Treatment of copper cyanide solutions with the use of sulfate-reducing bacteria

Cover Page

Cite item

Full Text

Abstract

The study was aimed at developing a technology for regenerating cyanide and precipitating copper from copper cyanide solutions through the sulfate reduction process. To this end, a mixture of strains of anaerobic sulfate-reducing bacteria was used: Desulfonatronum zhilinae, Desulfonatronum cooperativum, and Desulfonatronobacter acetoxidans from the S.N. Vinogradsky Institute of Microbiology of the Russian Academy of Sciences (Moscow). The sulfate reduction was carried out at temperatures of 20–40℃ and at pH>9.5. Ethanol was used as the electron donor, and sulfate ions were used as the acceptor. In order to ascertain the limiting substrate (ethanol or sulfate) and establish the optimal concentrations of the acceptor and the electron donor, a mathematical microbial growth model was used– the Monod equation. The calculation results indicate substrate competition for the right to limit the process. Thus, at concentrations of <0.3 g/dm3, the limiting substrate is sulfate, whereas at sulfate concentrations of 0.5–1.0 g/dm3 and ethanol concentrations of 0.1–0.3 g/dm3, the limiting substrate is ethanol. The co-limitation point of the process was determined; at this point, the concentrations of sulfate and ethanol are 0.8 and 0.3 g/dm3, respectively. In order to ascertain the hydraulic retention time of the liquid phase in a bioreactor, the Monod equation was used, taking inhibition by hydrogen sulfide into account. The presence of 0.1–0.5 g/dm3 hydrogen sulfide in bacterial solution was found to reduce the bacterial growth rate by 27–65%. The hydraulic retention time of the liquid phase in the bioreactor at the co-limitation point, taking the inhibition by hydrogen sulfide into account, should be equal to approximately 90 hours. Laboratory tests show the calculated hydraulic retention time to be sufficient to obtain 0.25–0.27 g/dm3 hydrogen sulfide for 99% copper precipitation and over 99% cyanide regeneration. The obtained copper precipitates contained copper and sulfur (65% and 35%, respectively). Thus, the examined microorganisms allow hydrogen sulfide to be obtained directly in copper cyanide solutions with different copper concentrations, which eliminates the need for a bioreactor and all auxiliary communications for transporting hydrogen sulfide.

About the authors

S. D. Grinko

Limited Liability Company «Management Company UGC»

