Решение некоторых систем функциональных уравнений, связанных с комплексными, двойными и дуальными числами

Обложка

Цитировать

Полный текст

Аннотация

В статье решается задача вложения трёх двуметрических феноменологически симметричных геометрий двух множеств ранга (3, 2), связанных с комплексными, двойными и дуальными числами, в двуметрическую феноменологически симметричную геометрию двух множеств ранга (4, 2), задаваемую функцией пары точек f = (xξ + yμ + ρ, xη + yν + τ ). Задача сводится к поиску невырожденных решений трех особых систем функциональных уравнений, имеющих прямую связь с комплексными, двойными и дуальными числами.

Полный текст

1 Введение

Пусть M MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbaaaa@3293@  и N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGobaaaa@3294@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  двумерное и 2n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIYaGaamOBaaaa@3370@  =мерное дифференцируемые многообразия. Рассмотрим дифференцируемую функцию

                             f:M×N 2 ,f:i,α( f 1 (i,α), f 2 (i,α)) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGOoaiaad2eacqGHxdaTca WGobGaeyOKH46efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39ga iqaacqWFDeIudaahaaWcbeqaaiaaikdaaaGccaaISaGaaGzbVlaadA gacaaI6aGaeyykJeUaamyAaiaaiYcacqaHXoqycqGHQms8cqWIMgsy caaIOaGaamOzamaaCaaaleqabaGaaGymaaaakiaaiIcacaWGPbGaaG ilaiabeg7aHjaaiMcacaaISaGaamOzamaaCaaaleqabaGaaGOmaaaa kiaaiIcacaWGPbGaaGilaiabeg7aHjaaiMcacaaIPaaaaa@605B@

с открытой и плотной областью определения в M×N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbGaey41aqRaamOtaaaa@357D@ , а также функцию

  F: M n ×N 2n ,F: i 1 ,, i n ,α( f 1 ( i 1 ,α), f 2 ( i 1 ,α),, f 1 ( i n ,α), f 2 ( i n ,α)), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbGaaGOoaiaad2eadaahaaWcbe qaaiaad6gaaaGccqGHxdaTcaWGobGaeyOKH46efv3ySLgznfgDOjda ryqr1ngBPrginfgDObcv39gaiqaacqWFDeIudaahaaWcbeqaaiaaik dacaWGUbaaaOGaaGilaiaaywW7caWGgbGaaGOoaiabgMYiHlaadMga daWgaaWcbaGaaGymaaqabaGccaaISaGaeSOjGSKaaGilaiaadMgada WgaaWcbaGaamOBaaqabaGccaaISaGaeqySdeMaeyOkJeVaeSOPHeMa aGikaiaadAgadaahaaWcbeqaaiaaigdaaaGccaaIOaGaamyAamaaBa aaleaacaaIXaaabeaakiaaiYcacqaHXoqycaaIPaGaaGilaiaaysW7 caWGMbWaaWbaaSqabeaacaaIYaaaaOGaaGikaiaadMgadaWgaaWcba GaaGymaaqabaGccaaISaGaeqySdeMaaGykaiaaiYcacaaMe8UaeSOj GSKaaGilaiaaysW7caWGMbWaaWbaaSqabeaacaaIXaaaaOGaaGikai aadMgadaWgaaWcbaGaamOBaaqabaGccaaISaGaeqySdeMaaGykaiaa iYcacaaMe8UaamOzamaaCaaaleqabaGaaGOmaaaakiaaiIcacaWGPb WaaSbaaSqaaiaad6gaaeqaaOGaaGilaiabeg7aHjaaiMcacaaIPaGa aGilaaaa@833B@

где i 1 ,, i n M MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbWaaSbaaSqaaiaaigdaaeqaaO GaaGilaiablAciljaaiYcacaWGPbWaaSbaaSqaaiaad6gaaeqaaOGa eyicI4Saamytaaaa@3A9B@ , αN MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHXoqycqGHiiIZcaWGobaaaa@35B7@ . Очевидно, область определения функции F MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbaaaa@328C@  открыта и плотна, а сама функция дифференцируема в этой области определения. Естественным образом строятся функции

             2 f β :M 2 , f β :i( f 1 (i,β), f 2 (i,β)), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIYaGaamOzamaaBaaaleaacqaHYo GyaeqaaOGaaGOoaiaad2eacqGHsgIRtuuDJXwAK1uy0HMmaeHbfv3y SLgzG0uy0HgiuD3BaGabaiab=1risnaaCaaaleqabaGaaGOmaaaaki aaiYcacaaMf8UaamOzamaaBaaaleaacqaHYoGyaeqaaOGaaGOoaiaa dMgacqWIMgsycaaIOaGaamOzamaaCaaaleqabaGaaGymaaaakiaaiI cacaWGPbGaaGilaiabek7aIjaaiMcacaaISaGaamOzamaaCaaaleqa baGaaGOmaaaakiaaiIcacaWGPbGaaGilaiabek7aIjaaiMcacaaIPa GaaGilaaaa@5CBD@

             F j 1 ,, j n :N 2n , F j 1 ,, j n :α( f 1 ( j 1 ,α), f 2 ( j 1 ,α),, f 1 ( j n ,α), f 2 ( j n ,α)), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiaadQgadaWgaa qaaiaaigdaaeqaaiaaiYcacqWIMaYscaaISaGaamOAamaaBaaabaGa amOBaaqabaaabeaakiaaiQdacaWGobGaeyOKH46efv3ySLgznfgDOj daryqr1ngBPrginfgDObcv39gaiqaacqWFDeIudaahaaWcbeqaaiaa ikdacaWGUbaaaOGaaGilaiaaywW7caWGgbWaaSbaaSqaaiaadQgada WgaaqaaiaaigdaaeqaaiaaiYcacqWIMaYscaaISaGaamOAamaaBaaa baGaamOBaaqabaaabeaakiaaiQdacqaHXoqycqWIMgsycaaIOaGaam OzamaaCaaaleqabaGaaGymaaaakiaaiIcacaWGQbWaaSbaaSqaaiaa igdaaeqaaOGaaGilaiabeg7aHjaaiMcacaaISaGaaGjbVlaadAgada ahaaWcbeqaaiaaikdaaaGccaaIOaGaamOAamaaBaaaleaacaaIXaaa beaakiaaiYcacqaHXoqycaaIPaGaaGilaiaaysW7cqWIMaYscaaISa GaaGjbVlaadAgadaahaaWcbeqaaiaaigdaaaGccaaIOaGaamOAamaa BaaaleaacaWGUbaabeaakiaaiYcacqaHXoqycaaIPaGaaGilaiaays W7caWGMbWaaWbaaSqabeaacaaIYaaaaOGaaGikaiaadQgadaWgaaWc baGaamOBaaqabaGccaaISaGaeqySdeMaaGykaiaaiMcacaaISaaaaa@8193@

где j 1 ,, j n M MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbWaaSbaaSqaaiaaigdaaeqaaO GaaGilaiablAciljaaiYcacaWGQbWaaSbaaSqaaiaad6gaaeqaaOGa eyicI4Saamytaaaa@3A9D@ , βN MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGycqGHiiIZcaWGobaaaa@35B9@  " MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ произвольные фиксированные точки. Из построений следует, что функции f β MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbWaaSbaaSqaaiabek7aIbqaba aaaa@3479@  и F j 1 ,, j n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiaadQgadaWgaa qaaiaaigdaaeqaaiaaiYcacqWIMaYscaaISaGaamOAamaaBaaabaGa amOBaaqabaaabeaaaaa@3914@  дифференцируемы, а их области определения открыты и плотны.

Определение 1 Дифференцируемая функция f:M×N 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGOoaiaad2eacqGHxdaTca WGobGaeyOKH46efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39ga iqaacqWFDeIudaahaaWcbeqaaiaaikdaaaaaaa@44B9@  с открытой и плотной областью определения задаёт на многообразиях M MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbaaaa@3293@  и N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGobaaaa@3294@  двуметрическую феноменологически симметричную геометрию двух множеств (ДФС ГДМ) ранга (n+1,2) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamOBaiabgUcaRiaaigdaca aISaGaaGOmaiaaiMcaaaa@3728@ , где n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaeyicI48efv3ySLgznfgDOj daryqr1ngBPrginfgDObcv39gaiqaacqWFveItaaa@3EE3@ , если выполняются следующие аксиомы:

Функции f β MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbWaaSbaaSqaaiabek7aIbqaba aaaa@3479@  и F j 1 ,, j n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiabgMYiHlaadQ gadaWgaaqaaiaaigdaaeqaaiaaiYcacqWIMaYscaaISaGaamOAamaa BaaabaGaamOBaaqabaGaeyOkJepabeaaaaa@3C97@  являются локальными диффеоморфизмами для плотных подмножеств точек из областей определения.

Для плотного множества точек i 1 , i 2 ,, i n+1 , α 1 , α 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHPms4caWGPbWaaSbaaSqaaiaaig daaeqaaOGaaGilaiaadMgadaWgaaWcbaGaaGOmaaqabaGccaaISaGa eSOjGSKaaGilaiaadMgadaWgaaWcbaGaamOBaiabgUcaRiaaigdaae qaaOGaaGilaiabeg7aHnaaBaaaleaacaaIXaaabeaakiaaiYcacqaH XoqydaWgaaWcbaGaaGOmaaqabaGccqGHQms8aaa@4688@  в M n+1 × N 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaWbaaSqabeaacaWGUbGaey 4kaSIaaGymaaaakiabgEna0kaad6eadaahaaWcbeqaaiaaikdaaaaa aa@392D@  все 4(n+1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI0aGaaGikaiaad6gacqGHRaWkca aIXaGaaGykaaaa@3674@  значений функции f MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32AC@  связаны уравнением

                         Φ( f 1 ( i 1 , α 1 ), f 2 ( i 1 , α 1 ),, f 1 ( i n+1 , α 2 ), f 2 ( i n+1 , α 2 ))=0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHMoGrcaaIOaGaamOzamaaCaaale qabaGaaGymaaaakiaaiIcacaWGPbWaaSbaaSqaaiaaigdaaeqaaOGa aGilaiabeg7aHnaaBaaaleaacaaIXaaabeaakiaaiMcacaaISaGaam OzamaaCaaaleqabaGaaGOmaaaakiaaiIcacaWGPbWaaSbaaSqaaiaa igdaaeqaaOGaaGilaiabeg7aHnaaBaaaleaacaaIXaaabeaakiaaiM cacaaISaGaaGjbVlablAciljaaiYcacaWGMbWaaWbaaSqabeaacaaI XaaaaOGaaGikaiaadMgadaWgaaWcbaGaamOBaiabgUcaRiaaigdaae qaaOGaaGilaiabeg7aHnaaBaaaleaacaaIYaaabeaakiaaiMcacaaI SaGaamOzamaaCaaaleqabaGaaGOmaaaakiaaiIcacaWGPbWaaSbaaS qaaiaad6gacqGHRaWkcaaIXaaabeaakiaaiYcacqaHXoqydaWgaaWc baGaaGOmaaqabaGccaaIPaGaaGykaiaai2dacaaIWaGaaGilaaaa@61A8@

где Φ=( Φ 1 , Φ 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHMoGrcaaI9aGaaGikaiabfA6agn aaCaaaleqabaGaaGymaaaakiaaiYcacqqHMoGrdaahaaWcbeqaaiaa ikdaaaGccaaIPaaaaa@3AF6@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  двухкомпонентная функция 4(n+1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI0aGaaGikaiaad6gacqGHRaWkca aIXaGaaGykaaaa@3674@  переменных с rankΦ=2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGYbGaamyyaiaad6gacaWGRbGaaG PaVlabfA6agjaai2dacaaIYaaaaa@3A09@ .

В работах [1, 3, 6, 7] приведена полная классификация ДФС ГДМ ранга (n+1,2) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamOBaiabgUcaRiaaigdaca aISaGaaGOmaiaaiMcaaaa@3728@  с точностью до замены координат в многообразиях и масштабного преобразования.

Рассмотрим 2(n1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIYaGaaGikaiaad6gacqGHsislca aIXaGaaGykaaaa@367D@  -мерное дифференцируемое многообразие N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGobGbauaaaaa@32A0@  и двумерное дифференцируемое многообразие L MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbaaaa@3292@ . Пусть

                                         π 1 : N ×L N , π 2 : N ×LL MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHapaCdaWgaaWcbaGaaGymaaqaba GccaaI6aGabmOtayaafaGaey41aqRaamitaiabgkziUkqad6eagaqb aiaaiYcacaaMf8UaeqiWda3aaSbaaSqaaiaaikdaaeqaaOGaaGOoai qad6eagaqbaiabgEna0kaadYeacqGHsgIRcaWGmbaaaa@4802@

MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  проекции. Определим проекции

                                  p 1 :M×NM, p 1 :i,αi p 2 :M×NN, p 2 :i,αα. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeGaeaaaaeaaaeaacaWGWbWaaS baaSqaaiaaigdaaeqaaOGaaGOoaiaad2eacqGHxdaTcaWGobGaeyOK H4QaamytaiaaiYcaaeaacaaMf8oabaGaamiCamaaBaaaleaacaaIXa aabeaakiaaiQdacqGHPms4caWGPbGaaGilaiabeg7aHjabgQYiXlab lAAiHjaadMgaaeaaaeaacaWGWbWaaSbaaSqaaiaaikdaaeqaaOGaaG Ooaiaad2eacqGHxdaTcaWGobGaeyOKH4QaamOtaiaaiYcaaeaacaaM f8oabaGaamiCamaaBaaaleaacaaIYaaabeaakiaaiQdacqGHPms4ca WGPbGaaGilaiabeg7aHjabgQYiXlablAAiHjabeg7aHjaai6caaaaa aa@6242@

Пусть существует дифференцируемое отображение h:N N ×L MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObGaaGOoaiaad6eacqGHsgIRce WGobGbauaacqGHxdaTcaWGmbaaaa@39F9@ , в некоторой окрестности произвольной точки из N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGobaaaa@3294@  задающее диффеоморфизм на некоторую окрестность из N ×L MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGobGbauaacqGHxdaTcaWGmbaaaa@3588@ , а также функция g:M× N 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbGaaGOoaiaad2eacqGHxdaTce WGobGbauaacqGHsgIRtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0Hgi uD3BaGabaiab=1risnaaCaaaleqabaGaaGOmaaaaaaa@44C6@ , определяющая ДФС ГДМ ранга (n,2) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamOBaiaaiYcacaaIYaGaaG ykaaaa@358B@ , причём

                                       f=χ g( p 1 , π 1 (h( p 2 ))), π 2 (h( p 2 )) , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGypaiabeE8aJnaabmaaba Gaam4zaiaaiIcacaWGWbWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiab ec8aWnaaBaaaleaacaaIXaaabeaakiaaiIcacaWGObGaaGikaiaadc hadaWgaaWcbaGaaGOmaaqabaGccaaIPaGaaGykaiaaiMcacaaISaGa eqiWda3aaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadIgacaaIOaGaam iCamaaBaaaleaacaaIYaaabeaakiaaiMcacaaIPaaacaGLOaGaayzk aaGaaGilaaaa@4DA5@

где χ: 2 ×L 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHhpWycaaI6aWefv3ySLgznfgDOj daryqr1ngBPrginfgDObcv39gaiqaacqWFDeIudaahaaWcbeqaaiaa ikdaaaGccqGHxdaTcaWGmbGaeyOKH4Qae8xhHi1aaWbaaSqabeaaca aIYaaaaaaa@46B9@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  некоторая дифференцируемая функция во всех точках своей открытой и плотной области определения.

Определение 2. 1 Будем говорить, что ДФС ГДМ ранга (n,2) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamOBaiaaiYcacaaIYaGaaG ykaaaa@358B@ , задаваемая функцией g:M× N 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbGaaGOoaiaad2eacqGHxdaTce WGobGbauaacqGHsgIRtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0Hgi uD3BaGabaiab=1risnaaCaaaleqabaGaaGOmaaaaaaa@44C6@ , вложена в ДФС ГДМ ранга (n+1,2) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamOBaiabgUcaRiaaigdaca aISaGaaGOmaiaaiMcaaaa@3728@  с функцией f:M×N 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGOoaiaad2eacqGHxdaTca WGobGaeyOKH46efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39ga iqaacqWFDeIudaahaaWcbeqaaiaaikdaaaaaaa@44B9@ , причём N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGobaaaa@3294@  локально диффеоморфно N ×L MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGobGbauaacqGHxdaTcaWGmbaaaa@3588@ , если выполняется функциональное соотношение

                     f(λ(i),τ(α))=χ(g(i, π 1 (h( p 2 (i,α)))), π 2 (h( p 2 (i,α)))), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiabeU7aSjaaiIcaca WGPbGaaGykaiaaiYcacqaHepaDcaaIOaGaeqySdeMaaGykaiaaiMca caaI9aGaeq4XdmMaaGikaiaadEgacaaIOaGaamyAaiaaiYcacqaHap aCdaWgaaWcbaGaaGymaaqabaGccaaIOaGaamiAaiaaiIcacaWGWbWa aSbaaSqaaiaaikdaaeqaaOGaaGikaiabgMYiHlaadMgacaaISaGaeq ySdeMaeyOkJeVaaGykaiaaiMcacaaIPaGaaGykaiaaiYcacaaMe8Ua eqiWda3aaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadIgacaaIOaGaam iCamaaBaaaleaacaaIYaaabeaakiaaiIcacqGHPms4caWGPbGaaGil aiabeg7aHjabgQYiXlaaiMcacaaIPaGaaGykaiaaiMcacaaISaaaaa@6957@

где λ:MM MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH7oaBcaaI6aGaamytaiabgkziUk aad2eaaaa@37CA@  и τ:NN MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDcaaI6aGaamOtaiabgkziUk aad6eaaaa@37DD@  " MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ локальные диффеоморфизмы.

В [3] доказано, что в каждую ДФС ГДМ ранга (n+2,2) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamOBaiabgUcaRiaaikdaca aISaGaaGOmaiaaiMcaaaa@3729@  вложена по крайней мере одна из ДФС ГДМ ранга (n+1,2) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamOBaiabgUcaRiaaigdaca aISaGaaGOmaiaaiMcaaaa@3728@ , где n=1,2,3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaaGypaiaaigdacaaISaGaaG OmaiaaiYcacaaIZaaaaa@371B@ .

В данной статье ставится задача о нахождении всех возможных вложений ДФС ГДМ ранга (3,2) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaaG4maiaaiYcacaaIYaGaaG ykaaaa@3555@  с функциями

    g=(xξ+μ,xη+yξ+ν),g=(xξ+μ,yη+ν),g=(xξyη+μ,xη+yξ+ν) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbGaaGypaiaaiIcacaWG4bGaeq OVdGNaey4kaSIaeqiVd0MaaGilaiaadIhacqaH3oaAcqGHRaWkcaWG 5bGaeqOVdGNaey4kaSIaeqyVd4MaaGykaiaaiYcacaaMf8Uaam4zai aai2dacaaIOaGaamiEaiabe67a4jabgUcaRiabeY7aTjaaiYcacaWG 5bGaeq4TdGMaey4kaSIaeqyVd4MaaGykaiaaiYcacaaMf8Uaam4zai aai2dacaaIOaGaamiEaiabe67a4jabgkHiTiaadMhacqaH3oaAcqGH RaWkcqaH8oqBcaaISaGaamiEaiabeE7aOjabgUcaRiaadMhacqaH+o aEcqGHRaWkcqaH9oGBcaaIPaaaaa@6C62@

в ДФС ГДМ ранга (4,2) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaaGinaiaaiYcacaaIYaGaaG ykaaaa@3556@  с функцией f=(xξ+yμ+ρ,xη+yν+τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGypaiaaiIcacaWG4bGaeq OVdGNaey4kaSIaamyEaiabeY7aTjabgUcaRiabeg8aYjaaiYcacaWG 4bGaeq4TdGMaey4kaSIaamyEaiabe27aUjabgUcaRiabes8a0jaaiM caaaa@476E@ . Решение этой задачи сводится к решению особых систем функциональных уравнений. Данная задача является продолжением задачи вложения ДФС ГДМ ранга (2,2) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaaGOmaiaaiYcacaaIYaGaaG ykaaaa@3554@  с функцией g=(x+ξ,x+η) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbGaaGypaiaaiIcacaWG4bGaey 4kaSIaeqOVdGNaaGilaiaadIhacqGHRaWkcqaH3oaAcaaIPaaaaa@3CBC@  в ДФС ГДМ ранга (3,2) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaaG4maiaaiYcacaaIYaGaaG ykaaaa@3555@  с функцией f=(xξ+yμ,xη+yν) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGypaiaaiIcacaWG4bGaeq OVdGNaey4kaSIaamyEaiabeY7aTjaaiYcacaWG4bGaeq4TdGMaey4k aSIaamyEaiabe27aUjaaiMcaaaa@4225@ , опубликованной в [5].

