Критерии устойчивости систем обыкновенных дифференциальных уравнений

Обложка

Цитировать

Полный текст

Аннотация

Представлены критерии устойчивости в смысле Ляпунова систем обыкновенных дифференциальных уравнений, основанные на преобразованиях разностных схем. Целью преобразований является получение зависимости величины возмущения решения в произвольный момент времени от возмущения начальных данных.

Полный текст

1. Введение. Анализ устойчивости в смысле Ляпунову систем обыкновенных дифференциальных уравнений необходимо выполнять в различных областях современной науки и техники, в частности, при управлении летательными аппаратами, технологическими процессами, создании высотных строительных конструкций, в синергетике (см. [3]), при оценке динамики загрязнения экосистемы водного объекта (см. [4]). Необходимость выполнять анализ устойчивости в режиме реального времени требует разработки критериев, допускающих компьютерную реализацию.

В статье предлагается подход к анализу устойчивости систем обыкновенных дифференциальных уравнений, основанный на преобразованиях разностных схем численного интегрирования. В результате преобразований требуется получить зависимость величины возмущения решения в произвольный момент времени от возмущения начальных данных с некоторым коэффициентом пропорциональности, который и определяет характер устойчивости. На этой основе формулируются критерии устойчивости и асимптотической устойчивости в виде необходимых и достаточных условий. Компьютерная реализация критериев должна позволить сделать однозначный вывод о характере устойчивости исследуемой системы в режиме реального времени.

2. Описание метода. Рассматривается задача Коши для системы линейных обыкновенных дифференциальных уравнений

dY dt =A(t)Y,Y( t 0 )= Y 0 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGKbGaamywaaqaaiaadsgacaWG0baaaiaai2dacaWGbbGaaGikaiaa dshacaaIPaGaamywaiaaiYcacaaMf8UaamywaiaaiIcacaWG0bWaaS baaSqaaiaaicdaaeqaaOGaaGykaiaai2dacaWGzbWaaSbaaSqaaiaa icdaaeqaaOGaaGOlaaaa@4832@  (1)

Предполагается, что для (1) выполнены все условия существования и единственности решения в области

R 1 ={ t 0 t<; Y ˜ (t),Y(t): Y ˜ 0 Y 0 δ 1 , δ 1 >0}. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaBa aaleaacaaIXaaabeaakiaai2dacaaI7bGaamiDamaaBaaaleaacaaI WaaabeaakiabgsMiJkaadshacaaI8aGaeyOhIuQaaG4oaiaaysW7ce WGzbGbaGaacaaIOaGaamiDaiaaiMcacaaISaGaaGjbVlaadMfacaaI OaGaamiDaiaaiMcacaaI6aqeeuuDJXwAKbsr4rNCHbacfaGae8xjIa LabmywayaaiaWaaSbaaSqaaiaaicdaaeqaaOGaeyOeI0Iaamywamaa BaaaleaacaaIWaaabeaakiab=vIiqjabgsMiJkabes7aKnaaBaaale aacaaIXaaabeaakiaaiYcacaaMe8UaeqiTdq2aaSbaaSqaaiaaigda aeqaaOGaaGOpaiaaicdacaaI9bGaaGOlaaaa@6406@

Элементы (n×n) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaad6 gacqGHxdaTcaWGUbGaaGykaaaa@3B55@  -матрицы A(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaaiI cacaWG0bGaaGykaaaa@3917@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=rbiaaa@3801@  функции a kj (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaWGRbGaamOAaaqabaGccaaIOaGaamiDaiaaiMcaaaa@3B4C@ , непрерывно дифференцируемые в R 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaBa aaleaacaaIXaaabeaaaaa@37B1@ . Ниже используются каноническая норма матрицы и согласованная с ней норма вектора:

A= max 1kn j=1 n | a kj |,Y= max 1kn | y k |. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamyqaiab=vIiqjaai2dadaGfqbqabSqa aiaaigdacqGHKjYOcaWGRbGaeyizImQaamOBaaqabOqaaiGac2gaca GGHbGaaiiEaaaadaaeWbqabSqaaiaadQgacaaI9aGaaGymaaqaaiaa d6gaa0GaeyyeIuoakiaaiYhacaWGHbWaaSbaaSqaaiaadUgacaWGQb aabeaakiaaiYhacaaISaGaaGzbVlab=vIiqjaadMfacqWFLicucaaI 9aWaaybuaeqaleaacaaIXaGaeyizImQaam4AaiabgsMiJkaad6gaae qakeaaciGGTbGaaiyyaiaacIhaaaGaaGiFaiaadMhadaWgaaWcbaGa am4AaaqabaGccaaI8bGaaGOlaaaa@66D5@

Для произвольно фиксированного значения t[ t 0 ,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI GiolaaiUfacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiabg6Hi LkaaiMcaaaa@3E18@  всюду ниже предполагается, что величины t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@36EC@ , i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@36E1@ , h MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaaaa@36E0@  связаны соотношениями t= t i+1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiaai2 dacaWG0bWaaSbaaSqaaiaadMgacqGHRaWkcaaIXaaabeaaaaa@3B63@ , h=( t i+1 t 0 )/(i+1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiaai2 dacaaIOaGaamiDamaaBaaaleaacaWGPbGaey4kaSIaaGymaaqabaGc cqGHsislcaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGykaiaai+caca aIOaGaamyAaiabgUcaRiaaigdacaaIPaaaaa@4445@ , i=0,1, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaai2 dacaaIWaGaaGilaiaaigdacaaISaGaeSOjGSeaaa@3BAB@ .

Для простоты изложения и наглядности преобразования разностных схем в качестве приближенного метода решения системы (1) используется метод Эйлера. Точное значение величины возмущения решения системы (1) методом Эйлера в форме с остаточным членом на произвольном промежутке [ t 0 ,t] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaads hadaWgaaWcbaGaaGimaaqabaGccaaISaGaamiDaiaai2faaaa@3B57@  определяется из соотношения

Y ˜ i+1 Y i+1 =(E+hA( t i ))( Y ˜ i Y i )+ Q E,i . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmywayaaia WaaSbaaSqaaiaadMgacqGHRaWkcaaIXaaabeaakiabgkHiTiaadMfa daWgaaWcbaGaamyAaiabgUcaRiaaigdaaeqaaOGaaGypaiaaiIcaca WGfbGaey4kaSIaamiAaiaadgeacaaIOaGaamiDamaaBaaaleaacaWG PbaabeaakiaaiMcacaaIPaGaaGikaiqadMfagaacamaaBaaaleaaca WGPbaabeaakiabgkHiTiaadMfadaWgaaWcbaGaamyAaaqabaGccaaI PaGaey4kaSIaamyuamaaBaaaleaacaWGfbGaaGilaiaadMgaaeqaaO GaaGOlaaaa@52B3@  (2)

Таким образом, величина возмущения на текущем шаге выражается через величину возмущения на предыдущем шаге. Выражая по аналогии величину возмущения на i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@36E1@  -м шаге через величину возмущения на (i1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadM gacqGHsislcaaIXaGaaGykaaaa@39EE@  -м шаге и подставляя в соотношение (2), имеем

Y ˜ i+1 Y i+1 =(E+hA( t i ))(E+hA( t i1 ))×( Y ˜ i1 Y i1 )+(E+hA( t i )) Q E,i1 + Q E,i . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmywayaaia WaaSbaaSqaaiaadMgacqGHRaWkcaaIXaaabeaakiabgkHiTiaadMfa daWgaaWcbaGaamyAaiabgUcaRiaaigdaaeqaaOGaaGypaiaaiIcaca WGfbGaey4kaSIaamiAaiaadgeacaaIOaGaamiDamaaBaaaleaacaWG PbaabeaakiaaiMcacaaIPaGaaGikaiaadweacqGHRaWkcaWGObGaam yqaiaaiIcacaWG0bWaaSbaaSqaaiaadMgacqGHsislcaaIXaaabeaa kiaaiMcacaaIPaGaey41aqRaaGikaiqadMfagaacamaaBaaaleaaca WGPbGaeyOeI0IaaGymaaqabaGccqGHsislcaWGzbWaaSbaaSqaaiaa dMgacqGHsislcaaIXaaabeaakiaaiMcacqGHRaWkcaaIOaGaamyrai abgUcaRiaadIgacaWGbbGaaGikaiaadshadaWgaaWcbaGaamyAaaqa baGccaaIPaGaaGykaiaadgfadaWgaaWcbaGaamyraiaaiYcacaWGPb GaeyOeI0IaaGymaaqabaGccqGHRaWkcaWGrbWaaSbaaSqaaiaadwea caaISaGaamyAaaqabaGccaaIUaaaaa@7052@  (3)

Рекуррентно преобразуя правую часть (3), получим выражение для возмущения на текущем шаге через возмущение начальных данных:

Y ˜ i+1 Y i+1 = l=0 i (E+hA( t il ))( Y ˜ 0 Y 0 )+ L i , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmywayaaia WaaSbaaSqaaiaadMgacqGHRaWkcaaIXaaabeaakiabgkHiTiaadMfa daWgaaWcbaGaamyAaiabgUcaRiaaigdaaeqaaOGaaGypamaarahabe WcbaGaeS4eHWMaaGypaiaaicdaaeaacaWGPbaaniabg+GivdGccaaI OaGaamyraiabgUcaRiaadIgacaWGbbGaaGikaiaadshadaWgaaWcba GaamyAaiabgkHiTiabloriSbqabaGccaaIPaGaaGykaiaaiIcaceWG zbGbaGaadaWgaaWcbaGaaGimaaqabaGccqGHsislcaWGzbWaaSbaaS qaaiaaicdaaeqaaOGaaGykaiabgUcaRiaadYeadaWgaaWcbaGaamyA aaqabaGccaaISaaaaa@58BE@  (4)

где

L i = r=1 i l=0 ir (E+hA( t il )) Q E(r1) + Q E,i , lim i L i = 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaWGPbaabeaakiaai2dadaaeWbqabSqaaiaadkhacaaI9aGa aGymaaqaaiaadMgaa0GaeyyeIuoakmaarahabeWcbaGaeS4eHWMaaG ypaiaaicdaaeaacaWGPbGaeyOeI0IaamOCaaqdcqGHpis1aOGaaGik aiaadweacqGHRaWkcaWGObGaamyqaiaaiIcacaWG0bWaaSbaaSqaai aadMgacqGHsislcqWItecBaeqaaOGaaGykaiaaiMcacaWGrbWaaSba aSqaaiaadweacaaIOaGaamOCaiabgkHiTiaaigdacaaIPaaabeaaki abgUcaRiaadgfadaWgaaWcbaGaamyraiaaiYcacaWGPbaabeaakiaa iYcacaaMf8+aaybuaeqaleaacaWGPbGaeyOKH4QaeyOhIukabeGcba GaciiBaiaacMgacaGGTbaaaiaadYeadaWgaaWcbaGaamyAaaqabaGc caaI9aGabGimayaalaaaaa@6829@

(см. [1]). Переходя в (4) к пределу при h0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiabgk ziUkaaicdaaaa@3987@ , что равносильно i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabgk ziUkabg6HiLcaa@3A3F@ , получим для всех t[ t 0 ,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI GiolaaiUfacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiabg6Hi LkaaiMcaaaa@3E18@  тождество

Y ˜ (t)Y(t)= lim i l=0 i (E+hA( t il ))( Y ˜ 0 Y 0 ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmywayaaia GaaGikaiaadshacaaIPaGaeyOeI0IaamywaiaaiIcacaWG0bGaaGyk aiaai2dadaGfqbqabSqaaiaadMgacqGHsgIRcqGHEisPaeqakeaaci GGSbGaaiyAaiaac2gaaaWaaebCaeqaleaacqWItecBcaaI9aGaaGim aaqaaiaadMgaa0Gaey4dIunakiaaiIcacaWGfbGaey4kaSIaamiAai aadgeacaaIOaGaamiDamaaBaaaleaacaWGPbGaeyOeI0IaeS4eHWga beaakiaaiMcacaaIPaGaaGikaiqadMfagaacamaaBaaaleaacaaIWa aabeaakiabgkHiTiaadMfadaWgaaWcbaGaaGimaaqabaGccaaIPaGa aGilaaaa@5CC1@

смысл которого в том, что для произвольного t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@36EC@  величина возмущения равна бесконечному матричному произведению, умноженному на возмущение начальных данных. Отсюда следует критерий устойчивости (5) и асимптотической устойчивости (6) системы (1) в форме необходимых и достаточных условий:

lim i l=0 i (E+hA( t il )) c ˜ 1 , c ˜ 1 =const,t[ t 0 ,), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIa1aaybuaeqaleaacaWGPbGaeyOKH4QaeyOh IukabeGcbaGaciiBaiaacMgacaGGTbaaamaarahabeWcbaGaeS4eHW MaaGypaiaaicdaaeaacaWGPbaaniabg+GivdGccaaIOaGaamyraiab gUcaRiaadIgacaWGbbGaaGikaiaadshadaWgaaWcbaGaamyAaiabgk HiTiabloriSbqabaGccaaIPaGaaGykaiab=vIiqjabgsMiJkqadoga gaacamaaBaaaleaacaaIXaaabeaakiaaiYcacaaMf8Uabm4yayaaia WaaSbaaSqaaiaaigdaaeqaaOGaaGypaiaadogacaWGVbGaamOBaiaa dohacaWG0bGaaGilaiaaywW7cqGHaiIicaWG0bGaeyicI4SaaG4wai aadshadaWgaaWcbaGaaGimaaqabaGccaaISaGaeyOhIuQaaGykaiaa iYcaaaa@6DE6@  (5)

lim t lim i l=0 i (E+hA( t il ))=0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqale aacaWG0bGaeyOKH4QaeyOhIukabeGcbaGaciiBaiaacMgacaGGTbaa aebbfv3ySLgzGueE0jxyaGqbaiab=vIiqnaawafabeWcbaGaamyAai abgkziUkabg6HiLcqabOqaaiGacYgacaGGPbGaaiyBaaaadaqeWbqa bSqaaiabloriSjaai2dacaaIWaaabaGaamyAaaqdcqGHpis1aOGaaG ikaiaadweacqGHRaWkcaWGObGaamyqaiaaiIcacaWG0bWaaSbaaSqa aiaadMgacqGHsislcqWItecBaeqaaOGaaGykaiaaiMcacqWFLicuca aI9aGaaGimaiaai6caaaa@5E8B@  (6)

Критерии (5), (6) позволяют определить характер устойчивости, асимптотической устойчивости либо неустойчивости систем линейных обыкновенных дифференциальных уравнений без представления решения в аналитической форме, преобразования правой части системы, построения функций Ляпунова. Мультипликативная форма выражений под знаком предела предоставляет возможность запрограммировать вычисление этих выражений и тем самым компьютеризировать анализ устойчивости.

