dt= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqale aacaWGobGaeyOKH4QaeyOhIukabeGcbaGaciiBaiaacMgacaGGTbaa amaapedabeWcbaGaaGimaaqaaiabec8aWbqdcqGHRiI8aOGaamOzai aaiIcacaWG0bGaaGykaiabeg8aYjaaiIcacaWG0bGaaGykaiaadMea daWgaaWcbaGaamOtaiaaiodaaeqaaOGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaWGKbGaamiDaiaai2daaaa@52D8@

= lim N 0 π f(t)ρ(t) 0 μ + (x) A(x,ξ) n=1 N φ 0 (t, λ n )sin λ n ξ α n λ n φ 0 (t, λ n 0 )sin λ n 0 ξ α n 0 λ n 0 dξdt= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaawa fabeWcbaGaamOtaiabgkziUkabg6HiLcqabOqaaiGacYgacaGGPbGa aiyBaaaadaWdXaqabSqaaiaaicdaaeaacqaHapaCa0Gaey4kIipaki aadAgacaaIOaGaamiDaiaaiMcacqaHbpGCcaaIOaGaamiDaiaaiMca daWdXaqabSqaaiaaicdaaeaacqaH8oqBdaahaaqabeaacqGHRaWkaa GaaGikaiaadIhacaaIPaaaniabgUIiYdGccaWGbbGaaGikaiaadIha caaISaGaeqOVdGNaaGykamaaqahabeWcbaGaamOBaiaai2dacaaIXa aabaGaamOtaaqdcqGHris5aOWaaeWaaeaadaWcaaqaaiabeA8aQnaa BaaaleaacaaIWaaabeaakiaaiIcacaWG0bGaaGilaiabeU7aSnaaBa aaleaacaWGUbaabeaakiaaiMcaciGGZbGaaiyAaiaac6gacqaH7oaB daWgaaWcbaGaamOBaaqabaGccqaH+oaEaeaacqaHXoqydaWgaaWcba GaamOBaaqabaGccqaH7oaBdaWgaaWcbaGaamOBaaqabaaaaOGaeyOe I0YaaSaaaeaacqaHgpGAdaWgaaWcbaGaaGimaaqabaGccaaIOaGaam iDaiaaiYcacqaH7oaBdaqhaaWcbaGaamOBaaqaaiaaicdaaaGccaaI PaGaci4CaiaacMgacaGGUbGaeq4UdW2aa0baaSqaaiaad6gaaeaaca aIWaaaaOGaeqOVdGhabaGaeqySde2aa0baaSqaaiaad6gaaeaacaaI WaaaaOGaeq4UdW2aa0baaSqaaiaad6gaaeaacaaIWaaaaaaaaOGaay jkaiaawMcaaiaayIW7caWGKbGaeqOVdGNaaGjcVlaadsgacaWG0bGa aGypaaaa@9700@

= 0 π f(t)ρ(t) 0 μ + (x) A(x,ξ) n=1 φ 0 (t, λ n )sin λ n ξ α n λ n φ 0 (t, λ n 0 )sin λ n 0 ξ α n 0 λ n 0 dξdt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaape dabeWcbaGaaGimaaqaaiabec8aWbqdcqGHRiI8aOGaamOzaiaaiIca caWG0bGaaGykaiabeg8aYjaaiIcacaWG0bGaaGykamaapedabeWcba GaaGimaaqaaiabeY7aTnaaCaaabeqaaiabgUcaRaaacaaIOaGaamiE aiaaiMcaa0Gaey4kIipakiaadgeacaaIOaGaamiEaiaaiYcacqaH+o aEcaaIPaWaaabCaeqaleaacaWGUbGaaGypaiaaigdaaeaacqGHEisP a0GaeyyeIuoakmaabmaabaWaaSaaaeaacqaHgpGAdaWgaaWcbaGaaG imaaqabaGccaaIOaGaamiDaiaaiYcacqaH7oaBdaWgaaWcbaGaamOB aaqabaGccaaIPaGaci4CaiaacMgacaGGUbGaeq4UdW2aaSbaaSqaai aad6gaaeqaaOGaeqOVdGhabaGaeqySde2aaSbaaSqaaiaad6gaaeqa aOGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaaaakiabgkHiTmaalaaaba GaeqOXdO2aaSbaaSqaaiaaicdaaeqaaOGaaGikaiaadshacaaISaGa eq4UdW2aa0baaSqaaiaad6gaaeaacaaIWaaaaOGaaGykaiGacohaca GGPbGaaiOBaiabeU7aSnaaDaaaleaacaWGUbaabaGaaGimaaaakiab e67a4bqaaiabeg7aHnaaDaaaleaacaWGUbaabaGaaGimaaaakiabeU 7aSnaaDaaaleaacaWGUbaabaGaaGimaaaaaaaakiaawIcacaGLPaaa caaMi8Uaamizaiabe67a4jaayIW7caWGKbGaamiDaaaa@8F52@

= 0 π f(t)ρ(t) 0 μ + (x) A(x,ξ) F 0 (ξ,t)dξdt. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaape dabeWcbaGaaGimaaqaaiabec8aWbqdcqGHRiI8aOGaamOzaiaaiIca caWG0bGaaGykaiabeg8aYjaaiIcacaWG0bGaaGykamaapedabeWcba GaaGimaaqaaiabeY7aTnaaCaaabeqaaiabgUcaRaaacaaIOaGaamiE aiaaiMcaa0Gaey4kIipakiaadgeacaaIOaGaamiEaiaaiYcacqaH+o aEcaaIPaGaamOramaaBaaaleaacaaIWaaabeaakiaaiIcacqaH+oaE caaISaGaamiDaiaaiMcacaaMi8Uaamizaiabe67a4jaayIW7caWGKb GaamiDaiaai6caaaa@5F71@  (21)

При помощи теоремы о вычетах и формул (8) (9) находим:

lim N 0 π f(t)ρ(t) I N4 (x,t)dt= lim N 0 π f(t)ρ(t) 0 μ + (t) A(t,ξ) n=1 N φ(x, λ n )sin λ n ξ α n λ n dξdt= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqale aacaWGobGaeyOKH4QaeyOhIukabeGcbaGaciiBaiaacMgacaGGTbaa amaapedabeWcbaGaaGimaaqaaiabec8aWbqdcqGHRiI8aOGaamOzai aaiIcacaWG0bGaaGykaiabeg8aYjaaiIcacaWG0bGaaGykaiaadMea daWgaaWcbaGaamOtaiaaisdaaeqaaOGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaWGKbGaamiDaiaai2dadaGfqbqabSqaaiaad6eacqGH sgIRcqGHEisPaeqakeaaciGGSbGaaiyAaiaac2gaaaWaa8qmaeqale aacaaIWaaabaGaeqiWdahaniabgUIiYdGccaWGMbGaaGikaiaadsha caaIPaGaeqyWdiNaaGikaiaadshacaaIPaWaa8qmaeqaleaacaaIWa aabaGaeqiVd02aaWbaaeqabaGaey4kaScaaiaaiIcacaWG0bGaaGyk aaqdcqGHRiI8aOGaamyqaiaaiIcacaWG0bGaaGilaiabe67a4jaaiM cadaaeWbqabSqaaiaad6gacaaI9aGaaGymaaqaaiaad6eaa0Gaeyye IuoakmaalaaabaGaeqOXdOMaaGikaiaadIhacaaISaGaeq4UdW2aaS baaSqaaiaad6gaaeqaaOGaaGykaiGacohacaGGPbGaaiOBaiabeU7a SnaaBaaaleaacaWGUbaabeaakiabe67a4bqaaiabeg7aHnaaBaaale aacaWGUbaabeaakiabeU7aSnaaBaaaleaacaWGUbaabeaaaaGccaaM i8Uaamizaiabe67a4jaayIW7caWGKbGaamiDaiaai2daaaa@96FE@

=2 lim N 0 π f(t)ρ(t) λ n N ψ x, λ n Δ ˙ ( λ n ) 0 μ + (t) A(t,ξ)sin λ n ξdξdt= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiabgk HiTiaaikdadaGfqbqabSqaaiaad6eacqGHsgIRcqGHEisPaeqakeaa ciGGSbGaaiyAaiaac2gaaaWaa8qmaeqaleaacaaIWaaabaGaeqiWda haniabgUIiYdGccaWGMbGaaGikaiaadshacaaIPaGaeqyWdiNaaGik aiaadshacaaIPaWaaabuaeqaleaadaabdaqaaiabeU7aSnaaBaaaba GaamOBaaqabaaacaGLhWUaayjcSdGaeyizImQaamOtaaqab0Gaeyye IuoakmaalaaabaGaeqiYdK3aaeWaaeaacaWG4bGaaGilaiabeU7aSn aaBaaaleaacaWGUbaabeaaaOGaayjkaiaawMcaaaqaaiqbfs5aezaa caGaaGikaiabeU7aSnaaBaaaleaacaWGUbaabeaakiaaiMcaaaWaa8 qmaeqaleaacaaIWaaabaGaeqiVd02aaWbaaeqabaGaey4kaScaaiaa iIcacaWG0bGaaGykaaqdcqGHRiI8aOGaamyqaiaaiIcacaWG0bGaaG ilaiabe67a4jaaiMcaciGGZbGaaiyAaiaac6gacqaH7oaBdaWgaaWc baGaamOBaaqabaGccqaH+oaEcaaMi8Uaamizaiabe67a4jaayIW7ca WGKbGaamiDaiaai2daaaa@81D4@

=2 lim N 0 π f(t)ρ(t) λ n N Re s λ= λ n ψ(x,λ) Δ(λ) 0 μ + (t) A(t,ξ)sinλξdξ dt= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiabgk HiTiaaikdadaGfqbqabSqaaiaad6eacqGHsgIRcqGHEisPaeqakeaa ciGGSbGaaiyAaiaac2gaaaWaa8qmaeqaleaacaaIWaaabaGaeqiWda haniabgUIiYdGccaWGMbGaaGikaiaadshacaaIPaGaeqyWdiNaaGik aiaadshacaaIPaWaaabuaeqaleaadaabdaqaaiabeU7aSnaaBaaaba GaamOBaaqabaaacaGLhWUaayjcSdGaeyizImQaamOtaaqab0Gaeyye IuoakiaadkfacaWGLbGaam4CamaaBaaaleaacqaH7oaBcaaI9aGaeq 4UdW2aaSbaaeaacaWGUbaabeaaaeqaaOWaamWaaeaadaWcaaqaaiab eI8a5jaaiIcacaWG4bGaaGilaiabeU7aSjaaiMcaaeaacqqHuoarca aIOaGaeq4UdWMaaGykaaaadaWdXaqabSqaaiaaicdaaeaacqaH8oqB daahaaqabeaacqGHRaWkaaGaaGikaiaadshacaaIPaaaniabgUIiYd GccaWGbbGaaGikaiaadshacaaISaGaeqOVdGNaaGykaiGacohacaGG PbGaaiOBaiabeU7aSjabe67a4jaadsgacqaH+oaEaiaawUfacaGLDb aacaWGKbGaamiDaiaai2daaaa@852E@

=2 lim N 0 π f(t)ρ(t) 1 2πi Γ N ψ(x,λ) Δ(λ) 0 μ + (t) A(t,ξ)sinλξdξdλdt= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiabgk HiTiaaikdadaGfqbqabSqaaiaad6eacqGHsgIRcqGHEisPaeqakeaa ciGGSbGaaiyAaiaac2gaaaWaa8qmaeqaleaacaaIWaaabaGaeqiWda haniabgUIiYdGccaWGMbGaaGikaiaadshacaaIPaGaeqyWdiNaaGik aiaadshacaaIPaWaaSaaaeaacaaIXaaabaGaaGOmaiabec8aWjaadM gaaaWaa8qfaeqaleaacqqHtoWrdaWgaaqaaiaad6eaaeqaaaqab0Ga eSyeUhTaey4kIipakmaalaaabaGaeqiYdKNaaGikaiaadIhacaaISa Gaeq4UdWMaaGykaaqaaiabfs5aejaaiIcacqaH7oaBcaaIPaaaamaa pedabeWcbaGaaGimaaqaaiabeY7aTnaaCaaabeqaaiabgUcaRaaaca aIOaGaamiDaiaaiMcaa0Gaey4kIipakiaadgeacaaIOaGaamiDaiaa iYcacqaH+oaEcaaIPaGaci4CaiaacMgacaGGUbGaeq4UdWMaeqOVdG Naamizaiabe67a4jaadsgacqaH7oaBcaWGKbGaamiDaiaai2daaaa@7E0F@

= lim N 0 π f(t)ρ(t) 1 πi Γ N ψ(x,λ) Δ(λ) exp{|Imλ| μ + (t)|}exp |Imλ| μ + (t) × MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiabgk HiTmaawafabeWcbaGaamOtaiabgkziUkabg6HiLcqabOqaaiGacYga caGGPbGaaiyBaaaadaWdXaqabSqaaiaaicdaaeaacqaHapaCa0Gaey 4kIipakiaadAgacaaIOaGaamiDaiaaiMcacqaHbpGCcaaIOaGaamiD aiaaiMcadaWcaaqaaiaaigdaaeaacqaHapaCcaWGPbaaamaapubabe WcbaGaeu4KdC0aaSbaaeaacaWGobaabeaaaeqaniablgH7rlabgUIi YdGcdaWcaaqaaiabeI8a5jaaiIcacaWG4bGaaGilaiabeU7aSjaaiM caaeaacqqHuoarcaaIOaGaeq4UdWMaaGykaaaaciGGLbGaaiiEaiaa cchacaaI7bGaaGiFaiaadMeacaWGTbGaeq4UdWMaaGiFaiabeY7aTn aaCaaaleqabaGaey4kaScaaOGaaGikaiaadshacaaIPaGaaGiFaiaa i2haciGGLbGaaiiEaiaacchadaGadaqaaiabgkHiTiaaiYhacaWGjb GaamyBaiabeU7aSjaaiYhacqaH8oqBdaahaaWcbeqaaiabgUcaRaaa kiaaiIcacaWG0bGaaGykaaGaay5Eaiaaw2haaiabgEna0caa@840A@

× 0 μ + (t) A(t,ξ)sinλξdξdλdt= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey41aq7aa8 qmaeqaleaacaaIWaaabaGaeqiVd02aaWbaaeqabaGaey4kaScaaiaa iIcacaWG0bGaaGykaaqdcqGHRiI8aOGaamyqaiaaiIcacaWG0bGaaG ilaiabe67a4jaaiMcaciGGZbGaaiyAaiaac6gacqaH7oaBcqaH+oaE caWGKbGaeqOVdGNaamizaiabeU7aSjaadsgacaWG0bGaaGypaaaa@53EE@

= 0 π f(t)ρ(t) lim N ( 1 πi Γ N ψ(x,λ) Δ(λ) exp |Imλ| μ + (t) exp |Imλ| μ + (t) × MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiabgk HiTmaapedabeWcbaGaaGimaaqaaiabec8aWbqdcqGHRiI8aOGaamOz aiaaiIcacaWG0bGaaGykaiabeg8aYjaaiIcacaWG0bGaaGykamaawa fabeWcbaGaamOtaiabgkziUkabg6HiLcqabOqaaiGacYgacaGGPbGa aiyBaaaacaaIOaWaaSaaaeaacaaIXaaabaGaeqiWdaNaamyAaaaada WdvaqabSqaaiabfo5ahnaaBaaabaGaamOtaaqabaaabeqdcqWIr4E0 cqGHRiI8aOWaaSaaaeaacqaHipqEcaaIOaGaamiEaiaaiYcacqaH7o aBcaaIPaaabaGaeuiLdqKaaGikaiabeU7aSjaaiMcaaaGaciyzaiaa cIhacaGGWbWaaiWaaeaacaaI8bGaamysaiaad2gacqaH7oaBcaaI8b GaeqiVd02aaWbaaSqabeaacqGHRaWkaaGccaaIOaGaamiDaiaaiMca aiaawUhacaGL9baaciGGLbGaaiiEaiaacchadaGadaqaaiabgkHiTi aaiYhacaWGjbGaamyBaiabeU7aSjaaiYhacqaH8oqBdaahaaWcbeqa aiabgUcaRaaakiaaiIcacaWG0bGaaGykaaGaay5Eaiaaw2haaiabgE na0caa@83DB@

