Обобщенная смешанная задача для волнового уравнения простейшего вида и ее приложения

Обложка
  • Авторы: Хромов А.П.1
  • Учреждения:
    1. Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
  • Выпуск: Том 229 (2023)
  • Страницы: 83-89
  • Раздел: Статьи
  • URL: https://ogarev-online.ru/2782-4438/article/view/261893
  • ID: 261893

Цитировать

Полный текст

Аннотация

Приведены результаты по обобщенной смешанной задаче (однородной и неоднородной) для волнового уравнения, основанные на операции интегрирования расходящегося ряда формального решения по методу разделения переменных. Найдено решение обобщенной смешанной задачи для неоднородного уравнения в предположении, что функция, характеризующая неоднородность, локально суммируема. В качестве приложения рассмотрена смешанная задача с ненулевым потенциалом.

Полный текст

Введение

Обобщенная смешанная задача для волнового уравнения является одним из наиболее сильных обобщений смешанной задачи. Она впервые появилась в [6]. Внешний вид ее такой же, как и у исходной смешанной задачи и характеризуется тем, что в формальном решении ее по методу Фурье потенциал и начальные данные считаются произвольными суммируемыми функциями, а возмущение в случае неоднородной задачи - произвольной локально суммируемой функцией. Ряд формального решения может быть и расходящимся. Расходящийся ряд рассматривается в понимании Л. Эйлера (см. [7, с. 100-101]), основоположника теории суммирования расходящихся рядов. Найти решение обобщенной смешанной задачи - значит найти сумму ряда формального решения.

В настоящей статье основное внимание уделяется следующей обобщенной смешанной задаче простейшего вида:

                                  2 u(x,t) t 2 = 2 u(x,t) x 2 ,(x,t)[0,1]×[0,), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2oaaCaaaleqaba GaaGOmaaaakiaadwhacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaaqa aiabgkGi2kaadshadaahaaWcbeqaaiaaikdaaaaaaOGaaGypamaala aabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaamyDaiaaiIcacaWG 4bGaaGilaiaadshacaaIPaaabaGaeyOaIyRaamiEamaaCaaaleqaba GaaGOmaaaaaaGccaaISaGaaGzbVlaaiIcacaWG4bGaaGilaiaadsha caaIPaGaeyicI4SaaG4waiaaicdacaaISaGaaGymaiaai2facqGHxd aTcaaIBbGaaGimaiaaiYcacqGHEisPcaaIPaGaaGilaaaa@5B2E@                                         (1)

                                                     u(0,t)=u(1,t)=0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaaicdacaaISaGaam iDaiaaiMcacaaI9aGaamyDaiaaiIcacaaIXaGaaGilaiaadshacaaI PaGaaGypaiaaicdacaaISaaaaa@3E50@                                                            (2)

                                              u(x,0)=φ(x), u t (x,0)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaaG imaiaaiMcacaaI9aGaeqOXdOMaaGikaiaadIhacaaIPaGaaGilaiaa ywW7caWG1bWaaSbaaSqaaiqadshagaqbaaqabaGccaaIOaGaamiEai aaiYcacaaIWaGaaGykaiaai2dacaaIWaaaaa@453F@                                                     (3)

в случае φ(x)L[0,1] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaamiEaiaaiMcacq GHiiIZcaWGmbGaaG4waiaaicdacaaISaGaaGymaiaai2faaaa@3C2C@ . Ее удается решить, привлекая аксиомы о расходящихся рядах из [3, с. 19], используя следующее правило интегрирования расходящегося ряда:

                                                            = , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdbaqabSqabeqaniabgUIiYdGcda aeabqabSqabeqaniabggHiLdGccaaI9aWaaabqaeqaleqabeqdcqGH ris5aOWaa8qaaeqaleqabeqdcqGHRiI8aOGaaGilaaaa@3B88@                                                                  (4)

где MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdbaqabSqabeqaniabgUIiYdaaaa@33BD@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  определенный интеграл, и опираясь на известные результаты, относящиеся к почленному интегрированию тригонометрического ряда Фурье по синусам.

Затем показано, как полученный результат помогает дать решение и обобщенной смешанной задачи для неоднородного уравнения. Наконец, в качестве приложения к вышеприведенным результатам рассмотрена смешанная задача для волнового уравнения с ненулевым потенциалом. Показано, что эта задача приводится к интегральному уравнению, решение которого получается по методу последовательных подстановок.

Кратко содержание статьи представлено в [5].

1 Простейшая однородная обобщенная смешанная задача

Рассмотрим обобщенную смешанную задачу (1) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (3) в случае φ(x)L[0,1] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaamiEaiaaiMcacq GHiiIZcaWGmbGaaG4waiaaicdacaaISaGaaGymaiaai2faaaa@3C2C@ . Формальное решение ее по методу Фурье имеет вид

                                  u(x,t)=2 n=1 (φ(ξ),sinnπξ)sinnπxcosnπt, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI9aGaaGOmamaaqahabeWcbaGaamOBaiaai2dacaaI XaaabaGaeyOhIukaniabggHiLdGccaaIOaGaeqOXdOMaaGikaiabe6 7a4jaaiMcacaaISaGaci4CaiaacMgacaGGUbGaamOBaiabec8aWjab e67a4jaaiMcaciGGZbGaaiyAaiaac6gacaWGUbGaeqiWdaNaamiEai GacogacaGGVbGaai4Caiaad6gacqaHapaCcaWG0bGaaGilaaaa@5A84@                                        (5)

где

                                                   (f,g)= 0 1 f(x)g(x)dx. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamOzaiaaiYcacaWGNbGaaG ykaiaai2dadaWdXbqabSqaaiaaicdaaeaacaaIXaaaniabgUIiYdGc caWGMbGaaGikaiaadIhacaaIPaGaam4zaiaaiIcacaWG4bGaaGykai aayIW7caWGKbGaamiEaiaai6caaaa@452D@

Имеем

                    u(x,t)= Σ + + Σ ,где Σ ± = n=1 (φ(ξ),sinnπξ)sinnπ(x±t). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI9aGaeu4Odm1aaSbaaSqaaiabgUcaRaqabaGccqGH RaWkcqqHJoWudaWgaaWcbaGaeyOeI0cabeaakiaaiYcacaaMf8Uaae 4meiaabsdbcaqG1qGaaGzbVlabfo6atnaaBaaaleaacqGHXcqSaeqa aOGaaGypamaaqahabeWcbaGaamOBaiaai2dacaaIXaaabaGaeyOhIu kaniabggHiLdGccaaIOaGaeqOXdOMaaGikaiabe67a4jaaiMcacaaI SaGaci4CaiaacMgacaGGUbGaamOBaiabec8aWjabe67a4jaaiMcaci GGZbGaaiyAaiaac6gacaWGUbGaeqiWdaNaaGikaiaadIhacqGHXcqS caWG0bGaaGykaiaai6caaaa@6831@                           (6)

Отсюда следует, что для вычисления суммы ряда (6) требуется найти сумму тригонометрического ряда Фурье функции φ(x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaamiEaiaaiMcaaa a@35E0@ , т.е. ряда

                                               2 n=1 (φ(ξ),sinnπξ)sinnπx. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIYaWaaabCaeqaleaacaWGUbGaaG ypaiaaigdaaeaacqGHEisPa0GaeyyeIuoakiaaiIcacqaHgpGAcaaI OaGaeqOVdGNaaGykaiaaiYcaciGGZbGaaiyAaiaac6gacaWGUbGaeq iWdaNaeqOVdGNaaGykaiGacohacaGGPbGaaiOBaiaad6gacqaHapaC caWG4bGaaGOlaaaa@4E38@                                                     (7)

Пусть сумма ряда (7) при x[0,1] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaeyicI4SaaG4waiaaicdaca aISaGaaGymaiaai2faaaa@3839@  есть какая-либо функция g(x)L[0,1] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbGaaGikaiaadIhacaaIPaGaey icI4SaamitaiaaiUfacaaIWaGaaGilaiaaigdacaaIDbaaaa@3B5B@  (в запасе имеются только функции из L[0,1] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbGaaG4waiaaicdacaaISaGaaG ymaiaai2faaaa@3689@  ). Тогда в соответствии с правилом (4) имеем

                                  0 x g(η)dη=2 n=1 (φ(ξ),sinnπξ) 0 x sinnπηdη. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiaaicdaaeaacaWG4b aaniabgUIiYdGccaWGNbGaaGikaiabeE7aOjaaiMcacaaMi8Uaamiz aiabeE7aOjaai2dacaaIYaWaaabCaeqaleaacaWGUbGaaGypaiaaig daaeaacqGHEisPa0GaeyyeIuoakiaaiIcacqaHgpGAcaaIOaGaeqOV dGNaaGykaiaaiYcaciGGZbGaaiyAaiaac6gacaWGUbGaeqiWdaNaeq OVdGNaaGykamaapehabeWcbaGaaGimaaqaaiaadIhaa0Gaey4kIipa kiGacohacaGGPbGaaiOBaiaad6gacqaHapaCcqaH3oaAcaaMi8Uaam izaiabeE7aOjaai6caaaa@644D@                                         (8)

По теореме 3 из [2, с. 320] ряд в (8) сходится при любом x[0,1] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaeyicI4SaaG4waiaaicdaca aISaGaaGymaiaai2faaaa@3839@ , а его сумма равна