Математически обосновано (см. [8]), что необходимая в процессе программирования замена бесконечного матричного произведения на конечное произведение сохраняет достоверность анализа устойчивости по предложенным критериям. Проведено исследование зависимости достоверности компьютерного анализа устойчивости от погрешности разностного решения системы.

Аналогичные критерии устойчивости строятся на основе методов Эйлера MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=nbiaaa@3800@ Коши, Рунге MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=nbiaaa@3800@ Кутта и Адамса. Использование данных критериев обеспечивает более высокую достоверность анализа устойчивости в силу улучшения оценки погрешности от отбрасывания остаточных членов.

Если матрица A MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaaaa@36B9@  в (1) не зависит от времени, то критерии (5), (6), соответственно, примут вид

lim m B 2 m c ˜ 2 , c ˜ 2 =const,t[ t 0 ,), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIa1aaybuaeqaleaacaWGTbGaeyOKH4QaeyOh IukabeGcbaGaciiBaiaacMgacaGGTbaaaiaadkeadaahaaWcbeqaai aaikdadaahaaqabeaacaWGTbaaaaaakiab=vIiqjabgsMiJkqadoga gaacamaaBaaaleaacaaIYaaabeaakiaaiYcacaaMf8Uabm4yayaaia WaaSbaaSqaaiaaikdaaeqaaOGaaGypaiaadogacaWGVbGaamOBaiaa dohacaWG0bGaaGilaiaaywW7cqGHaiIicaWG0bGaeyicI4SaaG4wai aadshadaWgaaWcbaGaaGimaaqabaGccaaISaGaeyOhIuQaaGykaiaa iYcaaaa@607A@

где B=E+hA MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaiaai2 dacaWGfbGaey4kaSIaamiAaiaadgeaaaa@3AE0@ , i+ 1=2 m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabgU caRiaaigdacaaI9aGaaGOmamaaCaaaleqabaGaamyBaaaaaaa@3B20@ , и

lim t lim m B 2 m =0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqale aacaWG0bGaeyOKH4QaeyOhIukabeGcbaGaciiBaiaacMgacaGGTbaa aebbfv3ySLgzGueE0jxyaGqbaiab=vIiqnaawafabeWcbaGaamyBai abgkziUkabg6HiLcqabOqaaiGacYgacaGGPbGaaiyBaaaacaWGcbWa aWbaaSqabeaacaaIYaWaaWbaaeqabaGaamyBaaaaaaGccqWFLicuca aI9aGaaGimaiaai6caaaa@511D@

В этом частном случае предложенные критерии устойчивости отличаются тем, что не требуют информации о характеристическом многочлене матрицы и о его корнях.

В случае устойчивости (асимптотической устойчивости) системы (1) нелинейная добавка в правую часть (1) влечет ниже описываемые видоизменения в преобразования разностной схемы. Система (1) преобразуется к виду

dY dt =A(t)Y+F(t,Y),Y( t 0 )= Y 0 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGKbGaamywaaqaaiaadsgacaWG0baaaiaai2dacaWGbbGaaGikaiaa dshacaaIPaGaamywaiabgUcaRiaadAeacaaIOaGaamiDaiaaiYcaca WGzbGaaGykaiaaiYcacaaMf8UaamywaiaaiIcacaWG0bWaaSbaaSqa aiaaicdaaeqaaOGaaGykaiaai2dacaWGzbWaaSbaaSqaaiaaicdaae qaaOGaaGOlaaaa@4DD1@  (7)

Предполагается, что нелинейная функция F(t,Y) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiaaiI cacaWG0bGaaGilaiaadMfacaaIPaaaaa@3AB0@  определена, непрерывна и непрерывно дифференцируема на отрезке [ t 0 ,t] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaads hadaWgaaWcbaGaaGimaaqabaGccaaISaGaamiDaiaai2faaaa@3B57@  при любом выборе t=const MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiaai2 dacaWGJbGaam4Baiaad6gacaWGZbGaamiDaaaa@3C73@ , t[ t 0 ,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI GiolaaiUfacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiabg6Hi LkaaiMcaaaa@3E18@ .

Величина возмущения определяется из соотношения

Y ˜ i+1 Y i+1 =(E+hA( t i ))( Y ˜ i Y i )+h(F( t i , Y ˜ i )F( t i , Y i ))+ Θ E,i , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmywayaaia WaaSbaaSqaaiaadMgacqGHRaWkcaaIXaaabeaakiabgkHiTiaadMfa daWgaaWcbaGaamyAaiabgUcaRiaaigdaaeqaaOGaaGypaiaaiIcaca WGfbGaey4kaSIaamiAaiaadgeacaaIOaGaamiDamaaBaaaleaacaWG PbaabeaakiaaiMcacaaIPaGaaGikaiqadMfagaacamaaBaaaleaaca WGPbaabeaakiabgkHiTiaadMfadaWgaaWcbaGaamyAaaqabaGccaaI PaGaey4kaSIaamiAaiaaiIcacaWGgbGaaGikaiaadshadaWgaaWcba GaamyAaaqabaGccaaISaGabmywayaaiaWaaSbaaSqaaiaadMgaaeqa aOGaaGykaiabgkHiTiaadAeacaaIOaGaamiDamaaBaaaleaacaWGPb aabeaakiaaiYcacaWGzbWaaSbaaSqaaiaadMgaaeqaaOGaaGykaiaa iMcacqGHRaWkcqqHyoqudaWgaaWcbaGaamyraiaaiYcacaWGPbaabe aakiaaiYcaaaa@658C@  (8)

где Θ E,i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiMde1aaS baaSqaaiaadweacaaISaGaamyAaaqabaaaaa@3A04@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=rbiaaa@3801@  погрешность метода Эйлера на шаге разностной схемы.

Рекуррентное преобразование правой части (8) влечет

Y ˜ i+1 Y i+1 = l=0 i (E+hA( t il ))( Y ˜ 0 Y 0 )+ D E,i + S E,i , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmywayaaia WaaSbaaSqaaiaadMgacqGHRaWkcaaIXaaabeaakiabgkHiTiaadMfa daWgaaWcbaGaamyAaiabgUcaRiaaigdaaeqaaOGaaGypamaarahabe WcbaGaeS4eHWMaaGypaiaaicdaaeaacaWGPbaaniabg+GivdGccaaI OaGaamyraiabgUcaRiaadIgacaWGbbGaaGikaiaadshadaWgaaWcba GaamyAaiabgkHiTiabloriSbqabaGccaaIPaGaaGykaiaaiIcaceWG zbGbaGaadaWgaaWcbaGaaGimaaqabaGccqGHsislcaWGzbWaaSbaaS qaaiaaicdaaeqaaOGaaGykaiabgUcaRiaadseadaWgaaWcbaGaamyr aiaaiYcacaWGPbaabeaakiabgUcaRiaadofadaWgaaWcbaGaamyrai aaiYcacaWGPbaabeaakiaaiYcaaaa@5E94@  (9)

где

D E,i = r=1 i l=0 ir (E+hA( t il ))h(F( t r1 , Y ˜ r1 )F( t r1 , Y r1 ))+h(F( t i , Y ˜ i )F( t i , Y i )), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaWGfbGaaGilaiaadMgaaeqaaOGaaGypamaaqahabeWcbaGa amOCaiaai2dacaaIXaaabaGaamyAaaqdcqGHris5aOWaaebCaeqale aacqWItecBcaaI9aGaaGimaaqaaiaadMgacqGHsislcaWGYbaaniab g+GivdGccaaIOaGaamyraiabgUcaRiaadIgacaWGbbGaaGikaiaads hadaWgaaWcbaGaamyAaiabgkHiTiabloriSbqabaGccaaIPaGaaGyk aiaadIgacaaIOaGaamOraiaaiIcacaWG0bWaaSbaaSqaaiaadkhacq GHsislcaaIXaaabeaakiaaiYcaceWGzbGbaGaadaWgaaWcbaGaamOC aiabgkHiTiaaigdaaeqaaOGaaGykaiabgkHiTiaadAeacaaIOaGaam iDamaaBaaaleaacaWGYbGaeyOeI0IaaGymaaqabaGccaaISaGaamyw amaaBaaaleaacaWGYbGaeyOeI0IaaGymaaqabaGccaaIPaGaaGykai abgUcaRiaadIgacaaIOaGaamOraiaaiIcacaWG0bWaaSbaaSqaaiaa dMgaaeqaaOGaaGilaiqadMfagaacamaaBaaaleaacaWGPbaabeaaki aaiMcacqGHsislcaWGgbGaaGikaiaadshadaWgaaWcbaGaamyAaaqa baGccaaISaGaamywamaaBaaaleaacaWGPbaabeaakiaaiMcacaaIPa GaaGilaaaa@7D0B@

S E,i = r=1 i l=0 ir b(E+hA( t il )) Θ E(r1) + Θ E,i . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBa aaleaacaWGfbGaaGilaiaadMgaaeqaaOGaaGypamaaqahabeWcbaGa amOCaiaai2dacaaIXaaabaGaamyAaaqdcqGHris5aOWaaebCaeqale aacqWItecBcaaI9aGaaGimaaqaaiaadMgacqGHsislcaWGYbaaniab g+GivdGccaWGIbGaaGikaiaadweacqGHRaWkcaWGObGaamyqaiaaiI cacaWG0bWaaSbaaSqaaiaadMgacqGHsislcqWItecBaeqaaOGaaGyk aiaaiMcacqqHyoqudaWgaaWcbaGaamyraiaaiIcacaWGYbGaeyOeI0 IaaGymaiaaiMcaaeqaaOGaey4kaSIaeuiMde1aaSbaaSqaaiaadwea caaISaGaamyAaaqabaGccaaIUaaaaa@5F25@

По аналогии с линейным случаем доказывается, что lim i S E,i = 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqale aacaWGPbGaeyOKH4QaeyOhIukabeGcbaGaciiBaiaacMgacaGGTbaa aiaadofadaWgaaWcbaGaamyraiaaiYcacaWGPbaabeaakiaai2dace aIWaGbaSaaaaa@42A2@  (см. [1]).

Выполняя предельный переход в (9) при i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabgk ziUkabg6HiLcaa@3A3F@  для всех t[ t 0 ,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI GiolaaiUfacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiabg6Hi LkaaiMcaaaa@3E18@  получим соотношение

Y ˜ (t)Y(t)= lim i l=0 i (E+hA( t il ))( Y ˜ 0 Y 0 )+ lim i D E,i . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmywayaaia GaaGikaiaadshacaaIPaGaeyOeI0IaamywaiaaiIcacaWG0bGaaGyk aiaai2dadaGfqbqabSqaaiaadMgacqGHsgIRcqGHEisPaeqakeaaci GGSbGaaiyAaiaac2gaaaWaaebCaeqaleaacqWItecBcaaI9aGaaGim aaqaaiaadMgaa0Gaey4dIunakiaaiIcacaWGfbGaey4kaSIaamiAai aadgeacaaIOaGaamiDamaaBaaaleaacaWGPbGaeyOeI0IaeS4eHWga beaakiaaiMcacaaIPaGaaGikaiqadMfagaacamaaBaaaleaacaaIWa aabeaakiabgkHiTiaadMfadaWgaaWcbaGaaGimaaqabaGccaaIPaGa ey4kaSYaaybuaeqaleaacaWGPbGaeyOKH4QaeyOhIukabeGcbaGaci iBaiaacMgacaGGTbaaaiaadseadaWgaaWcbaGaamyraiaaiYcacaWG Pbaabeaakiaai6caaaa@68B2@

Отсюда следуют критерии устойчивости и асимптотической устойчивости системы (7):

Y ˜ (t)Y(t) lim i l=0 i (E+hA( t il ))( Y ˜ 0 Y 0 ) c ˜ 3 , c ˜ 3 =const,t[ t 0 ,), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLabmywayaaiaGaaGikaiaadshacaaIPaGa eyOeI0IaamywaiaaiIcacaWG0bGaaGykaiabgkHiTmaawafabeWcba GaamyAaiabgkziUkabg6HiLcqabOqaaiGacYgacaGGPbGaaiyBaaaa daqeWbqabSqaaiabloriSjaai2dacaaIWaaabaGaamyAaaqdcqGHpi s1aOGaaGikaiaadweacqGHRaWkcaWGObGaamyqaiaaiIcacaWG0bWa aSbaaSqaaiaadMgacqGHsislcqWItecBaeqaaOGaaGykaiaaiMcaca aIOaGabmywayaaiaWaaSbaaSqaaiaaicdaaeqaaOGaeyOeI0Iaamyw amaaBaaaleaacaaIWaaabeaakiaaiMcacqWFLicucqGHKjYOceWGJb GbaGaadaWgaaWcbaGaaG4maaqabaGccaaISaGaaGzbVlqadogagaac amaaBaaaleaacaaIZaaabeaakiaai2dacaWGJbGaam4Baiaad6gaca WGZbGaamiDaiaaiYcacaaMf8UaeyiaIiIaamiDaiabgIGiolaaiUfa caWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiabg6HiLkaaiMcaca aISaaaaa@7C48@

lim t Y ˜ (t)Y(t) lim i l=0 i (E+hA( t il ))( Y ˜ 0 Y 0 )=0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqale aacaWG0bGaeyOKH4QaeyOhIukabeGcbaGaciiBaiaacMgacaGGTbaa aebbfv3ySLgzGueE0jxyaGqbaiab=vIiqjqadMfagaacaiaaiIcaca WG0bGaaGykaiabgkHiTiaadMfacaaIOaGaamiDaiaaiMcacqGHsisl daGfqbqabSqaaiaadMgacqGHsgIRcqGHEisPaeqakeaaciGGSbGaai yAaiaac2gaaaWaaebCaeqaleaacqWItecBcaaI9aGaaGimaaqaaiaa dMgaa0Gaey4dIunakiaaiIcacaWGfbGaey4kaSIaamiAaiaadgeaca aIOaGaamiDamaaBaaaleaacaWGPbGaeyOeI0IaeS4eHWgabeaakiaa iMcacaaIPaGaaGikaiqadMfagaacamaaBaaaleaacaaIWaaabeaaki abgkHiTiaadMfadaWgaaWcbaGaaGimaaqabaGccaaIPaGae8xjIaLa aGypaiaaicdacaaIUaaaaa@6CE9@

Полученные критерии в отличие от линейного случая требуют нахождения приближенного решения системы. Критерии целесообразно применять для анализа устойчивости системы с фиксированной линейной частью и динамически изменяющейся нелинейной добавкой. В этом случае возможность компьютерной реализации критериев позволяет в режиме реального времени выполнять мониторинг характера устойчивости системы.