× 0 μ + (t) A(t,ξ)sinλξdξdλ)dt, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey41aq7aa8 qmaeqaleaacaaIWaaabaGaeqiVd02aaWbaaeqabaGaey4kaScaaiaa iIcacaWG0bGaaGykaaqdcqGHRiI8aOGaamyqaiaaiIcacaWG0bGaaG ilaiabe67a4jaaiMcaciGGZbGaaiyAaiaac6gacqaH7oaBcqaH+oaE caWGKbGaeqOVdGNaamizaiabeU7aSjaaiMcacaWGKbGaamiDaiaaiY caaaa@5490@  (22)

 где контур Γ N ={λ:|λ|=| λ N 0 |+β/2} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4KdC0aaS baaSqaaiaad6eaaeqaaOGaaGypaiaaiUhacqaH7oaBcaaI6aGaaGiF aiabeU7aSjaaiYhacaaI9aGaaGiFaiabeU7aSnaaDaaaleaacaWGob aabaGaaGimaaaakiaaiYhacqGHRaWkcqaHYoGycaaIVaGaaGOmaiaa i2haaaa@4BB2@  ориентирован против часовой стрелки, а N MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaaaa@36C6@ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@ достаточно большое число. Принимая во внимание формулы

ψ(x,λ)=O e |Imλ|( μ + (π) μ + (x)) ,|λ|,|Δ(λ)| C δ e |Imλ| μ + (π) ,λ G δ , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdKNaaG ikaiaadIhacaaISaGaeq4UdWMaaGykaiaai2dacaWGpbWaaeWaaeaa caWGLbWaaWbaaSqabeaacaaI8bGaamysaiaad2gacqaH7oaBcaaI8b GaaGikaiabeY7aTnaaCaaabeqaaiabgUcaRaaacaaIOaGaeqiWdaNa aGykaiabgkHiTiabeY7aTnaaCaaabeqaaiabgUcaRaaacaaIOaGaam iEaiaaiMcacaaIPaaaaaGccaGLOaGaayzkaaGaaGilaiaaywW7caaI 8bGaeq4UdWMaaGiFaiabgkziUkabg6HiLkaaiYcacaaMf8UaaGzbVl aaiYhacqqHuoarcaaIOaGaeq4UdWMaaGykaiaaiYhacqGHLjYScaWG dbWaaSbaaSqaaiabes7aKbqabaGccaWGLbWaaWbaaSqabeaacaaI8b Gaamysaiaad2gacqaH7oaBcaaI8bGaeqiVd02aaWbaaeqabaGaey4k aScaaiaaiIcacqaHapaCcaaIPaaaaOGaaGilaiaaywW7cqaH7oaBcq GHiiIZcaWGhbWaaSbaaSqaaiabes7aKbqabaGccaaISaaaaa@811A@

где G δ ={λ:|λ λ n 0 |δ} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacqaH0oazaeqaaOGaaGypaiaaiUhacqaH7oaBcaaI6aGaaGiF aiabeU7aSjabgkHiTiabeU7aSnaaDaaaleaacaWGUbaabaGaaGimaa aakiaaiYhacqGHLjYScqaH0oazcaaI9baaaa@4995@ , δ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdqgaaa@3798@ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@ достаточно малое положительное число (см. [21]), а также [22, Lemma 1.3.1], т.е. соотношение

lim |λ| max 0tπ exp |Imλ| μ + (t) 0 μ + (t) A(t,ξ)sinλξdξdλ =0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqale aacaaI8bGaeq4UdWMaaGiFaiabgkziUkabg6HiLcqabOqaaiGacYga caGGPbGaaiyBaaaadaGfqbqabSqaaiaaicdacqGHKjYOcaWG0bGaey izImQaeqiWdahabeGcbaGaciyBaiaacggacaGG4baaaiGacwgacaGG 4bGaaiiCamaacmaabaGaeyOeI0IaaGiFaiaadMeacaWGTbGaeq4UdW MaaGiFaiabeY7aTnaaCaaaleqabaGaey4kaScaaOGaaGikaiaadsha caaIPaaacaGL7bGaayzFaaWaaqWaaeaadaWdXaqabSqaaiaaicdaae aacqaH8oqBdaahaaqabeaacqGHRaWkaaGaaGikaiaadshacaaIPaaa niabgUIiYdGccaWGbbGaaGikaiaadshacaaISaGaeqOVdGNaaGykai GacohacaGGPbGaaiOBaiabeU7aSjabe67a4jaadsgacqaH+oaEcaWG KbGaeq4UdWgacaGLhWUaayjcSdGaaGypaiaaicdacaaISaaaaa@79D1@

получаем из (22) предельное равенство

lim N 0 π f(t)ρ(t) I N4 (x,t)dt=0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqale aacaWGobGaeyOKH4QaeyOhIukabeGcbaGaciiBaiaacMgacaGGTbaa amaapedabeWcbaGaaGimaaqaaiabec8aWbqdcqGHRiI8aOGaamOzai aaiIcacaWG0bGaaGykaiabeg8aYjaaiIcacaWG0bGaaGykaiaadMea daWgaaWcbaGaamOtaiaaisdaaeqaaOGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaWGKbGaamiDaiaai2dacaaIWaGaaGOlaaaa@544B@  (23)

Умножая обе части (15) на ρ(x)f(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdiNaaG ikaiaadIhacaaIPaGaamOzaiaaiIcacaWG4bGaaGykaaaa@3D62@ , интегрируя от 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaaaa@36AD@  до π MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdahaaa@37B0@ , переходя к пределу при N MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaiabgk ziUkabg6HiLcaa@3A24@  и применяя (17), (18), (20), (21) и (23), получим

0 x 2ρ(t) 1+ ρ(t) A(x, μ + (t))f(t)dt+ 0 x 1 ρ(2at) 1+ ρ(2at) A(x,2at)f(t)dt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaIYaGaeqyW diNaaGikaiaadshacaaIPaaabaGaaGymaiabgUcaRmaakaaabaGaeq yWdiNaaGikaiaadshacaaIPaaaleqaaaaakiaadgeacaaIOaGaamiE aiaaiYcacqaH8oqBdaahaaWcbeqaaiabgUcaRaaakiaaiIcacaWG0b GaaGykaiaaiMcacaWGMbGaaGikaiaadshacaaIPaGaamizaiaadsha cqGHRaWkdaWdXaqabSqaaiaaicdaaeaacaWG4baaniabgUIiYdGcda WcaaqaaiaaigdacqGHsisldaGcaaqaaiabeg8aYjaaiIcacaaIYaGa amyyaiabgkHiTiaadshacaaIPaaaleqaaaGcbaGaaGymaiabgUcaRm aakaaabaGaeqyWdiNaaGikaiaaikdacaWGHbGaeyOeI0IaamiDaiaa iMcaaSqabaaaaOGaamyqaiaaiIcacaWG4bGaaGilaiaaikdacaWGHb GaeyOeI0IaamiDaiaaiMcacaWGMbGaaGikaiaadshacaaIPaGaamiz aiaadshacqGHRaWkaaa@7617@

+ 0 π f(t)ρ(t)F(x,t)dt+ 0 π f(t)ρ(t) 0 μ + (x) A(x,ξ) F 0 (ξ,t)dξdt=0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaeqiWdahaniabgUIiYdGccaWGMbGaaGik aiaadshacaaIPaGaeqyWdiNaaGikaiaadshacaaIPaGaamOraiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaamizaiaadshacqGHRaWkdaWd XaqabSqaaiaaicdaaeaacqaHapaCa0Gaey4kIipakiaadAgacaaIOa GaamiDaiaaiMcacqaHbpGCcaaIOaGaamiDaiaaiMcadaWdXaqabSqa aiaaicdaaeaacqaH8oqBdaahaaqabeaacqGHRaWkaaGaaGikaiaadI hacaaIPaaaniabgUIiYdGccaWGbbGaaGikaiaadIhacaaISaGaeqOV dGNaaGykaiaadAeadaWgaaWcbaGaaGimaaqabaGccaaIOaGaeqOVdG NaaGilaiaadshacaaIPaGaaGjcVlaadsgacqaH+oaEcaaMi8Uaamiz aiaadshacaaI9aGaaGimaiaai6caaaa@74BF@

Поскольку f(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGykaaaa@3940@  можно выбрать произвольно, получаем

2ρ(t) 1+ ρ(t) A(x, μ + (t))+ 1 ρ(2at) 1+ ρ(2at) A(x,2at)+F(x,t)++ 0 μ + (x) A(x,ξ) F 0 (ξ,t)dξ=0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIYaGaeqyWdiNaaGikaiaadshacaaIPaaabaGaaGymaiabgUcaRmaa kaaabaGaeqyWdiNaaGikaiaadshacaaIPaaaleqaaaaakiaadgeaca aIOaGaamiEaiaaiYcacqaH8oqBdaahaaWcbeqaaiabgUcaRaaakiaa iIcacaWG0bGaaGykaiaaiMcacqGHRaWkdaWcaaqaaiaaigdacqGHsi sldaGcaaqaaiabeg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiaadsha caaIPaaaleqaaaGcbaGaaGymaiabgUcaRmaakaaabaGaeqyWdiNaaG ikaiaaikdacaWGHbGaeyOeI0IaamiDaiaaiMcaaSqabaaaaOGaamyq aiaaiIcacaWG4bGaaGilaiaaikdacaWGHbGaeyOeI0IaamiDaiaaiM cacqGHRaWkcaWGgbGaaGikaiaadIhacaaISaGaamiDaiaaiMcacqGH RaWkcqGHRaWkdaWdXaqabSqaaiaaicdaaeaacqaH8oqBdaahaaqabe aacqGHRaWkaaGaaGikaiaadIhacaaIPaaaniabgUIiYdGccaWGbbGa aGikaiaadIhacaaISaGaeqOVdGNaaGykaiaadAeadaWgaaWcbaGaaG imaaqabaGccaaIOaGaeqOVdGNaaGilaiaadshacaaIPaGaamizaiab e67a4jaai2dacaaIWaGaaGOlaaaa@83AD@

3. Теоремы для решения обратной задачи.

Лемма 1. Для каждого фиксированного x(0,π] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI GiolaaiIcacaaIWaGaaGilaiabec8aWjaai2faaaa@3D3A@  уравнение (11) имеет единственное решение A(x,) L 2 0, μ + (x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaaiI cacaWG4bGaaGilaiabgwSixlaaiMcacqGHiiIZcaWGmbWaaSbaaSqa aiaaikdaaeqaaOWaaeWaaeaacaaIWaGaaGilaiabeY7aTnaaCaaale qabaGaey4kaScaaOGaaGikaiaadIhacaaIPaaacaGLOaGaayzkaaaa aa@478C@ .

Доказательство. При x>a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaai6 dacaWGHbaaaa@389E@  можем переписать уравнение (11) следующим образом:

L x A(x,)+ K x A(x,)=F(x,), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaWG4baabeaakiaadgeacaaIOaGaamiEaiaaiYcacqGHflY1 caaIPaGaey4kaSIaam4samaaBaaaleaacaWG4baabeaakiaadgeaca aIOaGaamiEaiaaiYcacqGHflY1caaIPaGaaGypaiabgkHiTiaadAea caaIOaGaamiEaiaaiYcacqGHflY1caaIPaGaaGilaaaa@4FC3@

где

( L x f)(t)= f(t)+ 1α 1+α f(2at), ta<x, 2 1+α f(αtαa+a), a<t<x, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadY eadaWgaaWcbaGaamiEaaqabaGccaWGMbGaaGykaiaaiIcacaWG0bGa aGykaiaai2dadaGabaqaauaabaqacqaaaaqaaaqaaiaadAgacaaIOa GaamiDaiaaiMcacqGHRaWkdaWcaaqaaiaaigdacqGHsislcqaHXoqy aeaacaaIXaGaey4kaSIaeqySdegaaiaadAgacaaIOaGaaGOmaiaadg gacqGHsislcaWG0bGaaGykaiaaiYcaaeaacaaMf8oabaGaamiDaiab gsMiJkaadggacaaI8aGaamiEaiaaiYcaaeaaaeaadaWcaaqaaiaaik daaeaacaaIXaGaey4kaSIaeqySdegaaiaadAgacaaIOaGaeqySdeMa amiDaiabgkHiTiabeg7aHjaadggacqGHRaWkcaWGHbGaaGykaiaaiY caaeaacaaMf8oabaGaamyyaiaaiYdacaWG0bGaaGipaiaadIhacaaI SaaaaaGaay5Eaaaaaa@6D0E@  (24)

( K x f)(t)= 0 αxαa+a f(ξ) F 0 (ξ,t)dξ,0<t<x. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadU eadaWgaaWcbaGaamiEaaqabaGccaWGMbGaaGykaiaaiIcacaWG0bGa aGykaiaai2dadaWdXaqabSqaaiaaicdaaeaacqaHXoqycaWG4bGaey OeI0IaeqySdeMaamyyaiabgUcaRiaadggaa0Gaey4kIipakiaadAga caaIOaGaeqOVdGNaaGykaiaadAeadaWgaaWcbaGaaGimaaqabaGcca aIOaGaeqOVdGNaaGilaiaadshacaaIPaGaamizaiabe67a4jaaiYca caaMf8UaaGimaiaaiYdacaWG0bGaaGipaiaadIhacaaIUaaaaa@5CB8@  (25)

Докажем, что оператор L x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaWG4baabeaaaaa@37ED@  обратим, т.е. имеет ограниченный обратный оператор в L 2 (0,π) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaaIYaaabeaakiaaiIcacaaIWaGaaGilaiabec8aWjaaiMca aaa@3C48@ .

Рассмотрим уравнение

( L x f)(t)=ϕ(t),ϕ(t) L 2 (0,π), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadY eadaWgaaWcbaGaamiEaaqabaGccaWGMbGaaGykaiaaiIcacaWG0bGa aGykaiaai2dacqaHvpGzcaaIOaGaamiDaiaaiMcacaaISaGaaGzbVl abew9aMjaaiIcacaWG0bGaaGykaiabgIGiolaadYeadaWgaaWcbaGa aGOmaaqabaGccaaIOaGaaGimaiaaiYcacqaHapaCcaaIPaGaaGilaa aa@508B@

т.е.

f(t)+ 1α 1+α f(2at)=ϕ(t), ta<x, 2 1+α f(αtαa+a)=ϕ(t), a<t<x. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiqaaeaafa qaaeGaeaaaaeaaaeaacaWGMbGaaGikaiaadshacaaIPaGaey4kaSYa aSaaaeaacaaIXaGaeyOeI0IaeqySdegabaGaaGymaiabgUcaRiabeg 7aHbaacaWGMbGaaGikaiaaikdacaWGHbGaeyOeI0IaamiDaiaaiMca caaI9aGaeqy1dyMaaGikaiaadshacaaIPaGaaGilaaqaaiaaywW7ae aacaWG0bGaeyizImQaamyyaiaaiYdacaWG4bGaaGilaaqaaaqaamaa laaabaGaaGOmaaqaaiaaigdacqGHRaWkcqaHXoqyaaGaamOzaiaaiI cacqaHXoqycaWG0bGaeyOeI0IaeqySdeMaamyyaiabgUcaRiaadgga caaIPaGaaGypaiabew9aMjaaiIcacaWG0bGaaGykaiaaiYcaaeaaca aMf8oabaGaamyyaiaaiYdacaWG0bGaaGipaiaadIhacaaIUaaaaaGa ay5Eaaaaaa@6F71@

Таким образом, получаем

f(t)=( L x 1 ϕ)(t)= ϕ(t) 1α 2 ϕ t+αa+a α , t<a, 1+α 2 ϕ t+αaa α , t>a. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG0bGaaGykaiaai2dacaaIOaGaamitamaaDaaaleaacaWG4baa baGaeyOeI0IaaGymaaaakiabew9aMjaaiMcacaaIOaGaamiDaiaaiM cacaaI9aWaaiqaaeaafaqaaeGaeaaaaeaaaeaacqaHvpGzcaaIOaGa amiDaiaaiMcacqGHsisldaWcaaqaaiaaigdacqGHsislcqaHXoqyae aacaaIYaaaaiabew9aMnaabmaabaWaaSaaaeaacqGHsislcaWG0bGa ey4kaSIaeqySdeMaamyyaiabgUcaRiaadggaaeaacqaHXoqyaaaaca GLOaGaayzkaaGaaGilaaqaaiaaywW7aeaacaWG0bGaaGipaiaadgga caaISaaabaaabaWaaSaaaeaacaaIXaGaey4kaSIaeqySdegabaGaaG OmaaaacqaHvpGzdaqadaqaamaalaaabaGaamiDaiabgUcaRiabeg7a HjaadggacqGHsislcaWGHbaabaGaeqySdegaaaGaayjkaiaawMcaai aaiYcaaeaacaaMf8oabaGaamiDaiaai6dacaWGHbGaaGOlaaaaaiaa wUhaaaaa@74E9@