2 Постановка задачи

Согласно определению 2, сформулированная выше задача сводится к решению трёх систем функциональных уравнений

          x¯ξ¯+y¯μ¯+ρ¯χ1xξ+μ,xη+yξ+ν,ρ,τ,x¯η¯+y¯ν¯+τ¯χ2xξ+μ,xη+yξ+ν,ρ,τ;

          x¯ξ¯+y¯μ¯+ρ¯χ1xξ+μ,yη+ν,ρ,τ,x¯η¯+y¯ν¯+τ¯χ2xξ+μ,yη+ν,ρ,τ;               (1)

          x¯ξ¯+y¯μ¯+ρ¯χ1xξyη+μ,xη+yξ+ν,ρ,τ,x¯η¯+y¯ν¯+τ¯χ2xξyη+μ,xη+yξ+ν,ρ,τ,

 где x ¯ = x ¯ (x,y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbaebacaaI9aGabmiEayaara GaaGikaiaadIhacaaISaGaamyEaiaaiMcaaaa@38C8@ , y ¯ = y ¯ (x,y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG5bGbaebacaaI9aGabmyEayaara GaaGikaiaadIhacaaISaGaamyEaiaaiMcaaaa@38CA@ ,

             ξ ¯ = ξ ¯ (ξ,η,μ,ν,ρ,τ), η ¯ = η ¯ (ξ,η,μ,ν,ρ,τ), μ ¯ = μ ¯ (ξ,η,μ,ν,ρ,τ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaH+oaEgaqeaiaai2dacuaH+oaEga qeaiaaiIcacqaH+oaEcaaISaGaeq4TdGMaaGilaiabeY7aTjaaiYca cqaH9oGBcaaISaGaeqyWdiNaaGilaiabes8a0jaaiMcacaaISaGaaG zbVlqbeE7aOzaaraGaaGypaiqbeE7aOzaaraGaaGikaiabe67a4jaa iYcacqaH3oaAcaaISaGaeqiVd0MaaGilaiabe27aUjaaiYcacqaHbp GCcaaISaGaeqiXdqNaaGykaiaaiYcacaaMf8UafqiVd0MbaebacaaI 9aGafqiVd0MbaebacaaIOaGaeqOVdGNaaGilaiabeE7aOjaaiYcacq aH8oqBcaaISaGaeqyVd4MaaGilaiabeg8aYjaaiYcacqaHepaDcaaI PaGaaGilaaaa@722D@

             ν ¯ = ν ¯ (ξ,η,μ,ν,ρ,τ), ρ ¯ = ρ ¯ (ξ,η,μ,ν,ρ,τ), τ ¯ = τ ¯ (ξ,η,μ,ν,ρ,τ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaH9oGBgaqeaiaai2dacuaH9oGBga qeaiaaiIcacqaH+oaEcaaISaGaeq4TdGMaaGilaiabeY7aTjaaiYca cqaH9oGBcaaISaGaeqyWdiNaaGilaiabes8a0jaaiMcacaaISaGaaG zbVlqbeg8aYzaaraGaaGypaiqbeg8aYzaaraGaaGikaiabe67a4jaa iYcacqaH3oaAcaaISaGaeqiVd0MaaGilaiabe27aUjaaiYcacqaHbp GCcaaISaGaeqiXdqNaaGykaiaaiYcacaaMf8UafqiXdqNbaebacaaI 9aGafqiXdqNbaebacaaIOaGaeqOVdGNaaGilaiabeE7aOjaaiYcacq aH8oqBcaaISaGaeqyVd4MaaGilaiabeg8aYjaaiYcacqaHepaDcaaI PaGaaGilaaaa@725D@

  χ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHhpWydaahaaWcbeqaaiaaigdaaa aaaa@3460@ , χ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHhpWydaahaaWcbeqaaiaaikdaaa aaaa@3461@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  дифференцируемые функции.

Авторы данной работы ранее изучалась связь двуметрических феноменологически симметричных геометрий двух множеств с гиперкомплексными числами (см. [4, 8, 9]). Анализируя уравнения (1), находим их связь с двумерными гиперкомплексными числами, которых всего три типа: комплексные числа, дуальные и двойные. Напомним, что комплексные, дуальные и двойные числа можно задать так: z=x+Iy MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGypaiaadIhacqGHRaWkca WGjbGaamyEaaaa@3732@ , где I 2 =1,0,1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGjbWaaWbaaSqabeaacaaIYaaaaO GaaGypaiabgkHiTiaaigdacaaISaGaaGimaiaaiYcacaaIXaaaaa@38D2@  соответственно, z ¯ =xIy MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG6bGbaebacaaI9aGaamiEaiabgk HiTiaadMeacaWG5baaaa@3755@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  сопряжённое число. Операции сложения и умножения определяются как и для комплексных чисел. Хорошо известно, что множество комплексных чисел образует поле, а множества дуальных и двойных чисел MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  ассоциативные и коммутативные алгебры над полем MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risbaa@3C78@  с единицей и частичным делением. Поэтому правые части уравнений (1) можно записать в виде

                                            χ 1 (w, w ¯ ,ρ,τ), χ 2 (w, w ¯ ,ρ,τ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHhpWydaahaaWcbeqaaiaaigdaaa GccaaIOaGaam4DaiaaiYcaceWG3bGbaebacaaISaGaeqyWdiNaaGil aiabes8a0jaaiMcacaaISaGaaGzbVlabeE8aJnaaCaaaleqabaGaaG OmaaaakiaaiIcacaWG3bGaaGilaiqadEhagaqeaiaaiYcacqaHbpGC caaISaGaeqiXdqNaaGykaiaaiYcaaaa@4C46@

где w=(ξ+Iη)(x+Iy)+(μ+Iν) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3bGaaGypaiaaiIcacqaH+oaEcq GHRaWkcaWGjbGaeq4TdGMaaGykaiaaiIcacaWG4bGaey4kaSIaamys aiaadMhacaaIPaGaey4kaSIaaGikaiabeY7aTjabgUcaRiaadMeacq aH9oGBcaaIPaaaaa@467D@ . Тогда для первой и третьей систем из (1): u=Re(w) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGypaiaadkfacaWGLbGaaG ikaiaadEhacaaIPaaaaa@37A4@ , v=Im(w) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaaGypaiaadMeacaWGTbGaaG ikaiaadEhacaaIPaaaaa@37A4@ , а для второй системы линейные комбинации действительной и мнимой частей Re(w) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGsbGaamyzaiaaiIcacaWG3bGaaG ykaaaa@35E3@ , Im(w) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGjbGaamyBaiaaiIcacaWG3bGaaG ykaaaa@35E2@  двойного числа w MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3baaaa@32BD@  дают выражения

                                              u= x ξ + μ ,v= y η + ν . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGypaiqadIhagaqbaiqbe6 7a4zaafaGaey4kaSIafqiVd0MbauaacaaISaGaaGzbVlaadAhacaaI 9aGabmyEayaafaGafq4TdGMbauaacqGHRaWkcuaH9oGBgaqbaiaai6 caaaa@4324@

Заметим, что u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1baaaa@32BB@  и v MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2baaaa@32BC@  " MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ это первый и второй аргументы правых частей в системе (1).

Вложение оказывается возможным, если система (1) имеет хотя бы одно невырожденное решение, удовлетворяющее следующим двум условиям (определение 2):

                                 Δ= ( x ¯ , y ¯ ) (x,y) 0,= ( ξ ¯ , η ¯ , μ ¯ , ν ¯ , ρ ¯ , τ ¯ ) (ξ,η,μ,ν,ρ,τ) 0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoarcaaI9aWaaSaaaeaacqGHci ITcaaIOaGabmiEayaaraGaaGilaiqadMhagaqeaiaaiMcaaeaacqGH ciITcaaIOaGaamiEaiaaiYcacaWG5bGaaGykaaaacqGHGjsUcaaIWa GaaGilaiaaywW7rqqr1ngBPrgifHhDYfgaiqaacqWFHwYvcaaI9aWa aSaaaeaacqGHciITcaaIOaGafqOVdGNbaebacaaISaGafq4TdGMbae bacaaISaGafqiVd0MbaebacaaISaGafqyVd4MbaebacaaISaGafqyW diNbaebacaaISaGafqiXdqNbaebacaaIPaaabaGaeyOaIyRaaGikai abe67a4jaaiYcacqaH3oaAcaaISaGaeqiVd0MaaGilaiabe27aUjaa iYcacqaHbpGCcaaISaGaeqiXdqNaaGykaaaacqGHGjsUcaaIWaGaaG Olaaaa@703E@                                       (2)

 Из второго неравенства в данной системе вытекает

                               ξ ¯ ν ¯ η ¯ μ ¯ 0, ξ ¯ 0, η ¯ 0, μ ¯ 0, ν ¯ 0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaH+oaEgaqeaiqbe27aUzaaraGaey OeI0Iafq4TdGMbaebacuaH8oqBgaqeaiabgcMi5kaaicdacaaISaGa aGzbVlqbe67a4zaaraGaeyiyIKRaaGimaiaaiYcacaaMf8Uafq4TdG MbaebacqGHGjsUcaaIWaGaaGilaiaaywW7cuaH8oqBgaqeaiabgcMi 5kaaicdacaaISaGaaGzbVlqbe27aUzaaraGaeyiyIKRaaGimaiaai6 caaaa@5775@

Основной целью настоящей работы является определение общего невырожденного решения системы (1) или доказательство того, что решения не существует.

Дифференцируя уравнения из (1) по переменным x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BE@ , μ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBaaa@3377@ , ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBaaa@3379@ , затем их комбинируем, чтобы справа исчезли производные функций χ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHhpWydaahaaWcbeqaaiaaigdaaa aaaa@3460@  и χ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHhpWydaahaaWcbeqaaiaaikdaaa aaaa@3461@  по их первому и второму аргументам, после чего фиксируя переменные ξ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEaaa@3384@ , η MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH3oaAaaa@336D@ , μ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBaaa@3377@ , ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBaaa@3379@ , ρ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHbpGCaaa@3381@ , τ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDaaa@3386@ , во всех трёх случаях получаем систему дифференциальных уравнений на функции x ¯ = x ¯ (x,y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbaebacaaI9aGabmiEayaara GaaGikaiaadIhacaaISaGaamyEaiaaiMcaaaa@38C8@ , y ¯ = y ¯ (x,y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG5bGbaebacaaI9aGabmyEayaara GaaGikaiaadIhacaaISaGaamyEaiaaiMcaaaa@38CA@ :

                                   x ¯ x y ¯ x = a b c d x ¯ y ¯ + α γ = A ¯ x ¯ y ¯ + α γ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqadaqaauaabeqaceaaaeaaceWG4b GbaebadaWgaaWcbaGaamiEaaqabaaakeaaceWG5bGbaebadaWgaaWc baGaamiEaaqabaaaaaGccaGLOaGaayzkaaGaaGypamaabmaabaqbae qabiGaaaqaaiaadggaaeaacaWGIbaabaGaam4yaaqaaiaadsgaaaaa caGLOaGaayzkaaWaaeWaaeaafaqabeGabaaabaGabmiEayaaraaaba GabmyEayaaraaaaaGaayjkaiaawMcaaiabgUcaRmaabmaabaqbaeqa biqaaaqaaiabeg7aHbqaaiabeo7aNbaaaiaawIcacaGLPaaacaaI9a GabmyqayaaraWaaeWaaeaafaqabeGabaaabaGabmiEayaaraaabaGa bmyEayaaraaaaaGaayjkaiaawMcaaiabgUcaRmaabmaabaqbaeqabi qaaaqaaiabeg7aHbqaaiabeo7aNbaaaiaawIcacaGLPaaacaaIUaaa aa@5341@                                          (3)

Произведём допустимое структурой функциональных уравнений систем (1) преобразование

                                          x ¯ ' y ¯ ' =U x ¯ y ¯ x ¯ y ¯ = U 1 x ¯ ' y ¯ ' , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqadaqaauaabeqaceaaaeaaceWG4b GbaebacaaINaaabaGabmyEayaaraGaaG4jaaaaaiaawIcacaGLPaaa caaI9aGaamyvamaabmaabaqbaeqabiqaaaqaaiqadIhagaqeaaqaai qadMhagaqeaaaaaiaawIcacaGLPaaacaaMe8UaeyO0H49aaeWaaeaa faqabeGabaaabaGabmiEayaaraaabaGabmyEayaaraaaaaGaayjkai aawMcaaiaai2dacaWGvbWaaWbaaSqabeaacqGHsislcaaIXaaaaOWa aeWaaeaafaqabeGabaaabaGabmiEayaaraGaaG4jaaqaaiqadMhaga qeaiaaiEcaaaaacaGLOaGaayzkaaGaaGilaaaa@4D4A@

          x ¯ ' x y ¯ ' x =U x ¯ x y ¯ x =UA x ¯ y ¯ +U α γ =UA U 1 x ¯ ' y ¯ ' +U α γ = A x ¯ ' y ¯ ' + α γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqadaqaauaabeqaceaaaeaaceWG4b GbaebacaaINaWaaSbaaSqaaiaadIhaaeqaaaGcbaGabmyEayaaraGa aG4jamaaBaaaleaacaWG4baabeaaaaaakiaawIcacaGLPaaacaaI9a GaamyvamaabmaabaqbaeqabiqaaaqaaiqadIhagaqeamaaBaaaleaa caWG4baabeaaaOqaaiqadMhagaqeamaaBaaaleaacaWG4baabeaaaa aakiaawIcacaGLPaaacaaI9aGaamyvaiaadgeadaqadaqaauaabeqa ceaaaeaaceWG4bGbaebaaeaaceWG5bGbaebaaaaacaGLOaGaayzkaa Gaey4kaSIaamyvamaabmaabaqbaeqabiqaaaqaaiabeg7aHbqaaiab eo7aNbaaaiaawIcacaGLPaaacaaI9aGaamyvaiaadgeacaWGvbWaaW baaSqabeaacqGHsislcaaIXaaaaOWaaeWaaeaafaqabeGabaaabaGa bmiEayaaraGaaG4jaaqaaiqadMhagaqeaiaaiEcaaaaacaGLOaGaay zkaaGaey4kaSIaamyvamaabmaabaqbaeqabiqaaaqaaiabeg7aHbqa aiabeo7aNbaaaiaawIcacaGLPaaacaaI9aGabmyqayaafaWaaeWaae aafaqabeGabaaabaGabmiEayaaraGaaG4jaaqaaiqadMhagaqeaiaa iEcaaaaacaGLOaGaayzkaaGaey4kaSYaaeWaaeaafaqabeGabaaaba GafqySdeMbauaaaeaacuaHZoWzgaqbaaaaaiaawIcacaGLPaaaaaa@6B3F@

с невырожденной матрицей U MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGvbaaaa@329B@  второго порядка. Система дифференциальных уравнений (3) в прежних обозначениях принимает следующий вид:

                                                x ¯ x y ¯ x =UA U 1 x ¯ y ¯ + α γ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqadaqaauaabeqaceaaaeaaceWG4b GbaebadaWgaaWcbaGaamiEaaqabaaakeaaceWG5bGbaebadaWgaaWc baGaamiEaaqabaaaaaGccaGLOaGaayzkaaGaaGypaiaadwfacaWGbb GaamyvamaaCaaaleqabaGaeyOeI0IaaGymaaaakmaabmaabaqbaeqa biqaaaqaaiqadIhagaqeaaqaaiqadMhagaqeaaaaaiaawIcacaGLPa aacqGHRaWkdaqadaqaauaabeqaceaaaeaacqaHXoqyaeaacqaHZoWz aaaacaGLOaGaayzkaaGaaGOlaaaa@473F@

Хорошо известно (см. [2, с. 485]), что ненулевая матрица A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbaaaa@3287@  второго порядка с вещественными элементами преобразованием AUA U 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbGaeyOKH4Qaamyvaiaadgeaca WGvbWaaWbaaSqabeaacqGHsislcaaIXaaaaaaa@38C3@  может быть приведена к одной их пяти вещественных форм:

             1) 0 0 0 0 ,2) a 0 0 a ,3) a 0 1 a ,4) a 0 0 d ,5)[r]abba, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIXaGaaGykaiaaysW7caaMe8+aae WaaeaafaqabeGacaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGa aGimaaaaaiaawIcacaGLPaaacaaISaGaaGzbVlaaikdacaaIPaGaaG jbVlaaysW7daqadaqaauaabeqaciaaaeaacaWGHbaabaGaaGimaaqa aiaaicdaaeaacaWGHbaaaaGaayjkaiaawMcaaiaaiYcacaaMf8UaaG 4maiaaiMcacaaMe8UaaGjbVpaabmaabaqbaeqabiGaaaqaaiaadgga aeaacaaIWaaabaGaaGymaaqaaiaadggaaaaacaGLOaGaayzkaaGaaG ilaiaaywW7caaI0aGaaGykaiaaysW7caaMe8+aaeWaaeaafaqabeGa caaabaGaamyyaaqaaiaaicdaaeaacaaIWaaabaGaamizaaaaaiaawI cacaGLPaaacaaISaGaaGzbVlaaiwdacaaIPaGaaGjbVlaaysW7caaI BbGaamOCaiaai2facaWGHbGaamOyaiabgkHiTiaadkgacaWGHbGaaG ilaaaa@6C93@                   (4)

где в том же порядке: 2) a0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaeyiyIKRaaGimaaaa@3528@ , 3) a MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbaaaa@32A7@  любое, 4) ad MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaeyiyIKRaamizaaaa@3557@ , 5) b0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbGaeyiyIKRaaGimaaaa@3529@ . Решения системы уравнений (3), связанные с формулами (4), будут следующими:

             1) x ¯ =αx+ x ¯ (y), y ¯ =γx+ y ¯ (y), α 2 + γ 2 0; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIXaGaaGykaiaaywW7ceWG4bGbae bacaaI9aGaeqySdeMaamiEaiabgUcaRiqadIhagaqeaiaaiIcacaWG 5bGaaGykaiaaiYcacaaMf8UabmyEayaaraGaaGypaiabeo7aNjaadI hacqGHRaWkceWG5bGbaebacaaIOaGaamyEaiaaiMcacaaISaGaaGzb Vlabeg7aHnaaCaaaleqabaGaaGOmaaaakiabgUcaRiabeo7aNnaaCa aaleqabaGaaGOmaaaakiabgcMi5kaaicdacaaI7aaaaa@5447@                                                   (5)

             2) x ¯ = x ¯ (y) e ax α a , y ¯ = y ¯ (y) e ax γ a ; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIYaGaaGykaiaaywW7ceWG4bGbae bacaaI9aGabmiEayaaraGaaGikaiaadMhacaaIPaGaamyzamaaCaaa leqabaGaamyyaiaadIhaaaGccqGHsisldaWcaaqaaiabeg7aHbqaai aadggaaaGaaGilaiaaywW7ceWG5bGbaebacaaI9aGabmyEayaaraGa aGikaiaadMhacaaIPaGaamyzamaaCaaaleqabaGaamyyaiaadIhaaa GccqGHsisldaWcaaqaaiabeo7aNbqaaiaadggaaaGaaG4oaaaa@4F85@                                                                  (6)

             3.1) x ¯ = x ¯ (y) e ax α a , y ¯ =( x ¯ (y)x+ y ¯ (y)) e ax γ a + α a 2 ; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIZaGaaGOlaiaaigdacaaIPaGaaG zbVlqadIhagaqeaiaai2daceWG4bGbaebacaaIOaGaamyEaiaaiMca caWGLbWaaWbaaSqabeaacaWGHbGaamiEaaaakiabgkHiTmaalaaaba GaeqySdegabaGaamyyaaaacaaISaGaaGzbVlqadMhagaqeaiaai2da caaIOaGabmiEayaaraGaaGikaiaadMhacaaIPaGaamiEaiabgUcaRi qadMhagaqeaiaaiIcacaWG5bGaaGykaiaaiMcacaWGLbWaaWbaaSqa beaacaWGHbGaamiEaaaakiabgkHiTmaalaaabaGaeq4SdCgabaGaam yyaaaacqGHRaWkdaWcaaqaaiabeg7aHbqaaiaadggadaahaaWcbeqa aiaaikdaaaaaaOGaaG4oaaaa@5C1F@                                       (7)