Далее рассмотрим задачу Коши для нелинейной системы

dY dt =F(t,Y),Y( t 0 )= Y 0 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGKbGaamywaaqaaiaadsgacaWG0baaaiaai2dacaWGgbGaaGikaiaa dshacaaISaGaamywaiaaiMcacaaISaGaaGzbVlaadMfacaaIOaGaam iDamaaBaaaleaacaaIWaaabeaakiaaiMcacaaI9aGaamywamaaBaaa leaacaaIWaaabeaakiaaiYcaaaa@48EB@  (10)

 где функция F(t,Y) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiaaiI cacaWG0bGaaGilaiaadMfacaaIPaaaaa@3AB0@  непрерывно дифференцируема по t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@36EC@  в области

R 2 ={ t 0 t<; Y ˜ (t),Y(t): Y ˜ 0 Y 0 δ 2 , δ 2 >0}. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaBa aaleaacaaIYaaabeaakiaai2dacaaI7bGaamiDamaaBaaaleaacaaI WaaabeaakiabgsMiJkaadshacaaI8aGaeyOhIuQaaG4oaiaaysW7ce WGzbGbaGaacaaIOaGaamiDaiaaiMcacaaISaGaaGjbVlaadMfacaaI OaGaamiDaiaaiMcacaaI6aqeeuuDJXwAKbsr4rNCHbacfaGae8xjIa LabmywayaaiaWaaSbaaSqaaiaaicdaaeqaaOGaeyOeI0Iaamywamaa BaaaleaacaaIWaaabeaakiab=vIiqjabgsMiJkabes7aKnaaBaaale aacaaIYaaabeaakiaaiYcacaaMe8UaeqiTdq2aaSbaaSqaaiaaikda aeqaaOGaaGOpaiaaicdacaaI9bGaaGOlaaaa@6409@

Предполагается, что для (10) в области R 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaBa aaleaacaaIYaaabeaaaaa@37B2@  выполнены все условия существования и единственности решения.

На произвольном промежутке [ t 0 ,t] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaads hadaWgaaWcbaGaaGimaaqabaGccaaISaGaamiDaiaai2faaaa@3B57@  точное значение величины возмущения определяется из соотношения

y ˜ k,(i+1) y k,(i+1) = 1+h f k ( t i , Y ˜ i ) f k ( t i , Y i ) y ˜ k,i y k,i ( y ˜ k,i y k,i )+ w k,i k 1,n ¯ . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaaia WaaSbaaSqaaiaadUgacaaISaGaaGikaiaadMgacqGHRaWkcaaIXaGa aGykaaqabaGccqGHsislcaWG5bWaaSbaaSqaaiaadUgacaaISaGaaG ikaiaadMgacqGHRaWkcaaIXaGaaGykaaqabaGccaaI9aWaaeWaaeaa caaIXaGaey4kaSIaamiAamaalaaabaGaamOzamaaBaaaleaacaWGRb aabeaakiaaiIcacaWG0bWaaSbaaSqaaiaadMgaaeqaaOGaaGilaiqa dMfagaacamaaBaaaleaacaWGPbaabeaakiaaiMcacqGHsislcaWGMb WaaSbaaSqaaiaadUgaaeqaaOGaaGikaiaadshadaWgaaWcbaGaamyA aaqabaGccaaISaGaamywamaaBaaaleaacaWGPbaabeaakiaaiMcaae aaceWG5bGbaGaadaWgaaWcbaGaam4AaiaaiYcacaWGPbaabeaakiab gkHiTiaadMhadaWgaaWcbaGaam4AaiaaiYcacaWGPbaabeaaaaaaki aawIcacaGLPaaacaaIOaGabmyEayaaiaWaaSbaaSqaaiaadUgacaaI SaGaamyAaaqabaGccqGHsislcaWG5bWaaSbaaSqaaiaadUgacaaISa GaamyAaaqabaGccaaIPaGaey4kaSIaam4DamaaBaaaleaacaWGRbGa aGilaiaadMgaaeqaaOGaaGzbVlabgcGiIiaadUgacqGHiiIZdaqdaa qaaiaaigdacaaISaGaamOBaaaacaaIUaaaaa@7A23@  (11)

На основе рекуррентного преобразования (11) имеет место соотношение

y ˜ k,(i+1) y k,(i+1) = l=0 i (1+h D il (k) )( y ˜ k,0 y k,0 )+ L 0,i (k) , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaaia WaaSbaaSqaaiaadUgacaaISaGaaGikaiaadMgacqGHRaWkcaaIXaGa aGykaaqabaGccqGHsislcaWG5bWaaSbaaSqaaiaadUgacaaISaGaaG ikaiaadMgacqGHRaWkcaaIXaGaaGykaaqabaGccaaI9aWaaebCaeqa leaacqWItecBcaaI9aGaaGimaaqaaiaadMgaa0Gaey4dIunakiaaiI cacaaIXaGaey4kaSIaamiAaiaadseadaqhaaWcbaGaamyAaiabgkHi TiabloriSbqaaiaaiIcacaWGRbGaaGykaaaakiaaiMcacaaIOaGabm yEayaaiaWaaSbaaSqaaiaadUgacaaISaGaaGimaaqabaGccqGHsisl caWG5bWaaSbaaSqaaiaadUgacaaISaGaaGimaaqabaGccaaIPaGaey 4kaSIaamitamaaDaaaleaacaaIWaGaaGilaiaadMgaaeaacaaIOaGa am4AaiaaiMcaaaGccaaISaaaaa@6652@  (12)

где

L 0,i (k) = r=1 i l=0 ir (1+h D il (k) ) w k(r1) + w ki , D i (k) = f k ( t i , Y ˜ i ) f k ( t i , Y i ) ( y ˜ k,i y k,i ) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaDa aaleaacaaIWaGaaGilaiaadMgaaeaacaaIOaGaam4AaiaaiMcaaaGc caaI9aWaaabCaeqaleaacaWGYbGaaGypaiaaigdaaeaacaWGPbaani abggHiLdGcdaqeWbqabSqaaiabloriSjaai2dacaaIWaaabaGaamyA aiabgkHiTiaadkhaa0Gaey4dIunakiaaiIcacaaIXaGaey4kaSIaam iAaiaadseadaqhaaWcbaGaamyAaiabgkHiTiabloriSbqaaiaaiIca caWGRbGaaGykaaaakiaaiMcacaWG3bWaaSbaaSqaaiaadUgacaaIOa GaamOCaiabgkHiTiaaigdacaaIPaaabeaakiabgUcaRiaadEhadaWg aaWcbaGaam4AaiaadMgaaeqaaOGaaGilaiaaywW7caWGebWaa0baaS qaaiaadMgaaeaacaaIOaGaam4AaiaaiMcaaaGccaaI9aWaaSaaaeaa caWGMbWaaSbaaSqaaiaadUgaaeqaaOGaaGikaiaadshadaWgaaWcba GaamyAaaqabaGccaaISaGabmywayaaiaWaaSbaaSqaaiaadMgaaeqa aOGaaGykaiabgkHiTiaadAgadaWgaaWcbaGaam4AaaqabaGccaaIOa GaamiDamaaBaaaleaacaWGPbaabeaakiaaiYcacaWGzbWaaSbaaSqa aiaadMgaaeqaaOGaaGykaaqaaiaaiIcaceWG5bGbaGaadaWgaaWcba Gaam4AaiaaiYcacaWGPbaabeaakiabgkHiTiaadMhadaWgaaWcbaGa am4AaiaaiYcacaWGPbaabeaakiaaiMcaaaGaaGOlaaaa@81EA@

В рассматриваемых условиях

lim i L 0,i (k) =0t[ t 0 ,),k 1,n ¯ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqale aacaWGPbGaeyOKH4QaeyOhIukabeGcbaGaciiBaiaacMgacaGGTbaa aiaadYeadaqhaaWcbaGaaGimaiaaiYcacaWGPbaabaGaaGikaiaadU gacaaIPaaaaOGaaGypaiaaicdacaaMf8UaeyiaIiIaamiDaiabgIGi olaaiUfacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiabg6HiLk aaiMcacaaISaGaaGzbVlabgcGiIiaadUgacaaMi8UaeyicI48aa0aa aeaacaaIXaGaaGilaiaad6gaaaaaaa@58E0@

(см. [5]). Критерии устойчивости и асимптотической устойчивости имеют вид

lim i l=0 i (1+h D il (k) ) c ˜ 4 , c ˜ 4 =const,t[ t 0 ,),k 1,n ¯ , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaada GfqbqabSqaaiaadMgacqGHsgIRcqGHEisPaeqakeaaciGGSbGaaiyA aiaac2gaaaWaaebCaeqaleaacqWItecBcaaI9aGaaGimaaqaaiaadM gaa0Gaey4dIunakiaaiIcacaaIXaGaey4kaSIaamiAaiaadseadaqh aaWcbaGaamyAaiabgkHiTiabloriSbqaaiaaiIcacaWGRbGaaGykaa aakiaaiMcaaiaawEa7caGLiWoacqGHKjYOceWGJbGbaGaadaWgaaWc baGaaGinaaqabaGccaaISaGaaGzbVlqadogagaacamaaBaaaleaaca aI0aaabeaakiaai2dacaWGJbGaam4Baiaad6gacaWGZbGaamiDaiaa iYcacaaMf8UaeyiaIiIaamiDaiabgIGiolaaiUfacaWG0bWaaSbaaS qaaiaaicdaaeqaaOGaaGilaiabg6HiLkaaiMcacaaISaGaaGzbVlab gcGiIiaadUgacqGHiiIZdaqdaaqaaiaaigdacaaISaGaamOBaaaaca aISaaaaa@7223@  (13)

lim t lim i l=0 i (1+h D il (k) ) =0k 1,n ¯ . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqale aacaWG0bGaeyOKH4QaeyOhIukabeGcbaGaciiBaiaacMgacaGGTbaa amaaemaabaWaaybuaeqaleaacaWGPbGaeyOKH4QaeyOhIukabeGcba GaciiBaiaacMgacaGGTbaaamaarahabeWcbaGaeS4eHWMaaGypaiaa icdaaeaacaWGPbaaniabg+GivdGccaaIOaGaaGymaiabgUcaRiaadI gacaWGebWaa0baaSqaaiaadMgacqGHsislcqWItecBaeaacaaIOaGa am4AaiaaiMcaaaGccaaIPaaacaGLhWUaayjcSdGaaGypaiaaicdaca aMf8UaeyiaIiIaam4AaiabgIGiopaanaaabaGaaGymaiaaiYcacaWG Ubaaaiaai6caaaa@620C@  (14)

Так как

y ˜ k (t) y k (t)= lim i l=0 i (1+h D il (k) )( y ˜ k,0 y k,0 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaaia WaaSbaaSqaaiaadUgaaeqaaOGaaGikaiaadshacaaIPaGaeyOeI0Ia amyEamaaBaaaleaacaWGRbaabeaakiaaiIcacaWG0bGaaGykaiaai2 dadaGfqbqabSqaaiaadMgacqGHsgIRcqGHEisPaeqakeaaciGGSbGa aiyAaiaac2gaaaWaaebCaeqaleaacqWItecBcaaI9aGaaGimaaqaai aadMgaa0Gaey4dIunakiaaiIcacaaIXaGaey4kaSIaamiAaiaadsea daqhaaWcbaGaamyAaiabgkHiTiabloriSbqaaiaaiIcacaWGRbGaaG ykaaaakiaaiMcacaaIOaGabmyEayaaiaWaaSbaaSqaaiaadUgacaaI SaGaaGimaaqabaGccqGHsislcaWG5bWaaSbaaSqaaiaadUgacaaISa GaaGimaaqabaGccaaIPaaaaa@620F@

для всех t[ t 0 ,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI GiolaaiUfacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiabg6Hi LkaaiMcaaaa@3E18@ , то критерии (13), (14) можно представить в равносильной форме

y ˜ k (t) y k (t) y ˜ k,0 y k,0 c ˜ 4 , c ˜ 4 =const,t[ t 0 ,),k 1,n ¯ , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaada WcaaqaaiqadMhagaacamaaBaaaleaacaWGRbaabeaakiaaiIcacaWG 0bGaaGykaiabgkHiTiaadMhadaWgaaWcbaGaam4AaaqabaGccaaIOa GaamiDaiaaiMcaaeaaceWG5bGbaGaadaWgaaWcbaGaam4AaiaaiYca caaIWaaabeaakiabgkHiTiaadMhadaWgaaWcbaGaam4AaiaaiYcaca aIWaaabeaaaaaakiaawEa7caGLiWoacqGHKjYOceWGJbGbaGaadaWg aaWcbaGaaGinaaqabaGccaaISaGaaGzbVlqadogagaacamaaBaaale aacaaI0aaabeaakiaai2dacaWGJbGaam4Baiaad6gacaWGZbGaamiD aiaaiYcacaaMf8UaeyiaIiIaamiDaiabgIGiolaaiUfacaWG0bWaaS baaSqaaiaaicdaaeqaaOGaaGilaiabg6HiLkaaiMcacaaISaGaaGzb VlabgcGiIiaadUgacqGHiiIZdaqdaaqaaiaaigdacaaISaGaamOBaa aacaaISaaaaa@6C8B@  (15)

lim t y ˜ k (t) y k (t) y ˜ k,0 y k,0 =0k 1,n ¯ . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqale aacaWG0bGaeyOKH4QaeyOhIukabeGcbaGaciiBaiaacMgacaGGTbaa amaaemaabaWaaSaaaeaaceWG5bGbaGaadaWgaaWcbaGaam4Aaaqaba GccaaIOaGaamiDaiaaiMcacqGHsislcaWG5bWaaSbaaSqaaiaadUga aeqaaOGaaGikaiaadshacaaIPaaabaGabmyEayaaiaWaaSbaaSqaai aadUgacaaISaGaaGimaaqabaGccqGHsislcaWG5bWaaSbaaSqaaiaa dUgacaaISaGaaGimaaqabaaaaaGccaGLhWUaayjcSdGaaGypaiaaic dacaaMf8UaeyiaIiIaam4AaiabgIGiopaanaaabaGaaGymaiaaiYca caWGUbaaaiaai6caaaa@5C74@  (16)

При компьютерной реализации критериев (15), (16) требуется находить решение системы обыкновенных дифференциальных уравнений с высокой степенью точности, что необходимо для получения достоверной оценки анализа устойчивости. Поэтому целесообразно использовать методы Рунге MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=nbiaaa@3800@ Кутта 4-го, Батчера 6-го и Дормана MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=nbiaaa@3800@ Принса 8-го порядка и кусочно-интерполяционный метод с итерационным уточнением [2].