Покажем, что

f L 2 = L x 1 ϕ L 2 Cϕ L 2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamOzaiab=vIiqnaaBaaaleaacaWGmbWa aSbaaeaacaaIYaaabeaaaeqaaOGaaGypaiab=vIiqjaadYeadaqhaa WcbaGaamiEaaqaaiabgkHiTiaaigdaaaGccqaHvpGzcqWFLicudaWg aaWcbaGaamitamaaBaaabaGaaGOmaaqabaaabeaakiabgsMiJkaado eacqWFLicucqaHvpGzcqWFLicudaWgaaWcbaGaamitamaaBaaabaGa aGOmaaqabaaabeaakiaai6caaaa@5307@

Действительно,

0 π |f(t )| 2 dt= 0 a ϕ(t) 1α 2 ϕ t+αa+a α 2 dt+ a π 1+α 2 ϕ t+αaa α 2 dt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaeqiWdahaniabgUIiYdGccaaI8bGaamOzaiaaiIca caWG0bGaaGykaiaaiYhadaahaaWcbeqaaiaaikdaaaGccaWGKbGaam iDaiaai2dadaWdXaqabSqaaiaaicdaaeaacaWGHbaaniabgUIiYdGc daabdaqaaiabew9aMjaaiIcacaWG0bGaaGykaiabgkHiTmaalaaaba GaaGymaiabgkHiTiabeg7aHbqaaiaaikdaaaGaeqy1dy2aaeWaaeaa daWcaaqaaiabgkHiTiaadshacqGHRaWkcqaHXoqycaWGHbGaey4kaS Iaamyyaaqaaiabeg7aHbaaaiaawIcacaGLPaaaaiaawEa7caGLiWoa daahaaWcbeqaaiaaikdaaaGccaWGKbGaamiDaiabgUcaRmaapedabe WcbaGaamyyaaqaaiabec8aWbqdcqGHRiI8aOWaaqWaaeaadaWcaaqa aiaaigdacqGHRaWkcqaHXoqyaeaacaaIYaaaaiabew9aMnaabmaaba WaaSaaaeaacaWG0bGaey4kaSIaeqySdeMaamyyaiabgkHiTiaadgga aeaacqaHXoqyaaaacaGLOaGaayzkaaaacaGLhWUaayjcSdWaaWbaaS qabeaacaaIYaaaaOGaamizaiaadshacqGHKjYOaaa@7F35@

2 0 a ϕ(t) 2 dt+2 1α 2 2 0 a ϕ t+αa+a α 2 dt+ 1+α 2 2 a π ϕ t+αaa α 2 dt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaaG OmamaapedabeWcbaGaaGimaaqaaiaadggaa0Gaey4kIipakmaaemaa baGaeqy1dyMaaGikaiaadshacaaIPaaacaGLhWUaayjcSdWaaWbaaS qabeaacaaIYaaaaOGaamizaiaadshacqGHRaWkcaaIYaWaaeWaaeaa daWcaaqaaiaaigdacqGHsislcqaHXoqyaeaacaaIYaaaaaGaayjkai aawMcaamaaCaaaleqabaGaaGOmaaaakmaapedabeWcbaGaaGimaaqa aiaadggaa0Gaey4kIipakmaaemaabaGaeqy1dy2aaeWaaeaadaWcaa qaaiabgkHiTiaadshacqGHRaWkcqaHXoqycaWGHbGaey4kaSIaamyy aaqaaiabeg7aHbaaaiaawIcacaGLPaaaaiaawEa7caGLiWoadaahaa WcbeqaaiaaikdaaaGccaWGKbGaamiDaiabgUcaRmaabmaabaWaaSaa aeaacaaIXaGaey4kaSIaeqySdegabaGaaGOmaaaaaiaawIcacaGLPa aadaahaaWcbeqaaiaaikdaaaGcdaWdXaqabSqaaiaadggaaeaacqaH apaCa0Gaey4kIipakmaaemaabaGaeqy1dy2aaeWaaeaadaWcaaqaai aadshacqGHRaWkcqaHXoqycaWGHbGaeyOeI0Iaamyyaaqaaiabeg7a HbaaaiaawIcacaGLPaaaaiaawEa7caGLiWoadaahaaWcbeqaaiaaik daaaGccaWGKbGaamiDaiabgsMiJcaa@837E@

2 0 π |ϕ(t )| 2 dt+ α 1α 2 2 a αa+a α |ϕ(t )| 2 dt+α 1+α 2 2 a π+αaa α |ϕ(t )| 2 dt. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaaG OmamaapedabeWcbaGaaGimaaqaaiabec8aWbqdcqGHRiI8aOGaaGiF aiabew9aMjaaiIcacaWG0bGaaGykaiaaiYhadaahaaWcbeqaaiaaik daaaGccaWGKbGaamiDaiabgUcaRmaalaaabaGaeqySde2aaeWaaeaa caaIXaGaeyOeI0IaeqySdegacaGLOaGaayzkaaWaaWbaaSqabeaaca aIYaaaaaGcbaGaaGOmaaaadaWdXaqabSqaaiaadggaaeaadaWcaaqa aiabeg7aHjaadggacqGHRaWkcaWGHbaabaGaeqySdegaaaqdcqGHRi I8aOGaaGiFaiabew9aMjaaiIcacaWG0bGaaGykaiaaiYhadaahaaWc beqaaiaaikdaaaGccaWGKbGaamiDaiabgUcaRiabeg7aHnaabmaaba WaaSaaaeaacaaIXaGaey4kaSIaeqySdegabaGaaGOmaaaaaiaawIca caGLPaaadaahaaWcbeqaaiaaikdaaaGcdaWdXaqabSqaaiaadggaae aadaWcaaqaaiabec8aWjabgUcaRiabeg7aHjaadggacqGHsislcaWG HbaabaGaeqySdegaaaqdcqGHRiI8aOGaaGiFaiabew9aMjaaiIcaca WG0bGaaGykaiaaiYhadaahaaWcbeqaaiaaikdaaaGccaWGKbGaamiD aiaai6caaaa@7FC7@

Положим ϕ(t)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaG ikaiaadshacaaIPaGaaGypaiaaicdaaaa@3B9A@  для t>π MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiaai6 dacqaHapaCaaa@3971@ . Тогда

0 π f(t) 2 dtC 0 π ϕ(t) 2 dt=Cϕ(t) L 2 (0,π) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaeqiWdahaniabgUIiYdGcdaabdaqaaiaadAgacaaI OaGaamiDaiaaiMcaaiaawEa7caGLiWoadaahaaWcbeqaaiaaikdaaa GccaWGKbGaamiDaiabgsMiJkaadoeadaWdXaqabSqaaiaaicdaaeaa cqaHapaCa0Gaey4kIipakmaaemaabaGaeqy1dyMaaGikaiaadshaca aIPaaacaGLhWUaayjcSdWaaWbaaSqabeaacaaIYaaaaOGaamizaiaa dshacaaI9aGaam4qaebbfv3ySLgzGueE0jxyaGqbaiab=vIiqjabew 9aMjaaiIcacaWG0bGaaGykaiab=vIiqnaaBaaaleaacaWGmbWaaSba aeaacaaIYaaabeaacaaIOaGaaGimaiaaiYcacqaHapaCcaaIPaaabe aakiaai6caaaa@68DA@

Таким образом, оператор L x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaWG4baabeaaaaa@37ED@  обратим в L 2 (0,π) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaaIYaaabeaakiaaiIcacaaIWaGaaGilaiabec8aWjaaiMca aaa@3C48@ . Согласно [?, Theorem~3] достаточно доказать, что уравнение

2 1+ ρ(t) A( μ + (t))+ 1 ρ(2at) 1+ ρ(2at) A(2at)+ 0 μ + (x) A(ξ) F 0 (ξ,t)dξ=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIYaaabaGaaGymaiabgUcaRmaakaaabaGaeqyWdiNaaGikaiaadsha caaIPaaaleqaaaaakiaadgeacaaIOaGaeqiVd02aaWbaaSqabeaacq GHRaWkaaGccaaIOaGaamiDaiaaiMcacaaIPaGaey4kaSYaaSaaaeaa caaIXaGaeyOeI0YaaOaaaeaacqaHbpGCcaaIOaGaaGOmaiaadggacq GHsislcaWG0bGaaGykaaWcbeaaaOqaaiaaigdacqGHRaWkdaGcaaqa aiabeg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiaadshacaaIPaaale qaaaaakiaadgeacaaIOaGaaGOmaiaadggacqGHsislcaWG0bGaaGyk aiabgUcaRmaapedabeWcbaGaaGimaaqaaiabeY7aTnaaCaaabeqaai abgUcaRaaacaaIOaGaamiEaiaaiMcaa0Gaey4kIipakiaadgeacaaI OaGaeqOVdGNaaGykaiaadAeadaWgaaWcbaGaaGimaaqabaGccaaIOa GaeqOVdGNaaGilaiaadshacaaIPaGaamizaiabe67a4jaai2dacaaI Waaaaa@731E@  (26)

имеет лишь тривиальное решение A(t)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaaiI cacaWG0bGaaGykaiaai2dacaaIWaaaaa@3A98@ .

Пусть A(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaaiI cacaWG0bGaaGykaaaa@3917@ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@ нетривиальное решение уравнения (26). Тогда

0 x ρ(t) 2 1+ ρ(t) A( μ + (t))+ 1 ρ(2at) 1+ ρ(2at) A(2at) 2 dt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamiEaaqdcqGHRiI8aOGaeqyWdiNaaGikaiaadsha caaIPaWaaeWaaeaadaWcaaqaaiaaikdaaeaacaaIXaGaey4kaSYaaO aaaeaacqaHbpGCcaaIOaGaamiDaiaaiMcaaSqabaaaaOGaamyqaiaa iIcacqaH8oqBdaahaaWcbeqaaiabgUcaRaaakiaaiIcacaWG0bGaaG ykaiaaiMcacqGHRaWkdaWcaaqaaiaaigdacqGHsisldaGcaaqaaiab eg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiaadshacaaIPaaaleqaaa GcbaGaaGymaiabgUcaRmaakaaabaGaeqyWdiNaaGikaiaaikdacaWG HbGaeyOeI0IaamiDaiaaiMcaaSqabaaaaOGaamyqaiaaiIcacaaIYa GaamyyaiabgkHiTiaadshacaaIPaaacaGLOaGaayzkaaWaaWbaaSqa beaacaaIYaaaaOGaamizaiaadshacqGHRaWkaaa@68CE@

+ 0 x ρ(t) 2 1+ ρ(t) A( μ + (t))+ 1 ρ(2at) 1+ ρ(2at) A(2at) 0 μ + (x) A(ξ) F 0 (ξ,t)dξdt=0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOGaeqyWdiNaaGik aiaadshacaaIPaWaaeWaaeaadaWcaaqaaiaaikdaaeaacaaIXaGaey 4kaSYaaOaaaeaacqaHbpGCcaaIOaGaamiDaiaaiMcaaSqabaaaaOGa amyqaiaaiIcacqaH8oqBdaahaaWcbeqaaiabgUcaRaaakiaaiIcaca WG0bGaaGykaiaaiMcacqGHRaWkdaWcaaqaaiaaigdacqGHsisldaGc aaqaaiabeg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiaadshacaaIPa aaleqaaaGcbaGaaGymaiabgUcaRmaakaaabaGaeqyWdiNaaGikaiaa ikdacaWGHbGaeyOeI0IaamiDaiaaiMcaaSqabaaaaOGaamyqaiaaiI cacaaIYaGaamyyaiabgkHiTiaadshacaaIPaaacaGLOaGaayzkaaGa eyyXIC9aa8qmaeqaleaacaaIWaaabaGaeqiVd02aaWbaaeqabaGaey 4kaScaaiaaiIcacaWG4bGaaGykaaqdcqGHRiI8aOGaamyqaiaaiIca cqaH+oaEcaaIPaGaamOramaaBaaaleaacaaIWaaabeaakiaaiIcacq aH+oaEcaaISaGaamiDaiaaiMcacaaMi8Uaamizaiabe67a4jaayIW7 caWGKbGaamiDaiaai2dacaaIWaGaaGOlaaaa@84B6@

Из (12) следует, что

0 x ρ(t) 2 1+ ρ(t) A( μ + (t))+ 1 ρ(2at) 1+ ρ(2at) A(2at) 2 dt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamiEaaqdcqGHRiI8aOGaeqyWdiNaaGikaiaadsha caaIPaWaaeWaaeaadaWcaaqaaiaaikdaaeaacaaIXaGaey4kaSYaaO aaaeaacqaHbpGCcaaIOaGaamiDaiaaiMcaaSqabaaaaOGaamyqaiaa iIcacqaH8oqBdaahaaWcbeqaaiabgUcaRaaakiaaiIcacaWG0bGaaG ykaiaaiMcacqGHRaWkdaWcaaqaaiaaigdacqGHsisldaGcaaqaaiab eg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiaadshacaaIPaaaleqaaa GcbaGaaGymaiabgUcaRmaakaaabaGaeqyWdiNaaGikaiaaikdacaWG HbGaeyOeI0IaamiDaiaaiMcaaSqabaaaaOGaamyqaiaaiIcacaaIYa GaamyyaiabgkHiTiaadshacaaIPaaacaGLOaGaayzkaaWaaWbaaSqa beaacaaIYaaaaOGaamizaiaadshacqGHRaWkaaa@68CE@

+ 0 x 2ρ(t) 1+ ρ(t) A( μ + (t)) 0 μ + (x) A(ξ) n=1 φ 0 (t, λ n )sin λ n ξ α n λ n φ 0 (t, λ n 0 )sin λ n 0 ξ α n 0 λ n 0 dξdt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI YaGaeqyWdiNaaGikaiaadshacaaIPaaabaGaaGymaiabgUcaRmaaka aabaGaeqyWdiNaaGikaiaadshacaaIPaaaleqaaaaakiaadgeacaaI OaGaeqiVd02aaWbaaSqabeaacqGHRaWkaaGccaaIOaGaamiDaiaaiM cacaaIPaWaa8qmaeqaleaacaaIWaaabaGaeqiVd02aaWbaaeqabaGa ey4kaScaaiaaiIcacaWG4bGaaGykaaqdcqGHRiI8aOGaamyqaiaaiI cacqaH+oaEcaaIPaWaaabCaeqaleaacaWGUbGaaGypaiaaigdaaeaa cqGHEisPa0GaeyyeIuoakmaabmaabaWaaSaaaeaacqaHgpGAdaWgaa WcbaGaaGimaaqabaGccaaIOaGaamiDaiaaiYcacqaH7oaBdaWgaaWc baGaamOBaaqabaGccaaIPaGaci4CaiaacMgacaGGUbGaeq4UdW2aaS baaSqaaiaad6gaaeqaaOGaeqOVdGhabaGaeqySde2aaSbaaSqaaiaa d6gaaeqaaOGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaaaakiabgkHiTm aalaaabaGaeqOXdO2aaSbaaSqaaiaaicdaaeqaaOGaaGikaiaadsha caaISaGaeq4UdW2aa0baaSqaaiaad6gaaeaacaaIWaaaaOGaaGykai GacohacaGGPbGaaiOBaiabeU7aSnaaDaaaleaacaWGUbaabaGaaGim aaaakiabe67a4bqaaiabeg7aHnaaDaaaleaacaWGUbaabaGaaGimaa aakiabeU7aSnaaDaaaleaacaWGUbaabaGaaGimaaaaaaaakiaawIca caGLPaaacaaMi8Uaamizaiabe67a4jaayIW7caWGKbGaamiDaiabgU caRaaa@9897@