                                  2 n=1 (φ(ξ),sinnπξ) 0 x sinnπηdη= 0 x φ(η)dη. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIYaWaaabCaeqaleaacaWGUbGaaG ypaiaaigdaaeaacqGHEisPa0GaeyyeIuoakiaaiIcacqaHgpGAcaaI OaGaeqOVdGNaaGykaiaaiYcaciGGZbGaaiyAaiaac6gacaWGUbGaeq iWdaNaeqOVdGNaaGykamaapehabeWcbaGaaGimaaqaaiaadIhaa0Ga ey4kIipakiGacohacaGGPbGaaiOBaiaad6gacqaHapaCcqaH3oaAca aMi8UaamizaiabeE7aOjaai2dadaWdXbqabSqaaiaaicdaaeaacaWG 4baaniabgUIiYdGccqaHgpGAcaaIOaGaeq4TdGMaaGykaiaayIW7ca WGKbGaeq4TdGMaaGOlaaaa@651E@

Таким образом, получили, что

                                                    0 x g(η)dη= 0 x φ(η)dη. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiaaicdaaeaacaWG4b aaniabgUIiYdGccaWGNbGaaGikaiabeE7aOjaaiMcacaaMi8Uaamiz aiabeE7aOjaai2dadaWdXbqabSqaaiaaicdaaeaacaWG4baaniabgU IiYdGccqaHgpGAcaaIOaGaeq4TdGMaaGykaiaayIW7caWGKbGaeq4T dGMaaGOlaaaa@4CAD@

Отсюда g(x)=φ(x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbGaaGikaiaadIhacaaIPaGaaG ypaiabeA8aQjaaiIcacaWG4bGaaGykaaaa@39F5@  почти всюду, т.е. найдена сумма g(x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbGaaGikaiaadIhacaaIPaaaaa@350F@  расходящегося ряда (7). Далее, sinnπx MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaciGGZbGaaiyAaiaac6gacaWGUbGaeq iWdaNaamiEaaaa@3846@  нечетна и 2-периодична. Тогда получаем, что сумма ряда (7) при x(,) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaeyicI4SaaGikaiabgkHiTi abg6HiLkaaiYcacqGHEisPcaaIPaaaaa@3A2C@  равна φ ˜ (x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaHgpGAgaacaiaaiIcacaWG4bGaaG ykaaaa@35EF@ , где φ ˜ (x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaHgpGAgaacaiaaiIcacaWG4bGaaG ykaaaa@35EF@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ нечетное, 2-периодическое продолжение φ(x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaamiEaiaaiMcaaa a@35E0@  с отрезка [0,1] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaaGimaiaaiYcacaaIXaGaaG yxaaaa@35B8@  на всю ось. В силу (6) получаем, что сумма u(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36CC@  ряда (5) есть

                                            u(x,t)= 1 2 [ φ ˜ (x+t)+ φ ˜ (xt)]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI9aWaaSaaaeaacaaIXaaabaGaaGOmaaaacaaIBbGa fqOXdOMbaGaacaaIOaGaamiEaiabgUcaRiaadshacaaIPaGaey4kaS IafqOXdOMbaGaacaaIOaGaamiEaiabgkHiTiaadshacaaIPaGaaGyx aiaai6caaaa@489D@                                                   (9)

Таким образом, получено следующее утверждение.

Теорема 1 Решением обобщенной смешанной задачи (1) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A96@ (3) является функция u(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36CC@  класса Q MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbaaaa@3297@ , определенная по формуле (9).

Функция u(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36CC@  класса Q MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbaaaa@3297@  означает, что u(x,t)L[ Q T ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcacqGHiiIZcaWGmbGaaG4waiaadgfadaWgaaWcbaGaamiv aaqabaGccaaIDbaaaa@3CD2@  при любом T>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubGaaGOpaiaaicdaaaa@341C@ , где Q T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbWaaSbaaSqaaiaadsfaaeqaaa aa@339C@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ множество [0,1]×[0,T] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaaGimaiaaiYcacaaIXaGaaG yxaiabgEna0kaaiUfacaaIWaGaaGilaiaadsfacaaIDbaaaa@3BE4@ .

2 Приложение. Простейшая неоднородная смешанная задача

Рассмотрим следующую простейшую неоднородную смешанную задачу:

                           2 u(x,t) t 2 = 2 u(x,t) x 2 +f(x,t),(x,t)[0,1]×[0,), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2oaaCaaaleqaba GaaGOmaaaakiaadwhacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaaqa aiabgkGi2kaadshadaahaaWcbeqaaiaaikdaaaaaaOGaaGypamaala aabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaamyDaiaaiIcacaWG 4bGaaGilaiaadshacaaIPaaabaGaeyOaIyRaamiEamaaCaaaleqaba GaaGOmaaaaaaGccqGHRaWkcaWGMbGaaGikaiaadIhacaaISaGaamiD aiaaiMcacaaISaGaaGzbVlaaiIcacaWG4bGaaGilaiaadshacaaIPa GaeyicI4SaaG4waiaaicdacaaISaGaaGymaiaai2facqGHxdaTcaaI BbGaaGimaiaaiYcacqGHEisPcaaIPaGaaGilaaaa@610C@                                (10)

                                                     u(0,t)=u(1,t)=0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaaicdacaaISaGaam iDaiaaiMcacaaI9aGaamyDaiaaiIcacaaIXaGaaGilaiaadshacaaI PaGaaGypaiaaicdacaaISaaaaa@3E50@                                                          (11)

                                                   u(x,0)= u t (x,0)=0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaaG imaiaaiMcacaaI9aGaamyDamaaBaaaleaaceWG0bGbauaaaeqaaOGa aGikaiaadIhacaaISaGaaGimaiaaiMcacaaI9aGaaGimaiaaiYcaaa a@3F92@                                                        (12)

где f(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36BD@  есть функция класса Q MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbaaaa@3297@ . Формальное решение ее по методу Фурье есть

                      u(x,t)=2 n=1 0 t (f(ξ,τ),sinnπξ) 1 nπ sinnπxsinnπ(tτ)dτ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI9aGaaGOmamaaqahabeWcbaGaamOBaiaai2dacaaI XaaabaGaeyOhIukaniabggHiLdGcdaWdXbqabSqaaiaaicdaaeaaca WG0baaniabgUIiYdGccaaIOaGaamOzaiaaiIcacqaH+oaEcaaISaGa eqiXdqNaaGykaiaaiYcaciGGZbGaaiyAaiaac6gacaWGUbGaeqiWda NaeqOVdGNaaGykamaalaaabaGaaGymaaqaaiaad6gacqaHapaCaaGa ci4CaiaacMgacaGGUbGaamOBaiabec8aWjaadIhaciGGZbGaaiyAai aac6gacaWGUbGaeqiWdaNaaGikaiaadshacqGHsislcqaHepaDcaaI PaGaaGjcVlaadsgacqaHepaDcaaIUaaaaa@6C2C@                           (13)

Так как

                                   2 nπ sinnπxsinnπ(tτ)= xt+τ x+tτ sinnπηdη, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaaikdaaeaacaWGUbGaeq iWdahaaiGacohacaGGPbGaaiOBaiaad6gacqaHapaCcaWG4bGaci4C aiaacMgacaGGUbGaamOBaiabec8aWjaaiIcacaWG0bGaeyOeI0Iaeq iXdqNaaGykaiaai2dadaWdXbqabSqaaiaadIhacqGHsislcaWG0bGa ey4kaSIaeqiXdqhabaGaamiEaiabgUcaRiaadshacqGHsislcqaHep aDa0Gaey4kIipakiGacohacaGGPbGaaiOBaiaad6gacqaHapaCcqaH 3oaAcaaMi8UaamizaiabeE7aOjaaiYcaaaa@60B9@

то (13) переходит в

                              u(x,t)= n=1 0 t (f(ξ,τ),sinnπξ)dτ xt+τ x+tτ sinnπηdη. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI9aWaaabCaeqaleaacaWGUbGaaGypaiaaigdaaeaa cqGHEisPa0GaeyyeIuoakmaapehabeWcbaGaaGimaaqaaiaadshaa0 Gaey4kIipakiaaiIcacaWGMbGaaGikaiabe67a4jaaiYcacqaHepaD caaIPaGaaGilaiGacohacaGGPbGaaiOBaiaad6gacqaHapaCcqaH+o aEcaaIPaGaaGjcVlaadsgacqaHepaDdaWdXbqabSqaaiaadIhacqGH sislcaWG0bGaey4kaSIaeqiXdqhabaGaamiEaiabgUcaRiaadshacq GHsislcqaHepaDa0Gaey4kIipakiGacohacaGGPbGaaiOBaiaad6ga cqaHapaCcqaH3oaAcaaMi8UaamizaiabeE7aOjaai6caaaa@6FBA@                                   (14)