С целью получения критериев устойчивости в логарифмической и аддитивной форме выполним следующее преобразование под знаком предела в (13):

l=0 i (1+h D il (k) )=exp ln l=0 i (1+h D il (k) ) или l=0 i (1+h D il (k) )=exp l=0 i ln(1+h D il (k) ) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaebCaeqale aacqWItecBcaaI9aGaaGimaaqaaiaadMgaa0Gaey4dIunakiaaiIca caaIXaGaey4kaSIaamiAaiaadseadaqhaaWcbaGaamyAaiabgkHiTi abloriSbqaaiaaiIcacaWGRbGaaGykaaaakiaaiMcacaaI9aGaciyz aiaacIhacaGGWbWaaiWaaeaaciGGSbGaaiOBamaarahabeWcbaGaeS 4eHWMaaGypaiaaicdaaeaacaWGPbaaniabg+GivdGccaaIOaGaaGym aiabgUcaRiaadIgacaWGebWaa0baaSqaaiaadMgacqGHsislcqWIte cBaeaacaaIOaGaam4AaiaaiMcaaaGccaaIPaaacaGL7bGaayzFaaGa aGzbVlaabIdbcaqG7qGaaeioeiaaywW7daqeWbqabSqaaiabloriSj aai2dacaaIWaaabaGaamyAaaqdcqGHpis1aOGaaGikaiaaigdacqGH RaWkcaWGObGaamiramaaDaaaleaacaWGPbGaeyOeI0IaeS4eHWgaba GaaGikaiaadUgacaaIPaaaaOGaaGykaiaai2daciGGLbGaaiiEaiaa cchadaGadaqaamaaqahabeWcbaGaeS4eHWMaaGypaiaaicdaaeaaca WGPbaaniabggHiLdGcciGGSbGaaiOBaiaaiIcacaaIXaGaey4kaSIa amiAaiaadseadaqhaaWcbaGaamyAaiabgkHiTiabloriSbqaaiaaiI cacaWGRbGaaGykaaaakiaaiMcaaiaawUhacaGL9baacaaIUaaaaa@8C36@

Соответственно величина возмущения определяется из соотношения

y ˜ k (t) y k (t)=exp lim i l=0 i ln(1+h D il (k) ) ( y ˜ k,0 y k,0 )k 1,n ¯ . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaaia WaaSbaaSqaaiaadUgaaeqaaOGaaGikaiaadshacaaIPaGaeyOeI0Ia amyEamaaBaaaleaacaWGRbaabeaakiaaiIcacaWG0bGaaGykaiaai2 daciGGLbGaaiiEaiaacchadaGadaqaamaawafabeWcbaGaamyAaiab gkziUkabg6HiLcqabOqaaiGacYgacaGGPbGaaiyBaaaadaaeWbqabS qaaiabloriSjaai2dacaaIWaaabaGaamyAaaqdcqGHris5aOGaciiB aiaac6gacaaIOaGaaGymaiabgUcaRiaadIgacaWGebWaa0baaSqaai aadMgacqGHsislcqWItecBaeaacaaIOaGaam4AaiaaiMcaaaGccaaI PaaacaGL7bGaayzFaaGaaGikaiqadMhagaacamaaBaaaleaacaWGRb GaaGilaiaaicdaaeqaaOGaeyOeI0IaamyEamaaBaaaleaacaWGRbGa aGilaiaaicdaaeqaaOGaaGykaiaaywW7cqGHaiIicaWGRbGaeyicI4 8aa0aaaeaacaaIXaGaaGilaiaad6gaaaGaaGOlaaaa@710F@

В результате критерии устойчивости и асимптотической устойчивости преобразуются к виду

lim i l=0 i ln(1+h D il (k) ) c ˜ 5 , c ˜ 5 =const,t[ t 0 ,),k 1,n ¯ , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqale aacaWGPbGaeyOKH4QaeyOhIukabeGcbaGaciiBaiaacMgacaGGTbaa amaaqahabeWcbaGaeS4eHWMaaGypaiaaicdaaeaacaWGPbaaniabgg HiLdGcciGGSbGaaiOBaiaaiIcacaaIXaGaey4kaSIaamiAaiaadsea daqhaaWcbaGaamyAaiabgkHiTiabloriSbqaaiaaiIcacaWGRbGaaG ykaaaakiaaiMcacqGHKjYOceWGJbGbaGaadaWgaaWcbaGaaGynaaqa baGccaaISaGaaGzbVlqadogagaacamaaBaaaleaacaaI1aaabeaaki aai2dacaWGJbGaam4Baiaad6gacaWGZbGaamiDaiaaiYcacaaMf8Ua eyiaIiIaamiDaiabgIGiolaaiUfacaWG0bWaaSbaaSqaaiaaicdaae qaaOGaaGilaiabg6HiLkaaiMcacaaISaGaaGzbVlabgcGiIiaadUga cqGHiiIZdaqdaaqaaiaaigdacaaISaGaamOBaaaacaaISaaaaa@70F8@

lim t lim i l=0 i lnb(1+h D il (k) )=k 1,n ¯ . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqale aacaWG0bGaeyOKH4QaeyOhIukabeGcbaGaciiBaiaacMgacaGGTbaa amaawafabeWcbaGaamyAaiabgkziUkabg6HiLcqabOqaaiGacYgaca GGPbGaaiyBaaaadaaeWbqabSqaaiabloriSjaai2dacaaIWaaabaGa amyAaaqdcqGHris5aOGaciiBaiaac6gacaWGIbGaaGikaiaaigdacq GHRaWkcaWGObGaamiramaaDaaaleaacaWGPbGaeyOeI0IaeS4eHWga baGaaGikaiaadUgacaaIPaaaaOGaaGykaiaai2dacqGHsislcqGHEi sPcaaMf8UaeyiaIiIaam4AaiabgIGiopaanaaabaGaaGymaiaaiYca caWGUbaaaiaai6caaaa@636A@

С учетом того, что h D il (k) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiaads eadaqhaaWcbaGaamyAaiabgkHiTiabloriSbqaaiaaiIcacaWGRbGa aGykaaaaaaa@3D37@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=rbiaaa@3801@  бесконечно малая и выполняется соотношение:

ln(1+h D il (k) ) h D il (k) 1li,k 1,n ¯ , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaci GGSbGaaiOBaiaaiIcacaaIXaGaey4kaSIaamiAaiaadseadaqhaaWc baGaamyAaiabgkHiTiabloriSbqaaiaaiIcacaWGRbGaaGykaaaaki aaiMcaaeaacaWGObGaamiramaaDaaaleaacaWGPbGaeyOeI0IaeS4e HWgabaGaaGikaiaadUgacaaIPaaaaaaakiabgkziUkaaigdacaaMf8 UaeyiaIiIaeS4eHWMaeyizImQaamyAaiaaiYcacaaMf8UaeyiaIiIa am4AaiabgIGiopaanaaabaGaaGymaiaaiYcacaWGUbaaaiaaiYcaaa a@5B12@

имеет место аддитивная форма критериев:

lim i l=0 i h D il (k) c ˜ 5 , c ˜ 5 =const,t[ t 0 ,),k 1,n ¯ , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqale aacaWGPbGaeyOKH4QaeyOhIukabeGcbaGaciiBaiaacMgacaGGTbaa amaaqahabeWcbaGaeS4eHWMaaGypaiaaicdaaeaacaWGPbaaniabgg HiLdGccaWGObGaamiramaaDaaaleaacaWGPbGaeyOeI0IaeS4eHWga baGaaGikaiaadUgacaaIPaaaaOGaeyizImQabm4yayaaiaWaaSbaaS qaaiaaiwdaaeqaaOGaaGilaiaaywW7ceWGJbGbaGaadaWgaaWcbaGa aGynaaqabaGccaaI9aGaam4yaiaad+gacaWGUbGaam4Caiaadshaca aISaGaaGzbVlabgcGiIiaadshacqGHiiIZcaaIBbGaamiDamaaBaaa leaacaaIWaaabeaakiaaiYcacqGHEisPcaaIPaGaaGilaiaaywW7cq GHaiIicaWGRbGaeyicI48aa0aaaeaacaaIXaGaaGilaiaad6gaaaGa aGilaaaa@6C12@

lim t lim i l=0 i h D il (k) =. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqale aacaWG0bGaeyOKH4QaeyOhIukabeGcbaGaciiBaiaacMgacaGGTbaa amaawafabeWcbaGaamyAaiabgkziUkabg6HiLcqabOqaaiGacYgaca GGPbGaaiyBaaaadaaeWbqabSqaaiabloriSjaai2dacaaIWaaabaGa amyAaaqdcqGHris5aOGaamiAaiaadseadaqhaaWcbaGaamyAaiabgk HiTiabloriSbqaaiaaiIcacaWGRbGaaGykaaaakiaai2dacqGHsisl cqGHEisPcaaIUaaaaa@5656@

Далее приводится вывод критериев устойчивости системы (10) по характеру поведения правой части. Критерии должны быть равносильны (15), (16) и допускать программную реализацию.

На фиксированном промежутке [ t 0 ,t] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaads hadaWgaaWcbaGaaGimaaqabaGccaaISaGaamiDaiaai2faaaa@3B57@  значение правой части системы (10) для возмущенного и невозмущенного решения определяется из соотношений

f k ( t i , Y ˜ i )= y ˜ k,(i+1) y ˜ k,i q ˜ k,i h , f k ( t i , Y i )= y k,(i+1) y k,i q k,i h ,k 1,n ¯ , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaWGRbaabeaakiaaiIcacaWG0bWaaSbaaSqaaiaadMgaaeqa aOGaaGilaiqadMfagaacamaaBaaaleaacaWGPbaabeaakiaaiMcaca aI9aWaaSaaaeaaceWG5bGbaGaadaWgaaWcbaGaam4AaiaaiYcacaaI OaGaamyAaiabgUcaRiaaigdacaaIPaaabeaakiabgkHiTiqadMhaga acamaaBaaaleaacaWGRbGaaGilaiaadMgaaeqaaOGaeyOeI0IabmyC ayaaiaWaaSbaaSqaaiaadUgacaaISaGaamyAaaqabaaakeaacaWGOb aaaiaaiYcacaaMf8UaamOzamaaBaaaleaacaWGRbaabeaakiaaiIca caWG0bWaaSbaaSqaaiaadMgaaeqaaOGaaGilaiaadMfadaWgaaWcba GaamyAaaqabaGccaaIPaGaaGypamaalaaabaGaamyEamaaBaaaleaa caWGRbGaaGilaiaaiIcacaWGPbGaey4kaSIaaGymaiaaiMcaaeqaaO GaeyOeI0IaamyEamaaBaaaleaacaWGRbGaaGilaiaadMgaaeqaaOGa eyOeI0IaamyCamaaBaaaleaacaWGRbGaaGilaiaadMgaaeqaaaGcba GaamiAaaaacaaISaGaaGzbVlabgcGiIiaadUgacqGHiiIZdaqdaaqa aiaaigdacaaISaGaamOBaaaacaaISaaaaa@759C@

где q ˜ k,i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyCayaaia WaaSbaaSqaaiaadUgacaaISaGaamyAaaqabaaaaa@39B8@ , q k,i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCamaaBa aaleaacaWGRbGaaGilaiaadMgaaeqaaaaa@39A9@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=rbiaaa@3801@  остаточные члены формулы Тейлора для k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@36E3@  -х компонентов решения.