+ 0 x 1 ρ(2at) 1+ ρ(2at) A(2at) 0 μ + (x) A(ξ) n=1 φ 0 (t, λ n )sin λ n ξ α n λ n φ 0 (t, λ n 0 )sin λ n 0 ξ α n 0 λ n 0 dξdt=0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI XaGaeyOeI0YaaOaaaeaacqaHbpGCcaaIOaGaaGOmaiaadggacqGHsi slcaWG0bGaaGykaaWcbeaaaOqaaiaaigdacqGHRaWkdaGcaaqaaiab eg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiaadshacaaIPaaaleqaaa aakiaadgeacaaIOaGaaGOmaiaadggacqGHsislcaWG0bGaaGykamaa pedabeWcbaGaaGimaaqaaiabeY7aTnaaCaaabeqaaiabgUcaRaaaca aIOaGaamiEaiaaiMcaa0Gaey4kIipakiaadgeacaaIOaGaeqOVdGNa aGykamaaqahabeWcbaGaamOBaiaai2dacaaIXaaabaGaeyOhIukani abggHiLdGcdaqadaqaamaalaaabaGaeqOXdO2aaSbaaSqaaiaaicda aeqaaOGaaGikaiaadshacaaISaGaeq4UdW2aaSbaaSqaaiaad6gaae qaaOGaaGykaiGacohacaGGPbGaaiOBaiabeU7aSnaaBaaaleaacaWG Ubaabeaakiabe67a4bqaaiabeg7aHnaaBaaaleaacaWGUbaabeaaki abeU7aSnaaBaaaleaacaWGUbaabeaaaaGccqGHsisldaWcaaqaaiab eA8aQnaaBaaaleaacaaIWaaabeaakiaaiIcacaWG0bGaaGilaiabeU 7aSnaaDaaaleaacaWGUbaabaGaaGimaaaakiaaiMcaciGGZbGaaiyA aiaac6gacqaH7oaBdaqhaaWcbaGaamOBaaqaaiaaicdaaaGccqaH+o aEaeaacqaHXoqydaqhaaWcbaGaamOBaaqaaiaaicdaaaGccqaH7oaB daqhaaWcbaGaamOBaaqaaiaaicdaaaaaaaGccaGLOaGaayzkaaGaaG jcVlaadsgacqaH+oaEcaaMi8UaamizaiaadshacaaI9aGaaGimaiaa i6caaaa@9E78@

Из (7) и (19) получаем

0 x ρ(t) 2 1+ ρ(t) A( μ + (t))+ 1 ρ(2at) 1+ ρ(2at) A(2at) 2 dt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamiEaaqdcqGHRiI8aOGaeqyWdiNaaGikaiaadsha caaIPaWaaeWaaeaadaWcaaqaaiaaikdaaeaacaaIXaGaey4kaSYaaO aaaeaacqaHbpGCcaaIOaGaamiDaiaaiMcaaSqabaaaaOGaamyqaiaa iIcacqaH8oqBdaahaaWcbeqaaiabgUcaRaaakiaaiIcacaWG0bGaaG ykaiaaiMcacqGHRaWkdaWcaaqaaiaaigdacqGHsisldaGcaaqaaiab eg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiaadshacaaIPaaaleqaaa GcbaGaaGymaiabgUcaRmaakaaabaGaeqyWdiNaaGikaiaaikdacaWG HbGaeyOeI0IaamiDaiaaiMcaaSqabaaaaOGaamyqaiaaiIcacaaIYa GaamyyaiabgkHiTiaadshacaaIPaaacaGLOaGaayzkaaWaaWbaaSqa beaacaaIYaaaaOGaamizaiaadshacqGHRaWkaaa@68CE@

+ 0 x 2ρ(t) 1+ ρ(t) A( μ + (t)) 0 a A(ξ) n=1 φ 0 (ξ, λ n ) φ 0 (t, λ n ) α n dξdt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI YaGaeqyWdiNaaGikaiaadshacaaIPaaabaGaaGymaiabgUcaRmaaka aabaGaeqyWdiNaaGikaiaadshacaaIPaaaleqaaaaakiaadgeacaaI OaGaeqiVd02aaWbaaSqabeaacqGHRaWkaaGccaaIOaGaamiDaiaaiM cacaaIPaWaa8qmaeqaleaacaaIWaaabaGaamyyaaqdcqGHRiI8aOGa amyqaiaaiIcacqaH+oaEcaaIPaWaaabCaeqaleaacaWGUbGaaGypai aaigdaaeaacqGHEisPa0GaeyyeIuoakmaalaaabaGaeqOXdO2aaSba aSqaaiaaicdaaeqaaOGaaGikaiabe67a4jaaiYcacqaH7oaBdaWgaa WcbaGaamOBaaqabaGccaaIPaGaeqOXdO2aaSbaaSqaaiaaicdaaeqa aOGaaGikaiaadshacaaISaGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaO GaaGykaaqaaiabeg7aHnaaBaaaleaacaWGUbaabeaaaaGccaaMi8Ua amizaiabe67a4jaayIW7caWGKbGaamiDaiabgUcaRaaa@7847@

+ 0 x 1 ρ(2at) 1+ ρ(2at) A(2at) 0 a A(ξ) n=1 φ 0 (ξ, λ n ) φ 0 (t, λ n ) α n dξdt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI XaGaeyOeI0YaaOaaaeaacqaHbpGCcaaIOaGaaGOmaiaadggacqGHsi slcaWG0bGaaGykaaWcbeaaaOqaaiaaigdacqGHRaWkdaGcaaqaaiab eg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiaadshacaaIPaaaleqaaa aakiaadgeacaaIOaGaaGOmaiaadggacqGHsislcaWG0bGaaGykamaa pedabeWcbaGaaGimaaqaaiaadggaa0Gaey4kIipakiaadgeacaaIOa GaeqOVdGNaaGykamaaqahabeWcbaGaamOBaiaai2dacaaIXaaabaGa eyOhIukaniabggHiLdGcdaWcaaqaaiabeA8aQnaaBaaaleaacaaIWa aabeaakiaaiIcacqaH+oaEcaaISaGaeq4UdW2aaSbaaSqaaiaad6ga aeqaaOGaaGykaiabeA8aQnaaBaaaleaacaaIWaaabeaakiaaiIcaca WG0bGaaGilaiabeU7aSnaaBaaaleaacaWGUbaabeaakiaaiMcaaeaa cqaHXoqydaWgaaWcbaGaamOBaaqabaaaaOGaaGjcVlaadsgacqaH+o aEcaaMi8UaamizaiaadshacqGHRaWkaaa@7CD1@

+ 0 x 2ρ(t) 1+ ρ(t) A( μ + (t)) a αxαa+a A(ξ) n=1 2α 1+α φ 0 ξ α +a a α , λ n φ 0 (t, λ n ) α n dξdt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI YaGaeqyWdiNaaGikaiaadshacaaIPaaabaGaaGymaiabgUcaRmaaka aabaGaeqyWdiNaaGikaiaadshacaaIPaaaleqaaaaakiaadgeacaaI OaGaeqiVd02aaWbaaSqabeaacqGHRaWkaaGccaaIOaGaamiDaiaaiM cacaaIPaWaa8qmaeqaleaacaWGHbaabaGaeqySdeMaamiEaiabgkHi Tiabeg7aHjaadggacqGHRaWkcaWGHbaaniabgUIiYdGccaWGbbGaaG ikaiabe67a4jaaiMcadaaeWbqabSqaaiaad6gacaaI9aGaaGymaaqa aiabg6HiLcqdcqGHris5aOWaaSaaaeaacaaIYaGaeqySdegabaGaaG ymaiabgUcaRiabeg7aHbaadaWcaaqaaiabeA8aQnaaBaaaleaacaaI WaaabeaakmaabmaabaWaaSaaaeaacqaH+oaEaeaacqaHXoqyaaGaey 4kaSIaamyyaiabgkHiTmaalaaabaGaamyyaaqaaiabeg7aHbaacaaI SaGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaGaeq OXdO2aaSbaaSqaaiaaicdaaeqaaOGaaGikaiaadshacaaISaGaeq4U dW2aaSbaaSqaaiaad6gaaeqaaOGaaGykaaqaaiabeg7aHnaaBaaale aacaWGUbaabeaaaaGccaaMi8Uaamizaiabe67a4jaayIW7caWGKbGa amiDaiabgUcaRaaa@8C27@

+ 0 x 1 ρ(2at) 1+ ρ(2at) A(2at) a αxαa+a A(ξ) n=1 2α 1+α φ 0 ξ α +a a α , λ n φ 0 (t, λ n ) α n dξdt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI XaGaeyOeI0YaaOaaaeaacqaHbpGCcaaIOaGaaGOmaiaadggacqGHsi slcaWG0bGaaGykaaWcbeaaaOqaaiaaigdacqGHRaWkdaGcaaqaaiab eg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiaadshacaaIPaaaleqaaa aakiaadgeacaaIOaGaaGOmaiaadggacqGHsislcaWG0bGaaGykamaa pedabeWcbaGaamyyaaqaaiabeg7aHjaadIhacqGHsislcqaHXoqyca WGHbGaey4kaSIaamyyaaqdcqGHRiI8aOGaamyqaiaaiIcacqaH+oaE caaIPaWaaabCaeqaleaacaWGUbGaaGypaiaaigdaaeaacqGHEisPa0 GaeyyeIuoakmaalaaabaGaaGOmaiabeg7aHbqaaiaaigdacqGHRaWk cqaHXoqyaaWaaSaaaeaacqaHgpGAdaWgaaWcbaGaaGimaaqabaGcda qadaqaamaalaaabaGaeqOVdGhabaGaeqySdegaaiabgUcaRiaadgga cqGHsisldaWcaaqaaiaadggaaeaacqaHXoqyaaGaaGilaiabeU7aSn aaBaaaleaacaWGUbaabeaaaOGaayjkaiaawMcaaiabeA8aQnaaBaaa leaacaaIWaaabeaakiaaiIcacaWG0bGaaGilaiabeU7aSnaaBaaale aacaWGUbaabeaakiaaiMcaaeaacqaHXoqydaWgaaWcbaGaamOBaaqa baaaaOGaaGjcVlaadsgacqaH+oaEcaaMi8UaamizaiaadshacqGHRa Wkaaa@90B1@

+ 0 x 2ρ(t) 1+ ρ(t) A( μ + (t)) a αxαa+a A(ξ) n=1 1α 1+α φ 0 2aξ, λ n φ 0 (t, λ n ) α n dξdt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI YaGaeqyWdiNaaGikaiaadshacaaIPaaabaGaaGymaiabgUcaRmaaka aabaGaeqyWdiNaaGikaiaadshacaaIPaaaleqaaaaakiaadgeacaaI OaGaeqiVd02aaWbaaSqabeaacqGHRaWkaaGccaaIOaGaamiDaiaaiM cacaaIPaWaa8qmaeqaleaacaWGHbaabaGaeqySdeMaamiEaiabgkHi Tiabeg7aHjaadggacqGHRaWkcaWGHbaaniabgUIiYdGccaWGbbGaaG ikaiabe67a4jaaiMcadaaeWbqabSqaaiaad6gacaaI9aGaaGymaaqa aiabg6HiLcqdcqGHris5aOWaaSaaaeaacaaIXaGaeyOeI0IaeqySde gabaGaaGymaiabgUcaRiabeg7aHbaadaWcaaqaaiabeA8aQnaaBaaa leaacaaIWaaabeaakmaabmaabaGaaGOmaiaadggacqGHsislcqaH+o aEcaaISaGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzk aaGaeqOXdO2aaSbaaSqaaiaaicdaaeqaaOGaaGikaiaadshacaaISa Gaeq4UdW2aaSbaaSqaaiaad6gaaeqaaOGaaGykaaqaaiabeg7aHnaa BaaaleaacaWGUbaabeaaaaGccaaMi8Uaamizaiabe67a4jaayIW7ca WGKbGaamiDaiabgUcaRaaa@88A9@

+ 0 x 1 ρ(2at) 1+ ρ(2at) A(2at) a αxαa+a A(ξ) n=1 1α 1+α φ 0 2aξ, λ n φ 0 (t, λ n ) α n dξdt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI XaGaeyOeI0YaaOaaaeaacqaHbpGCcaaIOaGaaGOmaiaadggacqGHsi slcaWG0bGaaGykaaWcbeaaaOqaaiaaigdacqGHRaWkdaGcaaqaaiab eg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiaadshacaaIPaaaleqaaa aakiaadgeacaaIOaGaaGOmaiaadggacqGHsislcaWG0bGaaGykamaa pedabeWcbaGaamyyaaqaaiabeg7aHjaadIhacqGHsislcqaHXoqyca WGHbGaey4kaSIaamyyaaqdcqGHRiI8aOGaamyqaiaaiIcacqaH+oaE caaIPaWaaabCaeqaleaacaWGUbGaaGypaiaaigdaaeaacqGHEisPa0 GaeyyeIuoakmaalaaabaGaaGymaiabgkHiTiabeg7aHbqaaiaaigda cqGHRaWkcqaHXoqyaaWaaSaaaeaacqaHgpGAdaWgaaWcbaGaaGimaa qabaGcdaqadaqaaiaaikdacaWGHbGaeyOeI0IaeqOVdGNaaGilaiab eU7aSnaaBaaaleaacaWGUbaabeaaaOGaayjkaiaawMcaaiabeA8aQn aaBaaaleaacaaIWaaabeaakiaaiIcacaWG0bGaaGilaiabeU7aSnaa BaaaleaacaWGUbaabeaakiaaiMcaaeaacqaHXoqydaWgaaWcbaGaam OBaaqabaaaaOGaaGjcVlaadsgacqaH+oaEcaaMi8Uaamizaiaadsha cqGHsislaaa@8D3E@

0 x 2ρ(t) 1+ ρ(t) A( μ + (t)) 0 a A(ξ) n=1 φ 0 (ξ, λ n 0 ) φ 0 (t, λ n 0 ) α n 0 dξdt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Yaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI YaGaeqyWdiNaaGikaiaadshacaaIPaaabaGaaGymaiabgUcaRmaaka aabaGaeqyWdiNaaGikaiaadshacaaIPaaaleqaaaaakiaadgeacaaI OaGaeqiVd02aaWbaaSqabeaacqGHRaWkaaGccaaIOaGaamiDaiaaiM cacaaIPaWaa8qmaeqaleaacaaIWaaabaGaamyyaaqdcqGHRiI8aOGa amyqaiaaiIcacqaH+oaEcaaIPaWaaabCaeqaleaacaWGUbGaaGypai aaigdaaeaacqGHEisPa0GaeyyeIuoakmaalaaabaGaeqOXdO2aaSba aSqaaiaaicdaaeqaaOGaaGikaiabe67a4jaaiYcacqaH7oaBdaqhaa WcbaGaamOBaaqaaiaaicdaaaGccaaIPaGaeqOXdO2aaSbaaSqaaiaa icdaaeqaaOGaaGikaiaadshacaaISaGaeq4UdW2aa0baaSqaaiaad6 gaaeaacaaIWaaaaOGaaGykaaqaaiabeg7aHnaaDaaaleaacaWGUbaa baGaaGimaaaaaaGccaaMi8Uaamizaiabe67a4jaayIW7caWGKbGaam iDaiabgkHiTaaa@7A8E@

0 x 1 ρ(2at) 1+ ρ(2at) A(2at) 0 a A(ξ) n=1 φ 0 (ξ, λ n 0 ) φ 0 (t, λ n 0 ) α n 0 dξdt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Yaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI XaGaeyOeI0YaaOaaaeaacqaHbpGCcaaIOaGaaGOmaiaadggacqGHsi slcaWG0bGaaGykaaWcbeaaaOqaaiaaigdacqGHRaWkdaGcaaqaaiab eg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiaadshacaaIPaaaleqaaa aakiaadgeacaaIOaGaaGOmaiaadggacqGHsislcaWG0bGaaGykamaa pedabeWcbaGaaGimaaqaaiaadggaa0Gaey4kIipakiaadgeacaaIOa GaeqOVdGNaaGykamaaqahabeWcbaGaamOBaiaai2dacaaIXaaabaGa eyOhIukaniabggHiLdGcdaWcaaqaaiabeA8aQnaaBaaaleaacaaIWa aabeaakiaaiIcacqaH+oaEcaaISaGaeq4UdW2aa0baaSqaaiaad6ga aeaacaaIWaaaaOGaaGykaiabeA8aQnaaBaaaleaacaaIWaaabeaaki aaiIcacaWG0bGaaGilaiabeU7aSnaaDaaaleaacaWGUbaabaGaaGim aaaakiaaiMcaaeaacqaHXoqydaqhaaWcbaGaamOBaaqaaiaaicdaaa aaaOGaaGjcVlaadsgacqaH+oaEcaaMi8UaamizaiaadshacqGHsisl aaa@7F18@