Из (14) в силу правила (4) получим

             u(x,t)= 0 t dτ xt+τ x+tτ n=1 (f(ξ,τ),sinnπξ)sinnπηdη= 1 2 0 t dτ xt+τ x+tτ f ˜ (η,τ)dη, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI9aWaa8qCaeqaleaacaaIWaaabaGaamiDaaqdcqGH RiI8aOGaaGjcVlaadsgacqaHepaDdaWdXbqabSqaaiaadIhacqGHsi slcaWG0bGaey4kaSIaeqiXdqhabaGaamiEaiabgUcaRiaadshacqGH sislcqaHepaDa0Gaey4kIipakmaaqahabeWcbaGaamOBaiaai2daca aIXaaabaGaeyOhIukaniabggHiLdGccaaIOaGaamOzaiaaiIcacqaH +oaEcaaISaGaeqiXdqNaaGykaiaaiYcaciGGZbGaaiyAaiaac6gaca WGUbGaeqiWdaNaeqOVdGNaaGykaiGacohacaGGPbGaaiOBaiaad6ga cqaHapaCcqaH3oaAcaaMi8UaamizaiabeE7aOjaai2dadaWcaaqaai aaigdaaeaacaaIYaaaamaapehabeWcbaGaaGimaaqaaiaadshaa0Ga ey4kIipakiaayIW7caWGKbGaeqiXdq3aa8qCaeqaleaacaWG4bGaey OeI0IaamiDaiabgUcaRiabes8a0bqaaiaadIhacqGHRaWkcaWG0bGa eyOeI0IaeqiXdqhaniabgUIiYdGcceWGMbGbaGaacaaIOaGaeq4TdG MaaGilaiabes8a0jaaiMcacaaMi8UaamizaiabeE7aOjaaiYcaaaa@92A0@                 (15)

поскольку ряд в (15), как это следует из п. 1, имеет сумму 1 2 f ˜ (η,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaaigdaaeaacaaIYaaaai qadAgagaacaiaaiIcacqaH3oaAcaaISaGaeqiXdqNaaGykaaaa@39CE@ , где f ˜ (η,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGMbGbaGaacaaIOaGaeq4TdGMaaG ilaiabes8a0jaaiMcaaaa@3847@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ нечетное, 2-периодическое продолжение по η MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH3oaAaaa@336D@  на всю ось функции f(η,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiabeE7aOjaaiYcacq aHepaDcaaIPaaaaa@3838@  с отрезка [0,1] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaaGimaiaaiYcacaaIXaGaaG yxaaaa@35B8@ . Таким образом, справедливо следующее утверждение.

Теорема 2 Решение u(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36CC@  обобщенной смешанной задачи (10) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A96@ (12) есть функция класса Q MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbaaaa@3297@ , определяемая по формуле

                                             u(x,t)= 1 2 0 t dτ xt+τ x+tτ f ˜ (η,τ)dη. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI9aWaaSaaaeaacaaIXaaabaGaaGOmaaaadaWdXbqa bSqaaiaaicdaaeaacaWG0baaniabgUIiYdGccaaMi8Uaamizaiabes 8a0naapehabeWcbaGaamiEaiabgkHiTiaadshacqGHRaWkcqaHepaD aeaacaWG4bGaey4kaSIaamiDaiabgkHiTiabes8a0bqdcqGHRiI8aO GabmOzayaaiaGaaGikaiabeE7aOjaaiYcacqaHepaDcaaIPaGaaGjc VlaadsgacqaH3oaAcaaIUaaaaa@5A6C@                                                  (16)

Отметим, что без привлечения операции интегрирования расходящегося ряда формула (16) приводится в [1].

Тот факт, что u(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36CC@  есть функция класса Q MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbaaaa@3297@ , дается следующей леммой.

Лемма 1 Имеет место оценка

                                      u(x,t) L[ Q T ] T(T+2)f(x,t) L[ Q T ] . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWG1bGaaGikaiaadIhacaaISaGaamiDaiaaiMcacqWFLicudaWg aaWcbaGaamitaiaaiUfacaWGrbWaaSbaaeaacaWGubaabeaacaaIDb aabeaakiabgsMiJkaadsfacaaIOaGaamivaiabgUcaRiaaikdacaaI PaGae8xjIaLaamOzaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGae8 xjIa1aaSbaaSqaaiaadYeacaaIBbGaamyuamaaBaaabaGaamivaaqa baGaaGyxaaqabaGccaaIUaaaaa@553B@

Proof. Из (16) имеем

                                            |u(x,t)| 1 2 0 T dτ T T+1 | f ˜ (η,τ)|dη. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI8bGaamyDaiaaiIcacaWG4bGaaG ilaiaadshacaaIPaGaaGiFaiabgsMiJoaalaaabaGaaGymaaqaaiaa ikdaaaWaa8qCaeqaleaacaaIWaaabaGaamivaaqdcqGHRiI8aOGaam izaiabes8a0naapehabeWcbaGaeyOeI0IaamivaaqaaiaadsfacqGH RaWkcaaIXaaaniabgUIiYdGccaaI8bGabmOzayaaiaGaaGikaiabeE 7aOjaaiYcacqaHepaDcaaIPaGaaGiFaiaayIW7caWGKbGaeq4TdGMa aGOlaaaa@56E9@

Пусть m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGTbaaaa@32B3@  - наименьшее натуральное число, для которого Tm MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubGaeyizImQaamyBaaaa@3541@ . Тогда в силу нечетности f ˜ (η,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGMbGbaGaacaaIOaGaeq4TdGMaaG ilaiabes8a0jaaiMcaaaa@3847@  по η MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH3oaAaaa@336D@  имеем

             T T+1 | f ˜ (η,τ)|dη m m+1 | f ˜ (η,τ)|dη= m 0 | f ˜ (η,τ)|dη+ 0 m+1 | f ˜ (η,τ)|dη= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiabgkHiTiaadsfaae aacaWGubGaey4kaSIaaGymaaqdcqGHRiI8aOGaaGiFaiqadAgagaac aiaaiIcacqaH3oaAcaaISaGaeqiXdqNaaGykaiaaiYhacaaMi8Uaam izaiabeE7aOjabgsMiJoaapehabeWcbaGaeyOeI0IaamyBaaqaaiaa d2gacqGHRaWkcaaIXaaaniabgUIiYdGccaaI8bGabmOzayaaiaGaaG ikaiabeE7aOjaaiYcacqaHepaDcaaIPaGaaGiFaiaayIW7caWGKbGa eq4TdGMaaGypamaapehabeWcbaGaeyOeI0IaamyBaaqaaiaaicdaa0 Gaey4kIipakiaaiYhaceWGMbGbaGaacaaIOaGaeq4TdGMaaGilaiab es8a0jaaiMcacaaI8bGaaGjcVlaadsgacqaH3oaAcqGHRaWkdaWdXb qabSqaaiaaicdaaeaacaWGTbGaey4kaSIaaGymaaqdcqGHRiI8aOGa aGiFaiqadAgagaacaiaaiIcacqaH3oaAcaaISaGaeqiXdqNaaGykai aaiYhacaaMi8UaamizaiabeE7aOjaai2daaaa@8122@

             = m 0 | f ˜ (η,τ)|dη+ 0 m+1 | f ˜ (η,τ)|dη= 0 m | f ˜ (η,τ)|dη+ 0 m+1 | f ˜ (η,τ)|dη MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaa8qCaeqaleaacqGHsislca WGTbaabaGaaGimaaqdcqGHRiI8aOGaaGiFaiqadAgagaacaiaaiIca cqGHsislcqaH3oaAcaaISaGaeqiXdqNaaGykaiaaiYhacaaMi8Uaam izaiabeE7aOjabgUcaRmaapehabeWcbaGaaGimaaqaaiaad2gacqGH RaWkcaaIXaaaniabgUIiYdGccaaI8bGabmOzayaaiaGaaGikaiabeE 7aOjaaiYcacqaHepaDcaaIPaGaaGiFaiaayIW7caWGKbGaeq4TdGMa aGypamaapehabeWcbaGaaGimaaqaaiaad2gaa0Gaey4kIipakiaaiY haceWGMbGbaGaacaaIOaGaeq4TdGMaaGilaiabes8a0jaaiMcacaaI 8bGaaGjcVlaadsgacqaH3oaAcqGHRaWkdaWdXbqabSqaaiaaicdaae aacaWGTbGaey4kaSIaaGymaaqdcqGHRiI8aOGaaGiFaiqadAgagaac aiaaiIcacqaH3oaAcaaISaGaeqiXdqNaaGykaiaaiYhacaaMi8Uaam izaiabeE7aOjabgsMiJcaa@7F3C@

                                     2 0 m+1 | f ˜ (η,τ)|dη=2 k=0 m k k+1 | f ˜ (η,τ)|dη. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHKjYOcaaIYaWaa8qCaeqaleaaca aIWaaabaGaamyBaiabgUcaRiaaigdaa0Gaey4kIipakiaaiYhaceWG MbGbaGaacaaIOaGaeq4TdGMaaGilaiabes8a0jaaiMcacaaI8bGaaG jcVlaadsgacqaH3oaAcaaI9aGaaGOmamaaqahabeWcbaGaam4Aaiaa i2dacaaIWaaabaGaamyBaaqdcqGHris5aOWaa8qCaeqaleaacaWGRb aabaGaam4AaiabgUcaRiaaigdaa0Gaey4kIipakiaaiYhaceWGMbGb aGaacaaIOaGaeq4TdGMaaGilaiabes8a0jaaiMcacaaI8bGaaGjcVl aadsgacqaH3oaAcaaIUaaaaa@613B@