Соответственно, начальное значение правой части системы (10) для возмущенного и невозмущенного решения имеет вид

f k ( t 0 , Y ˜ 0 )= y ˜ k,1 y ˜ k,0 q ˜ k,0 h , f k ( t 0 , Y 0 )= y k,1 y k,0 q k,0 h ,k 1,n ¯ . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaWGRbaabeaakiaaiIcacaWG0bWaaSbaaSqaaiaaicdaaeqa aOGaaGilaiqadMfagaacamaaBaaaleaacaaIWaaabeaakiaaiMcaca aI9aWaaSaaaeaaceWG5bGbaGaadaWgaaWcbaGaam4AaiaaiYcacaaI XaaabeaakiabgkHiTiqadMhagaacamaaBaaaleaacaWGRbGaaGilai aaicdaaeqaaOGaeyOeI0IabmyCayaaiaWaaSbaaSqaaiaadUgacaaI SaGaaGimaaqabaaakeaacaWGObaaaiaaiYcacaaMf8UaamOzamaaBa aaleaacaWGRbaabeaakiaaiIcacaWG0bWaaSbaaSqaaiaaicdaaeqa aOGaaGilaiaadMfadaWgaaWcbaGaaGimaaqabaGccaaIPaGaaGypam aalaaabaGaamyEamaaBaaaleaacaWGRbGaaGilaiaaigdaaeqaaOGa eyOeI0IaamyEamaaBaaaleaacaWGRbGaaGilaiaaicdaaeqaaOGaey OeI0IaamyCamaaBaaaleaacaWGRbGaaGilaiaaicdaaeqaaaGcbaGa amiAaaaacaaISaGaaGzbVlabgcGiIiaadUgacqGHiiIZdaqdaaqaai aaigdacaaISaGaamOBaaaacaaIUaaaaa@6D94@

Отношение возмущения правой части (10) к начальному возмущению определяется из соотношения

f k ( t i , Y ˜ i ) f k ( t i , Y i ) f k ( t 0 , Y ˜ 0 ) f k ( t 0 , Y 0 ) = ( y ˜ k,(i+1) y ˜ k,i )( y k,(i+1) y k,i ) w ki ( y ˜ k,1 y ˜ k,0 )( y k,1 y k,0 ) w k,0 ,k 1,n ¯ , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGMbWaaSbaaSqaaiaadUgaaeqaaOGaaGikaiaadshadaWgaaWcbaGa amyAaaqabaGccaaISaGabmywayaaiaWaaSbaaSqaaiaadMgaaeqaaO GaaGykaiabgkHiTiaadAgadaWgaaWcbaGaam4AaaqabaGccaaIOaGa amiDamaaBaaaleaacaWGPbaabeaakiaaiYcacaWGzbWaaSbaaSqaai aadMgaaeqaaOGaaGykaaqaaiaadAgadaWgaaWcbaGaam4AaaqabaGc caaIOaGaamiDamaaBaaaleaacaaIWaaabeaakiaaiYcaceWGzbGbaG aadaWgaaWcbaGaaGimaaqabaGccaaIPaGaeyOeI0IaamOzamaaBaaa leaacaWGRbaabeaakiaaiIcacaWG0bWaaSbaaSqaaiaaicdaaeqaaO GaaGilaiaadMfadaWgaaWcbaGaaGimaaqabaGccaaIPaaaaiaai2da daWcaaqaaiaaiIcaceWG5bGbaGaadaWgaaWcbaGaam4AaiaaiYcaca aIOaGaamyAaiabgUcaRiaaigdacaaIPaaabeaakiabgkHiTiqadMha gaacamaaBaaaleaacaWGRbGaaGilaiaadMgaaeqaaOGaaGykaiabgk HiTiaaiIcacaWG5bWaaSbaaSqaaiaadUgacaaISaGaaGikaiaadMga cqGHRaWkcaaIXaGaaGykaaqabaGccqGHsislcaWG5bWaaSbaaSqaai aadUgacaaISaGaamyAaaqabaGccaaIPaGaeyOeI0Iaam4DamaaBaaa leaacaWGRbGaamyAaaqabaaakeaacaaIOaGabmyEayaaiaWaaSbaaS qaaiaadUgacaaISaGaaGymaaqabaGccqGHsislceWG5bGbaGaadaWg aaWcbaGaam4AaiaaiYcacaaIWaaabeaakiaaiMcacqGHsislcaaIOa GaamyEamaaBaaaleaacaWGRbGaaGilaiaaigdaaeqaaOGaeyOeI0Ia amyEamaaBaaaleaacaWGRbGaaGilaiaaicdaaeqaaOGaaGykaiabgk HiTiaadEhadaWgaaWcbaGaam4AaiaaiYcacaaIWaaabeaaaaGccaaI SaGaaGzbVlabgcGiIiaadUgacqGHiiIZdaqdaaqaaiaaigdacaaISa GaamOBaaaacaaISaaaaa@9931@

где w k,i = q ˜ k,i q k,i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaBa aaleaacaWGRbGaaGilaiaadMgaaeqaaOGaaGypaiqadghagaacamaa BaaaleaacaWGRbGaaGilaiaadMgaaeqaaOGaeyOeI0IaamyCamaaBa aaleaacaWGRbGaaGilaiaadMgaaeqaaaaa@42F2@ .

Сгруппируем в правой части разности возмущенного и невозмущенного решения соответствующие одной точке разностной схемы:

f k ( t i , Y ˜ i ) f k ( t i , Y i ) f k ( t 0 , Y ˜ 0 ) f k ( t 0 , Y 0 ) = ( y ˜ k,(i+1) y k,(i+1) )( y ˜ k,i y k,i ) w k,i b( y ˜ k,1 y k,1 )( y ˜ k,0 y k,0 ) w k,0 ,k 1,n ¯ . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGMbWaaSbaaSqaaiaadUgaaeqaaOGaaGikaiaadshadaWgaaWcbaGa amyAaaqabaGccaaISaGabmywayaaiaWaaSbaaSqaaiaadMgaaeqaaO GaaGykaiabgkHiTiaadAgadaWgaaWcbaGaam4AaaqabaGccaaIOaGa amiDamaaBaaaleaacaWGPbaabeaakiaaiYcacaWGzbWaaSbaaSqaai aadMgaaeqaaOGaaGykaaqaaiaadAgadaWgaaWcbaGaam4AaaqabaGc caaIOaGaamiDamaaBaaaleaacaaIWaaabeaakiaaiYcaceWGzbGbaG aadaWgaaWcbaGaaGimaaqabaGccaaIPaGaeyOeI0IaamOzamaaBaaa leaacaWGRbaabeaakiaaiIcacaWG0bWaaSbaaSqaaiaaicdaaeqaaO GaaGilaiaadMfadaWgaaWcbaGaaGimaaqabaGccaaIPaaaaiaai2da daWcaaqaaiaaiIcaceWG5bGbaGaadaWgaaWcbaGaam4AaiaaiYcaca aIOaGaamyAaiabgUcaRiaaigdacaaIPaaabeaakiabgkHiTiaadMha daWgaaWcbaGaam4AaiaaiYcacaaIOaGaamyAaiabgUcaRiaaigdaca aIPaaabeaakiaaiMcacqGHsislcaaIOaGabmyEayaaiaWaaSbaaSqa aiaadUgacaaISaGaamyAaaqabaGccqGHsislcaWG5bWaaSbaaSqaai aadUgacaaISaGaamyAaaqabaGccaaIPaGaeyOeI0Iaam4DamaaBaaa leaacaWGRbGaaGilaiaadMgaaeqaaaGcbaGaamOyaiaaiIcaceWG5b GbaGaadaWgaaWcbaGaam4AaiaaiYcacaaIXaaabeaakiabgkHiTiaa dMhadaWgaaWcbaGaam4AaiaaiYcacaaIXaaabeaakiaaiMcacqGHsi slcaaIOaGabmyEayaaiaWaaSbaaSqaaiaadUgacaaISaGaaGimaaqa baGccqGHsislcaWG5bWaaSbaaSqaaiaadUgacaaISaGaaGimaaqaba GccaaIPaGaeyOeI0Iaam4DamaaBaaaleaacaWGRbGaaGilaiaaicda aeqaaaaakiaaiYcacaaMf8UaeyiaIiIaam4AaiabgIGiopaanaaaba GaaGymaiaaiYcacaWGUbaaaiaai6caaaa@9AD0@  (17)

Преобразуем выражения в скобках числителя согласно (12). В результате получим

y ˜ k,(i+1) y k,(i+1) = l=0 i1 (1+h D il (k) )( y ˜ k,1 y k,1 )+ L 1,i (k) , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaaia WaaSbaaSqaaiaadUgacaaISaGaaGikaiaadMgacqGHRaWkcaaIXaGa aGykaaqabaGccqGHsislcaWG5bWaaSbaaSqaaiaadUgacaaISaGaaG ikaiaadMgacqGHRaWkcaaIXaGaaGykaaqabaGccaaI9aWaaebCaeqa leaacqWItecBcaaI9aGaaGimaaqaaiaadMgacqGHsislcaaIXaaani abg+GivdGccaaIOaGaaGymaiabgUcaRiaadIgacaWGebWaa0baaSqa aiaadMgacqGHsislcqWItecBaeaacaaIOaGaam4AaiaaiMcaaaGcca aIPaGaaGikaiqadMhagaacamaaBaaaleaacaWGRbGaaGilaiaaigda aeqaaOGaeyOeI0IaamyEamaaBaaaleaacaWGRbGaaGilaiaaigdaae qaaOGaaGykaiabgUcaRiaadYeadaqhaaWcbaGaaGymaiaaiYcacaWG PbaabaGaaGikaiaadUgacaaIPaaaaOGaaGilaaaa@67FD@

где

L 1,i (k) = r=2 i l=0 ir (1+h D il (k) ) w k,(r1) + w k,i . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaDa aaleaacaaIXaGaaGilaiaadMgaaeaacaaIOaGaam4AaiaaiMcaaaGc caaI9aWaaabCaeqaleaacaWGYbGaaGypaiaaikdaaeaacaWGPbaani abggHiLdGcdaqeWbqabSqaaiabloriSjaai2dacaaIWaaabaGaamyA aiabgkHiTiaadkhaa0Gaey4dIunakiaaiIcacaaIXaGaey4kaSIaam iAaiaadseadaqhaaWcbaGaamyAaiabgkHiTiabloriSbqaaiaaiIca caWGRbGaaGykaaaakiaaiMcacaWG3bWaaSbaaSqaaiaadUgacaaISa GaaGikaiaadkhacqGHsislcaaIXaGaaGykaaqabaGccqGHRaWkcaWG 3bWaaSbaaSqaaiaadUgacaaISaGaamyAaaqabaGccaaIUaaaaa@6077@

В отличие от (12) в качестве начальных значений возмущенного и невозмущенного решения взяты y ˜ k,1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaaia WaaSbaaSqaaiaadUgacaaISaGaaGymaaqabaaaaa@398D@  и y k,1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGRbGaaGilaiaaigdaaeqaaaaa@397E@ . По аналогии имеем

y ˜ k,i y k,i = l=1 i (1+h D il (k) )( y ˜ k,0 y k,0 )+ L 2i (k) , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaaia WaaSbaaSqaaiaadUgacaaISaGaamyAaaqabaGccqGHsislcaWG5bWa aSbaaSqaaiaadUgacaaISaGaamyAaaqabaGccaaI9aWaaebCaeqale aacqWItecBcaaI9aGaaGymaaqaaiaadMgaa0Gaey4dIunakiaaiIca caaIXaGaey4kaSIaamiAaiaadseadaqhaaWcbaGaamyAaiabgkHiTi abloriSbqaaiaaiIcacaWGRbGaaGykaaaakiaaiMcacaaIOaGabmyE ayaaiaWaaSbaaSqaaiaadUgacaaISaGaaGimaaqabaGccqGHsislca WG5bWaaSbaaSqaaiaadUgacaaISaGaaGimaaqabaGccaaIPaGaey4k aSIaamitamaaDaaaleaacaaIYaGaamyAaaqaaiaaiIcacaWGRbGaaG ykaaaakiaaiYcaaaa@5F9B@

где

L 2,i (k) = r=1 i1 l=0 ir1 (1+h D il1 (k) ) w k,(r1) + w k,(i1) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaDa aaleaacaaIYaGaaGilaiaadMgaaeaacaaIOaGaam4AaiaaiMcaaaGc caaI9aWaaabCaeqaleaacaWGYbGaaGypaiaaigdaaeaacaWGPbGaey OeI0IaaGymaaqdcqGHris5aOWaaebCaeqaleaacqWItecBcaaI9aGa aGimaaqaaiaadMgacqGHsislcaWGYbGaeyOeI0IaaGymaaqdcqGHpi s1aOGaaGikaiaaigdacqGHRaWkcaWGObGaamiramaaDaaaleaacaWG PbGaeyOeI0IaeS4eHWMaeyOeI0IaaGymaaqaaiaaiIcacaWGRbGaaG ykaaaakiaaiMcacaWG3bWaaSbaaSqaaiaadUgacaaISaGaaGikaiaa dkhacqGHsislcaaIXaGaaGykaaqabaGccqGHRaWkcaWG3bWaaSbaaS qaaiaadUgacaaISaGaaGikaiaadMgacqGHsislcaaIXaGaaGykaaqa baGccaaIUaaaaa@687C@

В результате соотношение (17) примет вид

f k ( t i , Y ˜ i ) f k ( t i , Y i ) f k ( t 0 , Y ˜ 0 ) f k ( t 0 , Y 0 ) = MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGMbWaaSbaaSqaaiaadUgaaeqaaOGaaGikaiaadshadaWgaaWcbaGa amyAaaqabaGccaaISaGabmywayaaiaWaaSbaaSqaaiaadMgaaeqaaO GaaGykaiabgkHiTiaadAgadaWgaaWcbaGaam4AaaqabaGccaaIOaGa amiDamaaBaaaleaacaWGPbaabeaakiaaiYcacaWGzbWaaSbaaSqaai aadMgaaeqaaOGaaGykaaqaaiaadAgadaWgaaWcbaGaam4AaaqabaGc caaIOaGaamiDamaaBaaaleaacaaIWaaabeaakiaaiYcaceWGzbGbaG aadaWgaaWcbaGaaGimaaqabaGccaaIPaGaeyOeI0IaamOzamaaBaaa leaacaWGRbaabeaakiaaiIcacaWG0bWaaSbaaSqaaiaaicdaaeqaaO GaaGilaiaadMfadaWgaaWcbaGaaGimaaqabaGccaaIPaaaaiaai2da aaa@591E@