0 x 2ρ(t) 1+ ρ(t) A( μ + (t)) a αxαa+a A(ξ) n=1 2α 1+α φ 0 ξ α +a a α , λ n 0 φ 0 (t, λ n ) α n 0 dξdt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Yaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI YaGaeqyWdiNaaGikaiaadshacaaIPaaabaGaaGymaiabgUcaRmaaka aabaGaeqyWdiNaaGikaiaadshacaaIPaaaleqaaaaakiaadgeacaaI OaGaeqiVd02aaWbaaSqabeaacqGHRaWkaaGccaaIOaGaamiDaiaaiM cacaaIPaWaa8qmaeqaleaacaWGHbaabaGaeqySdeMaamiEaiabgkHi Tiabeg7aHjaadggacqGHRaWkcaWGHbaaniabgUIiYdGccaWGbbGaaG ikaiabe67a4jaaiMcadaaeWbqabSqaaiaad6gacaaI9aGaaGymaaqa aiabg6HiLcqdcqGHris5aOWaaSaaaeaacaaIYaGaeqySdegabaGaaG ymaiabgUcaRiabeg7aHbaadaWcaaqaaiabeA8aQnaaBaaaleaacaaI WaaabeaakmaabmaabaWaaSaaaeaacqaH+oaEaeaacqaHXoqyaaGaey 4kaSIaamyyaiabgkHiTmaalaaabaGaamyyaaqaaiabeg7aHbaacaaI SaGaeq4UdW2aa0baaSqaaiaad6gaaeaacaaIWaaaaaGccaGLOaGaay zkaaGaeqOXdO2aaSbaaSqaaiaaicdaaeqaaOGaaGikaiaadshacaaI SaGaeq4UdW2aa0baaSqaaiaad6gaaeaacaaIPaaaaaGcbaGaeqySde 2aa0baaSqaaiaad6gaaeaacaaIWaaaaaaakiaayIW7caWGKbGaeqOV dGNaaGjcVlaadsgacaWG0bGaeyOeI0caaa@8DB4@

0 x 1 ρ(2at) 1+ ρ(2at) A(2at) a αxαa+a A(ξ) n=1 2α 1+α φ 0 ξ α +a a α , λ n 0 φ 0 (t, λ n ) α n 0 dξdt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Yaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI XaGaeyOeI0YaaOaaaeaacqaHbpGCcaaIOaGaaGOmaiaadggacqGHsi slcaWG0bGaaGykaaWcbeaaaOqaaiaaigdacqGHRaWkdaGcaaqaaiab eg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiaadshacaaIPaaaleqaaa aakiaadgeacaaIOaGaaGOmaiaadggacqGHsislcaWG0bGaaGykamaa pedabeWcbaGaamyyaaqaaiabeg7aHjaadIhacqGHsislcqaHXoqyca WGHbGaey4kaSIaamyyaaqdcqGHRiI8aOGaamyqaiaaiIcacqaH+oaE caaIPaWaaabCaeqaleaacaWGUbGaaGypaiaaigdaaeaacqGHEisPa0 GaeyyeIuoakmaalaaabaGaaGOmaiabeg7aHbqaaiaaigdacqGHRaWk cqaHXoqyaaWaaSaaaeaacqaHgpGAdaWgaaWcbaGaaGimaaqabaGcda qadaqaamaalaaabaGaeqOVdGhabaGaeqySdegaaiabgUcaRiaadgga cqGHsisldaWcaaqaaiaadggaaeaacqaHXoqyaaGaaGilaiabeU7aSn aaDaaaleaacaWGUbaabaGaaGimaaaaaOGaayjkaiaawMcaaiabeA8a QnaaBaaaleaacaaIWaaabeaakiaaiIcacaWG0bGaaGilaiabeU7aSn aaDaaaleaacaWGUbaabaGaaGykaaaaaOqaaiabeg7aHnaaDaaaleaa caWGUbaabaGaaGimaaaaaaGccaaMi8Uaamizaiabe67a4jaayIW7ca WGKbGaamiDaiabgkHiTaaa@923E@

0 x 2ρ(t) 1+ ρ(t) A( μ + (t)) a αxαa+a A(ξ) n=1 1α 1+α φ 0 2aξ, λ n 0 φ 0 (t, λ n ) α n 0 dξdt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Yaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI YaGaeqyWdiNaaGikaiaadshacaaIPaaabaGaaGymaiabgUcaRmaaka aabaGaeqyWdiNaaGikaiaadshacaaIPaaaleqaaaaakiaadgeacaaI OaGaeqiVd02aaWbaaSqabeaacqGHRaWkaaGccaaIOaGaamiDaiaaiM cacaaIPaWaa8qmaeqaleaacaWGHbaabaGaeqySdeMaamiEaiabgkHi Tiabeg7aHjaadggacqGHRaWkcaWGHbaaniabgUIiYdGccaWGbbGaaG ikaiabe67a4jaaiMcadaaeWbqabSqaaiaad6gacaaI9aGaaGymaaqa aiabg6HiLcqdcqGHris5aOWaaSaaaeaacaaIXaGaeyOeI0IaeqySde gabaGaaGymaiabgUcaRiabeg7aHbaadaWcaaqaaiabeA8aQnaaBaaa leaacaaIWaaabeaakmaabmaabaGaaGOmaiaadggacqGHsislcqaH+o aEcaaISaGaeq4UdW2aa0baaSqaaiaad6gaaeaacaaIWaaaaaGccaGL OaGaayzkaaGaeqOXdO2aaSbaaSqaaiaaicdaaeqaaOGaaGikaiaads hacaaISaGaeq4UdW2aa0baaSqaaiaad6gaaeaacaaIPaaaaaGcbaGa eqySde2aa0baaSqaaiaad6gaaeaacaaIWaaaaaaakiaayIW7caWGKb GaeqOVdGNaaGjcVlaadsgacaWG0bGaeyOeI0caaa@8A36@

0 x 1 ρ(2at) 1+ ρ(2at) A(2at) a αxαa+a A(ξ) n=1 1α 1+α φ 0 2aξ, λ n 0 φ 0 (t, λ n ) α n 0 dξdt=0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Yaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI XaGaeyOeI0YaaOaaaeaacqaHbpGCcaaIOaGaaGOmaiaadggacqGHsi slcaWG0bGaaGykaaWcbeaaaOqaaiaaigdacqGHRaWkdaGcaaqaaiab eg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiaadshacaaIPaaaleqaaa aakiaadgeacaaIOaGaaGOmaiaadggacqGHsislcaWG0bGaaGykamaa pedabeWcbaGaamyyaaqaaiabeg7aHjaadIhacqGHsislcqaHXoqyca WGHbGaey4kaSIaamyyaaqdcqGHRiI8aOGaamyqaiaaiIcacqaH+oaE caaIPaWaaabCaeqaleaacaWGUbGaaGypaiaaigdaaeaacqGHEisPa0 GaeyyeIuoakmaalaaabaGaaGymaiabgkHiTiabeg7aHbqaaiaaigda cqGHRaWkcqaHXoqyaaWaaSaaaeaacqaHgpGAdaWgaaWcbaGaaGimaa qabaGcdaqadaqaaiaaikdacaWGHbGaeyOeI0IaeqOVdGNaaGilaiab eU7aSnaaDaaaleaacaWGUbaabaGaaGimaaaaaOGaayjkaiaawMcaai abeA8aQnaaBaaaleaacaaIWaaabeaakiaaiIcacaWG0bGaaGilaiab eU7aSnaaDaaaleaacaWGUbaabaGaaGykaaaaaOqaaiabeg7aHnaaDa aaleaacaWGUbaabaGaaGimaaaaaaGccaaMi8Uaamizaiabe67a4jaa yIW7caWGKbGaamiDaiaai2dacaaIWaGaaGOlaaaa@900C@

После подстановки

ξ ξ α +a a α MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdGNaey OKH46aaSaaaeaacqaH+oaEaeaacqaHXoqyaaGaey4kaSIaamyyaiab gkHiTmaalaaabaGaamyyaaqaaiabeg7aHbaaaaa@425F@

в третьем, четвертом, девятом и десятом интегралах и подстановки

ξ2αξ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdGNaey OKH4QaaGOmaiabeg7aHjabgkHiTiabe67a4baa@3EAE@

в пятом, шестом, одиннадцатом и двенадцатом двойных интегралах получим

0 x ρ(t) 2 1+ ρ(t) A( μ + (t))+ 1 ρ(2at) 1+ ρ(2at) A(2at) 2 dt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamiEaaqdcqGHRiI8aOGaeqyWdiNaaGikaiaadsha caaIPaWaaeWaaeaadaWcaaqaaiaaikdaaeaacaaIXaGaey4kaSYaaO aaaeaacqaHbpGCcaaIOaGaamiDaiaaiMcaaSqabaaaaOGaamyqaiaa iIcacqaH8oqBdaahaaWcbeqaaiabgUcaRaaakiaaiIcacaWG0bGaaG ykaiaaiMcacqGHRaWkdaWcaaqaaiaaigdacqGHsisldaGcaaqaaiab eg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiaadshacaaIPaaaleqaaa GcbaGaaGymaiabgUcaRmaakaaabaGaeqyWdiNaaGikaiaaikdacaWG HbGaeyOeI0IaamiDaiaaiMcaaSqabaaaaOGaamyqaiaaiIcacaaIYa GaamyyaiabgkHiTiaadshacaaIPaaacaGLOaGaayzkaaWaaWbaaSqa beaacaaIYaaaaOGaamizaiaadshacqGHRaWkaaa@68CE@

+ 0 x 2ρ(t) 1+ ρ(t) A( μ + (t)) 0 a A(ξ) n=1 φ 0 (ξ, λ n ) φ 0 (t, λ n ) α n dξdt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI YaGaeqyWdiNaaGikaiaadshacaaIPaaabaGaaGymaiabgUcaRmaaka aabaGaeqyWdiNaaGikaiaadshacaaIPaaaleqaaaaakiaadgeacaaI OaGaeqiVd02aaWbaaSqabeaacqGHRaWkaaGccaaIOaGaamiDaiaaiM cacaaIPaWaa8qmaeqaleaacaaIWaaabaGaamyyaaqdcqGHRiI8aOGa amyqaiaaiIcacqaH+oaEcaaIPaWaaabCaeqaleaacaWGUbGaaGypai aaigdaaeaacqGHEisPa0GaeyyeIuoakmaalaaabaGaeqOXdO2aaSba aSqaaiaaicdaaeqaaOGaaGikaiabe67a4jaaiYcacqaH7oaBdaWgaa WcbaGaamOBaaqabaGccaaIPaGaeqOXdO2aaSbaaSqaaiaaicdaaeqa aOGaaGikaiaadshacaaISaGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaO GaaGykaaqaaiabeg7aHnaaBaaaleaacaWGUbaabeaaaaGccaaMi8Ua amizaiabe67a4jaayIW7caWGKbGaamiDaiabgUcaRaaa@7847@

+ 0 x 1 ρ(2at) 1+ ρ(2at) A(2at) 0 a A(ξ) n=1 φ 0 (ξ, λ n ) φ 0 (t, λ n ) α n dξdt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI XaGaeyOeI0YaaOaaaeaacqaHbpGCcaaIOaGaaGOmaiaadggacqGHsi slcaWG0bGaaGykaaWcbeaaaOqaaiaaigdacqGHRaWkdaGcaaqaaiab eg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiaadshacaaIPaaaleqaaa aakiaadgeacaaIOaGaaGOmaiaadggacqGHsislcaWG0bGaaGykamaa pedabeWcbaGaaGimaaqaaiaadggaa0Gaey4kIipakiaadgeacaaIOa GaeqOVdGNaaGykamaaqahabeWcbaGaamOBaiaai2dacaaIXaaabaGa eyOhIukaniabggHiLdGcdaWcaaqaaiabeA8aQnaaBaaaleaacaaIWa aabeaakiaaiIcacqaH+oaEcaaISaGaeq4UdW2aaSbaaSqaaiaad6ga aeqaaOGaaGykaiabeA8aQnaaBaaaleaacaaIWaaabeaakiaaiIcaca WG0bGaaGilaiabeU7aSnaaBaaaleaacaWGUbaabeaakiaaiMcaaeaa cqaHXoqydaWgaaWcbaGaamOBaaqabaaaaOGaaGjcVlaadsgacqaH+o aEcaaMi8UaamizaiaadshacqGHRaWkaaa@7CD1@

+ 0 x 2ρ(t) 1+ ρ(t) A( μ + (t)) a x A( μ + (ξ)) n=1 2 α 2 1+α φ 0 (ξ, λ n ) φ 0 (t, λ n ) α n dξdt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI YaGaeqyWdiNaaGikaiaadshacaaIPaaabaGaaGymaiabgUcaRmaaka aabaGaeqyWdiNaaGikaiaadshacaaIPaaaleqaaaaakiaadgeacaaI OaGaeqiVd02aaWbaaSqabeaacqGHRaWkaaGccaaIOaGaamiDaiaaiM cacaaIPaWaa8qmaeqaleaacaWGHbaabaGaamiEaaqdcqGHRiI8aOGa amyqaiaaiIcacqaH8oqBdaahaaWcbeqaaiabgUcaRaaakiaaiIcacq aH+oaEcaaIPaGaaGykamaaqahabeWcbaGaamOBaiaai2dacaaIXaaa baGaeyOhIukaniabggHiLdGcdaWcaaqaaiaaikdacqaHXoqydaahaa WcbeqaaiaaikdaaaaakeaacaaIXaGaey4kaSIaeqySdegaamaalaaa baGaeqOXdO2aaSbaaSqaaiaaicdaaeqaaOGaaGikaiabe67a4jaaiY cacqaH7oaBdaWgaaWcbaGaamOBaaqabaGccaaIPaGaeqOXdO2aaSba aSqaaiaaicdaaeqaaOGaaGikaiaadshacaaISaGaeq4UdW2aaSbaaS qaaiaad6gaaeqaaOGaaGykaaqaaiabeg7aHnaaBaaaleaacaWGUbaa beaaaaGccaaMi8Uaamizaiabe67a4jaayIW7caWGKbGaamiDaiabgU caRaaa@8358@

+ 0 x 1 ρ(2at) 1+ ρ(2at) A(2at) a x A( μ + (ξ)) n=1 2 α 2 1+α φ 0 (ξ, λ n ) φ 0 (t, λ n ) α n dξdt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI XaGaeyOeI0YaaOaaaeaacqaHbpGCcaaIOaGaaGOmaiaadggacqGHsi slcaWG0bGaaGykaaWcbeaaaOqaaiaaigdacqGHRaWkdaGcaaqaaiab eg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiaadshacaaIPaaaleqaaa aakiaadgeacaaIOaGaaGOmaiaadggacqGHsislcaWG0bGaaGykamaa pedabeWcbaGaamyyaaqaaiaadIhaa0Gaey4kIipakiaadgeacaaIOa GaeqiVd02aaWbaaSqabeaacqGHRaWkaaGccaaIOaGaeqOVdGNaaGyk aiaaiMcadaaeWbqabSqaaiaad6gacaaI9aGaaGymaaqaaiabg6HiLc qdcqGHris5aOWaaSaaaeaacaaIYaGaeqySde2aaWbaaSqabeaacaaI YaaaaaGcbaGaaGymaiabgUcaRiabeg7aHbaadaWcaaqaaiabeA8aQn aaBaaaleaacaaIWaaabeaakiaaiIcacqaH+oaEcaaISaGaeq4UdW2a aSbaaSqaaiaad6gaaeqaaOGaaGykaiabeA8aQnaaBaaaleaacaaIWa aabeaakiaaiIcacaWG0bGaaGilaiabeU7aSnaaBaaaleaacaWGUbaa beaakiaaiMcaaeaacqaHXoqydaWgaaWcbaGaamOBaaqabaaaaOGaaG jcVlaadsgacqaH+oaEcaaMi8UaamizaiaadshacqGHRaWkaaa@87E2@