Пусть k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbaaaa@32B1@  четно, т.е. k=2v MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaaGypaiaaikdacaWG2baaaa@352F@ . Рассмотрим следующий интеграл:

             k k+1 | f ˜ (η,τ)|dη= 2v 2v+1 | f ˜ (η,τ)|dη= 0 1 | f ˜ (2v+ξ,τ)|dξ= 0 1 |f(ξ,τ)|dξ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiaadUgaaeaacaWGRb Gaey4kaSIaaGymaaqdcqGHRiI8aOGaaGiFaiqadAgagaacaiaaiIca cqaH3oaAcaaISaGaeqiXdqNaaGykaiaaiYhacaaMi8UaamizaiabeE 7aOjaai2dadaWdXbqabSqaaiaaikdacaWG2baabaGaaGOmaiaadAha cqGHRaWkcaaIXaaaniabgUIiYdGccaaI8bGabmOzayaaiaGaaGikai abeE7aOjaaiYcacqaHepaDcaaIPaGaaGiFaiaayIW7caWGKbGaeq4T dGMaaGypamaapehabeWcbaGaaGimaaqaaiaaigdaa0Gaey4kIipaki aaiYhaceWGMbGbaGaacaaIOaGaaGOmaiaadAhacqGHRaWkcqaH+oaE caaISaGaeqiXdqNaaGykaiaaiYhacaaMi8Uaamizaiabe67a4jaai2 dadaWdXbqabSqaaiaaicdaaeaacaaIXaaaniabgUIiYdGccaaI8bGa amOzaiaaiIcacqaH+oaEcaaISaGaeqiXdqNaaGykaiaaiYhacaaMi8 Uaamizaiabe67a4jaai6caaaa@7FD6@

Если k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbaaaa@32B1@  нечетно, т.е. k=2v+1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaaGypaiaaikdacaWG2bGaey 4kaSIaaGymaaaa@36CC@ , то

             k k+1 | f ˜ (η,τ)|dη= 2v+1 2v+2 | f ˜ (η,τ)|dη= 0 1 | f ˜ (2v+1+ξ,τ)|dξ= 0 1 | f ˜ (1+ξ,τ)|dξ= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiaadUgaaeaacaWGRb Gaey4kaSIaaGymaaqdcqGHRiI8aOGaaGiFaiqadAgagaacaiaaiIca cqaH3oaAcaaISaGaeqiXdqNaaGykaiaaiYhacaaMi8UaamizaiabeE 7aOjaai2dadaWdXbqabSqaaiaaikdacaWG2bGaey4kaSIaaGymaaqa aiaaikdacaWG2bGaey4kaSIaaGOmaaqdcqGHRiI8aOGaaGiFaiqadA gagaacaiaaiIcacqaH3oaAcaaISaGaeqiXdqNaaGykaiaaiYhacaaM i8UaamizaiabeE7aOjaai2dadaWdXbqabSqaaiaaicdaaeaacaaIXa aaniabgUIiYdGccaaI8bGabmOzayaaiaGaaGikaiaaikdacaWG2bGa ey4kaSIaaGymaiabgUcaRiabe67a4jaaiYcacqaHepaDcaaIPaGaaG iFaiaayIW7caWGKbGaeqOVdGNaaGypamaapehabeWcbaGaaGimaaqa aiaaigdaa0Gaey4kIipakiaaiYhaceWGMbGbaGaacaaIOaGaaGymai abgUcaRiabe67a4jaaiYcacqaHepaDcaaIPaGaaGiFaiaayIW7caWG KbGaeqOVdGNaaGypaaaa@84CC@

                        = 0 1 | f ˜ (1ξ,τ)|dξ= 0 1 |f(1ξ,τ)|dξ= 0 1 |f(ξ,τ)|dξ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaa8qCaeqaleaacaaIWaaaba GaaGymaaqdcqGHRiI8aOGaaGiFaiqadAgagaacaiaaiIcacqGHsisl caaIXaGaeyOeI0IaeqOVdGNaaGilaiabes8a0jaaiMcacaaI8bGaaG jcVlaadsgacqaH+oaEcaaI9aWaa8qCaeqaleaacaaIWaaabaGaaGym aaqdcqGHRiI8aOGaaGiFaiaadAgacaaIOaGaaGymaiabgkHiTiabe6 7a4jaaiYcacqaHepaDcaaIPaGaaGiFaiaayIW7caWGKbGaeqOVdGNa aGypamaapehabeWcbaGaaGimaaqaaiaaigdaa0Gaey4kIipakiaaiY hacaWGMbGaaGikaiabe67a4jaaiYcacqaHepaDcaaIPaGaaGiFaiaa yIW7caWGKbGaeqOVdGNaaGOlaaaa@6B5A@

Таким образом, при всех k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbaaaa@32B1@  (четных и нечетных) получаем один и тот же результат:

                                            k k+1 | f ˜ (η,τ)|dη= 0 1 |f(ξ,τ)|dξ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiaadUgaaeaacaWGRb Gaey4kaSIaaGymaaqdcqGHRiI8aOGaaGiFaiqadAgagaacaiaaiIca cqaH3oaAcaaISaGaeqiXdqNaaGykaiaaiYhacaaMi8UaamizaiabeE 7aOjaai2dadaWdXbqabSqaaiaaicdaaeaacaaIXaaaniabgUIiYdGc caaI8bGaamOzaiaaiIcacqaH+oaEcaaISaGaeqiXdqNaaGykaiaaiY hacaaMi8Uaamizaiabe67a4jaai6caaaa@56A9@

Отсюда

                   |u(x,t)| 1 2 0 T dτ2(m+1) 0 1 |f(η,τ)|dη=(m+1)f(x,t) L[ Q T ] . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI8bGaamyDaiaaiIcacaWG4bGaaG ilaiaadshacaaIPaGaaGiFaiabgsMiJoaalaaabaGaaGymaaqaaiaa ikdaaaWaa8qCaeqaleaacaaIWaaabaGaamivaaqdcqGHRiI8aOGaam izaiabes8a0jaaikdacaaIOaGaamyBaiabgUcaRiaaigdacaaIPaWa a8qCaeqaleaacaaIWaaabaGaaGymaaqdcqGHRiI8aOGaaGiFaiaadA gacaaIOaGaeq4TdGMaaGilaiabes8a0jaaiMcacaaI8bGaamizaiab eE7aOjaai2dacaaIOaGaamyBaiabgUcaRiaaigdacaaIPaqeeuuDJX wAKbsr4rNCHbaceaGae8xjIaLaamOzaiaaiIcacaWG4bGaaGilaiaa dshacaaIPaGae8xjIa1aaSbaaSqaaiaadYeacaaIBbGaamyuamaaBa aabaGaamivaaqabaGaaGyxaaqabaGccaaIUaaaaa@6C5F@

Значит,

                Q T |u(x,t)|dxdtT(m+1)f(x,t) L[ Q T ] T(T+2)f(x,t) L[ Q T ] . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdrbqabSqaaiaadgfadaWgaaqaai aadsfaaeqaaaqab0Gaey4kIipakiaaiYhacaWG1bGaaGikaiaadIha caaISaGaamiDaiaaiMcacaaI8bGaamizaiaadIhacaaMi8Uaamizai aadshacqGHKjYOcaWGubGaaGikaiaad2gacqGHRaWkcaaIXaGaaGyk aebbfv3ySLgzGueE0jxyaGabaiab=vIiqjaadAgacaaIOaGaamiEai aaiYcacaWG0bGaaGykaiab=vIiqnaaBaaaleaacaWGmbGaaG4waiaa dgfadaWgaaqaaiaadsfaaeqaaiaai2faaeqaaOGaeyizImQaamivai aaiIcacaWGubGaey4kaSIaaGOmaiaaiMcacqWFLicucaWGMbGaaGik aiaadIhacaaISaGaamiDaiaaiMcacqWFLicudaWgaaWcbaGaamitai aaiUfacaWGrbWaaSbaaeaacaWGubaabeaacaaIDbaabeaakiaai6ca aaa@6C43@

3 Приложение. Смешанная задача с ненулевым потенциалом

Сначала рассмотрим следующую обобщенную задачу:

                           2 u(x,t) t 2 = 2 u(x,t) x 2 +f(x,t),(x,t)[0,1]×[0,), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2oaaCaaaleqaba GaaGOmaaaakiaadwhacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaaqa aiabgkGi2kaadshadaahaaWcbeqaaiaaikdaaaaaaOGaaGypamaala aabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaamyDaiaaiIcacaWG 4bGaaGilaiaadshacaaIPaaabaGaeyOaIyRaamiEamaaCaaaleqaba GaaGOmaaaaaaGccqGHRaWkcaWGMbGaaGikaiaadIhacaaISaGaamiD aiaaiMcacaaISaGaaGzbVlaaiIcacaWG4bGaaGilaiaadshacaaIPa GaeyicI4SaaG4waiaaicdacaaISaGaaGymaiaai2facqGHxdaTcaaI BbGaaGimaiaaiYcacqGHEisPcaaIPaGaaGilaaaa@610C@                                (17)

                                                     u(0,t)=u(1,t)=0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaaicdacaaISaGaam iDaiaaiMcacaaI9aGaamyDaiaaiIcacaaIXaGaaGilaiaadshacaaI PaGaaGypaiaaicdacaaISaaaaa@3E50@                                                          (18)

                                              u(x,0)=φ(x), u t (x,0)=0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaaG imaiaaiMcacaaI9aGaeqOXdOMaaGikaiaadIhacaaIPaGaaGilaiaa ywW7caWG1bWaaSbaaSqaaiqadshagaqbaaqabaGccaaIOaGaamiEai aaiYcacaaIWaGaaGykaiaai2dacaaIWaGaaGOlaaaa@45F7@                                                  (19)

Здесь f(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36BD@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ функция класса Q MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbaaaa@3297@  и φ(x)L[0,1] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaamiEaiaaiMcacq GHiiIZcaWGmbGaaG4waiaaicdacaaISaGaaGymaiaai2faaaa@3C2C@ . Формальное решение ее по методу Фурье есть

                                                u(x,t)= u 0 (x,t)+ u 1 (x,t), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI9aGaamyDamaaBaaaleaacaaIWaaabeaakiaaiIca caWG4bGaaGilaiaadshacaaIPaGaey4kaSIaamyDamaaBaaaleaaca aIXaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGilaaaa @4522@

где функция u 0 (x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaaicdaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcaaaa@37BC@  определена формулой (5), а u 1 (x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcaaaa@37BD@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ ряд (13). Поэтому, исходя из пп. 0.1, 0.2, получаем следующее утверждение.