= l=0 i1 (1+h D il (k) )( y ˜ k,1 y k,1 ) l=1 i (1+h D il (k) )( y ˜ k,0 y k,0 )+ L 1,i (k) L 2,i (k) w k,i ( y ˜ k1 y k1 )( y ˜ k0 y k0 ) w k0 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaala aabaWaaebCaeqaleaacqWItecBcaaI9aGaaGimaaqaaiaadMgacqGH sislcaaIXaaaniabg+GivdGccaaIOaGaaGymaiabgUcaRiaadIgaca WGebWaa0baaSqaaiaadMgacqGHsislcqWItecBaeaacaaIOaGaam4A aiaaiMcaaaGccaaIPaGaaGikaiqadMhagaacamaaBaaaleaacaWGRb GaaGilaiaaigdaaeqaaOGaeyOeI0IaamyEamaaBaaaleaacaWGRbGa aGilaiaaigdaaeqaaOGaaGykaiabgkHiTmaarahabeWcbaGaeS4eHW MaaGypaiaaigdaaeaacaWGPbaaniabg+GivdGccaaIOaGaaGymaiab gUcaRiaadIgacaWGebWaa0baaSqaaiaadMgacqGHsislcqWItecBae aacaaIOaGaam4AaiaaiMcaaaGccaaIPaGaaGikaiqadMhagaacamaa BaaaleaacaWGRbGaaGilaiaaicdaaeqaaOGaeyOeI0IaamyEamaaBa aaleaacaWGRbGaaGilaiaaicdaaeqaaOGaaGykaiabgUcaRiaadYea daqhaaWcbaGaaGymaiaaiYcacaWGPbaabaGaaGikaiaadUgacaaIPa aaaOGaeyOeI0IaamitamaaDaaaleaacaaIYaGaaGilaiaadMgaaeaa caaIOaGaam4AaiaaiMcaaaGccqGHsislcaWG3bWaaSbaaSqaaiaadU gacaaISaGaamyAaaqabaaakeaacaaIOaGabmyEayaaiaWaaSbaaSqa aiaadUgacaaIXaaabeaakiabgkHiTiaadMhadaWgaaWcbaGaam4Aai aaigdaaeqaaOGaaGykaiabgkHiTiaaiIcaceWG5bGbaGaadaWgaaWc baGaam4AaiaaicdaaeqaaOGaeyOeI0IaamyEamaaBaaaleaacaWGRb GaaGimaaqabaGccaaIPaGaeyOeI0Iaam4DamaaBaaaleaacaWGRbGa aGimaaqabaaaaOGaaGilaaaa@946F@

для всех k 1,n ¯ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgI GiopaanaaabaGaaGymaiaaiYcacaWGUbaaaaaa@3ADC@ . Выполняя предельный переход при i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabgk ziUkabg6HiLcaa@3A3F@  с учетом того, что

lim i L 1,i (k) =0, lim i L 2,i (k) =0t[ t 0 ,),k 1,n ¯ , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqale aacaWGPbGaeyOKH4QaeyOhIukabeGcbaGaciiBaiaacMgacaGGTbaa aiaadYeadaqhaaWcbaGaaGymaiaaiYcacaWGPbaabaGaaGikaiaadU gacaaIPaaaaOGaaGypaiaaicdacaaISaGaaGzbVpaawafabeWcbaGa amyAaiabgkziUkabg6HiLcqabOqaaiGacYgacaGGPbGaaiyBaaaaca WGmbWaa0baaSqaaiaaikdacaaISaGaamyAaaqaaiaaiIcacaWGRbGa aGykaaaakiaai2dacaaIWaGaaGzbVlabgcGiIiaadshacqGHiiIZca aIBbGaamiDamaaBaaaleaacaaIWaaabeaakiaaiYcacqGHEisPcaaI PaGaaGilaiaaywW7cqGHaiIicaWGRbGaeyicI48aa0aaaeaacaaIXa GaaGilaiaad6gaaaGaaGilaaaa@6928@

получим

f k (t, Y ˜ ) f k (t,Y) f k ( t 0 , Y ˜ 0 ) f k ( t 0 , Y 0 ) = lim i l=0 i1 (1+h D il (k) )( y ˜ k,1 y k,1 ) lim i l=1 i (1+h D il (k) )( y ˜ k,0 y k,0 ) ( y ˜ k,1 y k,1 )( y ˜ k,0 y k,0 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGMbWaaSbaaSqaaiaadUgaaeqaaOGaaGikaiaadshacaaISaGabmyw ayaaiaGaaGykaiabgkHiTiaadAgadaWgaaWcbaGaam4AaaqabaGcca aIOaGaamiDaiaaiYcacaWGzbGaaGykaaqaaiaadAgadaWgaaWcbaGa am4AaaqabaGccaaIOaGaamiDamaaBaaaleaacaaIWaaabeaakiaaiY caceWGzbGbaGaadaWgaaWcbaGaaGimaaqabaGccaaIPaGaeyOeI0Ia amOzamaaBaaaleaacaWGRbaabeaakiaaiIcacaWG0bWaaSbaaSqaai aaicdaaeqaaOGaaGilaiaadMfadaWgaaWcbaGaaGimaaqabaGccaaI Paaaaiaai2dadaWcaaqaamaawafabeWcbaGaamyAaiabgkziUkabg6 HiLcqabOqaaiGacYgacaGGPbGaaiyBaaaadaqeWbqabSqaaiablori Sjaai2dacaaIWaaabaGaamyAaiabgkHiTiaaigdaa0Gaey4dIunaki aaiIcacaaIXaGaey4kaSIaamiAaiaadseadaqhaaWcbaGaamyAaiab gkHiTiabloriSbqaaiaaiIcacaWGRbGaaGykaaaakiaaiMcacaaIOa GabmyEayaaiaWaaSbaaSqaaiaadUgacaaISaGaaGymaaqabaGccqGH sislcaWG5bWaaSbaaSqaaiaadUgacaaISaGaaGymaaqabaGccaaIPa GaeyOeI0YaaybuaeqaleaacaWGPbGaeyOKH4QaeyOhIukabeGcbaGa ciiBaiaacMgacaGGTbaaamaarahabeWcbaGaeS4eHWMaaGypaiaaig daaeaacaWGPbaaniabg+GivdGccaaIOaGaaGymaiabgUcaRiaadIga caWGebWaa0baaSqaaiaadMgacqGHsislcqWItecBaeaacaaIOaGaam 4AaiaaiMcaaaGccaaIPaGaaGikaiqadMhagaacamaaBaaaleaacaWG RbGaaGilaiaaicdaaeqaaOGaeyOeI0IaamyEamaaBaaaleaacaWGRb GaaGilaiaaicdaaeqaaOGaaGykaaqaaiaaiIcaceWG5bGbaGaadaWg aaWcbaGaam4AaiaaiYcacaaIXaaabeaakiabgkHiTiaadMhadaWgaa WcbaGaam4AaiaaiYcacaaIXaaabeaakiaaiMcacqGHsislcaaIOaGa bmyEayaaiaWaaSbaaSqaaiaadUgacaaISaGaaGimaaqabaGccqGHsi slcaWG5bWaaSbaaSqaaiaadUgacaaISaGaaGimaaqabaGccaaIPaaa aaaa@ADE1@

для всех t[ t 0 ,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI GiolaaiUfacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiabg6Hi LkaaiMcaaaa@3E18@  и всех k 1,n ¯ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgI GiopaanaaabaGaaGymaiaaiYcacaWGUbaaaaaa@3ADC@ . Очевидно,

lim i l=0 i1 (1+h D il (k) )= lim i l=1 i (1+h D il (k) )= lim i l=0 i (1+h D il (k) ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqale aacaWGPbGaeyOKH4QaeyOhIukabeGcbaGaciiBaiaacMgacaGGTbaa amaarahabeWcbaGaeS4eHWMaaGypaiaaicdaaeaacaWGPbGaeyOeI0 IaaGymaaqdcqGHpis1aOGaaGikaiaaigdacqGHRaWkcaWGObGaamir amaaDaaaleaacaWGPbGaeyOeI0IaeS4eHWgabaGaaGikaiaadUgaca aIPaaaaOGaaGykaiaai2dadaGfqbqabSqaaiaadMgacqGHsgIRcqGH EisPaeqakeaaciGGSbGaaiyAaiaac2gaaaWaaebCaeqaleaacqWIte cBcaaI9aGaaGymaaqaaiaadMgaa0Gaey4dIunakiaaiIcacaaIXaGa ey4kaSIaamiAaiaadseadaqhaaWcbaGaamyAaiabgkHiTiabloriSb qaaiaaiIcacaWGRbGaaGykaaaakiaaiMcacaaI9aWaaybuaeqaleaa caWGPbGaeyOKH4QaeyOhIukabeGcbaGaciiBaiaacMgacaGGTbaaam aarahabeWcbaGaeS4eHWMaaGypaiaaicdaaeaacaWGPbaaniabg+Gi vdGccaaIOaGaaGymaiabgUcaRiaadIgacaWGebWaa0baaSqaaiaadM gacqGHsislcqWItecBaeaacaaIOaGaam4AaiaaiMcaaaGccaaIPaGa aGOlaaaa@8146@

Следовательно,

f k (t, Y ˜ ) f k (t,Y) f k ( t 0 , Y ˜ 0 ) f k ( t 0 , Y 0 ) = lim i l=0 i (1+h D il (k) )t[ t 0 ,),k 1,n ¯ . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGMbWaaSbaaSqaaiaadUgaaeqaaOGaaGikaiaadshacaaISaGabmyw ayaaiaGaaGykaiabgkHiTiaadAgadaWgaaWcbaGaam4AaaqabaGcca aIOaGaamiDaiaaiYcacaWGzbGaaGykaaqaaiaadAgadaWgaaWcbaGa am4AaaqabaGccaaIOaGaamiDamaaBaaaleaacaaIWaaabeaakiaaiY caceWGzbGbaGaadaWgaaWcbaGaaGimaaqabaGccaaIPaGaeyOeI0Ia amOzamaaBaaaleaacaWGRbaabeaakiaaiIcacaWG0bWaaSbaaSqaai aaicdaaeqaaOGaaGilaiaadMfadaWgaaWcbaGaaGimaaqabaGccaaI Paaaaiaai2dadaGfqbqabSqaaiaadMgacqGHsgIRcqGHEisPaeqake aaciGGSbGaaiyAaiaac2gaaaWaaebCaeqaleaacqWItecBcaaI9aGa aGimaaqaaiaadMgaa0Gaey4dIunakiaaiIcacaaIXaGaey4kaSIaam iAaiaadseadaqhaaWcbaGaamyAaiabgkHiTiabloriSbqaaiaaiIca caWGRbGaaGykaaaakiaaiMcacaaMf8UaeyiaIiIaamiDaiabgIGiol aaiUfacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiabg6HiLkaa iMcacaaISaGaaGzbVlabgcGiIiaadUgacqGHiiIZdaqdaaqaaiaaig dacaaISaGaamOBaaaacaaIUaaaaa@7F92@  (18)

Предположим, что решение системы (10) устойчиво. Но тогда с необходимостью должно выполняться условие (13), а значит, с учетом (18), и следующее условие:

f k (t, Y ˜ ) f k (t,Y) f k ( t 0 , Y ˜ 0 ) f k ( t 0 , Y 0 ) c ˜ 6 , c ˜ 6 =const,t[ t 0 ,),k 1,n ¯ . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaada WcaaqaaiaadAgadaWgaaWcbaGaam4AaaqabaGccaaIOaGaamiDaiaa iYcaceWGzbGbaGaacaaIPaGaeyOeI0IaamOzamaaBaaaleaacaWGRb aabeaakiaaiIcacaWG0bGaaGilaiaadMfacaaIPaaabaGaamOzamaa BaaaleaacaWGRbaabeaakiaaiIcacaWG0bWaaSbaaSqaaiaaicdaae qaaOGaaGilaiqadMfagaacamaaBaaaleaacaaIWaaabeaakiaaiMca cqGHsislcaWGMbWaaSbaaSqaaiaadUgaaeqaaOGaaGikaiaadshada WgaaWcbaGaaGimaaqabaGccaaISaGaamywamaaBaaaleaacaaIWaaa beaakiaaiMcaaaaacaGLhWUaayjcSdGaeyizImQabm4yayaaiaWaaS baaSqaaiaaiAdaaeqaaOGaaGilaiaaywW7ceWGJbGbaGaadaWgaaWc baGaaGOnaaqabaGccaaI9aGaam4yaiaad+gacaWGUbGaam4Caiaads hacaaISaGaaGzbVlabgcGiIiaadshacqGHiiIZcaaIBbGaamiDamaa BaaaleaacaaIWaaabeaakiaaiYcacqGHEisPcaaIPaGaaGilaiaayw W7cqGHaiIicaWGRbGaeyicI48aa0aaaeaacaaIXaGaaGilaiaad6ga aaGaaGOlaaaa@7831@  (19)

Условие (19) согласно (13) является также и достаточным условием устойчивости.

Аналогично для асимптотической устойчивости системы (10) необходимо и достаточно чтобы выполнялось следующее соотношение:

lim t f k (t, Y ˜ ) f k (t,Y) f k ( t 0 , Y ˜ 0 ) f k ( t 0 , Y 0 ) =0k 1,n ¯ . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqale aacaWG0bGaeyOKH4QaeyOhIukabeGcbaGaciiBaiaacMgacaGGTbaa amaaemaabaWaaSaaaeaacaWGMbWaaSbaaSqaaiaadUgaaeqaaOGaaG ikaiaadshacaaISaGabmywayaaiaGaaGykaiabgkHiTiaadAgadaWg aaWcbaGaam4AaaqabaGccaaIOaGaamiDaiaaiYcacaWGzbGaaGykaa qaaiaadAgadaWgaaWcbaGaam4AaaqabaGccaaIOaGaamiDamaaBaaa leaacaaIWaaabeaakiaaiYcaceWGzbGbaGaadaWgaaWcbaGaaGimaa qabaGccaaIPaGaeyOeI0IaamOzamaaBaaaleaacaWGRbaabeaakiaa iIcacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiaadMfadaWgaa WcbaGaaGimaaqabaGccaaIPaaaaaGaay5bSlaawIa7aiaai2dacaaI WaGaaGzbVlabgcGiIiaadUgacqGHiiIZdaqdaaqaaiaaigdacaaISa GaamOBaaaacaaIUaaaaa@6814@  (20)

Получена еще одна разновидность критериев устойчивости и асимптотической устойчивости (19), (20) систем обыкновенных дифференциальных уравнений, ориентированная на компьютерную реализацию.

Трактовки асимптотического поведения решения, полученные на основе представленных критериев, следует считать близкими к достоверным в содержательном смысле. Компьютерный анализ не может полностью формально заменить математическое исследование характера устойчивости, оставляя окончательное решение проблемы за качественной теорией. Вместе с тем на практике в рамках широкого программного и численного эксперимента разработанный подход компьютерного анализа устойчивости систем обыкновенных дифференциальных уравнений всегда приводил к исчерпывающе достоверной оценке характера устойчивости.