             3.2) x ¯ = x ¯ (y)+αx, y ¯ = α x 2 2 +γx+ x ¯ (y)x+ y ¯ (y); MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIZaGaaGOlaiaaikdacaaIPaGaaG zbVlqadIhagaqeaiaai2daceWG4bGbaebacaaIOaGaamyEaiaaiMca cqGHRaWkcqaHXoqycaWG4bGaaGilaiaaywW7ceWG5bGbaebacaaI9a WaaSaaaeaacqaHXoqycaWG4bWaaWbaaSqabeaacaaIYaaaaaGcbaGa aGOmaaaacqGHRaWkcqaHZoWzcaWG4bGaey4kaSIabmiEayaaraGaaG ikaiaadMhacaaIPaGaamiEaiabgUcaRiqadMhagaqeaiaaiIcacaWG 5bGaaGykaiaaiUdaaaa@557E@                                              (8)

             4.1) x ¯ = x ¯ (y) e ax α a , y ¯ = y ¯ (y) e dx γ a ; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI0aGaaGOlaiaaigdacaaIPaGaaG zbVlqadIhagaqeaiaai2daceWG4bGbaebacaaIOaGaamyEaiaaiMca caWGLbWaaWbaaSqabeaacaWGHbGaamiEaaaakiabgkHiTmaalaaaba GaeqySdegabaGaamyyaaaacaaISaGaaGzbVlqadMhagaqeaiaai2da ceWG5bGbaebacaaIOaGaamyEaiaaiMcacaWGLbWaaWbaaSqabeaaca WGKbGaamiEaaaakiabgkHiTmaalaaabaGaeq4SdCgabaGaamyyaaaa caaI7aaaaa@50FD@                                                               (9)

             4.2) x ¯ = x ¯ (y) e ax α a , y ¯ =γx+ y ¯ (y); MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI0aGaaGOlaiaaikdacaaIPaGaaG zbVlqadIhagaqeaiaai2daceWG4bGbaebacaaIOaGaamyEaiaaiMca caWGLbWaaWbaaSqabeaacaWGHbGaamiEaaaakiabgkHiTmaalaaaba GaeqySdegabaGaamyyaaaacaaISaGaaGzbVlqadMhagaqeaiaai2da cqaHZoWzcaWG4bGaey4kaSIabmyEayaaraGaaGikaiaadMhacaaIPa GaaG4oaaaa@4DF3@                                                                (10)

             4.3) x ¯ =αx+ x ¯ (y), y ¯ = y ¯ (y) e dx γ a ; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI0aGaaGOlaiaaiodacaaIPaGaaG zbVlqadIhagaqeaiaai2dacqaHXoqycaWG4bGaey4kaSIabmiEayaa raGaaGikaiaadMhacaaIPaGaaGilaiaaywW7ceWG5bGbaebacaaI9a GabmyEayaaraGaaGikaiaadMhacaaIPaGaamyzamaaCaaaleqabaGa amizaiaadIhaaaGccqGHsisldaWcaaqaaiabeo7aNbqaaiaadggaaa GaaG4oaaaa@4DF7@                                                                (11)

             5) x ¯ =( x ¯ (y)sinbx+ y ¯ (y)cosbx) e ax aαbβ a 2 + b 2 , y ¯ =( x ¯ (y)cosbx y ¯ (y)sinbx) e ax aβ+bα a 2 + b 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI1aGaaGykaiaaywW7daGabaqaau aabaqaciaaaeaaaeaaceWG4bGbaebacaaI9aGaaGikaiqadIhagaqe aiaaiIcacaWG5bGaaGykaiGacohacaGGPbGaaiOBaiaadkgacaWG4b Gaey4kaSIabmyEayaaraGaaGikaiaadMhacaaIPaGaci4yaiaac+ga caGGZbGaamOyaiaadIhacaaIPaGaamyzamaaCaaaleqabaGaamyyai aadIhaaaGccqGHsisldaWcaaqaaiaadggacqaHXoqycqGHsislcaWG IbGaeqOSdigabaGaamyyamaaCaaaleqabaGaaGOmaaaakiabgUcaRi aadkgadaahaaWcbeqaaiaaikdaaaaaaOGaaGilaaqaaaqaaiqadMha gaqeaiaai2dacaaIOaGabmiEayaaraGaaGikaiaadMhacaaIPaGaci 4yaiaac+gacaGGZbGaamOyaiaadIhacqGHsislceWG5bGbaebacaaI OaGaamyEaiaaiMcaciGGZbGaaiyAaiaac6gacaWGIbGaamiEaiaaiM cacaWGLbWaaWbaaSqabeaacaWGHbGaamiEaaaakiabgkHiTmaalaaa baGaamyyaiabek7aIjabgUcaRiaadkgacqaHXoqyaeaacaWGHbWaaW baaSqabeaacaaIYaaaaOGaey4kaSIaamOyamaaCaaaleqabaGaaGOm aaaaaaGccaaIUaaaaaGaay5Eaaaaaa@7D87@                                           (12)

Введём матричные обозначения, которые будут использоваться в последующих решениях:

            Ξ ¯ = ξ ¯ μ ¯ η ¯ ν ¯ , Ξ ˜ = ξ ˜ μ ˜ η ˜ ν ˜ ,Ω= a 11 a 12 a 21 a 22 =const,Λ= α β γ δ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuqHEoawgaqeaiaai2dadaqadaqaau aabeqaciaaaeaacuaH+oaEgaqeaaqaaiqbeY7aTzaaraaabaGafq4T dGMbaebaaeaacuaH9oGBgaqeaaaaaiaawIcacaGLPaaacaaISaGaaG zbVlqbf65ayzaaiaGaaGypamaabmaabaqbaeqabiGaaaqaaiqbe67a 4zaaiaaabaGafqiVd0MbaGaaaeaacuaH3oaAgaacaaqaaiqbe27aUz aaiaaaaaGaayjkaiaawMcaaiaaiYcacaaMf8UaeuyQdCLaaGypamaa bmaabaqbaeqabiGaaaqaaiaadggadaWgaaWcbaGaaGymaiaaigdaae qaaaGcbaGaamyyamaaBaaaleaacaaIXaGaaGOmaaqabaaakeaacaWG HbWaaSbaaSqaaiaaikdacaaIXaaabeaaaOqaaiaadggadaWgaaWcba GaaGOmaiaaikdaaeqaaaaaaOGaayjkaiaawMcaaiaai2dacaWGJbGa am4Baiaad6gacaWGZbGaamiDaiaaiYcacaaMf8Uaeu4MdWKaaGypam aabmaabaqbaeqabiGaaaqaaiabeg7aHbqaaiabek7aIbqaaiabeo7a Nbqaaiabes7aKbaaaiaawIcacaGLPaaacaaISaaaaa@6DAA@

        ϒ 0 = ξ 0 η ξ , ϒ 1 = ξ 0 0 η , ϒ 1 = ξ η η ξ , A 1 = a 1 a 2 , B 1 = b 1 b 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHspqOdaWgaaWcbaGaaGimaaqaba GccaaI9aWaaeWaaeaafaqabeGacaaabaGaeqOVdGhabaGaaGimaaqa aiabeE7aObqaaiabe67a4baaaiaawIcacaGLPaaacaaISaGaaGzbVl abfk9aHoaaBaaaleaacaaIXaaabeaakiaai2dadaqadaqaauaabeqa ciaaaeaacqaH+oaEaeaacaaIWaaabaGaaGimaaqaaiabeE7aObaaai aawIcacaGLPaaacaaISaGaaGzbVlabfk9aHoaaBaaaleaacqGHsisl caaIXaaabeaakiaai2dadaqadaqaauaabeqaciaaaeaacqaH+oaEae aacqGHsislcqaH3oaAaeaacqaH3oaAaeaacqaH+oaEaaaacaGLOaGa ayzkaaGaaGilaiaaywW7caWGbbWaaSbaaSqaaiaaigdaaeqaaOGaaG ypamaabmaabaqbaeqabiqaaaqaaiaadggadaWgaaWcbaGaaGymaaqa baaakeaacaWGHbWaaSbaaSqaaiaaikdaaeqaaaaaaOGaayjkaiaawM caaiaaiYcacaaMf8UaamOqamaaBaaaleaacaaIXaaabeaakiaai2da daqadaqaauaabeqaceaaaeaacaWGIbWaaSbaaSqaaiaaigdaaeqaaa GcbaGaamOyamaaBaaaleaacaaIYaaabeaaaaaakiaawIcacaGLPaaa caaISaGaaGzbVdaa@701A@

           R= ρ τ , R ¯ = ρ ¯ τ ¯ , R ˜ = ρ ˜ τ ˜ ,X= x y , X ¯ = x ¯ y ¯ ,χ= χ 1 χ 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGsbGaaGypamaabmaabaqbaeqabi qaaaqaaiabeg8aYbqaaiabes8a0baaaiaawIcacaGLPaaacaaISaGa aGzbVlqadkfagaqeaiaai2dadaqadaqaauaabeqaceaaaeaacuaHbp GCgaqeaaqaaiqbes8a0zaaraaaaaGaayjkaiaawMcaaiaaiYcacaaM f8UabmOuayaaiaGaaGypamaabmaabaqbaeqabiqaaaqaaiqbeg8aYz aaiaaabaGafqiXdqNbaGaaaaaacaGLOaGaayzkaaGaaGilaiaaywW7 caWGybGaaGypamaabmaabaqbaeqabiqaaaqaaiaadIhaaeaacaWG5b aaaaGaayjkaiaawMcaaiaaiYcacaaMf8UabmiwayaaraGaaGypamaa bmaabaqbaeqabiqaaaqaaiqadIhagaqeaaqaaiqadMhagaqeaaaaai aawIcacaGLPaaacaaISaGaaGzbVlabeE8aJjaai2dadaqadaqaauaa beqaceaaaeaacqaHhpWydaahaaWcbeqaaiaaigdaaaaakeaacqaHhp WydaahaaWcbeqaaiaaikdaaaaaaaGccaGLOaGaayzkaaGaaGilaiaa ywW7aaa@6812@

причем матрицы Ξ ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuqHEoawgaqeaaaa@335D@ , Ξ ˜ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuqHEoawgaacaaaa@3354@ , Λ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHBoataaa@3336@ , Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvaaa@334F@  невырожденные, a ij = a ij (ρ,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbWaaSbaaSqaaiaadMgacaWGQb aabeaakiaai2dacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaakiaa iIcacqaHbpGCcaaISaGaeqiXdqNaaGykaaaa@3E1A@ , b i = b i (ρ,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbWaaSbaaSqaaiaadMgaaeqaaO GaaGypaiaadkgadaWgaaWcbaGaamyAaaqabaGccaaIOaGaeqyWdiNa aGilaiabes8a0jaaiMcaaaa@3C3E@  " MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ дифференцируемые функции, i,j=1,2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGilaiaadQgacaaI9aGaaG ymaiaaiYcacaaIYaaaaa@3748@ . Заметим, что тогда системы функциональных уравнений (1) принимают общий вид:

                                                          Ξ ¯ X ¯ + R ¯ =χ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuqHEoawgaqeaiqadIfagaqeaiabgU caRiqadkfagaqeaiaai2dacqaHhpWycaaIUaaaaa@3959@

Основной результат этой статьи сформулируем в виде теоремы.

Теорема 1 Общее невырожденное решение системы (1) функциональных уравнений может быть представлено в следующем виде:

                      X ¯ =ΛX+ A 1 , Ξ ¯ =Ω ϒ ε Λ 1 , R ¯ =Ω[R ϒ ε Λ 1 A 1 ]+ B 1 , χ=Ω[ ϒ ε X+R]+ B 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeGaeaaaaeaaaeaaceWGybGbae bacaaI9aGaeu4MdWKaamiwaiabgUcaRiaadgeadaWgaaWcbaGaaGym aaqabaGccaaISaaabaGaaGzbVdqaaiqbf65ayzaaraGaaGypaiabfM 6axjabfk9aHoaaBaaaleaacqaH1oqzaeqaaOGaeu4MdW0aaWbaaSqa beaacqGHsislcaaIXaaaaOGaaGilaaqaaaqaaiqadkfagaqeaiaai2 dacqqHPoWvcaaIBbGaamOuaiabgkHiTiabfk9aHoaaBaaaleaacqaH 1oqzaeqaaOGaeu4MdW0aaWbaaSqabeaacqGHsislcaaIXaaaaOGaam yqamaaBaaaleaacaaIXaaabeaakiaai2facqGHRaWkcaWGcbWaaSba aSqaaiaaigdaaeqaaOGaaGilaaqaaiaaywW7aeaacqaHhpWycaaI9a GaeuyQdCLaaG4waiabfk9aHoaaBaaaleaacqaH1oqzaeqaaOGaamiw aiabgUcaRiaadkfacaaIDbGaey4kaSIaamOqamaaBaaaleaacaaIXa aabeaakiaaiYcaaaaaaa@6AD1@     (13)

причем для первой системы из (1) ε=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzcaaI9aGaaGimaaaa@34E9@ , для второй " MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ ε=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzcaaI9aGaaGymaaaa@34EA@ , а для третьей " MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ ε=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzcaaI9aGaeyOeI0IaaGymaa aa@35D7@ .

Заметим, что множество матриц ϒ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHspqOdaWgaaWcbaGaeyOeI0IaaG ymaaqabaaaaa@3596@  образует поле, изоморфное полю комплексных чисел (см. [2, с. 196]), множество матриц ϒ 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHspqOdaWgaaWcbaGaaGimaaqaba aaaa@34A8@  изоморфно алгебре дуальных чисел, а множество матриц ϒ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHspqOdaWgaaWcbaGaaGymaaqaba aaaa@34A9@  изоморфно множеству матриц m n n m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqadaqaauaabeqaciaaaeaacaWGTb aabaGaamOBaaqaaiaad6gaaeaacaWGTbaaaaGaayjkaiaawMcaaaaa @3724@ , которое в свою очередь изоморфно алгебре двойных чисел. Таким образом, в равенствах (13) прослеживается тесная связь с двумерными гиперкомплексными числами.

3 Доказательство теоремы

Отметим, что метод доказательства этой теоремы разработан и апробирован в [5]. В процессе доказательства некоторые подобные вычисления будут опускаться.

Случай 1.

Здесь будет использоваться матричная система записей. Решение (5) подставим в уравнения первой системы из (1), которые затем продифференцируем по переменным y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5baaaa@32BF@  и η MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH3oaAaaa@336D@ :

                                Ξ ¯ x ¯ '(y) y ¯ '(y) =ξ χ v , Ξ ¯ η αx+ x ¯ (y) γx+ y ¯ (y) + R ¯ η =x χ v , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuqHEoawgaqeamaabmaabaqbaeqabi qaaaqaaiqadIhagaqeaiaaiEcacaaIOaGaamyEaiaaiMcaaeaaceWG 5bGbaebacaaINaGaaGikaiaadMhacaaIPaaaaaGaayjkaiaawMcaai aai2dacqaH+oaEcqaHhpWydaWgaaWcbaGaamODaaqabaGccaaISaGa aGzbVlqbf65ayzaaraWaaSbaaSqaaiabeE7aObqabaGcdaqadaqaau aabeqaceaaaeaacqaHXoqycaWG4bGaey4kaSIabmiEayaaraGaaGik aiaadMhacaaIPaaabaGaeq4SdCMaamiEaiabgUcaRiqadMhagaqeai aaiIcacaWG5bGaaGykaaaaaiaawIcacaGLPaaacqGHRaWkceWGsbGb aebadaWgaaWcbaGaeq4TdGgabeaakiaai2dacaWG4bGaeq4Xdm2aaS baaSqaaiaadAhaaeqaaOGaaGilaaaa@611A@

где u=xξ+μ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGypaiaadIhacqaH+oaEcq GHRaWkcqaH8oqBaaa@38DA@ , v=xη+yξ+ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaaGypaiaadIhacqaH3oaAcq GHRaWkcaWG5bGaeqOVdGNaey4kaSIaeqyVd4gaaa@3C69@ , откуда вытекает

                                       x Ξ ¯ x ¯ '(y) y ¯ '(y) =ξ Ξ ¯ η αx+ x ¯ (y) γx+ y ¯ (y) +ξ R ¯ η . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGafuONdGLbaebadaqadaqaau aabeqaceaaaeaaceWG4bGbaebacaaINaGaaGikaiaadMhacaaIPaaa baGabmyEayaaraGaaG4jaiaaiIcacaWG5bGaaGykaaaaaiaawIcaca GLPaaacaaI9aGaeqOVdGNafuONdGLbaebadaWgaaWcbaGaeq4TdGga beaakmaabmaabaqbaeqabiqaaaqaaiabeg7aHjaadIhacqGHRaWkce WG4bGbaebacaaIOaGaamyEaiaaiMcaaeaacqaHZoWzcaWG4bGaey4k aSIabmyEayaaraGaaGikaiaadMhacaaIPaaaaaGaayjkaiaawMcaai abgUcaRiabe67a4jqadkfagaqeamaaBaaaleaacqaH3oaAaeqaaOGa aGOlaaaa@5A04@

Дифференцируя по x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BE@ , получаем алгебраическую систему уравнений для производных x ¯ '(y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbaebacaaINaGaaGikaiaadM hacaaIPaaaaa@35EA@  и y ¯ '(y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG5bGbaebacaaINaGaaGikaiaadM hacaaIPaaaaa@35EB@ :

                                                   Ξ ¯ x ¯ '(y) y ¯ '(y) =ξ Ξ ¯ η α γ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuqHEoawgaqeamaabmaabaqbaeqabi qaaaqaaiqadIhagaqeaiaaiEcacaaIOaGaamyEaiaaiMcaaeaaceWG 5bGbaebacaaINaGaaGikaiaadMhacaaIPaaaaaGaayjkaiaawMcaai aai2dacqaH+oaEcuqHEoawgaqeamaaBaaaleaacqaH3oaAaeqaaOWa aeWaaeaafaqabeGabaaabaGaeqySdegabaGaeq4SdCgaaaGaayjkai aawMcaaiaai6caaaa@48E2@                                                        (14)

Как сказано выше, матрица Ξ ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuqHEoawgaqeaaaa@335D@  невырождена, поэтому система (14) имеет единственное решение, в котором зафиксируем переменные ξ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEaaa@3384@ , η MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH3oaAaaa@336D@ , μ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBaaa@3377@ , ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBaaa@3379@ , ρ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHbpGCaaa@3381@ , τ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDaaa@3386@ :

                                      x ¯ '(y)=β=const, y ¯ '(y)=δ=const. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbaebacaaINaGaaGikaiaadM hacaaIPaGaaGypaiabek7aIjaai2dacaWGJbGaam4Baiaad6gacaWG ZbGaamiDaiaaiYcacaaMf8UabmyEayaaraGaaG4jaiaaiIcacaWG5b GaaGykaiaai2dacqaH0oazcaaI9aGaam4yaiaad+gacaWGUbGaam4C aiaadshacaaIUaaaaa@4CF2@

Интегрируя эти уравнения и возвращаясь в (5), будем иметь X ¯ =ΛX+ A 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGybGbaebacaaI9aGaeu4MdWKaam iwaiabgUcaRiaadgeadaWgaaWcbaGaaGymaaqabaaaaa@385E@ , причём согласно первому из условий (2) матрица Λ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHBoataaa@3336@  невырождена. Подставляя найденное в систему (1), получаем:

                                                          Ξ ˜ X+ R ˜ =χ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuqHEoawgaacaiaadIfacqGHRaWkce WGsbGbaGaacaaI9aGaeq4XdmMaaGilaaaa@392D@                                                               (15)

где Ξ ˜ = Ξ ¯ Λ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuqHEoawgaacaiaai2dacuqHEoawga qeaiabfU5ambaa@372C@ , R ˜ = R ¯ + Ξ ¯ A 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGsbGbaGaacaaI9aGabmOuayaara Gaey4kaSIafuONdGLbaebacaWGbbWaaSbaaSqaaiaaigdaaeqaaaaa @3888@ .