Теорема 3  Обобщенная смешанная задача (17) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A96@ (19) имеет решение класса Q MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbaaaa@3297@ , определяемое по формуле

                           u(x,t)= 1 2 [ φ ˜ (x+t)+ φ ˜ (xt)]+ 1 2 0 t dτ xt+τ x+tτ f ˜ (η,τ)dη. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI9aWaaSaaaeaacaaIXaaabaGaaGOmaaaacaaIBbGa fqOXdOMbaGaacaaIOaGaamiEaiabgUcaRiaadshacaaIPaGaey4kaS IafqOXdOMbaGaacaaIOaGaamiEaiabgkHiTiaadshacaaIPaGaaGyx aiabgUcaRmaalaaabaGaaGymaaqaaiaaikdaaaWaa8qCaeqaleaaca aIWaaabaGaamiDaaqdcqGHRiI8aOGaamizaiabes8a0naapehabeWc baGaamiEaiabgkHiTiaadshacqGHRaWkcqaHepaDaeaacaWG4bGaey 4kaSIaamiDaiabgkHiTiabes8a0bqdcqGHRiI8aOGabmOzayaaiaGa aGikaiabeE7aOjaaiYcacqaHepaDcaaIPaGaaGjcVlaadsgacqaH3o aAcaaIUaaaaa@6A0F@                                (20)

Теперь приступаем к смешанной задаче с ненулевым потенциалом:

                        2 u(x,t) t 2 = 2 u(x,t) x 2 q(x)u(x,t),(x,t)[0,1]×[0,), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2oaaCaaaleqaba GaaGOmaaaakiaadwhacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaaqa aiabgkGi2kaadshadaahaaWcbeqaaiaaikdaaaaaaOGaaGypamaala aabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaamyDaiaaiIcacaWG 4bGaaGilaiaadshacaaIPaaabaGaeyOaIyRaamiEamaaCaaaleqaba GaaGOmaaaaaaGccqGHsislcaWGXbGaaGikaiaadIhacaaIPaGaamyD aiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGilaiaaywW7caaIOa GaamiEaiaaiYcacaWG0bGaaGykaiabgIGiolaaiUfacaaIWaGaaGil aiaaigdacaaIDbGaey41aqRaaG4waiaaicdacaaISaGaeyOhIuQaaG ykaiaaiYcaaaa@647E@                             (21)

                                                     u(0,t)=u(1,t)=0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaaicdacaaISaGaam iDaiaaiMcacaaI9aGaamyDaiaaiIcacaaIXaGaaGilaiaadshacaaI PaGaaGypaiaaicdacaaISaaaaa@3E50@                                                          (22)

                                             u(x,0)=φ(x), u t (x,0)=0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaaG imaiaaiMcacaaI9aGaeqOXdOMaaGikaiaadIhacaaIPaGaaGilaiaa ywW7caWG1bWaaSbaaSqaaiqadshagaqbaaqabaGccaaIOaGaamiEai aaiYcacaaIWaGaaGykaiaai2dacaaIWaGaaGilaaaa@45F5@                                                  (23)

где φ(x)L[0,1] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaamiEaiaaiMcacq GHiiIZcaWGmbGaaG4waiaaicdacaaISaGaaGymaiaai2faaaa@3C2C@ , q(x)L[0,1] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGikaiaadIhacaaIPaGaey icI4SaamitaiaaiUfacaaIWaGaaGilaiaaigdacaaIDbaaaa@3B65@ , q(x)u(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGikaiaadIhacaaIPaGaam yDaiaaiIcacaWG4bGaaGilaiaadshacaaIPaaaaa@3A24@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ функция класса Q MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbaaaa@3297@ .

В этой задаче будем рассматривать q(x)u(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGXbGaaGikaiaadIhaca aIPaGaamyDaiaaiIcacaWG4bGaaGilaiaadshacaaIPaaaaa@3B11@  как возмущение в задаче (17) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (19). Тогда по теореме 3 перейдем от задачи (21) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (23) к интегральному уравнению:

                        u(x,t)= 1 2 [ φ ˜ (x+t)+ φ ˜ (xt)] 1 2 0 t dτ xt+τ x+tτ q(η)u(η ˜ ,τ)dη, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI9aWaaSaaaeaacaaIXaaabaGaaGOmaaaacaaIBbGa fqOXdOMbaGaacaaIOaGaamiEaiabgUcaRiaadshacaaIPaGaey4kaS IafqOXdOMbaGaacaaIOaGaamiEaiabgkHiTiaadshacaaIPaGaaGyx aiabgkHiTmaalaaabaGaaGymaaqaaiaaikdaaaWaa8qCaeqaleaaca aIWaaabaGaamiDaaqdcqGHRiI8aOGaamizaiabes8a0naapehabeWc baGaamiEaiabgkHiTiaadshacqGHRaWkcqaHepaDaeaacaWG4bGaey 4kaSIaamiDaiabgkHiTiabes8a0bqdcqGHRiI8aOWaaacaaeaacaWG XbGaaGikaiabeE7aOjaaiMcacaWG1bGaaGikaiabeE7aObGaay5ada GaaGilaiabes8a0jaaiMcacaaMi8UaamizaiabeE7aOjaaiYcaaaa@6EE1@                            (24)

где q(η)u(η ˜ ,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadghacaaIOaGaeq4TdG MaaGykaiaadwhacaaIOaGaeq4TdGgacaGLdmaacaaISaGaeqiXdqNa aGykaaaa@3D10@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ нечетное, 2-периодическое продолжение q(η)u(η,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGikaiabeE7aOjaaiMcaca WG1bGaaGikaiabeE7aOjaaiYcacqaHepaDcaaIPaaaaa@3C4E@  на всю ось.

Приступаем к решению уравнения (24). Тот факт, что φ ˜ (x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaHgpGAgaacaiaaiIcacaWG4bGaaG ykaaaa@35EF@  есть нечетное, 2-периодическое продолжение φ(x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaamiEaiaaiMcaaa a@35E0@  с [0,1] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaaGimaiaaiYcacaaIXaGaaG yxaaaa@35B8@  на всю ось, трактуется следующим образом: сначала нечетно находится φ ˜ (x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaHgpGAgaacaiaaiIcacaWG4bGaaG ykaaaa@35EF@  при x[1,0] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaeyicI4SaaG4waiabgkHiTi aaigdacaaISaGaaGimaiaai2faaaa@3926@ , т.е. φ ˜ (x)=φ(x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaHgpGAgaacaiaaiIcacaWG4bGaaG ykaiaai2dacqGHsislcqaHgpGAcaaIOaGaeyOeI0IaamiEaiaaiMca aaa@3CAF@  при x0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaeyizImQaaGimaaaa@352D@ ; затем полученная φ ˜ (x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaHgpGAgaacaiaaiIcacaWG4bGaaG ykaaaa@35EF@  на [1,1] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaeyOeI0IaaGymaiaaiYcaca aIXaGaaGyxaaaa@36A6@  продолжается 2-периодически на всю ось. Отсюда получаются следующие утверждения.

Лемма 2  Функция φ ˜ (x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaHgpGAgaacaiaaiIcacaWG4bGaaG ykaaaa@35EF@  определяется однозначно по φ(x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaamiEaiaaiMcaaa a@35E0@ .

Лемма 3  Операция φ ˜ (x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaHgpGAgaacaiaaiIcacaWG4bGaaG ykaaaa@35EF@  линейна, т.е.

                                        α φ 1 (x)+β φ 2 (x) ˜ =α φ ˜ 1 (x)+β φ ˜ 2 (x). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiabeg7aHjabeA8aQnaaBa aaleaacaaIXaaabeaakiaaiIcacaWG4bGaaGykaiabgUcaRiabek7a IjabeA8aQnaaBaaaleaacaaIYaaabeaakiaaiIcacaWG4bGaaGykaa Gaay5adaGaaGypaiabeg7aHjqbeA8aQzaaiaWaaSbaaSqaaiaaigda aeqaaOGaaGikaiaadIhacaaIPaGaey4kaSIaeqOSdiMafqOXdOMbaG aadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiEaiaaiMcacaaIUaaa aa@50A6@

Proof. Обе операции в формулировке леммы нечетны и 2-периодичны. Но на [0,1] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaaGimaiaaiYcacaaIXaGaaG yxaaaa@35B8@  они обе равны α φ 1 (x)+β φ 2 (x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHXoqycqaHgpGAdaWgaaWcbaGaaG ymaaqabaGccaaIOaGaamiEaiaaiMcacqGHRaWkcqaHYoGycqaHgpGA daWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiEaiaaiMcaaaa@4004@ . Поэтому из леммы 2 следует лемма 3.