3. Программный и численный эксперимент. Эксперимент проводился с помощью ПК на базе процессора Intel(R) Core(TM) i5-4460 в среде программирования Delphi. Написаны программы, реализующие конструкцию критериев (5), (15), (19). При анализе устойчивости линейной системы в программе циклически вычисляется частичное матричное произведение из левой части критерия (5) и через заданное количество шагов определяется и выводится на печать норма. В ходе анализа устойчивости нелинейной систем для каждого уравнения вычисляется значение выражения из левой части критериев (15), (19) и находится векторная норма.

По поведению значений нормы делается вывод о характере устойчивости исследуемой системы. Неограниченный рост означает неустойчивость, ограниченные изменения свидетельствуют об устойчивости, стремление к нулю является признаком асимптотической устойчивости.

Приближенные значения возмущенного и невозмущенного решения, входящие в конструкцию критериев (15), (19) находятся с помощью метода Рунге MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=nbiaaa@3800@ Кутта 4-го порядка.

Пример 1. Исследуется на устойчивость система

y 1 = y 1 + y 2 1+ t 2 , y 2 = y 1 1+ t 2 y 2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaafa WaaSbaaSqaaiaaigdaaeqaaOGaaGypaiabgkHiTiaadMhadaWgaaWc baGaaGymaaqabaGccqGHRaWkdaWcaaqaaiaadMhadaWgaaWcbaGaaG OmaaqabaaakeaacaaIXaGaey4kaSIaamiDamaaCaaaleqabaGaaGOm aaaaaaGccaaISaGaaGzbVlqadMhagaqbamaaBaaaleaacaaIYaaabe aakiaai2dacqGHsisldaWcaaqaaiaadMhadaWgaaWcbaGaaGymaaqa baaakeaacaaIXaGaey4kaSIaamiDamaaCaaaleqabaGaaGOmaaaaaa GccqGHsislcaWG5bWaaSbaaSqaaiaaikdaaeqaaOGaaGOlaaaa@510D@  (21)

Компьютерный анализ устойчивости выполняется на промежутке [0,10 4 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaaic dacaaISaGaaGymaiaaicdadaahaaWcbeqaaiaaisdaaaGccaaIDbaa aa@3B99@  при значении шага разностной схемы 10 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaaic dadaahaaWcbeqaaiabgkHiTiaaiodaaaaaaa@393F@ . Результаты представлены в таблице 1. Во второй строке приводятся значения нормы, соответствующие критерию (5), в третьей строке MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=rbiaaa@3801@  критерию (15), в четвертой строке MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=rbiaaa@3801@  критерию (19).

 

Таблица 1. Результаты анализа устойчивости системы (21)

  t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@36EC@  

  10 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaaic dadaahaaWcbeqaaiaaiodaaaaaaa@3852@  

  2 10 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiabgw SixlaaigdacaaIWaWaaWbaaSqabeaacaaIZaaaaaaa@3B58@  

  5 10 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGynaiabgw SixlaaigdacaaIWaWaaWbaaSqabeaacaaIZaaaaaaa@3B5B@  

  6 10 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOnaiabgw SixlaaigdacaaIWaWaaWbaaSqabeaacaaIZaaaaaaa@3B5C@  

  9 10 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGyoaiabgw SixlaaigdacaaIWaWaaWbaaSqabeaacaaIZaaaaaaa@3B5F@  

  10 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaaic dadaahaaWcbeqaaiaaisdaaaaaaa@3853@  

 norma 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSbaaSqaai aaigdaaeqaaaaa@36DA@  

  2,03 10 434 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaaiY cacaaIWaGaaG4maiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacqGH sislcaaI0aGaaG4maiaaisdaaaaaaa@3FEE@  

  1,03 10 868 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaaiY cacaaIWaGaaG4maiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacqGH sislcaaI4aGaaGOnaiaaiIdaaaaaaa@3FF8@  

  1,35 10 2171 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaaiY cacaaIZaGaaGynaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacqGH sislcaaIYaGaaGymaiaaiEdacaaIXaaaaaaa@40AC@  

  6,84 10 2606 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOnaiaaiY cacaaI4aGaaGinaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacqGH sislcaaIYaGaaGOnaiaaicdacaaI2aaaaaaa@40B8@  

  8,95 10 3909 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGioaiaaiY cacaaI5aGaaGynaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacqGH sislcaaIZaGaaGyoaiaaicdacaaI5aaaaaaa@40C3@  

  4,54 10 4343 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGinaiaaiY cacaaI1aGaaGinaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacqGH sislcaaI0aGaaG4maiaaisdacaaIZaaaaaaa@40B3@  

 norma 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSbaaSqaai aaikdaaeqaaaaa@36DB@  

  6,77 10 435 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOnaiaaiY cacaaI3aGaaG4naiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacqGH sislcaaI0aGaaG4maiaaiwdaaaaaaa@3FFE@  

  3,44 10 869 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4maiaaiY cacaaI0aGaaGinaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacqGH sislcaaI4aGaaGOnaiaaiMdaaaaaaa@4000@  

  4,49 10 2172 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGinaiaaiY cacaaI0aGaaGyoaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacqGH sislcaaIYaGaaGymaiaaiEdacaaIYaaaaaaa@40B5@  

  2,28 10 2606 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaaiY cacaaIYaGaaGioaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacqGH sislcaaIYaGaaGOnaiaaicdacaaI2aaaaaaa@40B2@  

  2,98 10 3909 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaaiY cacaaI5aGaaGioaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacqGH sislcaaIZaGaaGyoaiaaicdacaaI5aaaaaaa@40C0@  

  1,51 10 4343 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaaiY cacaaI1aGaaGymaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacqGH sislcaaI0aGaaG4maiaaisdacaaIZaaaaaaa@40AD@  

 norma 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSbaaSqaai aaiodaaeqaaaaa@36DC@  

  5,08 10 435 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGynaiaaiY cacaaIWaGaaGioaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacqGH sislcaaI0aGaaG4maiaaiwdaaaaaaa@3FF7@  

  2,58 10 869 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaaiY cacaaI1aGaaGioaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacqGH sislcaaI4aGaaGOnaiaaiMdaaaaaaa@4004@  

  3,37 10 2172 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4maiaaiY cacaaIZaGaaG4naiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacqGH sislcaaIYaGaaGymaiaaiEdacaaIYaaaaaaa@40B1@  

  1,71 10 2606 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaaiY cacaaI3aGaaGymaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacqGH sislcaaIYaGaaGOnaiaaicdacaaI2aaaaaaa@40AF@  

  2,23 10 3909 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaaiY cacaaIYaGaaG4maiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacqGH sislcaaIZaGaaGyoaiaaicdacaaI5aaaaaaa@40B4@  

  1,13 10 4343 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaaiY cacaaIXaGaaG4maiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacqGH sislcaaI0aGaaG4maiaaisdacaaIZaaaaaaa@40AB@  

 

Представленные значения нормы по всем трем критериям монотонно стремятся к нулю, что является признаком асимптотической устойчивости. Время работы программы при анализе по критерию (5) составляет около 4 с., по критериям (15), (19) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=rbiaaa@3801@  около 1,5 с.

Пример 2. Исследуется на устойчивость решение системы (см. [7])

y 1 = y 2 y 1 2 + y 2 2 , y 2 = y 1 y 1 2 + y 2 2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaafa WaaSbaaSqaaiaaigdaaeqaaOGaaGypaiabgkHiTiaadMhadaWgaaWc baGaaGOmaaqabaGcdaGcaaqaaiaadMhadaqhaaWcbaGaaGymaaqaai aaikdaaaGccqGHRaWkcaWG5bWaa0baaSqaaiaaikdaaeaacaaIYaaa aaqabaGccaaISaGaaGzbVlqadMhagaqbamaaBaaaleaacaaIYaaabe aakiaai2dacaWG5bWaaSbaaSqaaiaaigdaaeqaaOWaaOaaaeaacaWG 5bWaa0baaSqaaiaaigdaaeaacaaIYaaaaOGaey4kaSIaamyEamaaDa aaleaacaaIYaaabaGaaGOmaaaaaeqaaOGaaGOlaaaa@4FD6@  (22)

Первоначально исследуется нулевое решение системы (22) при численных значениях шага и промежутка из предыдущего примера. Начальные значения компонент возмущенного решения y ˜ 10 =10 5 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaaia WaaSbaaSqaaiaaigdacaaIWaaabeaakiaai2dacaaIXaGaaGimamaa CaaaleqabaGaeyOeI0IaaGynaaaaaaa@3CC0@ , y ˜ 20 =2 10 5 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaaia WaaSbaaSqaaiaaikdacaaIWaaabeaakiaai2dacaaIYaGaeyyXICTa aGymaiaaicdadaahaaWcbeqaaiabgkHiTiaaiwdaaaaaaa@3FC7@ . Результаты анализа устойчивости представлены в таблице 2. Во второй строке результаты анализа по критерию (15), в третьей строке MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=rbiaaa@3801@  по критерию (19).

 

Таблица 2. Результаты анализа устойчивости нулевого решения системы (22)

  t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@36EC@  

  10 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaaic dadaahaaWcbeqaaiaaiodaaaaaaa@3852@  

  2 10 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiabgw SixlaaigdacaaIWaWaaWbaaSqabeaacaaIZaaaaaaa@3B58@  

  5 10 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGynaiabgw SixlaaigdacaaIWaWaaWbaaSqabeaacaaIZaaaaaaa@3B5B@  

  6 10 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOnaiabgw SixlaaigdacaaIWaWaaWbaaSqabeaacaaIZaaaaaaa@3B5C@  

  9 10 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGyoaiabgw SixlaaigdacaaIWaWaaWbaaSqabeaacaaIZaaaaaaa@3B5F@  

 10 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaWbaaSqabe aacaaI0aaaaaaa@36DE@  

 norma 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSbaaSqaai aaigdaaeqaaaaa@36DA@  

 1,01

 1,02

 1,05

 1,06

 1,08

 1,09

 norma 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSbaaSqaai aaikdaaeqaaaaa@36DB@  

 1,01

 1,02

 1,05

 1,06

 1,08

 1,09

 

Значения нормы ограничены константой, что свидетельствует об устойчивости.

Далее выполняется анализ устойчивости ненулевого решения системы (22): y 10 = y 20 =0,01 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaaIXaGaaGimaaqabaGccaaI9aGaamyEamaaBaaaleaacaaI YaGaaGimaaqabaGccaaI9aGaaGimaiaaiYcacaaIWaGaaGymaaaa@3FB9@ , величина возмущения начальных данных δ =10 5 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdqMaaG ypaiaaigdacaaIWaWaaWbaaSqabeaacqGHsislcaaI1aaaaaaa@3BAD@ .

Наблюдается монотонный рост значений нормы по обоим критериям, что свидетельствует о неустойчивости. Время работы программы при анализе нулевого решения около 1,5 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaaiY cacaaI1aaaaa@3823@  с, ненулевого MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=rbiaaa@3801@  около 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4maaaa@36B0@  с. Полученные результаты анализа устойчивости системы (22) находятся в полном соответствии с представленными в [7].

Пример 3. Исследуется модель периодической реакции Белоусова MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcLbCaqa aaaaaaaaWdbiaa=nbiaaa@3802@ Жаботинского (см. [6])

y 1 =77,27( y 2 + y 1 (18,375 10 6 y 1 y 2 )), y 2 =77,27 1 ( y 3 y 2 (1+ y 1 )), y 3 =0,161( y 1 y 3 ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaafa WaaSbaaSqaaiaaigdaaeqaaOGaaGypaiaaiEdacaaI3aGaaGilaiaa ikdacaaI3aGaaGikaiaadMhadaWgaaWcbaGaaGOmaaqabaGccqGHRa WkcaWG5bWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaaigdacqGHsisl caaI4aGaaGilaiaaiodacaaI3aGaaGynaiabgwSixlaaigdacaaIWa WaaWbaaSqabeaacqGHsislcaaI2aaaaOGaaGjcVlaadMhadaWgaaWc baGaaGymaaqabaGccqGHsislcaWG5bWaaSbaaSqaaiaaikdaaeqaaO GaaGykaiaaiMcacaaISaGaaGzbVlqadMhagaqbamaaBaaaleaacaaI Yaaabeaakiaai2dacaaI3aGaaG4naiaaiYcacaaIYaGaaG4namaaCa aaleqabaGaeyOeI0IaaGymaaaakiaaiIcacaWG5bWaaSbaaSqaaiaa iodaaeqaaOGaeyOeI0IaamyEamaaBaaaleaacaaIYaaabeaakiaaiI cacaaIXaGaey4kaSIaamyEamaaBaaaleaacaaIXaaabeaakiaaiMca caaIPaGaaGilaiaaywW7ceWG5bGbauaadaWgaaWcbaGaaG4maaqaba GccaaI9aGaaGimaiaaiYcacaaIXaGaaGOnaiaaigdacaaIOaGaamyE amaaBaaaleaacaaIXaaabeaakiabgkHiTiaadMhadaWgaaWcbaGaaG 4maaqabaGccaaIPaGaaGOlaaaa@7AA9@  (23)

Первоначально анализ устойчивости выполняется при начальных условиях y 1 (0)=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaaIXaaabeaakiaaiIcacaaIWaGaaGykaiaai2dacaaIXaaa aa@3B83@ , y 2 (0)=2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaaIYaaabeaakiaaiIcacaaIWaGaaGykaiaai2dacaaIYaaa aa@3B85@ , y 3 (0)=3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaaIZaaabeaakiaaiIcacaaIWaGaaGykaiaai2dacaaIZaaa aa@3B87@  на промежутке [0,10 3 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaaic dacaaISaGaaGymaiaaicdadaahaaWcbeqaaiaaiodaaaGccaaIDbaa aa@3B98@  с шагом 10 5 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaaic dadaahaaWcbeqaaiabgkHiTiaaiwdaaaaaaa@3941@ , величина возмущения для каждого решения соответственно равна δ 1 =10 5 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaS baaSqaaiaaigdaaeqaaOGaaGypaiaaigdacaaIWaWaaWbaaSqabeaa cqGHsislcaaI1aaaaaaa@3C9E@ , δ 2 =2 10 5 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaS baaSqaaiaaikdaaeqaaOGaaGypaiaaikdacqGHflY1caaIXaGaaGim amaaCaaaleqabaGaeyOeI0IaaGynaaaaaaa@3FA5@ , δ 3 =3 10 5 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaS baaSqaaiaaiodaaeqaaOGaaGypaiaaiodacqGHflY1caaIXaGaaGim amaaCaaaleqabaGaeyOeI0IaaGynaaaaaaa@3FA7@ .