Далее, продифференцируем (15) по переменным ξ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEaaa@3384@ , η MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH3oaAaaa@336D@ , μ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBaaa@3377@ , ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBaaa@3379@ :

      Ξ ˜ ξ X+ R ˜ ξ =x χ u +y χ v , Ξ ˜ η X+ R ˜ η =x χ v , Ξ ˜ μ X+ R ˜ μ = χ u , Ξ ˜ ν X+ R ˜ ν = χ v . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuqHEoawgaacamaaBaaaleaacqaH+o aEaeqaaOGaamiwaiabgUcaRiqadkfagaacamaaBaaaleaacqaH+oaE aeqaaOGaaGypaiaadIhacqaHhpWydaWgaaWcbaGaamyDaaqabaGccq GHRaWkcaWG5bGaeq4Xdm2aaSbaaSqaaiaadAhaaeqaaOGaaGilaiaa ywW7cuqHEoawgaacamaaBaaaleaacqaH3oaAaeqaaOGaamiwaiabgU caRiqadkfagaacamaaBaaaleaacqaH3oaAaeqaaOGaaGypaiaadIha cqaHhpWydaWgaaWcbaGaamODaaqabaGccaaISaGaaGzbVlqbf65ayz aaiaWaaSbaaSqaaiabeY7aTbqabaGccaWGybGaey4kaSIabmOuayaa iaWaaSbaaSqaaiabeY7aTbqabaGccaaI9aGaeq4Xdm2aaSbaaSqaai aadwhaaeqaaOGaaGilaiaaywW7cuqHEoawgaacamaaBaaaleaacqaH 9oGBaeqaaOGaamiwaiabgUcaRiqadkfagaacamaaBaaaleaacqaH9o GBaeqaaOGaaGypaiabeE8aJnaaBaaaleaacaWG2baabeaakiaai6ca aaa@6F0B@

Второе и четвёртое соотношения, а также первое, третье и четвёртое, связаны следующими соотношениями:

               Ξ ˜ ξ X+ R ˜ ξ =x Ξ ˜ μ X+x R ˜ μ +y Ξ ˜ ν X+y R ˜ ν , Ξ ˜ η X+ R ˜ η =x Ξ ˜ ν X+x R ˜ ν . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuqHEoawgaacamaaBaaaleaacqaH+o aEaeqaaOGaamiwaiabgUcaRiqadkfagaacamaaBaaaleaacqaH+oaE aeqaaOGaaGypaiaadIhacuqHEoawgaacamaaBaaaleaacqaH8oqBae qaaOGaamiwaiabgUcaRiaadIhaceWGsbGbaGaadaWgaaWcbaGaeqiV d0gabeaakiabgUcaRiaadMhacuqHEoawgaacamaaBaaaleaacqaH9o GBaeqaaOGaamiwaiabgUcaRiaadMhaceWGsbGbaGaadaWgaaWcbaGa eqyVd4gabeaakiaaiYcacaaMf8UafuONdGLbaGaadaWgaaWcbaGaeq 4TdGgabeaakiaadIfacqGHRaWkceWGsbGbaGaadaWgaaWcbaGaeq4T dGgabeaakiaai2dacaWG4bGafuONdGLbaGaadaWgaaWcbaGaeqyVd4 gabeaakiaadIfacqGHRaWkcaWG4bGabmOuayaaiaWaaSbaaSqaaiab e27aUbqabaGccaaIUaaaaa@657B@

Далее, сравнивая коэффициенты перед одинаковыми степенями переменных x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BE@  и y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5baaaa@32BF@ , будем иметь

           ξ ˜ ν = μ ˜ ν = ξ ˜ μ = μ ˜ μ = η ˜ ν = ν ˜ ν = η ˜ μ = ν ˜ μ = μ ˜ η = ν ˜ η = ρ ˜ ξ = ρ ˜ η = τ ˜ ξ = τ ˜ η =0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaH+oaEgaacamaaBaaaleaacqaH9o GBaeqaaOGaaGypaiqbeY7aTzaaiaWaaSbaaSqaaiabe27aUbqabaGc caaI9aGafqOVdGNbaGaadaWgaaWcbaGaeqiVd0gabeaakiaai2dacu aH8oqBgaacamaaBaaaleaacqaH8oqBaeqaaOGaaGypaiqbeE7aOzaa iaWaaSbaaSqaaiabe27aUbqabaGccaaI9aGafqyVd4MbaGaadaWgaa WcbaGaeqyVd4gabeaakiaai2dacuaH3oaAgaacamaaBaaaleaacqaH 8oqBaeqaaOGaaGypaiqbe27aUzaaiaWaaSbaaSqaaiabeY7aTbqaba GccaaI9aGafqiVd0MbaGaadaWgaaWcbaGaeq4TdGgabeaakiaai2da cuaH9oGBgaacamaaBaaaleaacqaH3oaAaeqaaOGaaGypaiqbeg8aYz aaiaWaaSbaaSqaaiabe67a4bqabaGccaaI9aGafqyWdiNbaGaadaWg aaWcbaGaeq4TdGgabeaakiaai2dacuaHepaDgaacamaaBaaaleaacq aH+oaEaeqaaOGaaGypaiqbes8a0zaaiaWaaSbaaSqaaiabeE7aObqa baGccaaI9aGaaGimaiaai6caaaa@71FB@

С учётом последнего, в (15) дифференцируем по μ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBaaa@3377@  и ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBaaa@3379@ :

                                    ρ ˜ μ = χ u 1 , ρ ˜ ν = χ v 1 , τ ˜ μ = χ u 2 , τ ˜ ν = χ v 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaHbpGCgaacamaaBaaaleaacqaH8o qBaeqaaOGaaGypaiabeE8aJnaaDaaaleaacaWG1baabaGaaGymaaaa kiaaiYcacaaMf8UafqyWdiNbaGaadaWgaaWcbaGaeqyVd4gabeaaki aai2dacqaHhpWydaqhaaWcbaGaamODaaqaaiaaigdaaaGccaaISaGa aGzbVlqbes8a0zaaiaWaaSbaaSqaaiabeY7aTbqabaGccaaI9aGaeq 4Xdm2aa0baaSqaaiaadwhaaeaacaaIYaaaaOGaaGilaiaaywW7cuaH epaDgaacamaaBaaaleaacqaH9oGBaeqaaOGaaGypaiabeE8aJnaaDa aaleaacaWG2baabaGaaGOmaaaakiaai6caaaa@59EB@

Интегрируя, получаем четвёртое равенство из (13) при ε=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzcaaI9aGaaGimaaaa@34E9@ . Затем найденное подставляя в (15), получаем остальные равенства из (13) при ε=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzcaaI9aGaaGimaaaa@34E9@ .

Решение (5) подставим теперь в уравнения второй системы из (1), где u=xξ+μ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGypaiaadIhacqaH+oaEcq GHRaWkcqaH8oqBaaa@38DA@ , v=yη+ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaaGypaiaadMhacqaH3oaAcq GHRaWkcqaH9oGBaaa@38C7@ . Затем, дифференцируя по x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BE@  и y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5baaaa@32BF@ , получаем χ uv i =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHhpWydaqhaaWcbaGaamyDaiaadA haaeaacaWGPbaaaOGaaGypaiaaicdaaaa@3813@ , следовательно,

                              χ i = P i (xξ+μ,ρ,τ)+ Q i (yη+ν,ρ,τ),i=1,2. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHhpWydaahaaWcbeqaaiaadMgaaa GccaaI9aGaamiuamaaCaaaleqabaGaamyAaaaakiaaiIcacaWG4bGa eqOVdGNaey4kaSIaeqiVd0MaaGilaiabeg8aYjaaiYcacqaHepaDca aIPaGaey4kaSIaamyuamaaCaaaleqabaGaamyAaaaakiaaiIcacaWG 5bGaeq4TdGMaey4kaSIaeqyVd4MaaGilaiabeg8aYjaaiYcacqaHep aDcaaIPaGaaGilaiaaywW7caWGPbGaaGypaiaaigdacaaISaGaaGOm aiaai6caaaa@5861@

Далее возвращаясь к системе (1), с учётом (5) будем иметь

   P i (xξ+μ,ρ,τ)= p i (ρ,τ)(xξ+μ),α ξ ¯ +γ μ ¯ =ξ p 1 (ρ,τ),α η ¯ +γ ν ¯ =ξ p 2 (ρ,τ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGqbWaaWbaaSqabeaacaWGPbaaaO GaaGikaiaadIhacqaH+oaEcqGHRaWkcqaH8oqBcaaISaGaeqyWdiNa aGilaiabes8a0jaaiMcacaaI9aGaamiCamaaCaaaleqabaGaamyAaa aakiaaiIcacqaHbpGCcaaISaGaeqiXdqNaaGykaiaaiIcacaWG4bGa eqOVdGNaey4kaSIaeqiVd0MaaGykaiaaiYcacaaMf8UaeqySdeMafq OVdGNbaebacqGHRaWkcqaHZoWzcuaH8oqBgaqeaiaai2dacqaH+oaE caWGWbWaaWbaaSqabeaacaaIXaaaaOGaaGikaiabeg8aYjaaiYcacq aHepaDcaaIPaGaaGilaiaaywW7cqaHXoqycuaH3oaAgaqeaiabgUca Riabeo7aNjqbe27aUzaaraGaaGypaiabe67a4jaadchadaahaaWcbe qaaiaaikdaaaGccaaIOaGaeqyWdiNaaGilaiabes8a0jaaiMcacaaI Uaaaaa@7797@

Тогда система (1) принимает следующий вид:

                                           Ξ ¯ x ¯ (y) y ¯ (y) + R ¯ = Q 1 Q 2 +μ p 1 p 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuqHEoawgaqeamaabmaabaqbaeqabi qaaaqaaiqadIhagaqeaiaaiIcacaWG5bGaaGykaaqaaiqadMhagaqe aiaaiIcacaWG5bGaaGykaaaaaiaawIcacaGLPaaacqGHRaWkceWGsb GbaebacaaI9aWaaeWaaeaafaqabeGabaaabaGaamyuamaaCaaaleqa baGaaGymaaaaaOqaaiaadgfadaahaaWcbeqaaiaaikdaaaaaaaGcca GLOaGaayzkaaGaey4kaSIaeqiVd02aaeWaaeaafaqabeGabaaabaGa amiCamaaCaaaleqabaGaaGymaaaaaOqaaiaadchadaahaaWcbeqaai aaikdaaaaaaaGccaGLOaGaayzkaaGaaGOlaaaa@4C58@                                                (16)

Затем, дифференцируя по y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5baaaa@32BF@  и ξ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEaaa@3384@ , учитывая первое неравенство из (2), с точностью до переобозначения получаем y ¯ '(y)=a x ¯ '(y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG5bGbaebacaaINaGaaGikaiaadM hacaaIPaGaaGypaiaadggaceWG4bGbaebacaaINaGaaGikaiaadMha caaIPaaaaa@3BC1@ .

С учетом найденного продифференцируем систему (16) по переменным y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5baaaa@32BF@  и η MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH3oaAaaa@336D@ :

                      x ¯ '(y)( ξ ¯ +a μ ¯ )=η Q v 1 , x ¯ (y)( ξ ¯ η +a μ ¯ η )+ ρ ¯ η =y Q v 1 , x ¯ '(y)( η ¯ +a ν ¯ )=η Q v 2 , x ¯ (y)( η ¯ η +a ν ¯ η )+ τ ¯ η =y Q v 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeGaeaaaaeaaaeaaceWG4bGbae bacaaINaGaaGikaiaadMhacaaIPaGaaGikaiqbe67a4zaaraGaey4k aSIaamyyaiqbeY7aTzaaraGaaGykaiaai2dacqaH3oaAcaWGrbWaa0 baaSqaaiaadAhaaeaacaaIXaaaaOGaaGilaaqaaiaaywW7aeaaceWG 4bGbaebacaaIOaGaamyEaiaaiMcacaaIOaGafqOVdGNbaebadaWgaa WcbaGaeq4TdGgabeaakiabgUcaRiaadggacuaH8oqBgaqeamaaBaaa leaacqaH3oaAaeqaaOGaaGykaiabgUcaRiqbeg8aYzaaraWaaSbaaS qaaiabeE7aObqabaGccaaI9aGaamyEaiaadgfadaqhaaWcbaGaamOD aaqaaiaaigdaaaGccaaISaaabaaabaGabmiEayaaraGaaG4jaiaaiI cacaWG5bGaaGykaiaaiIcacuaH3oaAgaqeaiabgUcaRiaadggacuaH 9oGBgaqeaiaaiMcacaaI9aGaeq4TdGMaamyuamaaDaaaleaacaWG2b aabaGaaGOmaaaakiaaiYcaaeaacaaMf8oabaGabmiEayaaraGaaGik aiaadMhacaaIPaGaaGikaiqbeE7aOzaaraWaaSbaaSqaaiabeE7aOb qabaGccqGHRaWkcaWGHbGafqyVd4MbaebadaWgaaWcbaGaeq4TdGga beaakiaaiMcacqGHRaWkcuaHepaDgaqeamaaBaaaleaacqaH3oaAae qaaOGaaGypaiaadMhacaWGrbWaa0baaSqaaiaadAhaaeaacaaIYaaa aOGaaGilaaaaaaa@867D@

откуда получаем следуют дифференциальные уравнения

   y x ¯ '(y)( ξ ¯ +a μ ¯ )=η x ¯ (y)( ξ ¯ η +a μ ¯ η )+η ρ ¯ η ,y x ¯ '(y)( η ¯ +a ν ¯ )=η x ¯ (y)( η ¯ η +a ν ¯ η )+η τ ¯ η , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5bGabmiEayaaraGaaG4jaiaaiI cacaWG5bGaaGykaiaaiIcacuaH+oaEgaqeaiabgUcaRiaadggacuaH 8oqBgaqeaiaaiMcacaaI9aGaeq4TdGMabmiEayaaraGaaGikaiaadM hacaaIPaGaaGikaiqbe67a4zaaraWaaSbaaSqaaiabeE7aObqabaGc cqGHRaWkcaWGHbGafqiVd0MbaebadaWgaaWcbaGaeq4TdGgabeaaki aaiMcacqGHRaWkcqaH3oaAcuaHbpGCgaqeamaaBaaaleaacqaH3oaA aeqaaOGaaGilaiaaywW7caWG5bGabmiEayaaraGaaG4jaiaaiIcaca WG5bGaaGykaiaaiIcacuaH3oaAgaqeaiabgUcaRiaadggacuaH9oGB gaqeaiaaiMcacaaI9aGaeq4TdGMabmiEayaaraGaaGikaiaadMhaca aIPaGaaGikaiqbeE7aOzaaraWaaSbaaSqaaiabeE7aObqabaGccqGH RaWkcaWGHbGafqyVd4MbaebadaWgaaWcbaGaeq4TdGgabeaakiaaiM cacqGHRaWkcqaH3oaAcuaHepaDgaqeamaaBaaaleaacqaH3oaAaeqa aOGaaGilaaaa@7A2A@

которые имеют решения

                                          x ¯ (y)=βy+ a 1 , y ¯ (y)=δy+ a 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbaebacaaIOaGaamyEaiaaiM cacaaI9aGaeqOSdiMaamyEaiabgUcaRiaadggadaWgaaWcbaGaaGym aaqabaGccaaISaGaaGzbVlqadMhagaqeaiaaiIcacaWG5bGaaGykai aai2dacqaH0oazcaWG5bGaey4kaSIaamyyamaaBaaaleaacaaIYaaa beaakiaai6caaaa@47F1@

Тогда получаем X ¯ =ΛX+ A 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGybGbaebacaaI9aGaeu4MdWKaam iwaiabgUcaRiaadgeadaWgaaWcbaGaaGymaaqabaaaaa@385E@ , причём согласно первому из условий (2) матрица Λ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHBoataaa@3336@  невырождена. Подставляя найденное в систему (1), имеем тождество (15), в котором u=xξ+μ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGypaiaadIhacqaH+oaEcq GHRaWkcqaH8oqBaaa@38DA@ , v=yη+ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaaGypaiaadMhacqaH3oaAcq GHRaWkcqaH9oGBaaa@38C7@ .

Равенство (15), в котором u=xξ+μ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGypaiaadIhacqaH+oaEcq GHRaWkcqaH8oqBaaa@38DA@ , v=yη+ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaaGypaiaadMhacqaH3oaAcq GHRaWkcqaH9oGBaaa@38C7@ , продифференцируем по ξ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEaaa@3384@ , η MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH3oaAaaa@336D@ , μ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBaaa@3377@ , ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBaaa@3379@ :

           Ξ ˜ ξ X+ R ˜ ξ =x χ u , Ξ ˜ η X+ R ˜ η =y χ v , Ξ ˜ μ X+ R ˜ μ = χ u , Ξ ˜ ν X+ R ˜ ν = χ v . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuqHEoawgaacamaaBaaaleaacqaH+o aEaeqaaOGaamiwaiabgUcaRiqadkfagaacamaaBaaaleaacqaH+oaE aeqaaOGaaGypaiaadIhacqaHhpWydaWgaaWcbaGaamyDaaqabaGcca aISaGaaGzbVlqbf65ayzaaiaWaaSbaaSqaaiabeE7aObqabaGccaWG ybGaey4kaSIabmOuayaaiaWaaSbaaSqaaiabeE7aObqabaGccaaI9a GaamyEaiabeE8aJnaaBaaaleaacaWG2baabeaakiaaiYcacaaMf8Ua fuONdGLbaGaadaWgaaWcbaGaeqiVd0gabeaakiaadIfacqGHRaWkce WGsbGbaGaadaWgaaWcbaGaeqiVd0gabeaakiaai2dacqaHhpWydaWg aaWcbaGaamyDaaqabaGccaaISaGaaGzbVlqbf65ayzaaiaWaaSbaaS qaaiabe27aUbqabaGccaWGybGaey4kaSIabmOuayaaiaWaaSbaaSqa aiabe27aUbqabaGccaaI9aGaeq4Xdm2aaSbaaSqaaiaadAhaaeqaaO GaaGOlaaaa@6A44@

Первое и третье соотношения, а также второе и четвёртое связаны следующим образом:

                          Ξ ˜ ξ X+ R ˜ ξ =x Ξ ˜ μ X+x R ˜ μ , Ξ ˜ η X+ R ˜ η =y Ξ ˜ ν X+y R ˜ ν . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuqHEoawgaacamaaBaaaleaacqaH+o aEaeqaaOGaamiwaiabgUcaRiqadkfagaacamaaBaaaleaacqaH+oaE aeqaaOGaaGypaiaadIhacuqHEoawgaacamaaBaaaleaacqaH8oqBae qaaOGaamiwaiabgUcaRiaadIhaceWGsbGbaGaadaWgaaWcbaGaeqiV d0gabeaakiaaiYcacaaMf8UafuONdGLbaGaadaWgaaWcbaGaeq4TdG gabeaakiaadIfacqGHRaWkceWGsbGbaGaadaWgaaWcbaGaeq4TdGga beaakiaai2dacaWG5bGafuONdGLbaGaadaWgaaWcbaGaeqyVd4gabe aakiaadIfacqGHRaWkcaWG5bGabmOuayaaiaWaaSbaaSqaaiabe27a UbqabaGccaaIUaaaaa@5A8B@

Далее, сравнивая коэффициенты перед одинаковыми степенями переменных x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BE@  и y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5baaaa@32BF@ , будем иметь

   ξ ˜ ν = μ ˜ ν = ξ ˜ μ = μ ˜ μ = η ˜ ν = ν ˜ ν = η ˜ μ = ν ˜ μ = ξ ˜ η = ρ ˜ η = ρ ˜ ξ = μ ˜ ξ = η ˜ η = τ ˜ η = ν ˜ ξ = τ ˜ ξ =0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaH+oaEgaacamaaBaaaleaacqaH9o GBaeqaaOGaaGypaiqbeY7aTzaaiaWaaSbaaSqaaiabe27aUbqabaGc caaI9aGafqOVdGNbaGaadaWgaaWcbaGaeqiVd0gabeaakiaai2dacu aH8oqBgaacamaaBaaaleaacqaH8oqBaeqaaOGaaGypaiqbeE7aOzaa iaWaaSbaaSqaaiabe27aUbqabaGccaaI9aGafqyVd4MbaGaadaWgaa WcbaGaeqyVd4gabeaakiaai2dacuaH3oaAgaacamaaBaaaleaacqaH 8oqBaeqaaOGaaGypaiqbe27aUzaaiaWaaSbaaSqaaiabeY7aTbqaba GccaaI9aGafqOVdGNbaGaadaWgaaWcbaGaeq4TdGgabeaakiaai2da cuaHbpGCgaacamaaBaaaleaacqaH3oaAaeqaaOGaaGypaiqbeg8aYz aaiaWaaSbaaSqaaiabe67a4bqabaGccaaI9aGafqiVd0MbaGaadaWg aaWcbaGaeqOVdGhabeaakiaai2dacuaH3oaAgaacamaaBaaaleaacq aH3oaAaeqaaOGaaGypaiqbes8a0zaaiaWaaSbaaSqaaiabeE7aObqa baGccaaI9aGafqyVd4MbaGaadaWgaaWcbaGaeqOVdGhabeaakiaai2 dacuaHepaDgaacamaaBaaaleaacqaH+oaEaeqaaOGaaGypaiaaicda caaISaaaaa@7B06@

                                     ρ ˜ ν = μ ˜ η , ξ ˜ ξ = ρ ˜ μ , ν ˜ η = τ ˜ ν , τ ˜ μ = η ˜ ξ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaHbpGCgaacamaaBaaaleaacqaH9o GBaeqaaOGaaGypaiqbeY7aTzaaiaWaaSbaaSqaaiabeE7aObqabaGc caaISaGaaGzbVlqbe67a4zaaiaWaaSbaaSqaaiabe67a4bqabaGcca aI9aGafqyWdiNbaGaadaWgaaWcbaGaeqiVd0gabeaakiaaiYcacaaM f8UafqyVd4MbaGaadaWgaaWcbaGaeq4TdGgabeaakiaai2dacuaHep aDgaacamaaBaaaleaacqaH9oGBaeqaaOGaaGilaiaaywW7cuaHepaD gaacamaaBaaaleaacqaH8oqBaeqaaOGaaGypaiqbeE7aOzaaiaWaaS baaSqaaiabe67a4bqabaGccaaIUaaaaa@5A2A@