Email: grinko76@mail.ru

A. A. Faiberg

Irkutsk Research Institute of Precious and Rare Metals and Diamonds

Email: Fayberg@irgiredmet.ru

A. V. Epiforov

Irkutsk Research Institute of Precious and Rare Metals and Diamonds

Email: epiforov@irgiredmet.ru

S. V. Balikov

Irkutsk Research Institute of Precious and Rare Metals and Diamonds

Email: balikov@irgiredmet.ru

References

  1. Fleming C.A. Cyanide recovery // Gold Ore Processing / eds. M.D. Adams. Ontario, 2016. Chapt. 36. Р. 647–661.
  2. Patent no. 4587110, United States of America, А. Process of recovering copper and of optionally recovering silver and gold by a leaching of oxide-and sulfide-containing materials with water-soluble cyanides / G.M. Potter, A. Bergmann, U. Haidlen. Publ. 1986.
  3. Pat. 1050303, United States of America, А. Recovery of Copper from Cyanide Solutions / B. Schwerin; American Cyanamid Company. Publ. 1965.
  4. Гринько С.Д., Файберг А.А., Епифоров А.В. Исследования по регенерации цианида в оборотных медноцианистых растворах // Инновационные процессы обогащения и глубокой переработки редкометаллического и горнохимического сырья и комплексных руд цветных и черных металлов (Плаксинские чтения – 2024): матер. Междунар. конф. (г. Апатиты, 23–27 сентября 2024 г.). Апатиты: ФИЦ КНЦ РАН, 2024. С. 531–535.
  5. Пат. № 2443791, Российская Федерация, C1. Способ кондиционирования цианидсодержащих оборотных растворов переработки золотомедистых руд с извлечением золота и меди и регенерацией цианида / В.Ф. Пе- тров, А.А. Файберг, С.В. Петров, Г.И. Войлошников; заявитель и патентообладатель ОАО «Иркутский научно-исследовательский институт благородных и редких металлов и алмазов» ОАО «Иргиредмет». № 2010129019/02. Заявл. 13.07.2010; опубл. 27.02.2012. EDN: RLERVP.
  6. Lawrence R.W., Fleming C.A. Developments and new applications for biogenic sulphide reagent in hydrometallurgy and mineral processing // SGS Minerals services. Technical paper. 2007-02. Режим доступа: https://www.sgs.com/-/media/global/documents/technical-documents/sgs-technical-papers/sgs-min-tp2007-02-biogenicsulphide-reagent-use-in-hydrometallurgy.pdf (дата обращения: 05.09.2025).
  7. Lopez O., Sanguinetti D., Bratty M., Kratochvil D. Green technologies for sulphate and metal removal in mining and metallurgical effluents. 2009. Режим доступа: https://silo.tips/download/green-technologies-for-sulphate-andmetal-removal-in-mining-and-metallurgical-ef (дата обращения: 05.09.2025).
  8. Михайлова А.Н., Файберг А.А., Дементьев В.Е., Минеев Г.Г., Бонч-Осмоловская Е.А. Получение биогенного сероводорода // Вестник Иркутского государственного технического университета. 2015. Вып. 96. С. 124–128.
  9. Гринько С.Д., Файберг А.А., Епифоров А.В. Получение биогенного сероводорода с использованием анаэробных сульфидогенных микроорганизмов в цианистых средах // Перспективы развития, совершенствования и автоматизации высокотехнологичных производств: матер. XV Всерос. науч.-практ. конф. с междунар. участием (г. Иркутск, 24–26 апреля 2024 г.). Иркутск: ИРНИТУ, 2025. С. 29–32. EDN: STHFQG.
  10. Bratty M., Lawrence R., Kratochvil D., Marchant B. Applications of biological H2S production from elemental sulphur in the treatment of heavy metal pollution including acid rock drainage // Processing International Symposium on Acid Rock Drainage (Saint-Louis, 26–29 March 2006.). Saint-Louis, 2006. Р. 271–281.
  11. Robertson A.M., Everett D.J., Plessis N.J.Du. Sulfates removal by the Gyp-Cix process following lime treatment // Hazardous Materials Control Resources Institute: Proceedings Superfund XIV Conference and Exhibition (Washington, 30 November – 2 December 1993). Washington, 1993. Vol. 2. Р. 1037–1044.
  12. Jonkers H.M., Koh I.-O., Behrend P., Muyzer G., De Beer D. Aerobic organic carbon mineralization by sulfatereducing bacteria in the oxygen-saturated photic zone of a hypersaline microbial mat // Microbial Ecology. 2005. Vol. 49. Iss. 2. P. 291–300. https://doi.org/10.1007/s00248-004-0260-y.
  13. Sigalevich P., Meshorer E., Helman Yа., Cohen Yе. Transition from anaerobic to aerobic growth conditions for the sulfate-reducing bacterium Desulfovibrio oxyclinae results in flocculation // Applied and Environmental Microbiology. 2000. Vol. 66. Iss. 11. P. 5005–5012. https://doi.org/10.1128/aem.66.11.5005-5012.2000.