Наблюдаются периодические резкие скачки значений нормы на коротких промежутках. Такое поведение нормы свидетельствует об устойчивости решения системы. Значения нормы, соответствующие первому скачку, представлены в таблице 3.

 

Таблица 3. Результаты анализа устойчивости ненулевого решения системы (22)

  t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@36EC@  

  10 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaaic dadaahaaWcbeqaaiaaiodaaaaaaa@3852@  

  2 10 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiabgw SixlaaigdacaaIWaWaaWbaaSqabeaacaaIZaaaaaaa@3B58@  

  5 10 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGynaiabgw SixlaaigdacaaIWaWaaWbaaSqabeaacaaIZaaaaaaa@3B5B@  

  6 10 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOnaiabgw SixlaaigdacaaIWaWaaWbaaSqabeaacaaIZaaaaaaa@3B5C@  

  9 10 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGyoaiabgw SixlaaigdacaaIWaWaaWbaaSqabeaacaaIZaaaaaaa@3B5F@  

  10 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaaic dadaahaaWcbeqaaiaaisdaaaaaaa@3853@  

 norma 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSbaaSqaai aaigdaaeqaaaaa@36DA@  

 14,99

 28,63

 73,92

 89,84

 139,39

 156,46

 norma 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSbaaSqaai aaikdaaeqaaaaa@36DB@  

 8,00

 14,83

 36,49

 44,46

 69,25

 77,79

 

Далее выполняется анализ устойчивости системы (23) при начальных условиях y 1 (0)=4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaaIXaaabeaakiaaiIcacaaIWaGaaGykaiaai2dacaaI0aaa aa@3B86@ , y 2 (0)=1,1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaaIYaaabeaakiaaiIcacaaIWaGaaGykaiaai2dacaaIXaGa aGilaiaaigdaaaa@3CF5@ , y 3 (0)=4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaaIZaaabeaakiaaiIcacaaIWaGaaGykaiaai2dacaaI0aaa aa@3B88@ . В отличие от предыдущего случая резкий скачок значений нормы происходит в самом начале промежутка исследования системы (23) (таблица 3).

 

Таблица 4. Результаты анализа устойчивости решения системы (23) при начальных условиях y 1 (0)=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaaIXaaabeaakiaaiIcacaaIWaGaaGykaiaai2dacaaIXaaa aa@3B83@ , y 2 (0)=2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaaIYaaabeaakiaaiIcacaaIWaGaaGykaiaai2dacaaIYaaa aa@3B85@ , y 3 (0)=3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaaIZaaabeaakiaaiIcacaaIWaGaaGykaiaai2dacaaIZaaa aa@3B87@

  t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@36EC@  

  18 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaaiI daaaa@3770@  

  19 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaaiM daaaa@3771@  

  20 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaaic daaaa@3769@  

  21 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaaig daaaa@376A@  

  22 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaaik daaaa@376B@  

  23 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaaio daaaa@376C@  

 norma 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSbaaSqaai aaigdaaeqaaaaa@36DA@  

  61,79 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOnaiaaig dacaaISaGaaG4naiaaiMdaaaa@39A8@  

  4175,04 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGinaiaaig dacaaI3aGaaGynaiaaiYcacaaIWaGaaGinaaaa@3B1A@  

  3,92 10 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4maiaaiY cacaaI5aGaaGOmaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacaaI Zaaaaaaa@3D8E@  

  8,59 10 5 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGioaiaaiY cacaaI1aGaaGyoaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacaaI 1aaaaaaa@3D98@  

  9,40 10 5 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGyoaiaaiY cacaaI0aGaaGimaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacaaI 1aaaaaaa@3D8F@  

  3,83 10 6 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4maiaaiY cacaaI4aGaaG4maiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacaaI 2aaaaaaa@3D91@  

 norma 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSbaaSqaai aaikdaaeqaaaaa@36DB@  

  26,13 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaaiA dacaaISaGaaGymaiaaiodaaaa@399D@  

  85,55 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGioaiaaiw dacaaISaGaaGynaiaaiwdaaaa@39A8@  

  2,22 10 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaaiY cacaaIYaGaaGOmaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacaaI Zaaaaaaa@3D86@  

  7,53 10 5 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4naiaaiY cacaaI1aGaaG4maiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacaaI 1aaaaaaa@3D91@  

  6,88 10 5 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOnaiaaiY cacaaI4aGaaGioaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacaaI 1aaaaaaa@3D98@  

  2,03 10 6 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaaiY cacaaIWaGaaG4maiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacaaI 2aaaaaaa@3D88@  

  t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@36EC@  

  24 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaais daaaa@376D@  

  25 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaaiw daaaa@376E@  

  26 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaaiA daaaa@376F@  

  27 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaaiE daaaa@3770@  

  28 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaaiI daaaa@3771@  

  29 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaaiM daaaa@3772@  

 norma 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSbaaSqaai aaigdaaeqaaaaa@36DA@  

  6,29 10 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOnaiaaiY cacaaIYaGaaGyoaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacaaI 0aaaaaaa@3D92@  

  5,36 10 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGynaiaaiY cacaaIZaGaaGOnaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacaaI 0aaaaaaa@3D8F@  

  4,56 10 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGinaiaaiY cacaaI1aGaaGOnaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacaaI 0aaaaaaa@3D90@  

  3,88 10 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4maiaaiY cacaaI4aGaaGioaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacaaI 0aaaaaaa@3D94@  

  3,30 10 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4maiaaiY cacaaIZaGaaGimaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacaaI 0aaaaaaa@3D87@  

  2,80 10 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaaiY cacaaI4aGaaGimaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacaaI 0aaaaaaa@3D8B@  

 norma 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSbaaSqaai aaikdaaeqaaaaa@36DB@  

  1,18 10 5 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaaiY cacaaIXaGaaGioaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacaaI 1aaaaaaa@3D8C@  

  1,01 10 5 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaaiY cacaaIWaGaaGymaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacaaI 1aaaaaaa@3D84@  

  8,55 10 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGioaiaaiY cacaaI1aGaaGynaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacaaI 0aaaaaaa@3D93@  

  7,27 10 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4naiaaiY cacaaIYaGaaG4naiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacaaI 0aaaaaaa@3D91@  

  6,17 10 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOnaiaaiY cacaaIXaGaaG4naiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacaaI 0aaaaaaa@3D8F@  

  5,24 10 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGynaiaaiY cacaaIYaGaaGinaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacaaI 0aaaaaaa@3D8C@  

 

Таблица 5. Результаты анализа устойчивости решения системы (23) при начальных условиях y 1 (0)=4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaaIXaaabeaakiaaiIcacaaIWaGaaGykaiaai2dacaaI0aaa aa@3B86@ , y 2 (0)=1,1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaaIYaaabeaakiaaiIcacaaIWaGaaGykaiaai2dacaaIXaGa aGilaiaaigdaaaa@3CF5@ , y 3 (0)=4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaaIZaaabeaakiaaiIcacaaIWaGaaGykaiaai2dacaaI0aaa aa@3B88@

  t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@36EC@  

  1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaaaa@36AE@  

  2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaaaa@36AF@  

  3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4maaaa@36B0@  

  4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGinaaaa@36B1@  

  5 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGynaaaa@36B2@  

  6 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOnaaaa@36B3@  

 norma 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSbaaSqaai aaigdaaeqaaaaa@36DA@  

  3,21 10 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4maiaaiY cacaaIYaGaaGymaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacaaI 0aaaaaaa@3D87@  

  3,68 10 5 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4maiaaiY cacaaI2aGaaGioaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacaaI 1aaaaaaa@3D93@  

  4,31 10 5 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGinaiaaiY cacaaIZaGaaGymaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacaaI 1aaaaaaa@3D8A@  

  3,03 10 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4maiaaiY cacaaIWaGaaG4maiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacaaI 0aaaaaaa@3D87@  

  2,57 10 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaaiY cacaaI1aGaaG4naiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacaaI 0aaaaaaa@3D8F@  

  2,19 10 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaaiY cacaaIXaGaaGyoaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacaaI 0aaaaaaa@3D8D@  

 norma 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSbaaSqaai aaikdaaeqaaaaa@36DB@  

  1,62 10 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaaiY cacaaI2aGaaGOmaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacaaI 0aaaaaaa@3D8A@  

  3,10 10 5 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4maiaaiY cacaaIXaGaaGimaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacaaI 1aaaaaaa@3D86@  

  2,97 10 5 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaaiY cacaaI5aGaaG4naiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacaaI 1aaaaaaa@3D94@  

  4,69 10 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGinaiaaiY cacaaI2aGaaGyoaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacaaI 0aaaaaaa@3D94@  

  3,99 10 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4maiaaiY cacaaI5aGaaGyoaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacaaI 0aaaaaaa@3D96@  

  3,40 10 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4maiaaiY cacaaI0aGaaGimaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacaaI 0aaaaaaa@3D88@  

  t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@36EC@  

  7 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4naaaa@36B4@  

  8 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGioaaaa@36B5@  

  9 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGyoaaaa@36B6@  

  10 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaaic daaaa@3768@  

  11 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaaig daaaa@3769@  

  12 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaaik daaaa@376A@  

 norma 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSbaaSqaai aaigdaaeqaaaaa@36DA@  

  1,86 10 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaaiY cacaaI4aGaaGOnaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacaaI 0aaaaaaa@3D90@  

  1,58 10 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaaiY cacaaI1aGaaGioaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacaaI 0aaaaaaa@3D8F@  

  1,35 10 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaaiY cacaaIZaGaaGynaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacaaI 0aaaaaaa@3D8A@  

  1,14 10 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaaiY cacaaIXaGaaGinaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacaaI 0aaaaaaa@3D87@  

  9,78 10 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGyoaiaaiY cacaaI3aGaaGioaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacaaI Zaaaaaaa@3D98@  

  8,32 10 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGioaiaaiY cacaaIZaGaaGOmaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacaaI Zaaaaaaa@3D8D@  

 norma 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSbaaSqaai aaikdaaeqaaaaa@36DB@  

  2,89 10 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaaiY cacaaI4aGaaGyoaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacaaI 0aaaaaaa@3D94@  

  2,46 10 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaaiY cacaaI0aGaaGOnaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacaaI 0aaaaaaa@3D8D@  

  2,09 10 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaaiY cacaaIWaGaaGyoaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacaaI 0aaaaaaa@3D8C@  

  1,78 10 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaaiY cacaaI3aGaaGioaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacaaI 0aaaaaaa@3D91@  

  1,51 10 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaaiY cacaaI1aGaaGymaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacaaI 0aaaaaaa@3D88@  

  1,28 10 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaaiY cacaaIYaGaaGioaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacaaI 0aaaaaaa@3D8C@  

 

В целом наблюдаются ограниченные колебания значений нормы, что в соответствии с критериями (15), (19) свидетельствует об устойчивости решения системы (23). Время работы программы в обоих случаях около 7.5 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4naiaai6 cacaaI1aaaaa@382B@  мин. При анализе устойчивости жестких нелинейных систем нередко возникают трудности при вычислении возмущенного и невозмущенного решения, входящих в конструкцию критериев. Для их вычисления целесообразно использовать специализированные программы для решения жестких систем (см. [6]) или кусочно-интерполяционный метод, основанный на приближении решения и правой части системы полиномами Лагранжа с числовыми коэффициентами (см. [8]). Приближения решения и правой части системы находятся с высокой точностью, кроме того существенно сокращается время на вычисление требуемых приближений. На практике это дает возможность проводить анализ устойчивости на промежутках существенно большей длины и устанавливать асимптотические свойства исследуемых систем обыкновенных дифференциальных уравнений.

4. Заключение. Представлены критерии устойчивости и асимптотической устойчивости систем линейных и нелинейных обыкновенных дифференциальных уравнений в виде необходимых и достаточных условий. В случае линейной системы для реализации критериев требуется только информация о матрице коэффициентов из правой части системы. Для нелинейной системы приводятся разновидности равносильных критериев, полученных на основе рекуррентных преобразований разностных схем. Критерии инвариантны относительно правой части системы, разностных схем приближенного решения системы, длины промежутка и шага решения. Конструкция критериев допускает циклическую программную реализацию. На этой основе выполняется компьютерный анализ устойчивости систем в режиме реального времени.

×

Об авторах

Сергей Георгиевич Буланов

ФГБОУ ВО «Ростовский государственный экономический университет (РИНХ)»

Автор, ответственный за переписку.
Email: bulanovtgpi@mail.ru

Таганрогский институт имени А.П. Чехова (филиал) 

Россия, Таганрог

Список литературы

  1. Буланов С. Г. Анализ устойчивости систем линейных дифференциальных уравнений на основе преобразования разностных схем// Мехатроника, автоматизация, управление. — 2019. — 20, №9. — С. 542–549.
  2. Буланов С. Г., Джанунц Г. А. Программный анализ устойчивости систем обыкновенных дифференциальных уравнений на основе мультипликативных преобразований разностных схем и кусочно-полиномиальных приближений решения// Промышленные АСУ и контроллеры. — 2015. — № 2. — С. 10–20.
  3. Колесников А. А. Прикладная синергетика: основы системного синтеза. — Таганрог, 2007.
  4. Ляпина А. А. Математическое моделирование и оценка нелинейной динамики состояния загрязнения экосистемы водного объекта // Дис. на соиск. уч. степ. канд. техн. наук. — Пензенский гос. ун-т: Пенза, 2014.
  5. Ромм Я. Е., Буланов С. Г. Численное моделирование устойчивости по Ляпунову// Совр. наук. технол. — 2021. — № 7. — С. 42–60.
  6. Хайрер Э., Ваннер Г. в кн.: Решение обыкновенных дифференциальных уравнений. Жесткие и дифференциально-алгебраические задачи. — М.: Мир, 1999.
  7. Чезари Л. в кн.: Асимптотическое поведение и устойчивость решений обыкновенных дифференциальных уравнений. — М.: Мир, 1964.
  8. Bulanov S. G. Computer analysis of differential systems stability based on linearization and matrix multiplicative criteria// J. Phys. Conf. Ser. — 2021. — 012101.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Буланов С.Г., 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».