С учётом последнего ещё получаем

                                    ρ ˜ μ = χ u 1 , ρ ˜ ν = χ v 1 , τ ˜ μ = χ u 2 , τ ˜ ν = χ v 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaHbpGCgaacamaaBaaaleaacqaH8o qBaeqaaOGaaGypaiabeE8aJnaaDaaaleaacaWG1baabaGaaGymaaaa kiaaiYcacaaMf8UafqyWdiNbaGaadaWgaaWcbaGaeqyVd4gabeaaki aai2dacqaHhpWydaqhaaWcbaGaamODaaqaaiaaigdaaaGccaaISaGa aGzbVlqbes8a0zaaiaWaaSbaaSqaaiabeY7aTbqabaGccaaI9aGaeq 4Xdm2aa0baaSqaaiaadwhaaeaacaaIYaaaaOGaaGilaiaaywW7cuaH epaDgaacamaaBaaaleaacqaH9oGBaeqaaOGaaGypaiabeE8aJnaaDa aaleaacaWG2baabaGaaGOmaaaakiaai6caaaa@59EB@

Интегрируя найденное, затем подставляя в (15), окончательно получаем (13) при ε=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzcaaI9aGaaGymaaaa@34EA@ . Наконец, решение (5) подставим в уравнения третьей системы из (1) (напомним, что u=xξyη+μ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGypaiaadIhacqaH+oaEcq GHsislcaWG5bGaeq4TdGMaey4kaSIaeqiVd0gaaa@3C71@ , v=xη+yξ+ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaaGypaiaadIhacqaH3oaAcq GHRaWkcaWG5bGaeqOVdGNaey4kaSIaeqyVd4gaaa@3C69@  ), которые затем продифференцируем по x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BE@ , ξ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEaaa@3384@ , μ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBaaa@3377@ , ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBaaa@3379@ :

            Ξ ¯ η αx+ x ¯ (y) γx+ y ¯ (y) + R ¯ η =y χ u +x χ v , Ξ ¯ ξ αx+ x ¯ (y) γx+ y ¯ (y) + R ¯ ξ =x χ u +y χ v , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuqHEoawgaqeamaaBaaaleaacqaH3o aAaeqaaOWaaeWaaeaafaqabeGabaaabaGaeqySdeMaamiEaiabgUca RiqadIhagaqeaiaaiIcacaWG5bGaaGykaaqaaiabeo7aNjaadIhacq GHRaWkceWG5bGbaebacaaIOaGaamyEaiaaiMcaaaaacaGLOaGaayzk aaGaey4kaSIabmOuayaaraWaaSbaaSqaaiabeE7aObqabaGccaaI9a GaeyOeI0IaamyEaiabeE8aJnaaBaaaleaacaWG1baabeaakiabgUca RiaadIhacqaHhpWydaWgaaWcbaGaamODaaqabaGccaaISaGaaGzbVl qbf65ayzaaraWaaSbaaSqaaiabe67a4bqabaGcdaqadaqaauaabeqa ceaaaeaacqaHXoqycaWG4bGaey4kaSIabmiEayaaraGaaGikaiaadM hacaaIPaaabaGaeq4SdCMaamiEaiabgUcaRiqadMhagaqeaiaaiIca caWG5bGaaGykaaaaaiaawIcacaGLPaaacqGHRaWkceWGsbGbaebada WgaaWcbaGaeqOVdGhabeaakiaai2dacaWG4bGaeq4Xdm2aaSbaaSqa aiaadwhaaeqaaOGaey4kaSIaamyEaiabeE8aJnaaBaaaleaacaWG2b aabeaakiaaiYcaaaa@7634@

                          Ξ ¯ μ αx+ x ¯ (y) γx+ y ¯ (y) + R ¯ μ = χ u , Ξ ¯ ν αx+ x ¯ (y) γx+ y ¯ (y) + R ¯ ν = χ v , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuqHEoawgaqeamaaBaaaleaacqaH8o qBaeqaaOWaaeWaaeaafaqabeGabaaabaGaeqySdeMaamiEaiabgUca RiqadIhagaqeaiaaiIcacaWG5bGaaGykaaqaaiabeo7aNjaadIhacq GHRaWkceWG5bGbaebacaaIOaGaamyEaiaaiMcaaaaacaGLOaGaayzk aaGaey4kaSIabmOuayaaraWaaSbaaSqaaiabeY7aTbqabaGccaaI9a Gaeq4Xdm2aaSbaaSqaaiaadwhaaeqaaOGaaGilaiaayIW7cuqHEoaw gaqeamaaBaaaleaacqaH9oGBaeqaaOWaaeWaaeaafaqabeGabaaaba GaeqySdeMaamiEaiabgUcaRiqadIhagaqeaiaaiIcacaWG5bGaaGyk aaqaaiabeo7aNjaadIhacqGHRaWkceWG5bGbaebacaaIOaGaamyEai aaiMcaaaaacaGLOaGaayzkaaGaey4kaSIabmOuayaaraWaaSbaaSqa aiabe27aUbqabaGccaaI9aGaeq4Xdm2aaSbaaSqaaiaadAhaaeqaaO GaaGilaaaa@69BF@

откуда следуют равенства

                              Ξ ¯ μ α γ = Ξ ¯ ν α γ = Ξ ¯ μ x ¯ '(y) y ¯ '(y) = Ξ ¯ ν x ¯ '(y) y ¯ '(y) =0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuqHEoawgaqeamaaBaaaleaacqaH8o qBaeqaaOWaaeWaaeaafaqabeGabaaabaGaeqySdegabaGaeq4SdCga aaGaayjkaiaawMcaaiaai2dacuqHEoawgaqeamaaBaaaleaacqaH9o GBaeqaaOWaaeWaaeaafaqabeGabaaabaGaeqySdegabaGaeq4SdCga aaGaayjkaiaawMcaaiaai2dacuqHEoawgaqeamaaBaaaleaacqaH8o qBaeqaaOWaaeWaaeaafaqabeGabaaabaGabmiEayaaraGaaG4jaiaa iIcacaWG5bGaaGykaaqaaiqadMhagaqeaiaaiEcacaaIOaGaamyEai aaiMcaaaaacaGLOaGaayzkaaGaaGypaiqbf65ayzaaraWaaSbaaSqa aiabe27aUbqabaGcdaqadaqaauaabeqaceaaaeaaceWG4bGbaebaca aINaGaaGikaiaadMhacaaIPaaabaGabmyEayaaraGaaG4jaiaaiIca caWG5bGaaGykaaaaaiaawIcacaGLPaaacaaI9aGaaGimaiaai6caaa a@61FD@

Интегрируя найденное по μ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBaaa@3377@  и ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBaaa@3379@ , после чего разделяя переменные, получаем

                                      x ¯ '(y)=β=const, y ¯ '(y)=δ=const; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbaebacaaINaGaaGikaiaadM hacaaIPaGaaGypaiabek7aIjaai2dacaWGJbGaam4Baiaad6gacaWG ZbGaamiDaiaaiYcacaaMf8UabmyEayaaraGaaG4jaiaaiIcacaWG5b GaaGykaiaai2dacqaH0oazcaaI9aGaam4yaiaad+gacaWGUbGaam4C aiaadshacaaI7aaaaa@4CFF@

следовательно, X ¯ =ΛX+ A 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGybGbaebacaaI9aGaeu4MdWKaam iwaiabgUcaRiaadgeadaWgaaWcbaGaaGymaaqabaaaaa@385E@ , где матрица Λ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHBoataaa@3336@  невырождена. Подставляя найденное в систему (1), имеем равенство (15), в котором u=xξyη+μ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGypaiaadIhacqaH+oaEcq GHsislcaWG5bGaeq4TdGMaey4kaSIaeqiVd0gaaa@3C71@ , v=xξ+yη+ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaaGypaiaadIhacqaH+oaEcq GHRaWkcaWG5bGaeq4TdGMaey4kaSIaeqyVd4gaaa@3C69@ . Далее, дифференцируя (15) по переменным ξ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEaaa@3384@ , η MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH3oaAaaa@336D@ , μ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBaaa@3377@ , ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBaaa@3379@ , после чего рассуждая как выше, получаем

                   ξ ˜ ν = μ ˜ ν = ξ ˜ μ = μ ˜ μ = η ˜ ν = ν ˜ ν = η ˜ μ = ν ˜ μ = ρ ˜ ξ = ρ ˜ η = τ ˜ ξ = τ ˜ η =0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaH+oaEgaacamaaBaaaleaacqaH9o GBaeqaaOGaaGypaiqbeY7aTzaaiaWaaSbaaSqaaiabe27aUbqabaGc caaI9aGafqOVdGNbaGaadaWgaaWcbaGaeqiVd0gabeaakiaai2dacu aH8oqBgaacamaaBaaaleaacqaH8oqBaeqaaOGaaGypaiqbeE7aOzaa iaWaaSbaaSqaaiabe27aUbqabaGccaaI9aGafqyVd4MbaGaadaWgaa WcbaGaeqyVd4gabeaakiaai2dacuaH3oaAgaacamaaBaaaleaacqaH 8oqBaeqaaOGaaGypaiqbe27aUzaaiaWaaSbaaSqaaiabeY7aTbqaba GccaaI9aGafqyWdiNbaGaadaWgaaWcbaGaeqOVdGhabeaakiaai2da cuaHbpGCgaacamaaBaaaleaacqaH3oaAaeqaaOGaaGypaiqbes8a0z aaiaWaaSbaaSqaaiabe67a4bqabaGccaaI9aGafqiXdqNbaGaadaWg aaWcbaGaeq4TdGgabeaakiaai2dacaaIWaGaaGilaaaa@691B@

                 ρ ˜ μ = μ ˜ η , ρ ˜ ν = ξ ˜ η , ρ ˜ μ = ξ ˜ ξ , ρ ˜ ν = μ ˜ ξ , τ ˜ μ = ν ˜ η , τ ˜ ν = η ˜ η , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaHbpGCgaacamaaBaaaleaacqaH8o qBaeqaaOGaaGypaiabgkHiTiqbeY7aTzaaiaWaaSbaaSqaaiabeE7a ObqabaGccaaISaGaaGzbVlqbeg8aYzaaiaWaaSbaaSqaaiabe27aUb qabaGccaaI9aGafqOVdGNbaGaadaWgaaWcbaGaeq4TdGgabeaakiaa iYcacaaMf8UafqyWdiNbaGaadaWgaaWcbaGaeqiVd0gabeaakiaai2 dacuaH+oaEgaacamaaBaaaleaacqaH+oaEaeqaaOGaaGilaiaaywW7 cuaHbpGCgaacamaaBaaaleaacqaH9oGBaeqaaOGaaGypaiqbeY7aTz aaiaWaaSbaaSqaaiabe67a4bqabaGccaaISaGaaGzbVlqbes8a0zaa iaWaaSbaaSqaaiabeY7aTbqabaGccaaI9aGaeyOeI0IafqyVd4MbaG aadaWgaaWcbaGaeq4TdGgabeaakiaaiYcacaaMf8UafqiXdqNbaGaa daWgaaWcbaGaeqyVd4gabeaakiaai2dacuaH3oaAgaacamaaBaaale aacqaH3oaAaeqaaOGaaGilaaaa@70EB@

                    τ ˜ μ = η ˜ ξ , τ ˜ ν = ν ˜ ξ , ρ ˜ μ = χ u 1 , ρ ˜ ν = χ v 1 , τ ˜ μ = χ u 2 , τ ˜ ν = χ v 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaHepaDgaacamaaBaaaleaacqaH8o qBaeqaaOGaaGypaiqbeE7aOzaaiaWaaSbaaSqaaiabe67a4bqabaGc caaISaGaaGzbVlqbes8a0zaaiaWaaSbaaSqaaiabe27aUbqabaGcca aI9aGafqyVd4MbaGaadaWgaaWcbaGaeqOVdGhabeaakiaaiYcacaaM f8UafqyWdiNbaGaadaWgaaWcbaGaeqiVd0gabeaakiaai2dacqaHhp WydaqhaaWcbaGaamyDaaqaaiaaigdaaaGccaaISaGaaGzbVlqbeg8a YzaaiaWaaSbaaSqaaiabe27aUbqabaGccaaI9aGaeq4Xdm2aa0baaS qaaiaadAhaaeaacaaIXaaaaOGaaGilaiaaywW7cuaHepaDgaacamaa BaaaleaacqaH8oqBaeqaaOGaaGypaiabeE8aJnaaDaaaleaacaWG1b aabaGaaGOmaaaakiaaiYcacaaMf8UafqiXdqNbaGaadaWgaaWcbaGa eqyVd4gabeaakiaai2dacqaHhpWydaqhaaWcbaGaamODaaqaaiaaik daaaGccaaIUaaaaa@6EF7@

Проинтегрируя полученное и подставив в (15), получим (13) при ε=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzcaaI9aGaeyOeI0IaaGymaa aa@35D7@ .

Случай 2.

Теперь подставим решение (6) в уравнения первой системы из (1), которые затем продифференцируем по переменным y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5baaaa@32BF@  и η MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH3oaAaaa@336D@ :

( x ¯ '(y) ξ ¯ + y ¯ '(y) μ ¯ ) e ax =ξ χ v 1 , x ¯ (y) e ax α a ξ ¯ η + y ¯ (y) e ax γ a μ ¯ η + ρ ¯ η =x χ v 1 , ( x ¯ '(y) η ¯ + y ¯ '(y) ν ¯ ) e ax =ξ χ v 2 , x ¯ (y) e ax α a η ¯ η + y ¯ (y) e ax γ a ν ¯ η + τ ¯ η =x χ v 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeGaeaaaaeaaaeaacaaIOaGabm iEayaaraGaaG4jaiaaiIcacaWG5bGaaGykaiqbe67a4zaaraGaey4k aSIabmyEayaaraGaaG4jaiaaiIcacaWG5bGaaGykaiqbeY7aTzaara GaaGykaiaadwgadaahaaWcbeqaaiaadggacaWG4baaaOGaaGypaiab e67a4jabeE8aJnaaDaaaleaacaWG2baabaGaaGymaaaakiaaiYcaae aacaaMf8oabaWaaeWaaeaaceWG4bGbaebacaaIOaGaamyEaiaaiMca caWGLbWaaWbaaSqabeaacaWGHbGaamiEaaaakiabgkHiTmaalaaaba GaeqySdegabaGaamyyaaaaaiaawIcacaGLPaaacuaH+oaEgaqeamaa BaaaleaacqaH3oaAaeqaaOGaey4kaSYaaeWaaeaaceWG5bGbaebaca aIOaGaamyEaiaaiMcacaWGLbWaaWbaaSqabeaacaWGHbGaamiEaaaa kiabgkHiTmaalaaabaGaeq4SdCgabaGaamyyaaaaaiaawIcacaGLPa aacuaH8oqBgaqeamaaBaaaleaacqaH3oaAaeqaaOGaey4kaSIafqyW diNbaebadaWgaaWcbaGaeq4TdGgabeaakiaai2dacaWG4bGaeq4Xdm 2aa0baaSqaaiaadAhaaeaacaaIXaaaaOGaaGilaaqaaaqaaiaaiIca ceWG4bGbaebacaaINaGaaGikaiaadMhacaaIPaGafq4TdGMbaebacq GHRaWkceWG5bGbaebacaaINaGaaGikaiaadMhacaaIPaGafqyVd4Mb aebacaaIPaGaamyzamaaCaaaleqabaGaamyyaiaadIhaaaGccaaI9a GaeqOVdGNaeq4Xdm2aa0baaSqaaiaadAhaaeaacaaIYaaaaOGaaGil aaqaaiaaywW7aeaadaqadaqaaiqadIhagaqeaiaaiIcacaWG5bGaaG ykaiaadwgadaahaaWcbeqaaiaadggacaWG4baaaOGaeyOeI0YaaSaa aeaacqaHXoqyaeaacaWGHbaaaaGaayjkaiaawMcaaiqbeE7aOzaara WaaSbaaSqaaiabeE7aObqabaGccqGHRaWkdaqadaqaaiqadMhagaqe aiaaiIcacaWG5bGaaGykaiaadwgadaahaaWcbeqaaiaadggacaWG4b aaaOGaeyOeI0YaaSaaaeaacqaHZoWzaeaacaWGHbaaaaGaayjkaiaa wMcaaiqbe27aUzaaraWaaSbaaSqaaiabeE7aObqabaGccqGHRaWkcu aHepaDgaqeamaaBaaaleaacqaH3oaAaeqaaOGaaGypaiaadIhacqaH hpWydaqhaaWcbaGaamODaaqaaiaaikdaaaGccaaISaaaaaaa@B965@

откуда следуют равенства

         x( x ¯ '(y) ξ ¯ + y ¯ '(y) μ ¯ ) e ax =ξ x ¯ (y) e ax α a ξ ¯ η + y ¯ (y) e ax γ a μ ¯ η + ρ ¯ η , x( x ¯ '(y) η ¯ + y ¯ '(y) ν ¯ ) e ax =ξ x ¯ (y) e ax α a η ¯ η + y ¯ (y) e ax γ a ν ¯ η + τ ¯ η , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeGacaaabaaabaGaamiEaiaaiI caceWG4bGbaebacaaINaGaaGikaiaadMhacaaIPaGafqOVdGNbaeba cqGHRaWkceWG5bGbaebacaaINaGaaGikaiaadMhacaaIPaGafqiVd0 MbaebacaaIPaGaamyzamaaCaaaleqabaGaamyyaiaadIhaaaGccaaI 9aGaeqOVdG3aaeWaaeaadaqadaqaaiqadIhagaqeaiaaiIcacaWG5b GaaGykaiaadwgadaahaaWcbeqaaiaadggacaWG4baaaOGaeyOeI0Ya aSaaaeaacqaHXoqyaeaacaWGHbaaaaGaayjkaiaawMcaaiqbe67a4z aaraWaaSbaaSqaaiabeE7aObqabaGccqGHRaWkdaqadaqaaiqadMha gaqeaiaaiIcacaWG5bGaaGykaiaadwgadaahaaWcbeqaaiaadggaca WG4baaaOGaeyOeI0YaaSaaaeaacqaHZoWzaeaacaWGHbaaaaGaayjk aiaawMcaaiqbeY7aTzaaraWaaSbaaSqaaiabeE7aObqabaGccqGHRa WkcuaHbpGCgaqeamaaBaaaleaacqaH3oaAaeqaaaGccaGLOaGaayzk aaGaaGilaaqaaaqaaiaadIhacaaIOaGabmiEayaaraGaaG4jaiaaiI cacaWG5bGaaGykaiqbeE7aOzaaraGaey4kaSIabmyEayaaraGaaG4j aiaaiIcacaWG5bGaaGykaiqbe27aUzaaraGaaGykaiaadwgadaahaa WcbeqaaiaadggacaWG4baaaOGaaGypaiabe67a4naabmaabaWaaeWa aeaaceWG4bGbaebacaaIOaGaamyEaiaaiMcacaWGLbWaaWbaaSqabe aacaWGHbGaamiEaaaakiabgkHiTmaalaaabaGaeqySdegabaGaamyy aaaaaiaawIcacaGLPaaacuaH3oaAgaqeamaaBaaaleaacqaH3oaAae qaaOGaey4kaSYaaeWaaeaaceWG5bGbaebacaaIOaGaamyEaiaaiMca caWGLbWaaWbaaSqabeaacaWGHbGaamiEaaaakiabgkHiTmaalaaaba Gaeq4SdCgabaGaamyyaaaaaiaawIcacaGLPaaacuaH9oGBgaqeamaa BaaaleaacqaH3oaAaeqaaOGaey4kaSIafqiXdqNbaebadaWgaaWcba Gaeq4TdGgabeaaaOGaayjkaiaawMcaaiaaiYcaaaaaaa@A7C9@

и далее однородная алгебраическая система уравнений относительно производных x ¯ '(y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbaebacaaINaGaaGikaiaadM hacaaIPaaaaa@35EA@  и y ¯ '(y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG5bGbaebacaaINaGaaGikaiaadM hacaaIPaaaaa@35EB@ :

                                   x ¯ '(y) ξ ¯ + y ¯ '(y) μ ¯ =0, x ¯ '(y) η ¯ + y ¯ '(y) ν ¯ =0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbaebacaaINaGaaGikaiaadM hacaaIPaGafqOVdGNbaebacqGHRaWkceWG5bGbaebacaaINaGaaGik aiaadMhacaaIPaGafqiVd0MbaebacaaI9aGaaGimaiaaiYcacaaMf8 UabmiEayaaraGaaG4jaiaaiIcacaWG5bGaaGykaiqbeE7aOzaaraGa ey4kaSIabmyEayaaraGaaG4jaiaaiIcacaWG5bGaaGykaiqbe27aUz aaraGaaGypaiaaicdacaaISaaaaa@5164@

которая имеет только нулевое решение x ¯ '(y)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbaebacaaINaGaaGikaiaadM hacaaIPaGaaGypaiaaicdaaaa@376B@ , y ¯ '(y)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG5bGbaebacaaINaGaaGikaiaadM hacaaIPaGaaGypaiaaicdaaaa@376C@ , поскольку, согласно второму из условий (2) матрица Ξ ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuqHEoawgaqeaaaa@335D@  невырождена. Тогда x ¯ (y)=const MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbaebacaaIOaGaamyEaiaaiM cacaaI9aGaam4yaiaad+gacaWGUbGaam4Caiaadshaaaa@3AC0@ , y ¯ (y)=const MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG5bGbaebacaaIOaGaamyEaiaaiM cacaaI9aGaam4yaiaad+gacaWGUbGaam4Caiaadshaaaa@3AC1@ , что несовместимо с первым из условий (2).