Введем оператор

                                           Bf= 1 2 0 t dτ xt+τ x+tτ q(η)f(η ˜ ,τ)dη, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGcbGaamOzaiaai2dacqGHsislda WcaaqaaiaaigdaaeaacaaIYaaaamaapehabeWcbaGaaGimaaqaaiaa dshaa0Gaey4kIipakiaadsgacqaHepaDdaWdXbqabSqaaiaadIhacq GHsislcaWG0bGaey4kaSIaeqiXdqhabaGaamiEaiabgUcaRiaadsha cqGHsislcqaHepaDa0Gaey4kIipakmaaGaaabaGaamyCaiaaiIcacq aH3oaAcaaIPaGaamOzaiaaiIcacqaH3oaAaiaawoWaaiaaiYcacqaH epaDcaaIPaGaaGjcVlaadsgacqaH3oaAcaaISaaaaa@5B27@                                               (25)

где f(x,t)C[ Q T ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacqGHiiIZcaWGdbGaaG4waiaadgfadaWgaaWcbaGaamiv aaqabaGccaaIDbaaaa@3CBA@ .

Лемма 4 Оператор B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGcbaaaa@3288@  является линейным и ограниченным в C[ Q T ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaG4waiaadgfadaWgaaWcba GaamivaaqabaGccaaIDbaaaa@363A@ , причем

                                   Bf C[ Q T ] T(T+2)q 1 f(x,t) C[ Q T ] , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWGcbGaamOzaiab=vIiqnaaBaaaleaacaWGdbGaaG4waiaadgfa daWgaaqaaiaadsfaaeqaaiaai2faaeqaaOGaeyizImQaamivaiaaiI cacaWGubGaey4kaSIaaGOmaiaaiMcacqWFLicucaWGXbGae8xjIa1a aSbaaSqaaiaaykW7caaIXaaabeaakiabgwSixlab=vIiqjaadAgaca aIOaGaamiEaiaaiYcacaWG0bGaaGykaiab=vIiqnaaBaaaleaacaWG dbGaaG4waiaadgfadaWgaaqaaiaadsfaaeqaaiaai2faaeqaaOGaaG ilaaaa@59C2@

где 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucqGHflY1cqWFLicudaWgaaWcbaGaaGymaaqabaaaaa@3BC5@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ норма в L[0,1] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbGaaG4waiaaicdacaaISaGaaG ymaiaai2faaaa@3689@ .

Proof. Линейность B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGcbaaaa@3288@  следует из леммы 3. Докажем ограниченность. Как и в лемме 1, имеем

             |Bf| 1 2 0 T dτ T T+1 | q(η)f(η ˜ ,τ)|dη(m+1)q(x)f(x,t) L[ Q T ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI8bGaamOqaiaadAgacaaI8bGaey izIm6aaSaaaeaacaaIXaaabaGaaGOmaaaadaWdXbqabSqaaiaaicda aeaacaWGubaaniabgUIiYdGccaWGKbGaeqiXdq3aa8qCaeqaleaacq GHsislcaWGubaabaGaamivaiabgUcaRiaaigdaa0Gaey4kIipakiaa iYhadaaiaaqaaiaadghacaaIOaGaeq4TdGMaaGykaiaadAgacaaIOa Gaeq4TdGgacaGLdmaacaaISaGaeqiXdqNaaGykaiaaiYhacaaMi8Ua amizaiabeE7aOjabgsMiJkaaiIcacaWGTbGaey4kaSIaaGymaiaaiM carqqr1ngBPrgifHhDYfgaiqaacqWFLicucaWGXbGaaGikaiaadIha caaIPaGaamOzaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGae8xjIa 1aaSbaaSqaaiaadYeacaaIBbGaamyuamaaBaaabaGaamivaaqabaGa aGyxaaqabaGccqGHKjYOaaa@72BA@

                     (m+1)Tq 1 f(x,t) C[ Q T ] T(T+2)q 1 f(x,t) C[ Q T ] . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHKjYOcaaIOaGaamyBaiabgUcaRi aaigdacaaIPaGaamivaebbfv3ySLgzGueE0jxyaGabaiab=vIiqjaa dghacqWFLicudaWgaaWcbaGaaGPaVlaaigdaaeqaaOGae8xjIaLaam OzaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGae8xjIa1aaSbaaSqa aiaadoeacaaIBbGaamyuamaaBaaabaGaamivaaqabaGaaGyxaaqaba GccqGHKjYOcaWGubGaaGikaiaadsfacqGHRaWkcaaIYaGaaGykaiab =vIiqjaadghacqWFLicudaWgaaWcbaGaaGPaVlaaigdaaeqaaOGae8 xjIaLaamOzaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGae8xjIa1a aSbaaSqaaiaadoeacaaIBbGaamyuamaaBaaabaGaamivaaqabaGaaG yxaaqabaGccaaIUaaaaa@66F0@

Образуем ряд

                                                    A 1 (x,t)= n=1 a n (x,t), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaI9aWaaabCaeqaleaa caWGUbGaaGypaiaaigdaaeaacqGHEisPa0GaeyyeIuoakiaadggada WgaaWcbaGaamOBaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGyk aiaaiYcaaaa@4559@

где a n (x,t)=B a n1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaI9aGaamOqaiaadgga daWgaaWcbaGaamOBaiabgkHiTiaaigdaaeqaaaaa@3D1C@  ( n1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaeyyzImRaaGymaaaa@3535@  ) и a 0 (x,t)= 1 2 [ φ ˜ (x+t)+ φ ˜ (xt)] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbWaaSbaaSqaaiaaicdaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaI9aWaaSaaaeaacaaI XaaabaGaaGOmaaaacaaIBbGafqOXdOMbaGaacaaIOaGaamiEaiabgU caRiaadshacaaIPaGaey4kaSIafqOXdOMbaGaacaaIOaGaamiEaiab gkHiTiaadshacaaIPaGaaGyxaaaa@48C1@ .

Лемма 5 (см. 6 [с. 220-221]). Если m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGTbaaaa@32B3@  - наименьшее натуральное число, для которого Tm MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubGaeyizImQaamyBaaaa@3541@ , то

                                 a n (x,t) C[ Q T ] M 1 M 2 2 n1 T n1 (n1)! ,n1, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaaGikaiaadIhacaaISaGa amiDaiaaiMcacqWFLicudaWgaaWcbaGaam4qaiaaiUfacaWGrbWaaS baaeaacaWGubaabeaacaaIDbaabeaakiabgsMiJkaad2eadaWgaaWc baGaaGymaaqabaGcdaqadaqaamaalaaabaGaamytamaaBaaaleaaca aIYaaabeaaaOqaaiaaikdaaaaacaGLOaGaayzkaaWaaWbaaSqabeaa caWGUbGaeyOeI0IaaGymaaaakmaalaaabaGaamivamaaCaaaleqaba GaamOBaiabgkHiTiaaigdaaaaakeaacaaIOaGaamOBaiabgkHiTiaa igdacaaIPaGaaGyiaaaacaaISaGaaGzbVlaad6gacqGHLjYScaaIXa GaaGilaaaa@5C85@                                      (26)

где M 1 = a 1 (x,t) C[ Q T ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaigdaaeqaaO GaaGypaebbfv3ySLgzGueE0jxyaGabaiab=vIiqjaadggadaWgaaWc baGaaGymaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiab=v IiqnaaBaaaleaacaWGdbGaaG4waiaadgfadaWgaaqaaiaadsfaaeqa aiaai2faaeqaaaaa@4596@ , M 2 =(2m+1)q 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaikdaaeqaaO GaaGypaiaaiIcacaaIYaGaamyBaiabgUcaRiaaigdacaaIPaqeeuuD JXwAKbsr4rNCHbaceaGae8xjIaLaamyCaiab=vIiqnaaBaaaleaaca aIXaaabeaaaaa@41AC@ . Кроме того, M 1 C T φ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaigdaaeqaaO GaeyizImQaam4qamaaBaaaleaacaWGubaabeaarqqr1ngBPrgifHhD Yfgaiqaakiab=vIiqjabeA8aQjab=vIiqnaaBaaaleaacaaIXaaabe aaaaa@4087@  и постоянная C T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaSbaaSqaaiaadsfaaeqaaa aa@338E@  не зависит от φ(x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaamiEaiaaiMcaaa a@35E0@ .

Приведем необходимое для дальнейшего доказательство этой леммы.