+ 0 x 2ρ(t) 1+ ρ(t) A( μ + (t)) αx+αa+a a A(2aξ) n=1 1α 1+α φ 0 (ξ, λ n ) φ 0 (t, λ n ) α n dξdt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI YaGaeqyWdiNaaGikaiaadshacaaIPaaabaGaaGymaiabgUcaRmaaka aabaGaeqyWdiNaaGikaiaadshacaaIPaaaleqaaaaakiaadgeacaaI OaGaeqiVd02aaWbaaSqabeaacqGHRaWkaaGccaaIOaGaamiDaiaaiM cacaaIPaWaa8qmaeqaleaacqGHsislcqaHXoqycaWG4bGaey4kaSIa eqySdeMaamyyaiabgUcaRiaadggaaeaacaWGHbaaniabgUIiYdGcca WGbbGaaGikaiaaikdacaWGHbGaeyOeI0IaeqOVdGNaaGykamaaqaha beWcbaGaamOBaiaai2dacaaIXaaabaGaeyOhIukaniabggHiLdGcda WcaaqaaiaaigdacqGHsislcqaHXoqyaeaacaaIXaGaey4kaSIaeqyS degaamaalaaabaGaeqOXdO2aaSbaaSqaaiaaicdaaeqaaOGaaGikai abe67a4jaaiYcacqaH7oaBdaWgaaWcbaGaamOBaaqabaGccaaIPaGa eqOXdO2aaSbaaSqaaiaaicdaaeqaaOGaaGikaiaadshacaaISaGaeq 4UdW2aaSbaaSqaaiaad6gaaeqaaOGaaGykaaqaaiabeg7aHnaaBaaa leaacaWGUbaabeaaaaGccaaMi8Uaamizaiabe67a4jaayIW7caWGKb GaamiDaiabgUcaRaaa@8967@

+ 0 x 1 ρ(2at) 1+ ρ(2at) A(2at) αx+αa+a a A(2aξ) n=1 1α 1+α φ 0 (ξ, λ n ) φ 0 (t, λ n ) α n dξdt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI XaGaeyOeI0YaaOaaaeaacqaHbpGCcaaIOaGaaGOmaiaadggacqGHsi slcaWG0bGaaGykaaWcbeaaaOqaaiaaigdacqGHRaWkdaGcaaqaaiab eg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiaadshacaaIPaaaleqaaa aakiaadgeacaaIOaGaaGOmaiaadggacqGHsislcaWG0bGaaGykamaa pedabeWcbaGaeyOeI0IaeqySdeMaamiEaiabgUcaRiabeg7aHjaadg gacqGHRaWkcaWGHbaabaGaamyyaaqdcqGHRiI8aOGaamyqaiaaiIca caaIYaGaamyyaiabgkHiTiabe67a4jaaiMcadaaeWbqabSqaaiaad6 gacaaI9aGaaGymaaqaaiabg6HiLcqdcqGHris5aOWaaSaaaeaacaaI XaGaeyOeI0IaeqySdegabaGaaGymaiabgUcaRiabeg7aHbaadaWcaa qaaiabeA8aQnaaBaaaleaacaaIWaaabeaakiaaiIcacqaH+oaEcaaI SaGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaOGaaGykaiabeA8aQnaaBa aaleaacaaIWaaabeaakiaaiIcacaWG0bGaaGilaiabeU7aSnaaBaaa leaacaWGUbaabeaakiaaiMcaaeaacqaHXoqydaWgaaWcbaGaamOBaa qabaaaaOGaaGjcVlaadsgacqaH+oaEcaaMi8UaamizaiaadshacqGH sislaaa@8DFC@

0 x 2ρ(t) 1+ ρ(t) A( μ + (t)) 0 a A(ξ) n=1 φ 0 (ξ, λ n 0 ) φ 0 (t, λ n 0 ) α n 0 dξdt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Yaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI YaGaeqyWdiNaaGikaiaadshacaaIPaaabaGaaGymaiabgUcaRmaaka aabaGaeqyWdiNaaGikaiaadshacaaIPaaaleqaaaaakiaadgeacaaI OaGaeqiVd02aaWbaaSqabeaacqGHRaWkaaGccaaIOaGaamiDaiaaiM cacaaIPaWaa8qmaeqaleaacaaIWaaabaGaamyyaaqdcqGHRiI8aOGa amyqaiaaiIcacqaH+oaEcaaIPaWaaabCaeqaleaacaWGUbGaaGypai aaigdaaeaacqGHEisPa0GaeyyeIuoakmaalaaabaGaeqOXdO2aaSba aSqaaiaaicdaaeqaaOGaaGikaiabe67a4jaaiYcacqaH7oaBdaqhaa WcbaGaamOBaaqaaiaaicdaaaGccaaIPaGaeqOXdO2aaSbaaSqaaiaa icdaaeqaaOGaaGikaiaadshacaaISaGaeq4UdW2aa0baaSqaaiaad6 gaaeaacaaIWaaaaOGaaGykaaqaaiabeg7aHnaaDaaaleaacaWGUbaa baGaaGimaaaaaaGccaaMi8Uaamizaiabe67a4jaayIW7caWGKbGaam iDaiabgkHiTaaa@7A8E@

0 x 1 ρ(2at) 1+ ρ(2at) A(2at) 0 a A(ξ) n=1 φ 0 (ξ, λ n 0 ) φ 0 (t, λ n 0 ) α n 0 dξdt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Yaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI XaGaeyOeI0YaaOaaaeaacqaHbpGCcaaIOaGaaGOmaiaadggacqGHsi slcaWG0bGaaGykaaWcbeaaaOqaaiaaigdacqGHRaWkdaGcaaqaaiab eg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiaadshacaaIPaaaleqaaa aakiaadgeacaaIOaGaaGOmaiaadggacqGHsislcaWG0bGaaGykamaa pedabeWcbaGaaGimaaqaaiaadggaa0Gaey4kIipakiaadgeacaaIOa GaeqOVdGNaaGykamaaqahabeWcbaGaamOBaiaai2dacaaIXaaabaGa eyOhIukaniabggHiLdGcdaWcaaqaaiabeA8aQnaaBaaaleaacaaIWa aabeaakiaaiIcacqaH+oaEcaaISaGaeq4UdW2aa0baaSqaaiaad6ga aeaacaaIWaaaaOGaaGykaiabeA8aQnaaBaaaleaacaaIWaaabeaaki aaiIcacaWG0bGaaGilaiabeU7aSnaaDaaaleaacaWGUbaabaGaaGim aaaakiaaiMcaaeaacqaHXoqydaqhaaWcbaGaamOBaaqaaiaaicdaaa aaaOGaaGjcVlaadsgacqaH+oaEcaaMi8UaamizaiaadshacqGHsisl aaa@7F18@

0 x 2ρ(t) 1+ ρ(t) A( μ + (t)) a x A( μ + (ξ)) n=1 2 α 2 1+α φ 0 (ξ, λ n 0 ) φ 0 (t, λ n 0 ) α n 0 dξdt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Yaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI YaGaeqyWdiNaaGikaiaadshacaaIPaaabaGaaGymaiabgUcaRmaaka aabaGaeqyWdiNaaGikaiaadshacaaIPaaaleqaaaaakiaadgeacaaI OaGaeqiVd02aaWbaaSqabeaacqGHRaWkaaGccaaIOaGaamiDaiaaiM cacaaIPaWaa8qmaeqaleaacaWGHbaabaGaamiEaaqdcqGHRiI8aOGa amyqaiaaiIcacqaH8oqBdaahaaWcbeqaaiabgUcaRaaakiaaiIcacq aH+oaEcaaIPaGaaGykamaaqahabeWcbaGaamOBaiaai2dacaaIXaaa baGaeyOhIukaniabggHiLdGcdaWcaaqaaiaaikdacqaHXoqydaahaa WcbeqaaiaaikdaaaaakeaacaaIXaGaey4kaSIaeqySdegaamaalaaa baGaeqOXdO2aaSbaaSqaaiaaicdaaeqaaOGaaGikaiabe67a4jaaiY cacqaH7oaBdaqhaaWcbaGaamOBaaqaaiaaicdaaaGccaaIPaGaeqOX dO2aaSbaaSqaaiaaicdaaeqaaOGaaGikaiaadshacaaISaGaeq4UdW 2aa0baaSqaaiaad6gaaeaacaaIWaaaaOGaaGykaaqaaiabeg7aHnaa DaaaleaacaWGUbaabaGaaGimaaaaaaGccaaMi8Uaamizaiabe67a4j aayIW7caWGKbGaamiDaiabgkHiTaaa@859F@

0 x 1 ρ(2at) 1+ ρ(2at) A(2at) a x A( μ + (ξ)) n=1 2 α 2 1+α φ 0 (ξ, λ n 0 ) φ 0 (t, λ n 0 ) α n 0 dξdt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Yaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI XaGaeyOeI0YaaOaaaeaacqaHbpGCcaaIOaGaaGOmaiaadggacqGHsi slcaWG0bGaaGykaaWcbeaaaOqaaiaaigdacqGHRaWkdaGcaaqaaiab eg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiaadshacaaIPaaaleqaaa aakiaadgeacaaIOaGaaGOmaiaadggacqGHsislcaWG0bGaaGykamaa pedabeWcbaGaamyyaaqaaiaadIhaa0Gaey4kIipakiaadgeacaaIOa GaeqiVd02aaWbaaSqabeaacqGHRaWkaaGccaaIOaGaeqOVdGNaaGyk aiaaiMcadaaeWbqabSqaaiaad6gacaaI9aGaaGymaaqaaiabg6HiLc qdcqGHris5aOWaaSaaaeaacaaIYaGaeqySde2aaWbaaSqabeaacaaI YaaaaaGcbaGaaGymaiabgUcaRiabeg7aHbaadaWcaaqaaiabeA8aQn aaBaaaleaacaaIWaaabeaakiaaiIcacqaH+oaEcaaISaGaeq4UdW2a a0baaSqaaiaad6gaaeaacaaIWaaaaOGaaGykaiabeA8aQnaaBaaale aacaaIWaaabeaakiaaiIcacaWG0bGaaGilaiabeU7aSnaaDaaaleaa caWGUbaabaGaaGimaaaakiaaiMcaaeaacqaHXoqydaqhaaWcbaGaam OBaaqaaiaaicdaaaaaaOGaaGjcVlaadsgacqaH+oaEcaaMi8Uaamiz aiaadshacqGHsislaaa@8A29@

0 x 2ρ(t) 1+ ρ(t) A( μ + (t)) αx+αa+a a A(2aξ) n=1 1α 1+α φ 0 (ξ, λ n 0 ) φ 0 (t, λ n ) α n 0 dξdt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Yaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI YaGaeqyWdiNaaGikaiaadshacaaIPaaabaGaaGymaiabgUcaRmaaka aabaGaeqyWdiNaaGikaiaadshacaaIPaaaleqaaaaakiaadgeacaaI OaGaeqiVd02aaWbaaSqabeaacqGHRaWkaaGccaaIOaGaamiDaiaaiM cacaaIPaWaa8qmaeqaleaacqGHsislcqaHXoqycaWG4bGaey4kaSIa eqySdeMaamyyaiabgUcaRiaadggaaeaacaWGHbaaniabgUIiYdGcca WGbbGaaGikaiaaikdacaWGHbGaeyOeI0IaeqOVdGNaaGykamaaqaha beWcbaGaamOBaiaai2dacaaIXaaabaGaeyOhIukaniabggHiLdGcda WcaaqaaiaaigdacqGHsislcqaHXoqyaeaacaaIXaGaey4kaSIaeqyS degaamaalaaabaGaeqOXdO2aaSbaaSqaaiaaicdaaeqaaOGaaGikai abe67a4jaaiYcacqaH7oaBdaqhaaWcbaGaamOBaaqaaiaaicdaaaGc caaIPaGaeqOXdO2aaSbaaSqaaiaaicdaaeqaaOGaaGikaiaadshaca aISaGaeq4UdW2aa0baaSqaaiaad6gaaeaacaaIPaaaaaGcbaGaeqyS de2aa0baaSqaaiaad6gaaeaacaaIWaaaaaaakiaayIW7caWGKbGaeq OVdGNaaGjcVlaadsgacaWG0bGaeyOeI0caaa@8AF4@

0 x 1 ρ(2at) 1+ ρ(2at) A(2at) αx+αa+a a A(2aξ) n=1 1α 1+α φ 0 (ξ, λ n 0 ) φ 0 (t, λ n ) α n 0 dξdt=0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Yaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI XaGaeyOeI0YaaOaaaeaacqaHbpGCcaaIOaGaaGOmaiaadggacqGHsi slcaWG0bGaaGykaaWcbeaaaOqaaiaaigdacqGHRaWkdaGcaaqaaiab eg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiaadshacaaIPaaaleqaaa aakiaadgeacaaIOaGaaGOmaiaadggacqGHsislcaWG0bGaaGykamaa pedabeWcbaGaeyOeI0IaeqySdeMaamiEaiabgUcaRiabeg7aHjaadg gacqGHRaWkcaWGHbaabaGaamyyaaqdcqGHRiI8aOGaamyqaiaaiIca caaIYaGaamyyaiabgkHiTiabe67a4jaaiMcadaaeWbqabSqaaiaad6 gacaaI9aGaaGymaaqaaiabg6HiLcqdcqGHris5aOWaaSaaaeaacaaI XaGaeyOeI0IaeqySdegabaGaaGymaiabgUcaRiabeg7aHbaadaWcaa qaaiabeA8aQnaaBaaaleaacaaIWaaabeaakiaaiIcacqaH+oaEcaaI SaGaeq4UdW2aa0baaSqaaiaad6gaaeaacaaIWaaaaOGaaGykaiabeA 8aQnaaBaaaleaacaaIWaaabeaakiaaiIcacaWG0bGaaGilaiabeU7a SnaaDaaaleaacaWGUbaabaGaaGykaaaaaOqaaiabeg7aHnaaDaaale aacaWGUbaabaGaaGimaaaaaaGccaaMi8Uaamizaiabe67a4jaayIW7 caWGKbGaamiDaiaai2dacaaIWaGaaGOlaaaa@90CA@

Отсюда имеем

0 x ρ(t) 2 1+ ρ(t) A( μ + (t))+ 1 ρ(2at) 1+ ρ(2at) A(2at) 2 dt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamiEaaqdcqGHRiI8aOGaeqyWdiNaaGikaiaadsha caaIPaWaaeWaaeaadaWcaaqaaiaaikdaaeaacaaIXaGaey4kaSYaaO aaaeaacqaHbpGCcaaIOaGaamiDaiaaiMcaaSqabaaaaOGaamyqaiaa iIcacqaH8oqBdaahaaWcbeqaaiabgUcaRaaakiaaiIcacaWG0bGaaG ykaiaaiMcacqGHRaWkdaWcaaqaaiaaigdacqGHsisldaGcaaqaaiab eg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiaadshacaaIPaaaleqaaa GcbaGaaGymaiabgUcaRmaakaaabaGaeqyWdiNaaGikaiaaikdacaWG HbGaeyOeI0IaamiDaiaaiMcaaSqabaaaaOGaamyqaiaaiIcacaaIYa GaamyyaiabgkHiTiaadshacaaIPaaacaGLOaGaayzkaaWaaWbaaSqa beaacaaIYaaaaOGaamizaiaadshacqGHRaWkaaa@68CE@

+ 0 x 2ρ(t) 1+ ρ(t) A( μ + (t)) 0 x 2ρ(ξ) 1+ ρ(ξ) A( μ + (ξ)) n=1 φ 0 ξ, λ n φ 0 (t, λ n ) α n dξdt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI YaGaeqyWdiNaaGikaiaadshacaaIPaaabaGaaGymaiabgUcaRmaaka aabaGaeqyWdiNaaGikaiaadshacaaIPaaaleqaaaaakiaadgeacaaI OaGaeqiVd02aaWbaaSqabeaacqGHRaWkaaGccaaIOaGaamiDaiaaiM cacaaIPaWaa8qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWa aSaaaeaacaaIYaGaeqyWdiNaaGikaiabe67a4jaaiMcaaeaacaaIXa Gaey4kaSYaaOaaaeaacqaHbpGCcaaIOaGaeqOVdGNaaGykaaWcbeaa aaGccaWGbbGaaGikaiabeY7aTnaaCaaaleqabaGaey4kaScaaOGaaG ikaiabe67a4jaaiMcacaaIPaWaaabCaeqaleaacaWGUbGaaGypaiaa igdaaeaacqGHEisPa0GaeyyeIuoakmaalaaabaGaeqOXdO2aaSbaaS qaaiaaicdaaeqaaOWaaeWaaeaacqaH+oaEcaaISaGaeq4UdW2aaSba aSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaGaeqOXdO2aaSbaaSqaai aaicdaaeqaaOGaaGikaiaadshacaaISaGaeq4UdW2aaSbaaSqaaiaa d6gaaeqaaOGaaGykaaqaaiabeg7aHnaaBaaaleaacaWGUbaabeaaaa GccaaMi8Uaamizaiabe67a4jaayIW7caWGKbGaamiDaiabgUcaRaaa @8914@