Теперь подставим решение (6) в уравнения второй системы из (1), которые затем продифференцируем по переменным x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BE@  и ξ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEaaa@3384@ :

a( x ¯ (y) ξ ¯ + y ¯ (y) μ ¯ ) e ax =ξ χ u 1 , x ¯ (y) e ax α a ξ ¯ ξ + y ¯ (y) e ax γ a μ ¯ ξ + ρ ¯ ξ =x χ u 1 , a( x ¯ (y) η ¯ + y ¯ (y) ν ¯ ) e ax =ξ χ u 2 , x ¯ (y) e ax α a η ¯ ξ + y ¯ (y) e ax γ a ν ¯ ξ + τ ¯ ξ =x χ u 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeGaeaaaaeaaaeaacaWGHbGaaG ikaiqadIhagaqeaiaaiIcacaWG5bGaaGykaiqbe67a4zaaraGaey4k aSIabmyEayaaraGaaGikaiaadMhacaaIPaGafqiVd0MbaebacaaIPa GaamyzamaaCaaaleqabaGaamyyaiaadIhaaaGccaaI9aGaeqOVdGNa eq4Xdm2aa0baaSqaaiaadwhaaeaacaaIXaaaaOGaaGilaaqaaiaayw W7aeaadaqadaqaaiqadIhagaqeaiaaiIcacaWG5bGaaGykaiaadwga daahaaWcbeqaaiaadggacaWG4baaaOGaeyOeI0YaaSaaaeaacqaHXo qyaeaacaWGHbaaaaGaayjkaiaawMcaaiqbe67a4zaaraWaaSbaaSqa aiabe67a4bqabaGccqGHRaWkdaqadaqaaiqadMhagaqeaiaaiIcaca WG5bGaaGykaiaadwgadaahaaWcbeqaaiaadggacaWG4baaaOGaeyOe I0YaaSaaaeaacqaHZoWzaeaacaWGHbaaaaGaayjkaiaawMcaaiqbeY 7aTzaaraWaaSbaaSqaaiabe67a4bqabaGccqGHRaWkcuaHbpGCgaqe amaaBaaaleaacqaH+oaEaeqaaOGaaGypaiaadIhacqaHhpWydaqhaa WcbaGaamyDaaqaaiaaigdaaaGccaaISaaabaaabaGaamyyaiaaiIca ceWG4bGbaebacaaIOaGaamyEaiaaiMcacuaH3oaAgaqeaiabgUcaRi qadMhagaqeaiaaiIcacaWG5bGaaGykaiqbe27aUzaaraGaaGykaiaa dwgadaahaaWcbeqaaiaadggacaWG4baaaOGaaGypaiabe67a4jabeE 8aJnaaDaaaleaacaWG1baabaGaaGOmaaaakiaaiYcaaeaacaaMf8oa baWaaeWaaeaaceWG4bGbaebacaaIOaGaamyEaiaaiMcacaWGLbWaaW baaSqabeaacaWGHbGaamiEaaaakiabgkHiTmaalaaabaGaeqySdega baGaamyyaaaaaiaawIcacaGLPaaacuaH3oaAgaqeamaaBaaaleaacq aH+oaEaeqaaOGaey4kaSYaaeWaaeaaceWG5bGbaebacaaIOaGaamyE aiaaiMcacaWGLbWaaWbaaSqabeaacaWGHbGaamiEaaaakiabgkHiTm aalaaabaGaeq4SdCgabaGaamyyaaaaaiaawIcacaGLPaaacuaH9oGB gaqeamaaBaaaleaacqaH+oaEaeqaaOGaey4kaSIafqiXdqNbaebada WgaaWcbaGaeqOVdGhabeaakiaai2dacaWG4bGaeq4Xdm2aa0baaSqa aiaadwhaaeaacaaIYaaaaOGaaGilaaaaaaa@B8F3@

откуда следуют равенства

            ax( x ¯ (y) ξ ¯ + y ¯ (y) μ ¯ ) e ax =ξ x ¯ (y) e ax α a ξ ¯ ξ + y ¯ (y) e ax γ a μ ¯ ξ + ρ ¯ ξ , ax( x ¯ '(y) η ¯ + y ¯ '(y) ν ¯ ) e ax =ξ x ¯ (y) e ax α a η ¯ ξ + y ¯ (y) e ax γ a ν ¯ ξ + τ ¯ ξ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeGabaaabaGaamyyaiaadIhaca aIOaGabmiEayaaraGaaGikaiaadMhacaaIPaGafqOVdGNbaebacqGH RaWkceWG5bGbaebacaaIOaGaamyEaiaaiMcacuaH8oqBgaqeaiaaiM cacaWGLbWaaWbaaSqabeaacaWGHbGaamiEaaaakiaai2dacqaH+oaE daqadaqaamaabmaabaGabmiEayaaraGaaGikaiaadMhacaaIPaGaam yzamaaCaaaleqabaGaamyyaiaadIhaaaGccqGHsisldaWcaaqaaiab eg7aHbqaaiaadggaaaaacaGLOaGaayzkaaGafqOVdGNbaebadaWgaa WcbaGaeqOVdGhabeaakiabgUcaRmaabmaabaGabmyEayaaraGaaGik aiaadMhacaaIPaGaamyzamaaCaaaleqabaGaamyyaiaadIhaaaGccq GHsisldaWcaaqaaiabeo7aNbqaaiaadggaaaaacaGLOaGaayzkaaGa fqiVd0MbaebadaWgaaWcbaGaeqOVdGhabeaakiabgUcaRiqbeg8aYz aaraWaaSbaaSqaaiabe67a4bqabaaakiaawIcacaGLPaaacaaISaaa baGaamyyaiaadIhacaaIOaGabmiEayaaraGaaG4jaiaaiIcacaWG5b GaaGykaiqbeE7aOzaaraGaey4kaSIabmyEayaaraGaaG4jaiaaiIca caWG5bGaaGykaiqbe27aUzaaraGaaGykaiaadwgadaahaaWcbeqaai aadggacaWG4baaaOGaaGypaiabe67a4naabmaabaWaaeWaaeaaceWG 4bGbaebacaaIOaGaamyEaiaaiMcacaWGLbWaaWbaaSqabeaacaWGHb GaamiEaaaakiabgkHiTmaalaaabaGaeqySdegabaGaamyyaaaaaiaa wIcacaGLPaaacuaH3oaAgaqeamaaBaaaleaacqaH+oaEaeqaaOGaey 4kaSYaaeWaaeaaceWG5bGbaebacaaIOaGaamyEaiaaiMcacaWGLbWa aWbaaSqabeaacaWGHbGaamiEaaaakiabgkHiTmaalaaabaGaeq4SdC gabaGaamyyaaaaaiaawIcacaGLPaaacuaH9oGBgaqeamaaBaaaleaa cqaH+oaEaeqaaOGaey4kaSIafqiXdqNbaebadaWgaaWcbaGaeqOVdG habeaaaOGaayjkaiaawMcaaiaaiYcaaaaaaa@A8BA@

и далее однородная алгебраическая система уравнений относительно x ¯ (y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbaebacaaIOaGaamyEaiaaiM caaaa@3539@  и y ¯ (y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG5bGbaebacaaIOaGaamyEaiaaiM caaaa@353A@ :

                                   x ¯ (y) ξ ¯ + y ¯ (y) μ ¯ =0, x ¯ (y) η ¯ + y ¯ (y) ν ¯ =0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbaebacaaIOaGaamyEaiaaiM cacuaH+oaEgaqeaiabgUcaRiqadMhagaqeaiaaiIcacaWG5bGaaGyk aiqbeY7aTzaaraGaaGypaiaaicdacaaISaGaaGzbVlqadIhagaqeai aaiIcacaWG5bGaaGykaiqbeE7aOzaaraGaey4kaSIabmyEayaaraGa aGikaiaadMhacaaIPaGafqyVd4MbaebacaaI9aGaaGimaiaaiYcaaa a@4EA0@

которая имеет только нулевое решение x ¯ (y)= y ¯ (y)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbaebacaaIOaGaamyEaiaaiM cacaaI9aGabmyEayaaraGaaGikaiaadMhacaaIPaGaaGypaiaaicda aaa@3AFA@ , поскольку матрица Ξ ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuqHEoawgaqeaaaa@335D@  невырождена. Тогда для функций x ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbaebaaaa@32D6@  и y ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG5bGbaebaaaa@32D7@  первое из условий в (2) не выполняется.

Наконец, подставим решение (6) в уравнения третьей системы в (1), которые затем продифференцируем по переменным x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BE@ , ξ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEaaa@3384@ , μ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBaaa@3377@ , ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBaaa@3379@ :

                      a( x ¯ (y) ξ ¯ + y ¯ (y) μ ¯ ) e ax =ξ χ u 1 +η χ v 1 , x ¯ (y) e ax α a ξ ¯ ξ + y ¯ (y) e ax γ a μ ¯ ξ + ρ ¯ ξ =x χ u 1 +y χ v 1 , x ¯ (y) e ax α a ξ ¯ μ + y ¯ (y) e ax γ a μ ¯ μ + ρ ¯ μ = χ u 1 , x ¯ (y) e ax α a ξ ¯ ν + y ¯ (y) e ax γ a μ ¯ ν + ρ ¯ ν = χ v 1 , a( x ¯ (y) η ¯ + y ¯ (y) ν ¯ ) e ax =ξ χ u 2 +η χ v 2 , x ¯ (y) e ax α a η ¯ ξ + y ¯ (y) e ax γ a ν ¯ ξ + τ ¯ ξ =x χ u 2 +y χ v 2 , x ¯ (y) e ax α a η ¯ μ + y ¯ (y) e ax γ a ν ¯ μ + τ ¯ μ = χ u 2 , x ¯ (y) e ax α a η ¯ ν + y ¯ (y) e ax γ a ν ¯ ν + τ ¯ ν = χ v 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeaccaaaaaqaaaqaaiaaywW7ca WGHbGaaGikaiqadIhagaqeaiaaiIcacaWG5bGaaGykaiqbe67a4zaa raGaey4kaSIabmyEayaaraGaaGikaiaadMhacaaIPaGafqiVd0Mbae bacaaIPaGaamyzamaaCaaaleqabaGaamyyaiaadIhaaaGccaaI9aGa eqOVdGNaeq4Xdm2aa0baaSqaaiaadwhaaeaacaaIXaaaaOGaey4kaS Iaeq4TdGMaeq4Xdm2aa0baaSqaaiaadAhaaeaacaaIXaaaaOGaaGil aaqaaaqaamaabmaabaGabmiEayaaraGaaGikaiaadMhacaaIPaGaam yzamaaCaaaleqabaGaamyyaiaadIhaaaGccqGHsisldaWcaaqaaiab eg7aHbqaaiaadggaaaaacaGLOaGaayzkaaGafqOVdGNbaebadaWgaa WcbaGaeqOVdGhabeaakiabgUcaRmaabmaabaGabmyEayaaraGaaGik aiaadMhacaaIPaGaamyzamaaCaaaleqabaGaamyyaiaadIhaaaGccq GHsisldaWcaaqaaiabeo7aNbqaaiaadggaaaaacaGLOaGaayzkaaGa fqiVd0MbaebadaWgaaWcbaGaeqOVdGhabeaakiabgUcaRiqbeg8aYz aaraWaaSbaaSqaaiabe67a4bqabaGccaaI9aGaamiEaiabeE8aJnaa DaaaleaacaWG1baabaGaaGymaaaakiabgUcaRiaadMhacqaHhpWyda qhaaWcbaGaamODaaqaaiaaigdaaaGccaaISaaabaaabaWaaeWaaeaa ceWG4bGbaebacaaIOaGaamyEaiaaiMcacaWGLbWaaWbaaSqabeaaca WGHbGaamiEaaaakiabgkHiTmaalaaabaGaeqySdegabaGaamyyaaaa aiaawIcacaGLPaaacuaH+oaEgaqeamaaBaaaleaacqaH8oqBaeqaaO Gaey4kaSYaaeWaaeaaceWG5bGbaebacaaIOaGaamyEaiaaiMcacaWG LbWaaWbaaSqabeaacaWGHbGaamiEaaaakiabgkHiTmaalaaabaGaeq 4SdCgabaGaamyyaaaaaiaawIcacaGLPaaacuaH8oqBgaqeamaaBaaa leaacqaH8oqBaeqaaOGaey4kaSIafqyWdiNbaebadaWgaaWcbaGaeq iVd0gabeaakiaai2dacqaHhpWydaqhaaWcbaGaamyDaaqaaiaaigda aaGccaaISaaabaaabaWaaeWaaeaaceWG4bGbaebacaaIOaGaamyEai aaiMcacaWGLbWaaWbaaSqabeaacaWGHbGaamiEaaaakiabgkHiTmaa laaabaGaeqySdegabaGaamyyaaaaaiaawIcacaGLPaaacuaH+oaEga qeamaaBaaaleaacqaH9oGBaeqaaOGaey4kaSYaaeWaaeaaceWG5bGb aebacaaIOaGaamyEaiaaiMcacaWGLbWaaWbaaSqabeaacaWGHbGaam iEaaaakiabgkHiTmaalaaabaGaeq4SdCgabaGaamyyaaaaaiaawIca caGLPaaacuaH8oqBgaqeamaaBaaaleaacqaH9oGBaeqaaOGaey4kaS IafqyWdiNbaebadaWgaaWcbaGaeqyVd4gabeaakiaai2dacqaHhpWy daqhaaWcbaGaamODaaqaaiaaigdaaaGccaaISaaabaaabaGaaGzbVl aadggacaaIOaGabmiEayaaraGaaGikaiaadMhacaaIPaGafq4TdGMb aebacqGHRaWkceWG5bGbaebacaaIOaGaamyEaiaaiMcacuaH9oGBga qeaiaaiMcacaWGLbWaaWbaaSqabeaacaWGHbGaamiEaaaakiaai2da cqaH+oaEcqaHhpWydaqhaaWcbaGaamyDaaqaaiaaikdaaaGccqGHRa WkcqaH3oaAcqaHhpWydaqhaaWcbaGaamODaaqaaiaaikdaaaGccaaI SaaabaaabaWaaeWaaeaaceWG4bGbaebacaaIOaGaamyEaiaaiMcaca WGLbWaaWbaaSqabeaacaWGHbGaamiEaaaakiabgkHiTmaalaaabaGa eqySdegabaGaamyyaaaaaiaawIcacaGLPaaacuaH3oaAgaqeamaaBa aaleaacqaH+oaEaeqaaOGaey4kaSYaaeWaaeaaceWG5bGbaebacaaI OaGaamyEaiaaiMcacaWGLbWaaWbaaSqabeaacaWGHbGaamiEaaaaki abgkHiTmaalaaabaGaeq4SdCgabaGaamyyaaaaaiaawIcacaGLPaaa cuaH9oGBgaqeamaaBaaaleaacqaH+oaEaeqaaOGaey4kaSIafqiXdq NbaebadaWgaaWcbaGaeqOVdGhabeaakiaai2dacaWG4bGaeq4Xdm2a a0baaSqaaiaadwhaaeaacaaIYaaaaOGaey4kaSIaamyEaiabeE8aJn aaDaaaleaacaWG2baabaGaaGOmaaaakiaaiYcaaeaaaeaadaqadaqa aiqadIhagaqeaiaaiIcacaWG5bGaaGykaiaadwgadaahaaWcbeqaai aadggacaWG4baaaOGaeyOeI0YaaSaaaeaacqaHXoqyaeaacaWGHbaa aaGaayjkaiaawMcaaiqbeE7aOzaaraWaaSbaaSqaaiabeY7aTbqaba GccqGHRaWkdaqadaqaaiqadMhagaqeaiaaiIcacaWG5bGaaGykaiaa dwgadaahaaWcbeqaaiaadggacaWG4baaaOGaeyOeI0YaaSaaaeaacq aHZoWzaeaacaWGHbaaaaGaayjkaiaawMcaaiqbe27aUzaaraWaaSba aSqaaiabeY7aTbqabaGccqGHRaWkcuaHepaDgaqeamaaBaaaleaacq aH8oqBaeqaaOGaaGypaiabeE8aJnaaDaaaleaacaWG1baabaGaaGOm aaaakiaaiYcaaeaaaeaadaqadaqaaiqadIhagaqeaiaaiIcacaWG5b GaaGykaiaadwgadaahaaWcbeqaaiaadggacaWG4baaaOGaeyOeI0Ya aSaaaeaacqaHXoqyaeaacaWGHbaaaaGaayjkaiaawMcaaiqbeE7aOz aaraWaaSbaaSqaaiabe27aUbqabaGccqGHRaWkdaqadaqaaiqadMha gaqeaiaaiIcacaWG5bGaaGykaiaadwgadaahaaWcbeqaaiaadggaca WG4baaaOGaeyOeI0YaaSaaaeaacqaHZoWzaeaacaWGHbaaaaGaayjk aiaawMcaaiqbe27aUzaaraWaaSbaaSqaaiabe27aUbqabaGccqGHRa WkcuaHepaDgaqeamaaBaaaleaacqaH9oGBaeqaaOGaaGypaiabeE8a JnaaDaaaleaacaWG2baabaGaaGOmaaaakiaai6caaaaaaa@755F@

Подставляя третье и четвёртое равенства во второе, а седьмое и восьмое в шестое, после чего сравнивая коэффициенты перед x e ax MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaamyzamaaCaaaleqabaGaam yyaiaadIhaaaaaaa@35B8@  и y e ax MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5bGaamyzamaaCaaaleqabaGaam yyaiaadIhaaaaaaa@35B9@ , получаем:

x ¯ (y) ξ ¯ μ + y ¯ (y) μ ¯ μ =0, x ¯ (y) η ¯ μ + y ¯ (y) ν ¯ μ =0, x ¯ (y) ξ ¯ ν + y ¯ (y) μ ¯ ν =0, x ¯ (y) η ¯ ν + y ¯ (y) ν ¯ ν =0; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbaebacaaIOaGaamyEaiaaiM cacuaH+oaEgaqeamaaBaaaleaacqaH8oqBaeqaaOGaey4kaSIabmyE ayaaraGaaGikaiaadMhacaaIPaGafqiVd0MbaebadaWgaaWcbaGaeq iVd0gabeaakiaai2dacaaIWaGaaGilaiaaywW7ceWG4bGbaebacaaI OaGaamyEaiaaiMcacuaH3oaAgaqeamaaBaaaleaacqaH8oqBaeqaaO Gaey4kaSIabmyEayaaraGaaGikaiaadMhacaaIPaGafqyVd4Mbaeba daWgaaWcbaGaeqiVd0gabeaakiaai2dacaaIWaGaaGilaiaaywW7ce WG4bGbaebacaaIOaGaamyEaiaaiMcacuaH+oaEgaqeamaaBaaaleaa cqaH9oGBaeqaaOGaey4kaSIabmyEayaaraGaaGikaiaadMhacaaIPa GafqiVd0MbaebadaWgaaWcbaGaeqyVd4gabeaakiaai2dacaaIWaGa aGilaiaaywW7ceWG4bGbaebacaaIOaGaamyEaiaaiMcacuaH3oaAga qeamaaBaaaleaacqaH9oGBaeqaaOGaey4kaSIabmyEayaaraGaaGik aiaadMhacaaIPaGafqyVd4MbaebadaWgaaWcbaGaeqyVd4gabeaaki aai2dacaaIWaGaaG4oaaaa@7C84@

следовательно функции χ u 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHhpWydaqhaaWcbaGaamyDaaqaai aaigdaaaaaaa@355A@ , χ v 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHhpWydaqhaaWcbaGaamODaaqaai aaigdaaaaaaa@355B@ , χ u 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHhpWydaqhaaWcbaGaamyDaaqaai aaikdaaaaaaa@355B@ , χ v 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHhpWydaqhaaWcbaGaamODaaqaai aaikdaaaaaaa@355C@  зависят только от ξ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEaaa@3384@ , η MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH3oaAaaa@336D@ , μ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBaaa@3377@ , ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBaaa@3379@ , ρ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHbpGCaaa@3381@ , τ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDaaa@3386@ . Тогда из первого и пятого уравнений вытекает:

                                   x ¯ (y) ξ ¯ + y ¯ (y) μ ¯ =0, x ¯ (y) η ¯ + y ¯ (y) ν ¯ =0; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbaebacaaIOaGaamyEaiaaiM cacuaH+oaEgaqeaiabgUcaRiqadMhagaqeaiaaiIcacaWG5bGaaGyk aiqbeY7aTzaaraGaaGypaiaaicdacaaISaGaaGzbVlqadIhagaqeai aaiIcacaWG5bGaaGykaiqbeE7aOzaaraGaey4kaSIabmyEayaaraGa aGikaiaadMhacaaIPaGafqyVd4MbaebacaaI9aGaaGimaiaaiUdaaa a@4EAF@

следовательно, x ¯ (y)= y ¯ (y)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbaebacaaIOaGaamyEaiaaiM cacaaI9aGabmyEayaaraGaaGikaiaadMhacaaIPaGaaGypaiaaicda aaa@3AFA@ , что приводит к противоречию с первым из неравенств в (2).