Proof. Положим f n (x,t)=q(x) a n (x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaI9aGaeyOeI0IaamyC aiaaiIcacaWG4bGaaGykaiaadggadaWgaaWcbaGaamOBaaqabaGcca aIOaGaamiEaiaaiYcacaWG0bGaaGykaaaa@4312@ . Очевидно, f n (x,t)L[ Q T ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcacqGHiiIZcaWGmbGaaG4w aiaadgfadaWgaaWcbaGaamivaaqabaGccaaIDbaaaa@3DEC@ , a n (x,t)C[ Q T ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcacqGHiiIZcaWGdbGaaG4w aiaadgfadaWgaaWcbaGaamivaaqabaGccaaIDbaaaa@3DDE@  при n1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaeyyzImRaaGymaaaa@3535@ . При n=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaaGypaiaaigdaaaa@3436@  оценка (26) справедлива. Предположим, что она выполняется и при некотором n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B4@ , и докажем ее справедливость при n+1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaey4kaSIaaGymaaaa@3451@ . Имеем

             | a n+1 (x,t)| 1 2 0 t dτ xt+τ x+tτ | f ˜ n (η,τ)|dη MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI8bGaamyyamaaBaaaleaacaWGUb Gaey4kaSIaaGymaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGyk aiaaiYhacqGHKjYOdaWcaaqaaiaaigdaaeaacaaIYaaaamaapehabe WcbaGaaGimaaqaaiaadshaa0Gaey4kIipakiaadsgacqaHepaDdaWd XbqabSqaaiaadIhacqGHsislcaWG0bGaey4kaSIaeqiXdqhabaGaam iEaiabgUcaRiaadshacqGHsislcqaHepaDa0Gaey4kIipakiaaiYha ceWGMbGbaGaadaWgaaWcbaGaamOBaaqabaGccaaIOaGaeq4TdGMaaG ilaiabes8a0jaaiMcacaaI8bGaaGjcVlaadsgacqaH3oaAcqGHKjYO aaa@62B9@

                      1 2 0 t dτ m m+1 | f ˜ n (η,τ)|dη 2m+1 2 0 t dτ 0 1 |q(η)|| a n (η,τ)|dη MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHKjYOdaWcaaqaaiaaigdaaeaaca aIYaaaamaapehabeWcbaGaaGimaaqaaiaadshaa0Gaey4kIipakiaa dsgacqaHepaDdaWdXbqabSqaaiabgkHiTiaad2gaaeaacaWGTbGaey 4kaSIaaGymaaqdcqGHRiI8aOGaaGiFaiqadAgagaacamaaBaaaleaa caWGUbaabeaakiaaiIcacqaH3oaAcaaISaGaeqiXdqNaaGykaiaaiY hacaaMi8UaamizaiabeE7aOjabgsMiJoaalaaabaGaaGOmaiaad2ga cqGHRaWkcaaIXaaabaGaaGOmaaaadaWdXbqabSqaaiaaicdaaeaaca WG0baaniabgUIiYdGccaWGKbGaeqiXdq3aa8qCaeqaleaacaaIWaaa baGaaGymaaqdcqGHRiI8aOGaaGiFaiaadghacaaIOaGaeq4TdGMaaG ykaiaaiYhacaaI8bGaamyyamaaBaaaleaacaWGUbaabeaakiaaiIca cqaH3oaAcaaISaGaeqiXdqNaaGykaiaaiYhacaaMi8UaamizaiabeE 7aOjabgsMiJcaa@76B4@

                    2m+1 2 0 t dτ 0 1 |q(η)| M 1 M 2 2 n1 τ n1 (n1)! dη= M 1 M 2 2 n t n n! . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHKjYOdaWcaaqaaiaaikdacaWGTb Gaey4kaSIaaGymaaqaaiaaikdaaaWaa8qCaeqaleaacaaIWaaabaGa amiDaaqdcqGHRiI8aOGaamizaiabes8a0naapehabeWcbaGaaGimaa qaaiaaigdaa0Gaey4kIipakiaaiYhacaWGXbGaaGikaiabeE7aOjaa iMcacaaI8bGaamytamaaBaaaleaacaaIXaaabeaakmaabmaabaWaaS aaaeaacaWGnbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaaGOmaaaaaiaa wIcacaGLPaaadaahaaWcbeqaaiaad6gacqGHsislcaaIXaaaaOWaaS aaaeaacqaHepaDdaahaaWcbeqaaiaad6gacqGHsislcaaIXaaaaaGc baGaaGikaiaad6gacqGHsislcaaIXaGaaGykaiaaigcaaaGaaGjcVl aadsgacqaH3oaAcaaI9aGaamytamaaBaaaleaacaaIXaaabeaakmaa bmaabaWaaSaaaeaacaWGnbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaaG OmaaaaaiaawIcacaGLPaaadaahaaWcbeqaaiaad6gaaaGcdaWcaaqa aiaadshadaahaaWcbeqaaiaad6gaaaaakeaacaWGUbGaaGyiaaaaca aIUaaaaa@6ADA@

Тем самым оценка (26) установлена. Оценим M 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaigdaaeqaaa aa@337A@ . Имеем

             | a 1 (x,t)| 1 2 0 t dτ xt+τ x+tτ | f ˜ 0 (η,τ)|dη 1 2 0 T dτ m m+1 | f ˜ 0 (η,τ)|dη= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI8bGaamyyamaaBaaaleaacaaIXa aabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGiFaiabgsMi JoaalaaabaGaaGymaaqaaiaaikdaaaWaa8qCaeqaleaacaaIWaaaba GaamiDaaqdcqGHRiI8aOGaamizaiabes8a0naapehabeWcbaGaamiE aiabgkHiTiaadshacqGHRaWkcqaHepaDaeaacaWG4bGaey4kaSIaam iDaiabgkHiTiabes8a0bqdcqGHRiI8aOGaaGiFaiqadAgagaacamaa BaaaleaacaaIWaaabeaakiaaiIcacqaH3oaAcaaISaGaeqiXdqNaaG ykaiaaiYhacaaMi8UaamizaiabeE7aOjabgsMiJoaalaaabaGaaGym aaqaaiaaikdaaaWaa8qCaeqaleaacaaIWaaabaGaamivaaqdcqGHRi I8aOGaamizaiabes8a0naapehabeWcbaGaeyOeI0IaamyBaaqaaiaa d2gacqGHRaWkcaaIXaaaniabgUIiYdGccaaI8bGabmOzayaaiaWaaS baaSqaaiaaicdaaeqaaOGaaGikaiabeE7aOjaaiYcacqaHepaDcaaI PaGaaGiFaiaayIW7caWGKbGaeq4TdGMaaGypaaaa@7E38@

                    = 2m+1 2 0 T dτ 0 1 | f 0 (η,τ)|dη 2m+1 2 0 1 |q(η)|dη T T+1 | φ ˜ (τ)|dτ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaaSaaaeaacaaIYaGaamyBai abgUcaRiaaigdaaeaacaaIYaaaamaapehabeWcbaGaaGimaaqaaiaa dsfaa0Gaey4kIipakiaadsgacqaHepaDdaWdXbqabSqaaiaaicdaae aacaaIXaaaniabgUIiYdGccaaI8bGaamOzamaaBaaaleaacaaIWaaa beaakiaaiIcacqaH3oaAcaaISaGaeqiXdqNaaGykaiaaiYhacaaMi8 UaamizaiabeE7aOjabgsMiJoaalaaabaGaaGOmaiaad2gacqGHRaWk caaIXaaabaGaaGOmaaaadaWdXbqabSqaaiaaicdaaeaacaaIXaaani abgUIiYdGccaaI8bGaamyCaiaaiIcacqaH3oaAcaaIPaGaaGiFaiaa yIW7caWGKbGaeq4TdG2aa8qCaeqaleaacqGHsislcaWGubaabaGaam ivaiabgUcaRiaaigdaa0Gaey4kIipakiaaiYhacuaHgpGAgaacaiaa iIcacqaHepaDcaaIPaGaaGiFaiaayIW7caWGKbGaeqiXdqNaeyizIm kaaa@766A@

                         2m+1 2 0 1 |q(η)|dη m m+1 | φ ˜ (τ)|dτ= (2m+1) 2 2 q 1 φ 1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHKjYOdaWcaaqaaiaaikdacaWGTb Gaey4kaSIaaGymaaqaaiaaikdaaaWaa8qCaeqaleaacaaIWaaabaGa aGymaaqdcqGHRiI8aOGaaGiFaiaadghacaaIOaGaeq4TdGMaaGykai aaiYhacaaMi8UaamizaiabeE7aOnaapehabeWcbaGaeyOeI0IaamyB aaqaaiaad2gacqGHRaWkcaaIXaaaniabgUIiYdGccaaI8bGafqOXdO MbaGaacaaIOaGaeqiXdqNaaGykaiaaiYhacaaMi8Uaamizaiabes8a 0jaai2dadaWcaaqaaiaaiIcacaaIYaGaamyBaiabgUcaRiaaigdaca aIPaWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGOmaaaarqqr1ngBPrgi fHhDYfgaiqaacqWFLicucaWGXbGae8xjIa1aaSbaaSqaaiaaigdaae qaaOGae8xjIaLaeqOXdOMae8xjIa1aaSbaaSqaaiaaigdaaeqaaOGa aGOlaaaa@6D60@

Отсюда вытекает требуемая оценка для M 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaigdaaeqaaa aa@337A@ .

Таким образом, ряд A 1 (x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcaaaa@3789@  сходится абсолютно и равномерно в Q T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbWaaSbaaSqaaiaadsfaaeqaaa aa@339C@ .

Теорема 4 Уравнение (24) имеет единственное решение u(x,t)=A(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI9aGaamyqaiaaiIcacaWG4bGaaGilaiaadshacaaI Paaaaa@3C6A@ , где A(x,t)= a 0 (x,t)+ A 1 (x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI9aGaamyyamaaBaaaleaacaaIWaaabeaakiaaiIca caWG4bGaaGilaiaadshacaaIPaGaey4kaSIaamyqamaaBaaaleaaca aIXaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaaaaa@43F0@ , получаемое по методу последовательных подстановок.