+ 0 x 1 ρ(2at) 1+ ρ(2at) A(2at) 0 x 2ρ(ξ) 1+ ρ(ξ) A( μ + (ξ)) n=1 φ 0 (ξ, λ n ) φ 0 (t, λ n ) α n dξdt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI XaGaeyOeI0YaaOaaaeaacqaHbpGCcaaIOaGaaGOmaiaadggacqGHsi slcaWG0bGaaGykaaWcbeaaaOqaaiaaigdacqGHRaWkdaGcaaqaaiab eg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiaadshacaaIPaaaleqaaa aakiaadgeacaaIOaGaaGOmaiaadggacqGHsislcaWG0bGaaGykamaa pedabeWcbaGaaGimaaqaaiaadIhaa0Gaey4kIipakmaalaaabaGaaG Omaiabeg8aYjaaiIcacqaH+oaEcaaIPaaabaGaaGymaiabgUcaRmaa kaaabaGaeqyWdiNaaGikaiabe67a4jaaiMcaaSqabaaaaOGaamyqai aaiIcacqaH8oqBdaahaaWcbeqaaiabgUcaRaaakiaaiIcacqaH+oaE caaIPaGaaGykamaaqahabeWcbaGaamOBaiaai2dacaaIXaaabaGaey OhIukaniabggHiLdGcdaWcaaqaaiabeA8aQnaaBaaaleaacaaIWaaa beaakiaaiIcacqaH+oaEcaaISaGaeq4UdW2aaSbaaSqaaiaad6gaae qaaOGaaGykaiabeA8aQnaaBaaaleaacaaIWaaabeaakiaaiIcacaWG 0bGaaGilaiabeU7aSnaaBaaaleaacaWGUbaabeaakiaaiMcaaeaacq aHXoqydaWgaaWcbaGaamOBaaqabaaaaOGaaGjcVlaadsgacqaH+oaE caaMi8UaamizaiaadshacqGHRaWkaaa@8D7A@

+ 0 x 2ρ(t) 1+ ρ(t) A( μ + (t)) 0 x 1 ρ(2aξ) 1+ ρ(2aξ) A(2aξ) n=1 φ 0 (ξ, λ n ) φ 0 (t, λ n ) α n dξdt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI YaGaeqyWdiNaaGikaiaadshacaaIPaaabaGaaGymaiabgUcaRmaaka aabaGaeqyWdiNaaGikaiaadshacaaIPaaaleqaaaaakiaadgeacaaI OaGaeqiVd02aaWbaaSqabeaacqGHRaWkaaGccaaIOaGaamiDaiaaiM cacaaIPaWaa8qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWa aSaaaeaacaaIXaGaeyOeI0YaaOaaaeaacqaHbpGCcaaIOaGaaGOmai aadggacqGHsislcqaH+oaEcaaIPaaaleqaaaGcbaGaaGymaiabgUca RmaakaaabaGaeqyWdiNaaGikaiaaikdacaWGHbGaeyOeI0IaeqOVdG NaaGykaaWcbeaaaaGccaWGbbGaaGikaiaaikdacaWGHbGaeyOeI0Ia eqOVdGNaaGykamaaqahabeWcbaGaamOBaiaai2dacaaIXaaabaGaey OhIukaniabggHiLdGcdaWcaaqaaiabeA8aQnaaBaaaleaacaaIWaaa beaakiaaiIcacqaH+oaEcaaISaGaeq4UdW2aaSbaaSqaaiaad6gaae qaaOGaaGykaiabeA8aQnaaBaaaleaacaaIWaaabeaakiaaiIcacaWG 0bGaaGilaiabeU7aSnaaBaaaleaacaWGUbaabeaakiaaiMcaaeaacq aHXoqydaWgaaWcbaGaamOBaaqabaaaaOGaaGjcVlaadsgacqaH+oaE caaMi8UaamizaiaadshacqGHRaWkaaa@8D7A@

+ 0 x 1 ρ(2at) 1+ ρ(2at) A(2at) 0 x 1 ρ(2aξ) 1+ ρ(2aξ) A(2aξ) n=1 φ 0 (ξ, λ n ) φ 0 (t, λ n ) α n dξdt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI XaGaeyOeI0YaaOaaaeaacqaHbpGCcaaIOaGaaGOmaiaadggacqGHsi slcaWG0bGaaGykaaWcbeaaaOqaaiaaigdacqGHRaWkdaGcaaqaaiab eg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiaadshacaaIPaaaleqaaa aakiaadgeacaaIOaGaaGOmaiaadggacqGHsislcaWG0bGaaGykamaa pedabeWcbaGaaGimaaqaaiaadIhaa0Gaey4kIipakmaalaaabaGaaG ymaiabgkHiTmaakaaabaGaeqyWdiNaaGikaiaaikdacaWGHbGaeyOe I0IaeqOVdGNaaGykaaWcbeaaaOqaaiaaigdacqGHRaWkdaGcaaqaai abeg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiabe67a4jaaiMcaaSqa baaaaOGaamyqaiaaiIcacaaIYaGaamyyaiabgkHiTiabe67a4jaaiM cadaaeWbqabSqaaiaad6gacaaI9aGaaGymaaqaaiabg6HiLcqdcqGH ris5aOWaaSaaaeaacqaHgpGAdaWgaaWcbaGaaGimaaqabaGccaaIOa GaeqOVdGNaaGilaiabeU7aSnaaBaaaleaacaWGUbaabeaakiaaiMca cqaHgpGAdaWgaaWcbaGaaGimaaqabaGccaaIOaGaamiDaiaaiYcacq aH7oaBdaWgaaWcbaGaamOBaaqabaGccaaIPaaabaGaeqySde2aaSba aSqaaiaad6gaaeqaaaaakiaayIW7caWGKbGaeqOVdGNaaGjcVlaads gacaWG0bGaeyOeI0caaa@920F@

0 x 2ρ(t) 1+ ρ(t) A( μ + (t)) 0 x 2ρ(ξ) 1+ ρ(ξ) A( μ + (ξ)) n=1 φ 0 (ξ, λ n 0 ) φ 0 (t, λ n ) α n 0 dξdt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Yaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI YaGaeqyWdiNaaGikaiaadshacaaIPaaabaGaaGymaiabgUcaRmaaka aabaGaeqyWdiNaaGikaiaadshacaaIPaaaleqaaaaakiaadgeacaaI OaGaeqiVd02aaWbaaSqabeaacqGHRaWkaaGccaaIOaGaamiDaiaaiM cacaaIPaWaa8qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWa aSaaaeaacaaIYaGaeqyWdiNaaGikaiabe67a4jaaiMcaaeaacaaIXa Gaey4kaSYaaOaaaeaacqaHbpGCcaaIOaGaeqOVdGNaaGykaaWcbeaa aaGccaWGbbGaaGikaiabeY7aTnaaCaaaleqabaGaey4kaScaaOGaaG ikaiabe67a4jaaiMcacaaIPaWaaabCaeqaleaacaWGUbGaaGypaiaa igdaaeaacqGHEisPa0GaeyyeIuoakmaalaaabaGaeqOXdO2aaSbaaS qaaiaaicdaaeqaaOGaaGikaiabe67a4jaaiYcacqaH7oaBdaqhaaWc baGaamOBaaqaaiaaicdaaaGccaaIPaGaeqOXdO2aaSbaaSqaaiaaic daaeqaaOGaaGikaiaadshacaaISaGaeq4UdW2aa0baaSqaaiaad6ga aeaacaaIPaaaaaGcbaGaeqySde2aa0baaSqaaiaad6gaaeaacaaIWa aaaaaakiaayIW7caWGKbGaeqOVdGNaaGjcVlaadsgacaWG0bGaeyOe I0caaa@8A7D@

0 x 1 ρ(2at) 1+ ρ(2at) A(2at) 0 x 2ρ(ξ) 1+ ρ(ξ) A( μ + (ξ)) n=1 φ 0 (ξ, λ n 0 ) φ 0 (t, λ n 0 ) α n 0 dξdt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Yaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI XaGaeyOeI0YaaOaaaeaacqaHbpGCcaaIOaGaaGOmaiaadggacqGHsi slcaWG0bGaaGykaaWcbeaaaOqaaiaaigdacqGHRaWkdaGcaaqaaiab eg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiaadshacaaIPaaaleqaaa aakiaadgeacaaIOaGaaGOmaiaadggacqGHsislcaWG0bGaaGykamaa pedabeWcbaGaaGimaaqaaiaadIhaa0Gaey4kIipakmaalaaabaGaaG Omaiabeg8aYjaaiIcacqaH+oaEcaaIPaaabaGaaGymaiabgUcaRmaa kaaabaGaeqyWdiNaaGikaiabe67a4jaaiMcaaSqabaaaaOGaamyqai aaiIcacqaH8oqBdaahaaWcbeqaaiabgUcaRaaakiaaiIcacqaH+oaE caaIPaGaaGykamaaqahabeWcbaGaamOBaiaai2dacaaIXaaabaGaey OhIukaniabggHiLdGcdaWcaaqaaiabeA8aQnaaBaaaleaacaaIWaaa beaakiaaiIcacqaH+oaEcaaISaGaeq4UdW2aa0baaSqaaiaad6gaae aacaaIWaaaaOGaaGykaiabeA8aQnaaBaaaleaacaaIWaaabeaakiaa iIcacaWG0bGaaGilaiabeU7aSnaaDaaaleaacaWGUbaabaGaaGimaa aakiaaiMcaaeaacqaHXoqydaqhaaWcbaGaamOBaaqaaiaaicdaaaaa aOGaaGjcVlaadsgacqaH+oaEcaaMi8UaamizaiaadshacqGHsislaa a@8FC1@

0 x 2ρ(t) 1+ ρ(t) A( μ + (t)) 0 x 1 ρ(2aξ) 1+ ρ(2aξ) A(2aξ) n=1 φ 0 (ξ, λ n 0 ) φ 0 t, λ n 0 α n 0 dξdt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Yaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI YaGaeqyWdiNaaGikaiaadshacaaIPaaabaGaaGymaiabgUcaRmaaka aabaGaeqyWdiNaaGikaiaadshacaaIPaaaleqaaaaakiaadgeacaaI OaGaeqiVd02aaWbaaSqabeaacqGHRaWkaaGccaaIOaGaamiDaiaaiM cacaaIPaWaa8qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWa aSaaaeaacaaIXaGaeyOeI0YaaOaaaeaacqaHbpGCcaaIOaGaaGOmai aadggacqGHsislcqaH+oaEcaaIPaaaleqaaaGcbaGaaGymaiabgUca RmaakaaabaGaeqyWdiNaaGikaiaaikdacaWGHbGaeyOeI0IaeqOVdG NaaGykaaWcbeaaaaGccaWGbbGaaGikaiaaikdacaWGHbGaeyOeI0Ia eqOVdGNaaGykamaaqahabeWcbaGaamOBaiaai2dacaaIXaaabaGaey OhIukaniabggHiLdGcdaWcaaqaaiabeA8aQnaaBaaaleaacaaIWaaa beaakiaaiIcacqaH+oaEcaaISaGaeq4UdW2aa0baaSqaaiaad6gaae aacaaIWaaaaOGaaGykaiabeA8aQnaaBaaaleaacaaIWaaabeaakmaa bmaabaGaamiDaiaaiYcacqaH7oaBdaqhaaWcbaGaamOBaaqaaiaaic daaaaakiaawIcacaGLPaaaaeaacqaHXoqydaqhaaWcbaGaamOBaaqa aiaaicdaaaaaaOGaaGjcVlaadsgacqaH+oaEcaaMi8Uaamizaiaads hacqGHsislaaa@8FE5@

0 x 1 ρ(2at) 1+ ρ(2at) A(2at) 0 x 1 ρ(2aξ) 1+ ρ(2aξ) A(2aξ) n=1 φ 0 (ξ, λ n 0 ) φ 0 t, λ n 0 α n 0 dξdt=0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Yaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI XaGaeyOeI0YaaOaaaeaacqaHbpGCcaaIOaGaaGOmaiaadggacqGHsi slcaWG0bGaaGykaaWcbeaaaOqaaiaaigdacqGHRaWkdaGcaaqaaiab eg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiaadshacaaIPaaaleqaaa aakiaadgeacaaIOaGaaGOmaiaadggacqGHsislcaWG0bGaaGykamaa pedabeWcbaGaaGimaaqaaiaadIhaa0Gaey4kIipakmaalaaabaGaaG ymaiabgkHiTmaakaaabaGaeqyWdiNaaGikaiaaikdacaWGHbGaeyOe I0IaeqOVdGNaaGykaaWcbeaaaOqaaiaaigdacqGHRaWkdaGcaaqaai abeg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiabe67a4jaaiMcaaSqa baaaaOGaamyqaiaaiIcacaaIYaGaamyyaiabgkHiTiabe67a4jaaiM cadaaeWbqabSqaaiaad6gacaaI9aGaaGymaaqaaiabg6HiLcqdcqGH ris5aOWaaSaaaeaacqaHgpGAdaWgaaWcbaGaaGimaaqabaGccaaIOa GaeqOVdGNaaGilaiabeU7aSnaaDaaaleaacaWGUbaabaGaaGimaaaa kiaaiMcacqaHgpGAdaWgaaWcbaGaaGimaaqabaGcdaqadaqaaiaads hacaaISaGaeq4UdW2aa0baaSqaaiaad6gaaeaacaaIWaaaaaGccaGL OaGaayzkaaaabaGaeqySde2aa0baaSqaaiaad6gaaeaacaaIWaaaaa aakiaayIW7caWGKbGaeqOVdGNaaGjcVlaadsgacaWG0bGaaGypaiaa icdacaaIUaaaaa@95BB@

Таким образом,

0 x ρ(t) 2 1+ ρ(t) A( μ + (t))+ 1 ρ(2at) 1+ ρ(2at) A(2at) 2 dt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamiEaaqdcqGHRiI8aOGaeqyWdiNaaGikaiaadsha caaIPaWaaeWaaeaadaWcaaqaaiaaikdaaeaacaaIXaGaey4kaSYaaO aaaeaacqaHbpGCcaaIOaGaamiDaiaaiMcaaSqabaaaaOGaamyqaiaa iIcacqaH8oqBdaahaaWcbeqaaiabgUcaRaaakiaaiIcacaWG0bGaaG ykaiaaiMcacqGHRaWkdaWcaaqaaiaaigdacqGHsisldaGcaaqaaiab eg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiaadshacaaIPaaaleqaaa GcbaGaaGymaiabgUcaRmaakaaabaGaeqyWdiNaaGikaiaaikdacaWG HbGaeyOeI0IaamiDaiaaiMcaaSqabaaaaOGaamyqaiaaiIcacaaIYa GaamyyaiabgkHiTiaadshacaaIPaaacaGLOaGaayzkaaWaaWbaaSqa beaacaaIYaaaaOGaamizaiaadshacqGHRaWkaaa@68CE@

+ n=1 1 α n 0 x ρ(t) 2 1+ ρ(t) A( μ + (t))+ 1 ρ(2at) 1+ ρ(2at) A(2at) φ 0 (t, λ n )dt 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaaa bCaeqaleaacaWGUbGaaGypaiaaigdaaeaacqGHEisPa0GaeyyeIuoa kmaalaaabaGaaGymaaqaaiabeg7aHnaaBaaaleaacaWGUbaabeaaaa GcdaqadaqaamaapedabeWcbaGaaGimaaqaaiaadIhaa0Gaey4kIipa kiabeg8aYjaaiIcacaWG0bGaaGykamaabmaabaWaaSaaaeaacaaIYa aabaGaaGymaiabgUcaRmaakaaabaGaeqyWdiNaaGikaiaadshacaaI PaaaleqaaaaakiaadgeacaaIOaGaeqiVd02aaWbaaSqabeaacqGHRa WkaaGccaaIOaGaamiDaiaaiMcacaaIPaGaey4kaSYaaSaaaeaacaaI XaGaeyOeI0YaaOaaaeaacqaHbpGCcaaIOaGaaGOmaiaadggacqGHsi slcaWG0bGaaGykaaWcbeaaaOqaaiaaigdacqGHRaWkdaGcaaqaaiab eg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiaadshacaaIPaaaleqaaa aakiaadgeacaaIOaGaaGOmaiaadggacqGHsislcaWG0bGaaGykaaGa ayjkaiaawMcaaiabeA8aQnaaBaaaleaacaaIWaaabeaakiaaiIcaca WG0bGaaGilaiabeU7aSnaaBaaaleaacaWGUbaabeaakiaaiMcacaWG KbGaamiDaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiabgk HiTaaa@7DA8@

n=1 1 α n 0 0 x ρ(t) 2 1+ ρ(t) A( μ + (t))+ 1 ρ(2at) 1+ ρ 2at A(2at) φ 0 (t, λ n ) dt 2 =0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Yaaa bCaeqaleaacaWGUbGaaGypaiaaigdaaeaacqGHEisPa0GaeyyeIuoa kmaalaaabaGaaGymaaqaaiabeg7aHnaaDaaaleaacaWGUbaabaGaaG imaaaaaaGcdaqadaqaamaapedabeWcbaGaaGimaaqaaiaadIhaa0Ga ey4kIipakiabeg8aYjaaiIcacaWG0bGaaGykamaabmaabaWaaSaaae aacaaIYaaabaGaaGymaiabgUcaRmaakaaabaGaeqyWdiNaaGikaiaa dshacaaIPaaaleqaaaaakiaadgeacaaIOaGaeqiVd02aaWbaaSqabe aacqGHRaWkaaGccaaIOaGaamiDaiaaiMcacaaIPaGaey4kaSYaaSaa aeaacaaIXaGaeyOeI0YaaOaaaeaacqaHbpGCcaaIOaGaaGOmaiaadg gacqGHsislcaWG0bGaaGykaaWcbeaaaOqaaiaaigdacqGHRaWkdaGc aaqaaiabeg8aYnaabmaabaGaaGOmaiaadggacqGHsislcaWG0baaca GLOaGaayzkaaaaleqaaaaakiaadgeacaaIOaGaaGOmaiaadggacqGH sislcaWG0bGaaGykaaGaayjkaiaawMcaaiabeA8aQnaaBaaaleaaca aIWaaabeaakiaaiIcacaWG0bGaaGilaiabeU7aSnaaDaaaleaacaWG UbaabaGaaGykaaaakiaadsgacaWG0baacaGLOaGaayzkaaWaaWbaaS qabeaacaaIYaaaaOGaaGypaiaaicdacaaIUaaaaa@7FDF@