Случай 3.1.

Подставим решение (7) в первое уравнение первой системы в (1) и продифференцируем его по переменным y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5baaaa@32BF@  и η MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH3oaAaaa@336D@ :

                                       ( x ¯ '(y) ξ ¯ +( x ¯ '(y)x+ y ¯ '(y)) μ ¯ ) e ax =ξ χ v 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGabmiEayaaraGaaG4jaiaaiI cacaWG5bGaaGykaiqbe67a4zaaraGaey4kaSIaaGikaiqadIhagaqe aiaaiEcacaaIOaGaamyEaiaaiMcacaWG4bGaey4kaSIabmyEayaara GaaG4jaiaaiIcacaWG5bGaaGykaiaaiMcacuaH8oqBgaqeaiaaiMca caWGLbWaaWbaaSqabeaacaWGHbGaamiEaaaakiaai2dacqaH+oaEcq aHhpWydaqhaaWcbaGaamODaaqaaiaaigdaaaGccaaISaaaaa@5159@

                  x ¯ (y) e ax α a ξ ¯ η + ( x ¯ (y)x+ y ¯ (y)) e ax γ a + α a 2 μ ¯ η + ρ ¯ η =x χ v 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqadaqaaiqadIhagaqeaiaaiIcaca WG5bGaaGykaiaadwgadaahaaWcbeqaaiaadggacaWG4baaaOGaeyOe I0YaaSaaaeaacqaHXoqyaeaacaWGHbaaaaGaayjkaiaawMcaaiqbe6 7a4zaaraWaaSbaaSqaaiabeE7aObqabaGccqGHRaWkdaqadaqaaiaa iIcaceWG4bGbaebacaaIOaGaamyEaiaaiMcacaWG4bGaey4kaSIabm yEayaaraGaaGikaiaadMhacaaIPaGaaGykaiaadwgadaahaaWcbeqa aiaadggacaWG4baaaOGaeyOeI0YaaSaaaeaacqaHZoWzaeaacaWGHb aaaiabgUcaRmaalaaabaGaeqySdegabaGaamyyamaaCaaaleqabaGa aGOmaaaaaaaakiaawIcacaGLPaaacuaH8oqBgaqeamaaBaaaleaacq aH3oaAaeqaaOGaey4kaSIafqyWdiNbaebadaWgaaWcbaGaeq4TdGga beaakiaai2dacaWG4bGaeq4Xdm2aa0baaSqaaiaadAhaaeaacaaIXa aaaOGaaGilaaaa@6707@

откуда следует соотношение

             x( x ¯ '(y) ξ ¯ +( x ¯ '(y)x+ y ¯ '(y)) μ ¯ ) e ax = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGikaiqadIhagaqeaiaaiE cacaaIOaGaamyEaiaaiMcacuaH+oaEgaqeaiabgUcaRiaaiIcaceWG 4bGbaebacaaINaGaaGikaiaadMhacaaIPaGaamiEaiabgUcaRiqadM hagaqeaiaaiEcacaaIOaGaamyEaiaaiMcacaaIPaGafqiVd0Mbaeba caaIPaGaamyzamaaCaaaleqabaGaamyyaiaadIhaaaGccaaI9aaaaa@4C39@

                  =ξ x ¯ (y) e ax α a ξ ¯ η + x ¯ (y)x+ y ¯ (y) e ax γ a + α a 2 μ ¯ η + ρ ¯ η . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaeqOVdG3aaeWaaeaadaqada qaaiqadIhagaqeaiaaiIcacaWG5bGaaGykaiaadwgadaahaaWcbeqa aiaadggacaWG4baaaOGaeyOeI0YaaSaaaeaacqaHXoqyaeaacaWGHb aaaaGaayjkaiaawMcaaiqbe67a4zaaraWaaSbaaSqaaiabeE7aObqa baGccqGHRaWkdaqadaqaamaabmaabaGabmiEayaaraGaaGikaiaadM hacaaIPaGaamiEaiabgUcaRiqadMhagaqeaiaaiIcacaWG5bGaaGyk aaGaayjkaiaawMcaaiaadwgadaahaaWcbeqaaiaadggacaWG4baaaO GaeyOeI0YaaSaaaeaacqaHZoWzaeaacaWGHbaaaiabgUcaRmaalaaa baGaeqySdegabaGaamyyamaaCaaaleqabaGaaGOmaaaaaaaakiaawI cacaGLPaaacuaH8oqBgaqeamaaBaaaleaacqaH3oaAaeqaaOGaey4k aSIafqyWdiNbaebadaWgaaWcbaGaeq4TdGgabeaaaOGaayjkaiaawM caaiaai6caaaa@65D8@

Сравнивая коэффициенты при x 2 e ax MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaWbaaSqabeaacaaIYaaaaO GaamyzamaaCaaaleqabaGaamyyaiaadIhaaaaaaa@36AB@ , x e ax MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaamyzamaaCaaaleqabaGaam yyaiaadIhaaaaaaa@35B8@ , e ax MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGLbWaaWbaaSqabeaacaWGHbGaam iEaaaaaaa@34BB@ , получаем

x ¯ '(y)=0, x ¯ (y)=β, y ¯ '(y)=δ= βξ μ ¯ η μ ¯ =const, y ¯ (y)=δy+b,β ξ ¯ η +(δy+b) μ ¯ η =0; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbaebacaaINaGaaGikaiaadM hacaaIPaGaaGypaiaaicdacaaISaGaaGzbVlqadIhagaqeaiaaiIca caWG5bGaaGykaiaai2dacqaHYoGycaaISaGaaGzbVlqadMhagaqeai aaiEcacaaIOaGaamyEaiaaiMcacaaI9aGaeqiTdqMaaGypamaalaaa baGaeqOSdiMaeqOVdGNafqiVd0MbaebadaWgaaWcbaGaeq4TdGgabe aaaOqaaiqbeY7aTzaaraaaaiaai2dacaWGJbGaam4Baiaad6gacaWG ZbGaamiDaiaaiYcacaaMf8UabmyEayaaraGaaGikaiaadMhacaaIPa GaaGypaiabes7aKjaadMhacqGHRaWkcaWGIbGaaGilaiaaywW7cqaH YoGycuaH+oaEgaqeamaaBaaaleaacqaH3oaAaeqaaOGaey4kaSIaaG ikaiabes7aKjaadMhacqGHRaWkcaWGIbGaaGykaiqbeY7aTzaaraWa aSbaaSqaaiabeE7aObqabaGccaaI9aGaaGimaiaaiUdaaaa@76E4@

следовательно, β μ ¯ η =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGycuaH8oqBgaqeamaaBaaale aacqaH3oaAaeqaaOGaaGypaiaaicdaaaa@3893@  и δ=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH0oazcaaI9aGaaGimaaaa@34E7@ . Тогда получаем решение

                                   x ¯ =β e ax α a , y ¯ =(βx+b) e ax γ a + α a 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbaebacaaI9aGaeqOSdiMaam yzamaaCaaaleqabaGaamyyaiaadIhaaaGccqGHsisldaWcaaqaaiab eg7aHbqaaiaadggaaaGaaGilaiaaywW7ceWG5bGbaebacaaI9aGaaG ikaiabek7aIjaadIhacqGHRaWkcaWGIbGaaGykaiaadwgadaahaaWc beqaaiaadggacaWG4baaaOGaeyOeI0YaaSaaaeaacqaHZoWzaeaaca WGHbaaaiabgUcaRmaalaaabaGaeqySdegabaGaamyyamaaCaaaleqa baGaaGOmaaaaaaGccaaISaaaaa@515F@

которое не удовлетворяет первому неравенству из (2), что недопустимо.

Подобным образом рассуждая относительно второй и третий систем из (1), получаем отрицательный результат.

Случай 3.2.

Подставим решение (8) в уравнения первой системы из (1) и продифференцируем по переменным y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5baaaa@32BF@  и η MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH3oaAaaa@336D@ :

      x ¯ '(y) ξ ¯ +( x ¯ '(y)x+ y ¯ '(y)) μ ¯ =ξ χ v 1 ,(αx+ x ¯ (y)) ξ ¯ η + α x 2 2 +γx+ x ¯ (y)x+ y ¯ (y) μ ¯ η + ρ ¯ η =x χ v 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbaebacaaINaGaaGikaiaadM hacaaIPaGafqOVdGNbaebacqGHRaWkcaaIOaGabmiEayaaraGaaG4j aiaaiIcacaWG5bGaaGykaiaadIhacqGHRaWkceWG5bGbaebacaaINa GaaGikaiaadMhacaaIPaGaaGykaiqbeY7aTzaaraGaaGypaiabe67a 4jabeE8aJnaaDaaaleaacaWG2baabaGaaGymaaaakiaaiYcacaaMf8 UaaGikaiabeg7aHjaadIhacqGHRaWkceWG4bGbaebacaaIOaGaamyE aiaaiMcacaaIPaGafqOVdGNbaebadaWgaaWcbaGaeq4TdGgabeaaki abgUcaRmaabmaabaWaaSaaaeaacqaHXoqycaWG4bWaaWbaaSqabeaa caaIYaaaaaGcbaGaaGOmaaaacqGHRaWkcqaHZoWzcaWG4bGaey4kaS IabmiEayaaraGaaGikaiaadMhacaaIPaGaamiEaiabgUcaRiqadMha gaqeaiaaiIcacaWG5bGaaGykaaGaayjkaiaawMcaaiqbeY7aTzaara WaaSbaaSqaaiabeE7aObqabaGccqGHRaWkcuaHbpGCgaqeamaaBaaa leaacqaH3oaAaeqaaOGaaGypaiaadIhacqaHhpWydaqhaaWcbaGaam ODaaqaaiaaigdaaaGccaaISaaaaa@7CFE@

x ¯ '(y) η ¯ +( x ¯ '(y)x+ y ¯ '(y)) ν ¯ =ξ χ v 1 ,(αx+ x ¯ (y)) η ¯ η + α x 2 2 +γx+ x ¯ (y)x+ y ¯ (y) ν ¯ η + τ ¯ η =x χ v 1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbaebacaaINaGaaGikaiaadM hacaaIPaGafq4TdGMbaebacqGHRaWkcaaIOaGabmiEayaaraGaaG4j aiaaiIcacaWG5bGaaGykaiaadIhacqGHRaWkceWG5bGbaebacaaINa GaaGikaiaadMhacaaIPaGaaGykaiqbe27aUzaaraGaaGypaiabe67a 4jabeE8aJnaaDaaaleaacaWG2baabaGaaGymaaaakiaaiYcacaaMf8 UaaGikaiabeg7aHjaadIhacqGHRaWkceWG4bGbaebacaaIOaGaamyE aiaaiMcacaaIPaGafq4TdGMbaebadaWgaaWcbaGaeq4TdGgabeaaki abgUcaRmaabmaabaWaaSaaaeaacqaHXoqycaWG4bWaaWbaaSqabeaa caaIYaaaaaGcbaGaaGOmaaaacqGHRaWkcqaHZoWzcaWG4bGaey4kaS IabmiEayaaraGaaGikaiaadMhacaaIPaGaamiEaiabgUcaRiqadMha gaqeaiaaiIcacaWG5bGaaGykaaGaayjkaiaawMcaaiqbe27aUzaara WaaSbaaSqaaiabeE7aObqabaGccqGHRaWkcuaHepaDgaqeamaaBaaa leaacqaH3oaAaeqaaOGaaGypaiaadIhacqaHhpWydaqhaaWcbaGaam ODaaqaaiaaigdaaaGccaaIUaaaaa@7CDB@

откуда следуют соотношения

x( x ¯ '(y) ξ ¯ + x ¯ '(y)x μ ¯ + y ¯ '(y) μ ¯ )=ξ (αx+ x ¯ (y)) ξ ¯ η + α x 2 2 +γx+ x ¯ (y)x+ y ¯ (y) μ ¯ η + ρ ¯ η , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGikaiqadIhagaqeaiaaiE cacaaIOaGaamyEaiaaiMcacuaH+oaEgaqeaiabgUcaRiqadIhagaqe aiaaiEcacaaIOaGaamyEaiaaiMcacaWG4bGafqiVd0MbaebacqGHRa WkceWG5bGbaebacaaINaGaaGikaiaadMhacaaIPaGafqiVd0Mbaeba caaIPaGaaGypaiabe67a4naabmaabaGaaGikaiabeg7aHjaadIhacq GHRaWkceWG4bGbaebacaaIOaGaamyEaiaaiMcacaaIPaGafqOVdGNb aebadaWgaaWcbaGaeq4TdGgabeaakiabgUcaRmaabmaabaWaaSaaae aacqaHXoqycaWG4bWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGOmaaaa cqGHRaWkcqaHZoWzcaWG4bGaey4kaSIabmiEayaaraGaaGikaiaadM hacaaIPaGaamiEaiabgUcaRiqadMhagaqeaiaaiIcacaWG5bGaaGyk aaGaayjkaiaawMcaaiqbeY7aTzaaraWaaSbaaSqaaiabeE7aObqaba GccqGHRaWkcuaHbpGCgaqeamaaBaaaleaacqaH3oaAaeqaaaGccaGL OaGaayzkaaGaaGilaaaa@7602@

x( x ¯ '(y) η ¯ + x ¯ '(y)x ν ¯ + y ¯ '(y) ν ¯ )=ξ (αx+ x ¯ (y)) η ¯ η + α x 2 2 +γx+ x ¯ (y)x+ y ¯ (y) ν ¯ η + τ ¯ η . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGikaiqadIhagaqeaiaaiE cacaaIOaGaamyEaiaaiMcacuaH3oaAgaqeaiabgUcaRiqadIhagaqe aiaaiEcacaaIOaGaamyEaiaaiMcacaWG4bGafqyVd4MbaebacqGHRa WkceWG5bGbaebacaaINaGaaGikaiaadMhacaaIPaGafqyVd4Mbaeba caaIPaGaaGypaiabe67a4naabmaabaGaaGikaiabeg7aHjaadIhacq GHRaWkceWG4bGbaebacaaIOaGaamyEaiaaiMcacaaIPaGafq4TdGMb aebadaWgaaWcbaGaeq4TdGgabeaakiabgUcaRmaabmaabaWaaSaaae aacqaHXoqycaWG4bWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGOmaaaa cqGHRaWkcqaHZoWzcaWG4bGaey4kaSIabmiEayaaraGaaGikaiaadM hacaaIPaGaamiEaiabgUcaRiqadMhagaqeaiaaiIcacaWG5bGaaGyk aaGaayjkaiaawMcaaiqbe27aUzaaraWaaSbaaSqaaiabeE7aObqaba GccqGHRaWkcuaHepaDgaqeamaaBaaaleaacqaH3oaAaeqaaaGccaGL OaGaayzkaaGaaGOlaaaa@75E1@

Сравнивая коэффициенты при x 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaWbaaSqabeaacaaIYaaaaa aa@33A7@  и x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BE@ , получаем:

        x ¯ '(y)= αξ μ ¯ η 2 μ ¯ =αp, x ¯ '(y) ξ ¯ + y ¯ '(y) μ ¯ =αξ ξ ¯ η +ξ x ¯ (y) μ ¯ η +γ μ ¯ η , x ¯ (y) ξ ¯ η + y ¯ (y) μ ¯ η + ρ ¯ η =0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbaebacaaINaGaaGikaiaadM hacaaIPaGaaGypamaalaaabaGaeqySdeMaeqOVdGNafqiVd0Mbaeba daWgaaWcbaGaeq4TdGgabeaaaOqaaiaaikdacuaH8oqBgaqeaaaaca aI9aGaeqySdeMaamiCaiaaiYcacaaMf8UabmiEayaaraGaaG4jaiaa iIcacaWG5bGaaGykaiqbe67a4zaaraGaey4kaSIabmyEayaaraGaaG 4jaiaaiIcacaWG5bGaaGykaiqbeY7aTzaaraGaaGypaiabeg7aHjab e67a4jqbe67a4zaaraWaaSbaaSqaaiabeE7aObqabaGccqGHRaWkcq aH+oaEceWG4bGbaebacaaIOaGaamyEaiaaiMcacuaH8oqBgaqeamaa BaaaleaacqaH3oaAaeqaaOGaey4kaSIaeq4SdCMafqiVd0Mbaebada WgaaWcbaGaeq4TdGgabeaakiaaiYcacaaMf8UabmiEayaaraGaaGik aiaadMhacaaIPaGafqOVdGNbaebadaWgaaWcbaGaeq4TdGgabeaaki abgUcaRiqadMhagaqeaiaaiIcacaWG5bGaaGykaiqbeY7aTzaaraWa aSbaaSqaaiabeE7aObqabaGccqGHRaWkcuaHbpGCgaqeamaaBaaale aacqaH3oaAaeqaaOGaaGypaiaaicdacaaISaaaaa@831D@

x ¯ '(y)= αξ ν ¯ η 2 ν ¯ =αp, x ¯ '(y) η ¯ + y ¯ '(y) ν ¯ =αξ η ¯ η +ξ x ¯ (y) ν ¯ η +γ ν ¯ η , x ¯ (y) η ¯ η + y ¯ (y) ν ¯ η + τ ¯ η =0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbaebacaaINaGaaGikaiaadM hacaaIPaGaaGypamaalaaabaGaeqySdeMaeqOVdGNafqyVd4Mbaeba daWgaaWcbaGaeq4TdGgabeaaaOqaaiaaikdacuaH9oGBgaqeaaaaca aI9aGaeqySdeMaamiCaiaaiYcacaaMf8UabmiEayaaraGaaG4jaiaa iIcacaWG5bGaaGykaiqbeE7aOzaaraGaey4kaSIabmyEayaaraGaaG 4jaiaaiIcacaWG5bGaaGykaiqbe27aUzaaraGaaGypaiabeg7aHjab e67a4jqbeE7aOzaaraWaaSbaaSqaaiabeE7aObqabaGccqGHRaWkcq aH+oaEceWG4bGbaebacaaIOaGaamyEaiaaiMcacuaH9oGBgaqeamaa BaaaleaacqaH3oaAaeqaaOGaey4kaSIaeq4SdCMafqyVd4Mbaebada WgaaWcbaGaeq4TdGgabeaakiaaiYcacaaMf8UabmiEayaaraGaaGik aiaadMhacaaIPaGafq4TdGMbaebadaWgaaWcbaGaeq4TdGgabeaaki abgUcaRiqadMhagaqeaiaaiIcacaWG5bGaaGykaiqbe27aUzaaraWa aSbaaSqaaiabeE7aObqabaGccqGHRaWkcuaHepaDgaqeamaaBaaale aacqaH3oaAaeqaaOGaaGypaiaaicdacaaISaaaaa@82E9@

со следующим решением:

                                  x ¯ (y)=αpy+b, y ¯ (y)= α 2 p 2 y 2 +δy+c, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbaebacaaIOaGaamyEaiaaiM cacaaI9aGaeqySdeMaamiCaiaadMhacqGHRaWkcaWGIbGaaGilaiaa ywW7ceWG5bGbaebacaaIOaGaamyEaiaaiMcacaaI9aGaeqySde2aaW baaSqabeaacaaIYaaaaOGaamiCamaaCaaaleqabaGaaGOmaaaakiaa dMhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcqaH0oazcaWG5bGaey 4kaSIaam4yaiaaiYcaaaa@4E4F@