Proof. Положим v(x,t)=u(x,t) a 0 (x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI9aGaamyDaiaaiIcacaWG4bGaaGilaiaadshacaaI PaGaeyOeI0IaamyyamaaBaaaleaacaaIWaaabeaakiaaiIcacaWG4b GaaGilaiaadshacaaIPaaaaa@4373@ . Тогда из (24) получаем для v(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36CD@  интегральное уравнение

                                                    v(x,t)= a 1 (x,t)+Bv. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI9aGaamyyamaaBaaaleaacaaIXaaabeaakiaaiIca caWG4bGaaGilaiaadshacaaIPaGaey4kaSIaamOqaiaadAhacaaIUa aaaa@40D8@                                                        (27)

Так как a 1 (x,t)C[ Q T ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcacqGHiiIZcaWGdbGaaG4w aiaadgfadaWgaaWcbaGaamivaaqabaGccaaIDbaaaa@3DA6@ , то уравнение (27) рассматриваем в C[ Q T ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaG4waiaadgfadaWgaaWcba GaamivaaqabaGccaaIDbaaaa@363A@ . По методу последовательных подстановок из (27) получаем ряд A 1 (x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcaaaa@3789@ . Поскольку B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGcbaaaa@3288@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ линейный и ограниченный оператор в C[ Q T ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaG4waiaadgfadaWgaaWcba GaamivaaqabaGccaaIDbaaaa@363A@  и B A 1 (x,t)= n=2 a n (x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGcbGaamyqamaaBaaaleaacaaIXa aabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGypamaaqaha beWcbaGaamOBaiaai2dacaaIYaaabaGaeyOhIukaniabggHiLdGcca WGHbWaaSbaaSqaaiaad6gaaeqaaOGaaGikaiaadIhacaaISaGaamiD aiaaiMcaaaa@456B@ , то A 1 (x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcaaaa@3789@ есть решение (27). Докажем, что уравнение (27) имеет единственное решение. Допустим, что кроме A 1 (x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcaaaa@3789@ есть еще другое решение w(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3bGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36CE@  этого уравнения. Тогда z(x,t)= A 1 (x,t)w(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI9aGaamyqamaaBaaaleaacaaIXaaabeaakiaaiIca caWG4bGaaGilaiaadshacaaIPaGaeyOeI0Iaam4DaiaaiIcacaWG4b GaaGilaiaadshacaaIPaaaaa@435A@  - решение уравнения z(x,t)=Bz(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI9aGaamOqaiaadQhacaaIOaGaamiEaiaaiYcacaWG 0bGaaGykaaaa@3D6F@ , а, значит, и z(x,t)= B n z(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI9aGaamOqamaaCaaaleqabaGaamOBaaaakiaadQha caaIOaGaamiEaiaaiYcacaWG0bGaaGykaaaa@3E99@  при любом натуральном n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B4@ . Заметим, что оценка (26) в лемме 5 остается верной, если в качестве a 1 (x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcaaaa@37A9@  взять любую функцию из C[ Q T ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaG4waiaadgfadaWgaaWcba GaamivaaqabaGccaaIDbaaaa@363A@ . Возьмем в качестве такой функции функцию z(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36D1@ . Тогда из оценки (26) получаем следующую оценку:

             z(x,t) C[ Q T ] = B n1 z(x,t) C[ Q T ] z(x,t) C[ Q T ] M 2 2 n1 q 1 T n1 (n1)! . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWG6bGaaGikaiaadIhacaaISaGaamiDaiaaiMcacqWFLicudaWg aaWcbaGaam4qaiaaiUfacaWGrbWaaSbaaeaacaWGubaabeaacaaIDb aabeaakiaai2dacqWFLicucaWGcbWaaWbaaSqabeaacaWGUbGaeyOe I0IaaGymaaaakiaadQhacaaIOaGaamiEaiaaiYcacaWG0bGaaGykai ab=vIiqnaaBaaaleaacaWGdbGaaG4waiaadgfadaWgaaqaaiaadsfa aeqaaiaai2faaeqaaOGaeyizImQae8xjIaLaamOEaiaaiIcacaWG4b GaaGilaiaadshacaaIPaGae8xjIa1aaSbaaSqaaiaadoeacaaIBbGa amyuamaaBaaabaGaamivaaqabaGaaGyxaaqabaGcdaqadaqaamaala aabaGaamytamaaBaaaleaacaaIYaaabeaaaOqaaiaaikdaaaaacaGL OaGaayzkaaWaaWbaaSqabeaacaWGUbGaeyOeI0IaaGymaaaakiab=v IiqjaadghacqWFLicudaWgaaWcbaGaaGymaaqabaGcdaWcaaqaaiaa dsfadaahaaWcbeqaaiaad6gacqGHsislcaaIXaaaaaGcbaGaaGikai aad6gacqGHsislcaaIXaGaaGykaiaaigcaaaGaaGOlaaaa@743F@

Отсюда в силу произвольности n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B4@  получаем z(x,t)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI9aGaaGimaaaa@3852@ , и единственным решением уравнения (27) является ряд A 1 (x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcaaaa@3789@ , а уравнение (24) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ ряд A(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@3698@ .

Для сравнения приведем следующие результаты из [6] и [4].

Теорема 5 (см. [4, теорема 6]).  Если функции φ(x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaamiEaiaaiMcaaa a@35E0@ , φ (x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaHgpGAgaqbaiaaiIcacaWG4bGaaG ykaaaa@35EC@  абсолютно непрерывны и φ(0)=φ(1)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaaGimaiaaiMcaca aI9aGaeqOXdOMaaGikaiaaigdacaaIPaGaaGypaiaaicdaaaa@3BC2@ , то сумма ряда A(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@3698@ представляет собой классическое решение задачи (21) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A96@ (23) при условии, что 2 u(x,t)/ t 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHciITdaahaaWcbeqaaiaaikdaaa GccaWG1bGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaIVaGaeyOa IyRaamiDamaaCaaaleqabaGaaGOmaaaaaaa@3D26@  класса Q MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbaaaa@3297@ (уравнение удовлетворяется почти всюду).

Теорема 6 (см. [6, теорема 5]).  Если φ(x)L[0,1] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaamiEaiaaiMcacq GHiiIZcaWGmbGaaG4waiaaicdacaaISaGaaGymaiaai2faaaa@3C2C@ , φ h (x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAdaWgaaWcbaGaamiAaaqaba GccaaIOaGaamiEaiaaiMcaaaa@3703@  удовлетворяет условиям теоремы 5, φ h φ 1 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucqaHgpGAdaWgaaWcbaGaamiAaaqabaGccqGHsislcqaHgpGAcqWF LicudaWgaaWcbaGaaGymaaqabaGccqGHsgIRcaaIWaaaaa@41B6@  при h0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObGaeyOKH4QaaGimaaaa@3555@ , то соответствующее φ h (x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAdaWgaaWcbaGaamiAaaqaba GccaaIOaGaamiEaiaaiMcaaaa@3703@  классическое решение u h (x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaadIgaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcaaaa@37EF@  задачи (21) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A96@ (23) сходится при h0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObGaeyOKH4QaaGimaaaa@3555@  по норме L[ Q T ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbGaaG4waiaadgfadaWgaaWcba GaamivaaqabaGccaaIDbaaaa@3643@  к A(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@3698@ .

Утверждение теоремы следует из линейности A(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@3698@  по φ(x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaamiEaiaaiMcaaa a@35E0@  и леммы 5.

Таким образом, классическое решение задачи (21) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (23) и решение ее, приводимое в статье, выражаются одной и той же формулой: u(x,t)=A(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI9aGaamyqaiaaiIcacaWG4bGaaGilaiaadshacaaI Paaaaa@3C6A@ , и A(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@3698@  в случае φ(x)L[0,1] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaamiEaiaaiMcacq GHiiIZcaWGmbGaaG4waiaaicdacaaISaGaaGymaiaai2faaaa@3C2C@  играет роль обобщенного решения, понимаемого как предел классических.

Отметим еще, что ряд A(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@3698@  в [6] получается иным приемом с более активным использованием обобщенной смешанной задачи.

×

Об авторах

А. П. Хромов

Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского

Автор, ответственный за переписку.
Email: khromovap@info.sgu.ru
Россия, Саратов

Список литературы

  1. Корнев В. В., Хромов А. П. Сходимость формального решения по методу Фурье в смешанной задаче для простейшего неоднородного волнового уравнения Мат. Мех. 2017 19 41–44
  2. Натансон И. П. Теория функций вещественной пееменной М.-Л. ГИТТЛ 1957
  3. Харди Г. Расходящиеся ряды М. ИЛ 1951
  4. Хромов А. П. Необходимые и достаточные условия существования классического решения смешанной задачи для однородного волнового уравнения в случае суммируемого потенциала Диффер. уравн. 2019 55 5 717–731
  5. Хромов А. П. Расходящиеся ряды и обобщенная смешанная задача для волнового уравнения Мат. 21 Междунар. конф. <<Современные проблемы теории функций и их приложения>> Саратов, 31 января "— 4 февраля 2022 г. Саратов 2022 319–324
  6. Хромов А. П., Корнев В. В. Расходящиеся ряды в методе Фурье для волнового уравнения Тр. ин-та мат. мех. УрО РАН. 2021 27 4 215–238
  7. Эйлер Л. Дифференциальное исчисление М.-Л. ГИТТЛ 1949

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Хромов А.П., 2023

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).