Используя равенство Парсеваля

0 x ρ(t) f 2 (t)dt= n=1 1 α n 0 0 x ρ(t)f(t) φ 0 (t, λ n ) dt 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamiEaaqdcqGHRiI8aOGaeqyWdiNaaGikaiaadsha caaIPaGaamOzamaaCaaaleqabaGaaGOmaaaakiaaiIcacaWG0bGaaG ykaiaadsgacaWG0bGaaGypamaaqahabeWcbaGaamOBaiaai2dacaaI XaaabaGaeyOhIukaniabggHiLdGcdaWcaaqaaiaaigdaaeaacqaHXo qydaqhaaWcbaGaamOBaaqaaiaaicdaaaaaaOWaaeWaaeaadaWdXaqa bSqaaiaaicdaaeaacaWG4baaniabgUIiYdGccqaHbpGCcaaIOaGaam iDaiaaiMcacaWGMbGaaGikaiaadshacaaIPaGaeqOXdO2aaSbaaSqa aiaaicdaaeqaaOGaaGikaiaadshacaaISaGaeq4UdW2aa0baaSqaai aad6gaaeaacaaIPaaaaOGaamizaiaadshaaiaawIcacaGLPaaadaah aaWcbeqaaiaaikdaaaaaaa@67A7@

для функции

f(t)= 2 1+ ρ(t) A( μ + (t))+ 1 ρ(2at) 1+ ρ(2at) A(2at) L 2 (0,x), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG0bGaaGykaiaai2dadaWcaaqaaiaaikdaaeaacaaIXaGaey4k aSYaaOaaaeaacqaHbpGCcaaIOaGaamiDaiaaiMcaaSqabaaaaOGaam yqaiaaiIcacqaH8oqBdaahaaWcbeqaaiabgUcaRaaakiaaiIcacaWG 0bGaaGykaiaaiMcacqGHRaWkdaWcaaqaaiaaigdacqGHsisldaGcaa qaaiabeg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiaadshacaaIPaaa leqaaaGcbaGaaGymaiabgUcaRmaakaaabaGaeqyWdiNaaGikaiaaik dacaWGHbGaeyOeI0IaamiDaiaaiMcaaSqabaaaaOGaamyqaiaaiIca caaIYaGaamyyaiabgkHiTiaadshacaaIPaGaeyicI4SaamitamaaBa aaleaacaaIYaaabeaakiaaiIcacaaIWaGaaGilaiaadIhacaaIPaGa aGilaaaa@6764@

получим

n=1 1 α n 0 x ρ(t) 2 1+ ρ(t) A( μ + (t))+ 1 ρ(2at) 1+ ρ(2at) A(2at) φ 0 (t, λ n )dt 2 =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeqale aacaWGUbGaaGypaiaaigdaaeaacqGHEisPa0GaeyyeIuoakmaalaaa baGaaGymaaqaaiabeg7aHnaaBaaaleaacaWGUbaabeaaaaGcdaqada qaamaapedabeWcbaGaaGimaaqaaiaadIhaa0Gaey4kIipakiabeg8a YjaaiIcacaWG0bGaaGykamaabmaabaWaaSaaaeaacaaIYaaabaGaaG ymaiabgUcaRmaakaaabaGaeqyWdiNaaGikaiaadshacaaIPaaaleqa aaaakiaadgeacaaIOaGaeqiVd02aaWbaaSqabeaacqGHRaWkaaGcca aIOaGaamiDaiaaiMcacaaIPaGaey4kaSYaaSaaaeaacaaIXaGaeyOe I0YaaOaaaeaacqaHbpGCcaaIOaGaaGOmaiaadggacqGHsislcaWG0b GaaGykaaWcbeaaaOqaaiaaigdacqGHRaWkdaGcaaqaaiabeg8aYjaa iIcacaaIYaGaamyyaiabgkHiTiaadshacaaIPaaaleqaaaaakiaadg eacaaIOaGaaGOmaiaadggacqGHsislcaWG0bGaaGykaaGaayjkaiaa wMcaaiabeA8aQnaaBaaaleaacaaIWaaabeaakiaaiIcacaWG0bGaaG ilaiabeU7aSnaaBaaaleaacaWGUbaabeaakiaaiMcacaWGKbGaamiD aaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiaai2dacaaIWa aaaa@7D5A@

или

0 x ρ(t) 2 1+ ρ(t) A( μ + (t))+ 1 ρ(2at) 1+ ρ(2at) A(2at) φ 0 (t, λ n )dt=0,n1. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamiEaaqdcqGHRiI8aOGaeqyWdiNaaGikaiaadsha caaIPaWaaeWaaeaadaWcaaqaaiaaikdaaeaacaaIXaGaey4kaSYaaO aaaeaacqaHbpGCcaaIOaGaamiDaiaaiMcaaSqabaaaaOGaamyqaiaa iIcacqaH8oqBdaahaaWcbeqaaiabgUcaRaaakiaaiIcacaWG0bGaaG ykaiaaiMcacqGHRaWkdaWcaaqaaiaaigdacqGHsisldaGcaaqaaiab eg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiaadshacaaIPaaaleqaaa GcbaGaaGymaiabgUcaRmaakaaabaGaeqyWdiNaaGikaiaaikdacaWG HbGaeyOeI0IaamiDaiaaiMcaaSqabaaaaOGaamyqaiaaiIcacaaIYa GaamyyaiabgkHiTiaadshacaaIPaaacaGLOaGaayzkaaGaeqOXdO2a aSbaaSqaaiaaicdaaeqaaOGaaGikaiaadshacaaISaGaeq4UdW2aaS baaSqaaiaad6gaaeqaaOGaaGykaiaadsgacaWG0bGaaGypaiaaicda caaISaGaaGzbVlaad6gacqGHLjYScaaIXaGaaGOlaaaa@7788@

Поскольку система { φ 0 (t, λ n )} n1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiabeA 8aQnaaBaaaleaacaaIWaaabeaakiaaiIcacaWG0bGaaGilaiabeU7a SnaaBaaaleaacaWGUbaabeaakiaaiMcacaaI9bWaaSbaaSqaaiaad6 gacqGHLjYScaaIXaaabeaaaaa@443D@  полна в L 2,ρ (0,π) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaaIYaGaaGilaiabeg8aYbqabaGccaaIOaGaaGimaiaaiYca cqaHapaCcaaIPaaaaa@3EBE@ , имеем

2 1+ ρ(t) A( μ + (t))+ 1 ρ(2at) 1+ ρ(2at) A(2at)=0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIYaaabaGaaGymaiabgUcaRmaakaaabaGaeqyWdiNaaGikaiaadsha caaIPaaaleqaaaaakiaadgeacaaIOaGaeqiVd02aaWbaaSqabeaacq GHRaWkaaGccaaIOaGaamiDaiaaiMcacaaIPaGaey4kaSYaaSaaaeaa caaIXaGaeyOeI0YaaOaaaeaacqaHbpGCcaaIOaGaaGOmaiaadggacq GHsislcaWG0bGaaGykaaWcbeaaaOqaaiaaigdacqGHRaWkdaGcaaqa aiabeg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiaadshacaaIPaaale qaaaaakiaadgeacaaIOaGaaGOmaiaadggacqGHsislcaWG0bGaaGyk aiaai2dacaaIWaGaaGilaaaa@5DBC@

т.е. ( L x A)(t)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadY eadaWgaaWcbaGaamiEaaqabaGccaWGbbGaaGykaiaaiIcacaWG0bGa aGykaiaai2dacaaIWaaaaa@3E01@ , где оператор L x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaWG4baabeaaaaa@37ED@  определен в (24). Обратимость оператора L x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaWG4baabeaaaaa@37ED@  в L 2 (0,π) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaaIYaaabeaakiaaiIcacaaIWaGaaGilaiabec8aWjaaiMca aaa@3C48@  влечет A(x,)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaaiI cacaWG4bGaaGilaiabgwSixlaaiMcacaaI9aGaaGimaaaa@3D9C@ .

Теорема 4. Пусть L MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaaaa@36C4@  и L ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaacaaeaaca WGmbaacaGLdmaaaaa@3786@ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa8hfGaaa@3A93@ две краевых задачи и

λ n = λ ˜ n , α n = α ˜ n ,n. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaad6gaaeqaaOGaaGypamaaGaaabaGaeq4UdWgacaGLdmaa daWgaaWcbaGaamOBaaqabaGccaaISaGaaGzbVlabeg7aHnaaBaaale aacaWGUbaabeaakiaai2dadaaiaaqaaiabeg7aHbGaay5adaWaaSba aSqaaiaad6gaaeqaaOGaaGilaiaaywW7caWGUbGaeyicI48efv3ySL gznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFKeIwcaaIUaaa aa@56CD@

Тогда

q(x)= q ˜ (x)a.e. in(0,π). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiaaiI cacaWG4bGaaGykaiaai2dadaaiaaqaaiaadghaaiaawoWaaiaaiIca caWG4bGaaGykaiaaywW7caqGHbGaaeOlaiaabwgacaqGUaGaaeiiai aabMgacaqGUbGaaeikaiaabcdacaqGSaGaeuiWdaNaaeykaiaai6ca aaa@4A97@

Доказательство. Согласно (12) и (13), F 0 (x,t)= F ˜ 0 (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaaIWaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGa aGypamaaGaaabaGaamOraaGaay5adaWaaSbaaSqaaiaaicdaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcaaaa@4314@  и F(x,t)= F ˜ (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaaGypamaaGaaabaGaamOraaGa ay5adaGaaGikaiaadIhacaaISaGaamiDaiaaiMcaaaa@4134@ . Из основного уравнения (11) получаем A(x,t)= A ˜ (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaaGypamaaGaaabaGaamyqaaGa ay5adaGaaGikaiaadIhacaaISaGaamiDaiaaiMcaaaa@412A@ . Из (5) следует, что q(x)= q ˜ (x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiaaiI cacaWG4bGaaGykaiaai2dadaaiaaqaaiaadghaaiaawoWaaiaaiIca caWG4bGaaGykaaaa@3E2C@  почти всюду на (0,π) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaic dacaaISaGaeqiWdaNaaGykaaaa@3A85@ .

×

Об авторах

Д. Карахан

Harran University

Автор, ответственный за переписку.
Email: dkarahan@harran.edu.tr
Турция, Шанлыурфа

Хaнлар Рашид Мамедов

Igdir University

Email: hanlar.residoglu@igdir.edu.tr
Турция, Ыгдыр

И. Ф. Хашимоглу

Karabük University

Email: i.hasimoglu@karabuk.edu.tr
Турция, Карабюк

Список литературы

  1. Ахтямов А. М. Теория идентификации краевых условий и ее приложения. — М.: Физматлит, 2009.
  2. Левитан Б. М. Обратные задачи Штурма—Лиувилля. — М.: Наука, 1984.
  3. Левитан Б. М., Гасымов М. Г. Определение дифференциального уравнения по двум спектрам// Усп. мат. наук. — 1964. — 19, № 2 (116). — С. 3–63.
  4. Левитан Б. М., Саргсян И. С. Операторы Штурма—Лиувилля и Дирака. — М.: Наука, 1988.
  5. Люстерник Л. А., Соболев В. И. Элементы функционального анализа. — М.: Наука, 1965.
  6. Марченко В. А. Спектральная теория операторов Штурма—Лиувилля. — Киев: Наукова думка, 1972.
  7. Расулов М. Л. Метод контурного интеграла. — М.: Наука, 1964.
  8. Тихонов А.Н., Самарский А.А. Уравнения математической физики. — М.: Наука, 1977.
  9. Юрко В. А. Обратные спектральные задачи и их приложения. — Саратов: Изд-во Сарат. пед. ин-та, 2001.
  10. Akhmedova E. N. On representation of solution of Sturm–Liouville equation with discontinuous coefficients//Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerbaijan. — 2002. — 16, № 24. — P. 5–9.
  11. Akhmedova E. N., Huseynov H. M. The main equation of the inverse Sturm–Liouville problem with discontinuous coefficients// Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerbaijan. — 2007. — 26, № 34. —P. 17–32.
  12. Akhtyamov A. M., Mouftakhov A. V. Identification of boundary conditions using natural frequencies// Inv. Probl. Sci. Eng. — 2004. — 12, № 4. — P. 393–408.
  13. Aliev B. A., Yakubov Ya. S. Solvability of boundary value problems for second-order elliptic differentialoperator equations with a spectral parameter and with a discontinuous coefficient at the highest derivative//Differ. Equat. — 2014. — 50, № 4. — P. 464–475.
  14. Altinisik N., Kadakal M., Mukhtarov O. Eigenvalues and eigenfunctions of discontinuous Sturm–Liouville problems with eigenparameter dependent boundary conditions// Acta Math. Hung. — 2004. — 102, № 1-2. P. 159–175.
  15. Anderssen R. S. The effect of discontinuities in destiny and shear velocity on the asymptotic overtone structure of torsional eigenfrequencies of the Earth// Geophys. J. R. Astr. Soc. — 1977. — 50. — P. 303–309.
  16. Borg G. Eine Umkehrung der Sturm–Liouvilleschen Eigenwertaufgabe// Acta Math. — 1946. — 78. —P. 1–96.
  17. Carlson R. An inverse spectral problem for Sturm–Liouville operators with discontinuous coefficients// Proc. Am. Math. Soc. — 1994. — 120, № 2. — P. 5–9.
  18. Freiling G., Yurko V. Inverse Sturm–Liouville problems and Their Applications. — Nova Science Publ., 2008.
  19. Hald O. H. Discontinuous inverse eigenvalue problems// Commun. Pure Appl. Math. — 1984. — 37. —P. 539–577.
  20. Hao D. N. Methods for Inverse Heat Conduction Problems. — Frankfurt/Main etc.: Peter Lang Verlag, 1998.
  21. Karahan D., Mamedov Kh. R. Uniqueness of the solution of the inverse problem for one class of Sturm–Liouville operator// Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerbaijan. — 2014. — 40. — P. 233–244.
  22. Marchenko V. A. Strum–Liouville Operators and Their Aplications. — Basel–Boston–Stuttgart: Birkhäuser Verlag, 1986.
  23. Nabiev A. A., Amirov R. K. On the boundary value problem for the Sturm–Liouville equation with the discontinuous coefficient// Math. Meth. Appl. Sci. — 2013. — 36, № 13. — P. 1685–1700.
  24. Poschel J., Trubowitz E. Inverse Spectral Theory. — New York: Academic Press, 1987.
  25. Sedipkov A. A. The inverse spectral problem for the Sturm–Liouville operator with discontinuous potential//J. Inv. Ill-Posed Probl. — 2012. — 20. — P. 139–167.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Карахан Д., Мамедов Х.Р., Хашимоглу И.Ф., 2023

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).