которым дополним выражения (8):

                 x ¯ =αx+αpy+b, y ¯ = α x 2 2 +αpxy+ α 2 p 2 y 2 +γx+δy+bx+c. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbaebacaaI9aGaeqySdeMaam iEaiabgUcaRiabeg7aHjaadchacaWG5bGaey4kaSIaamOyaiaaiYca caaMf8UabmyEayaaraGaaGypamaalaaabaGaeqySdeMaamiEamaaCa aaleqabaGaaGOmaaaaaOqaaiaaikdaaaGaey4kaSIaeqySdeMaamiC aiaadIhacaWG5bGaey4kaSIaeqySde2aaWbaaSqabeaacaaIYaaaaO GaamiCamaaCaaaleqabaGaaGOmaaaakiaadMhadaahaaWcbeqaaiaa ikdaaaGccqGHRaWkcqaHZoWzcaWG4bGaey4kaSIaeqiTdqMaamyEai abgUcaRiaadkgacaWG4bGaey4kaSIaam4yaiaai6caaaa@5E03@

Следовательно,

(αpy+b) ξ ¯ η +( α 2 p 2 y 2 +δy+c) μ ¯ η + ρ ¯ η =0,(αpy+b) η ¯ η +( α 2 p 2 y 2 +δy+c) ν ¯ η + τ ¯ η =0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaeqySdeMaamiCaiaadMhacq GHRaWkcaWGIbGaaGykaiqbe67a4zaaraWaaSbaaSqaaiabeE7aObqa baGccqGHRaWkcaaIOaGaeqySde2aaWbaaSqabeaacaaIYaaaaOGaam iCamaaCaaaleqabaGaaGOmaaaakiaadMhadaahaaWcbeqaaiaaikda aaGccqGHRaWkcqaH0oazcaWG5bGaey4kaSIaam4yaiaaiMcacuaH8o qBgaqeamaaBaaaleaacqaH3oaAaeqaaOGaey4kaSIafqyWdiNbaeba daWgaaWcbaGaeq4TdGgabeaakiaai2dacaaIWaGaaGilaiaaywW7ca aIOaGaeqySdeMaamiCaiaadMhacqGHRaWkcaWGIbGaaGykaiqbeE7a OzaaraWaaSbaaSqaaiabeE7aObqabaGccqGHRaWkcaaIOaGaeqySde 2aaWbaaSqabeaacaaIYaaaaOGaamiCamaaCaaaleqabaGaaGOmaaaa kiaadMhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcqaH0oazcaWG5b Gaey4kaSIaam4yaiaaiMcacuaH9oGBgaqeamaaBaaaleaacqaH3oaA aeqaaOGaey4kaSIafqiXdqNbaebadaWgaaWcbaGaeq4TdGgabeaaki aai2dacaaIWaGaaGilaaaa@7941@

то есть αp=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHXoqycaWGWbGaaGypaiaaicdaaa a@35D6@ . Согласно первому неравенству в (2) будем иметь α0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHXoqycqGHGjsUcaaIWaaaaa@35E1@ , p=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbGaaGypaiaaicdaaaa@3437@ . Значит,

     x ¯ =αx+b, y ¯ = α x 2 2 +γx+δy+bx+c,δ= αξ ξ ¯ η μ ¯ = αξ η ¯ η ν ¯ 0, μ ¯ η = ν ¯ η =0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbaebacaaI9aGaeqySdeMaam iEaiabgUcaRiaadkgacaaISaGaaGzbVlqadMhagaqeaiaai2dadaWc aaqaaiabeg7aHjaadIhadaahaaWcbeqaaiaaikdaaaaakeaacaaIYa aaaiabgUcaRiabeo7aNjaadIhacqGHRaWkcqaH0oazcaWG5bGaey4k aSIaamOyaiaadIhacqGHRaWkcaWGJbGaaGilaiaaywW7cqaH0oazca aI9aWaaSaaaeaacqaHXoqycqaH+oaEcuaH+oaEgaqeamaaBaaaleaa cqaH3oaAaeqaaaGcbaGafqiVd0MbaebaaaGaaGypamaalaaabaGaeq ySdeMaeqOVdGNafq4TdGMbaebadaWgaaWcbaGaeq4TdGgabeaaaOqa aiqbe27aUzaaraaaaiabgcMi5kaaicdacaaISaGaaGzbVlqbeY7aTz aaraWaaSbaaSqaaiabeE7aObqabaGccaaI9aGafqyVd4MbaebadaWg aaWcbaGaeq4TdGgabeaakiaai2dacaaIWaGaaGOlaaaa@729C@          (17)

Подставляя найденное в выше полученные выражения, содержащие χ v 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHhpWydaqhaaWcbaGaamODaaqaai aaigdaaaaaaa@355B@ , будем иметь

                                                       χ v 1 =α ξ ¯ η =α η ¯ η ; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHhpWydaqhaaWcbaGaamODaaqaai aaigdaaaGccaaI9aGaeqySdeMafqOVdGNbaebadaWgaaWcbaGaeq4T dGgabeaakiaai2dacqaHXoqycuaH3oaAgaqeamaaBaaaleaacqaH3o aAaeqaaOGaaG4oaaaa@4259@

следовательно, ξ ¯ η = η ¯ η MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaH+oaEgaqeamaaBaaaleaacqaH3o aAaeqaaOGaaGypaiqbeE7aOzaaraWaaSbaaSqaaiabeE7aObqabaaa aa@39E1@ . Учитывая выражения для δ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH0oazaaa@3366@ , получаем μ ¯ = ν ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaH8oqBgaqeaiaai2dacuaH9oGBga qeaaaa@3626@ , поэтому во втором соотношении из (2) имеем =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFHw YvcaaI9aGaaGimaaaa@397F@ , что недопустимо.

Подставим теперь решение (8) в первое уравнение второй системы из (1) и продифференцируем их по переменным x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BE@  и ξ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEaaa@3384@ :

α ξ ¯ +(αx+γ+ x ¯ (y)) μ ¯ =ξ χ u 1 ,(αx+ x ¯ (y)) ξ ¯ ξ + α x 2 2 +γx+ x ¯ (y)x+ y ¯ (y) μ ¯ ξ + ρ ¯ ξ =x χ u 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHXoqycuaH+oaEgaqeaiabgUcaRi aaiIcacqaHXoqycaWG4bGaey4kaSIaeq4SdCMaey4kaSIabmiEayaa raGaaGikaiaadMhacaaIPaGaaGykaiqbeY7aTzaaraGaaGypaiabe6 7a4jabeE8aJnaaDaaaleaacaWG1baabaGaaGymaaaakiaaiYcacaaM f8UaaGikaiabeg7aHjaadIhacqGHRaWkceWG4bGbaebacaaIOaGaam yEaiaaiMcacaaIPaGafqOVdGNbaebadaWgaaWcbaGaeqOVdGhabeaa kiabgUcaRmaabmaabaWaaSaaaeaacqaHXoqycaWG4bWaaWbaaSqabe aacaaIYaaaaaGcbaGaaGOmaaaacqGHRaWkcqaHZoWzcaWG4bGaey4k aSIabmiEayaaraGaaGikaiaadMhacaaIPaGaamiEaiabgUcaRiqadM hagaqeaiaaiIcacaWG5bGaaGykaaGaayjkaiaawMcaaiqbeY7aTzaa raWaaSbaaSqaaiabe67a4bqabaGccqGHRaWkcuaHbpGCgaqeamaaBa aaleaacqaH+oaEaeqaaOGaaGypaiaadIhacqaHhpWydaqhaaWcbaGa amyDaaqaaiaaigdaaaGccaaISaaaaa@7A04@

откуда следуют соотношения

x(α ξ ¯ +(αx+γ+ x ¯ (y)) μ ¯ )=ξ (αx+ x ¯ (y)) ξ ¯ ξ + α x 2 2 +γx+ x ¯ (y)x+ y ¯ (y) μ ¯ ξ + ρ ¯ ξ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGikaiabeg7aHjqbe67a4z aaraGaey4kaSIaaGikaiabeg7aHjaadIhacqGHRaWkcqaHZoWzcqGH RaWkceWG4bGbaebacaaIOaGaamyEaiaaiMcacaaIPaGafqiVd0Mbae bacaaIPaGaaGypaiabe67a4naabmaabaGaaGikaiabeg7aHjaadIha cqGHRaWkceWG4bGbaebacaaIOaGaamyEaiaaiMcacaaIPaGafqOVdG NbaebadaWgaaWcbaGaeqOVdGhabeaakiabgUcaRmaabmaabaWaaSaa aeaacqaHXoqycaWG4bWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGOmaa aacqGHRaWkcqaHZoWzcaWG4bGaey4kaSIabmiEayaaraGaaGikaiaa dMhacaaIPaGaamiEaiabgUcaRiqadMhagaqeaiaaiIcacaWG5bGaaG ykaaGaayjkaiaawMcaaiqbeY7aTzaaraWaaSbaaSqaaiabe67a4bqa baGccqGHRaWkcuaHbpGCgaqeamaaBaaaleaacqaH+oaEaeqaaaGcca GLOaGaayzkaaGaaGOlaaaa@72A3@

Сравнивая коэффициенты при x 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaWbaaSqabeaacaaIYaaaaa aa@33A7@  и x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BE@ , получаем равенства

2α μ ¯ =αξ μ ¯ ξ ,α ξ ¯ +(γ+ x ¯ (y)) μ ¯ =αξ ξ ¯ ξ +ξ(γ+ x ¯ (y)) μ ¯ ξ , x ¯ (y) ξ ¯ ξ + y ¯ (y) μ ¯ ξ + ρ ¯ ξ =0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIYaGaeqySdeMafqiVd0Mbaebaca aI9aGaeqySdeMaeqOVdGNafqiVd0MbaebadaWgaaWcbaGaeqOVdGha beaakiaaiYcacaaMf8UaeqySdeMafqOVdGNbaebacqGHRaWkcaaIOa Gaeq4SdCMaey4kaSIabmiEayaaraGaaGikaiaadMhacaaIPaGaaGyk aiqbeY7aTzaaraGaaGypaiabeg7aHjabe67a4jqbe67a4zaaraWaaS baaSqaaiabe67a4bqabaGccqGHRaWkcqaH+oaEcaaIOaGaeq4SdCMa ey4kaSIabmiEayaaraGaaGikaiaadMhacaaIPaGaaGykaiqbeY7aTz aaraWaaSbaaSqaaiabe67a4bqabaGccaaISaGaaGzbVlqadIhagaqe aiaaiIcacaWG5bGaaGykaiqbe67a4zaaraWaaSbaaSqaaiabe67a4b qabaGccqGHRaWkceWG5bGbaebacaaIOaGaamyEaiaaiMcacuaH8oqB gaqeamaaBaaaleaacqaH+oaEaeqaaOGaey4kaSIafqyWdiNbaebada WgaaWcbaGaeqOVdGhabeaakiaai2dacaaIWaGaaGOlaaaa@7C1B@

Пусть α0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHXoqycqGHGjsUcaaIWaaaaa@35E1@ ; тогда μ ¯ ξ =2 μ ¯ /ξ0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaH8oqBgaqeamaaBaaaleaacqaH+o aEaeqaaOGaaGypaiaaikdacuaH8oqBgaqeaiaai+cacqaH+oaEcqGH GjsUcaaIWaaaaa@3DD6@ . Затем, дифференцируя второе и третье равенства по y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5baaaa@32BF@ , будем иметь x ¯ '(y)= y ¯ '(y)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbaebacaaINaGaaGikaiaadM hacaaIPaGaaGypaiqadMhagaqeaiaaiEcacaaIOaGaamyEaiaaiMca caaI9aGaaGimaaaa@3C5C@ , что противоречит первому неравенству из (2). Поэтому α=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHXoqycaaI9aGaaGimaaaa@34E1@  и тогда, согласно (2),

                                                  x ¯ '(y)0, μ ¯ ξ = μ ¯ ξ 0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbaebacaaINaGaaGikaiaadM hacaaIPaGaeyiyIKRaaGimaiaaiYcacaaMf8UafqiVd0MbaebadaWg aaWcbaGaeqOVdGhabeaakiaai2dadaWcaaqaaiqbeY7aTzaaraaaba GaeqOVdGhaaiabgcMi5kaaicdacaaIUaaaaa@4617@

Подставим теперь решение (8) в первое уравнение второй системы из (1) и продифференцируем их по переменным y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5baaaa@32BF@  и η MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH3oaAaaa@336D@ :

      x ¯ '(y) ξ ¯ +( x ¯ '(y)x+ y ¯ '(y)) μ ¯ =η χ v 1 , x ¯ (y) ξ ¯ η +(γx+ x ¯ (y)x+ y ¯ (y)) μ ¯ η + ρ ¯ η =y χ v 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbaebacaaINaGaaGikaiaadM hacaaIPaGafqOVdGNbaebacqGHRaWkcaaIOaGabmiEayaaraGaaG4j aiaaiIcacaWG5bGaaGykaiaadIhacqGHRaWkceWG5bGbaebacaaINa GaaGikaiaadMhacaaIPaGaaGykaiqbeY7aTzaaraGaaGypaiabeE7a OjabeE8aJnaaDaaaleaacaWG2baabaGaaGymaaaakiaaiYcacaaMf8 UabmiEayaaraGaaGikaiaadMhacaaIPaGafqOVdGNbaebadaWgaaWc baGaeq4TdGgabeaakiabgUcaRiaaiIcacqaHZoWzcaWG4bGaey4kaS IabmiEayaaraGaaGikaiaadMhacaaIPaGaamiEaiabgUcaRiqadMha gaqeaiaaiIcacaWG5bGaaGykaiaaiMcacuaH8oqBgaqeamaaBaaale aacqaH3oaAaeqaaOGaey4kaSIafqyWdiNbaebadaWgaaWcbaGaeq4T dGgabeaakiaai2dacaWG5bGaeq4Xdm2aa0baaSqaaiaadAhaaeaaca aIXaaaaOGaaGilaaaa@72A4@

поэтому

           y( x ¯ '(y) ξ ¯ +( x ¯ '(y)x+ y ¯ '(y)) μ ¯ )=η( x ¯ (y) ξ ¯ η +(γx+ x ¯ (y)x+ y ¯ (y)) μ ¯ η + ρ ¯ η ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5bGaaGikaiqadIhagaqeaiaaiE cacaaIOaGaamyEaiaaiMcacuaH+oaEgaqeaiabgUcaRiaaiIcaceWG 4bGbaebacaaINaGaaGikaiaadMhacaaIPaGaamiEaiabgUcaRiqadM hagaqeaiaaiEcacaaIOaGaamyEaiaaiMcacaaIPaGafqiVd0Mbaeba caaIPaGaaGypaiabeE7aOjaaiIcaceWG4bGbaebacaaIOaGaamyEai aaiMcacuaH+oaEgaqeamaaBaaaleaacqaH3oaAaeqaaOGaey4kaSIa aGikaiabeo7aNjaadIhacqGHRaWkceWG4bGbaebacaaIOaGaamyEai aaiMcacaWG4bGaey4kaSIabmyEayaaraGaaGikaiaadMhacaaIPaGa aGykaiqbeY7aTzaaraWaaSbaaSqaaiabeE7aObqabaGccqGHRaWkcu aHbpGCgaqeamaaBaaaleaacqaH3oaAaeqaaOGaaGykaiaai6caaaa@6B1D@

Сравнивая коэффициенты, получаем

         y x ¯ '(y) μ ¯ =η(γ+ x ¯ (y)) μ ¯ η ,y( x ¯ '(y) ξ ¯ + y ¯ '(y) μ ¯ )=η( x ¯ (y) ξ ¯ η + y ¯ (y) μ ¯ η + ρ ¯ η ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5bGabmiEayaaraGaaG4jaiaaiI cacaWG5bGaaGykaiqbeY7aTzaaraGaaGypaiabeE7aOjaaiIcacqaH ZoWzcqGHRaWkceWG4bGbaebacaaIOaGaamyEaiaaiMcacaaIPaGafq iVd0MbaebadaWgaaWcbaGaeq4TdGgabeaakiaaiYcacaaMf8UaamyE aiaaiIcaceWG4bGbaebacaaINaGaaGikaiaadMhacaaIPaGafqOVdG NbaebacqGHRaWkceWG5bGbaebacaaINaGaaGikaiaadMhacaaIPaGa fqiVd0MbaebacaaIPaGaaGypaiabeE7aOjaaiIcaceWG4bGbaebaca aIOaGaamyEaiaaiMcacuaH+oaEgaqeamaaBaaaleaacqaH3oaAaeqa aOGaey4kaSIabmyEayaaraGaaGikaiaadMhacaaIPaGafqiVd0Mbae badaWgaaWcbaGaeq4TdGgabeaakiabgUcaRiqbeg8aYzaaraWaaSba aSqaaiabeE7aObqabaGccaaIPaGaaGOlaaaa@7030@

Решая первое уравнение, получаем

                                            x ¯ (y)=γ+ y c ,c= η μ ¯ η μ ¯ 0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbaebacaaIOaGaamyEaiaaiM cacaaI9aGaeyOeI0Iaeq4SdCMaey4kaSIaamyEamaaCaaaleqabaGa am4yaaaakiaaiYcacaaMf8Uaam4yaiaai2dadaWcaaqaaiabeE7aOj qbeY7aTzaaraWaaSbaaSqaaiabeE7aObqabaaakeaacuaH8oqBgaqe aaaacqGHGjsUcaaIWaGaaGOlaaaa@49F9@

Подставляя найденное в первое равенство, содержащее χ u 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHhpWydaqhaaWcbaGaamyDaaqaai aaigdaaaaaaa@355A@ , получаем χ u 1 = y c μ ¯ /ξ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHhpWydaqhaaWcbaGaamyDaaqaai aaigdaaaGccaaI9aGaamyEamaaCaaaleqabaGaam4yaaaakiqbeY7a TzaaraGaaG4laiabe67a4baa@3C92@ . Согласно построениям должно быть χ u 1 =φ(u,v,ρ,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHhpWydaqhaaWcbaGaamyDaaqaai aaigdaaaGccaaI9aGaeqOXdOMaaGikaiaadwhacaaISaGaamODaiaa iYcacqaHbpGCcaaISaGaeqiXdqNaaGykaaaa@40E9@ . Приравнивая правые части, дифференцируя по y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5baaaa@32BF@ , ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBaaa@3379@ , x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BE@  и сравнивая результаты, получаем μ ¯ =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaH8oqBgaqeaiaai2dacaaIWaaaaa@3510@ , что недопустимо.

Подставляя решение (8) в уравнения третьей системы из (1), после чего дифференцируя по всем переменным и рассуждая как выше, приходим к противоречию.

Случаи 2, 3.1, 3.2, 4.1, 4.2, 4.3 и 5 дают отрицательный результат. Теорема доказана.

×

Об авторах

В. А. Кыров

Горно-Алтайский государственный университет

Автор, ответственный за переписку.
Email: kyrovVA@yandex.ru
Россия, Республика Алтай

Список литературы

  1. Богданова Р. А., Михайличенко Г. Г. Последовательное по рангу (n+1,2)' target='_blank'>http://www.w3.org/1998/Math/MathML">(n+1,2) вложение двуметрических феноменологически симметричных геометрий двух множеств Изв. вузов. Мат. 2020 6 9–14
  2. Кострикин А. И. Введение в алгебру М. Наука 1977
  3. Кыров В. А. О вложении двуметрических феноменологически симметричных геометрий Вестн. Томск. гос. ун-та. Мат. мех. 2018 56 5–16
  4. Кыров В. А. Гиперкомплексные числа в некоторых геометриях двух множеств, II Изв. вузов. Мат. 2020 7 39–54
  5. Кыров В. А., Михайличенко Г. Г. Невырожденные канонические решения одной системы функциональных уравнений Изв. вузов. Мат. 2021 8 46–55
  6. Михайличенко Г. Г. Двуметрические физические структуры ранга (n+1,2)' target='_blank'>http://www.w3.org/1998/Math/MathML">(n+1,2) Сиб. мат. ж. 1993 34 3 132–143
  7. Михайличенко Г. Г. Групповая симметрия физических структур Барнаул Барнаул. гос. пед. ун-т 2003
  8. Михайличенко Г. Г., Кыров В. А. Гиперкомплексные числа в некоторых геометриях двух множеств, I Изв. вузов. Мат.. 2017 7 19–29
  9. Kyrov V. A. Commutative hypercomplex numbers and the geometry of two sets Ж. СФУ. Сер. Мат. физ. 2020 13 3 373–382

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Кыров В.А., 2023

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).