  14. Dannenberg S., Kroder M., Dilling W., Cypionka H. Oxidation of H2, organic compounds and inorganic sulfur compounds coupled to reduction of O2 or nitrate by sulfate-reducing bacteria // Archives of Microbiology. 1992. Vol. 158. P. 93–99. https://doi.org/10.1007/ВF00245211.
  15. Cypionka H. Oxygen respiration by Desulfovibrio species // Annual Review of Microbiology. 2000. Vol. 54. P. 827–848. https://doi.org/10.1146/annurev.micro.54.1.827.
  16. Wendt-Potthoff K., Koschorreck M. Functional groups and activities of bacteria in a highly acidic volcanic mountain stream and lake in Patagonia, Argentina // Microbial Ecology. 2002. Vol. 43. Iss. 1. P. 92–106. https://doi.org/10.1007/s00248-001-1030-8.
  17. Minz D., Flax J.L., Green S.J., Muyzer G., Cohen Y., Wagner M., et al. Diversity of sulfate-reducing bacteria in oxic and anoxic regions of a microbial mat characterized by comparative analysis of dissimilatory sulfite reductase genes // Applied and Environmental Microbiology. 1999. Vol. 65. Iss. 10. P. 4666–4671. https://doi.org/10.1128/AEM.65.10.4666-4671.1999.
  18. Schramm A., Santegoeds C.M., Nielsen H.K., Ploug H., Wagner M., Pribyl M., et al. On the occurrence of anoxic microniches, denitrification, and sulfate reduction in aerated activated sludge // Applied and Environmental Microbiology. 1999. Vol. 65. Iss. 9. P. 4189–4196. https://doi.org/10.1128/AEM.65.9.4189-4196.1999.
  19. Risatti J.B., Capman W.C., Stahl D.A. Community structure of a microbial mat: the phylogenetic dimension // Proceedings of the National Academy of Sciences of the United States of America. 1994. Vol. 91. Iss. 21. P. 10173– 10177. https://doi.org/10.1073/pnas.91.21.10173.
  20. Rabus R., Nordhaus R., Ludwig W., Widdel F. Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium // Applied and Environmental Microbiology. 1993. Vol. 59. Iss. 5. P. 1444–1451. https://doi.org/10.1128/aem.59.5.1444-1451.1993.
  21. Harms G., Zengler K., Rabus R., Aeckersberg F., Minz D., Rossello-Mora R., et al. Anaerobic oxidation of o-xylene, m-xylene, and homologous alkylbenzenes by new types of sulfate-reducing bacteria // Applied and Environmental Microbiology. 1999. Vol. 65. Iss. 3. P. 999–1004. https://doi.org/10.1128/AEM.65.3.999-1004.1999.
  22. Widdel F., Pfennig N., Krieg N.R., Holt J.G. Dissimilatory sulphate- or sulphur-reducing bacteria // Bergey’s manual of systematic bacteriology. 1984. Iss. 1. P. 663–679.
  23. Гринько С.Д., Файберг А.А., Епифоров А.В., Гудков С.С. Получение биогенного сероводорода с использова- нием сульфатредуцирующих бактерий // Научные основы и практика переработки руд и техногенного сырья: матер. XХIХ Междунар. науч.-техн. конф., проводимой в рамках XХII Уральской горнопромышленной декады 1–10 апреля (г. Екатеринбург, 4–5 апреля 2024 г.). Екатеринбург: УГГУ, 2024. С. 222–226. EDN: BEBRRY.
  24. Zakharyuk A.G., Kozyreva L., Khijniak T.V., Namsaraev B.B., Sherbakova V.A. Desulfonatronum zhilinae sp. nov., a novel haloalkaliphilic sulfate-reducing bacterium from Lake Alginskoe, Trans-Baikal Region, Russia // Extremophiles. 2015. Vol. 19. Iss. 3. P. 673–680. https://doi.org/10.1007/s00792-015-0747-0.
  25. Sorokin D.Y., Tourova T.P., Kolganova T.V., Detkova E.N., Galinski E.A., Muyzer G. Culturable diversity of lithotrophic haloalkaliphilic sulfate-reducing bacteria in soda lakes and the description of Desulfonatronum thioautotrophicum sp. nov., Desulfonatronum thiosulfatophilum sp. nov., Desulfonatronovibrio thiodismutans sp. nov., and Desulfonatronovibrio magnus sp. nov. // Extremophiles. 2011. Vol. 15. Iss. 3. P. 391–401. https://doi.org/10.1007/s00792-011-0370-7.
  26. Pikuta E.V., Hoover R.B., Bej A.K., Marsic D., Whitman W.B., Cleland D., et al. Desulfonatronum thiodismutans sp. nov., a novel alkaliphilic, sulfate-reducing bacterium capable of lithoautotrophic growth // Journal of Systematic and Evolutionary Microbiology. 2003. Vol. 53. Рt 5. Р. 1327–1332. https://doi.org/10.1099/ijs.0.02598-0.
  27. Pikuta E.V., Zhilina T.N., Zavarzin G.A., Kostrikina N.A., Osipov G.A., Rainey F.A. Desulfonatronum Lacustre gen. nov. sp. nov.: a new alkaliphilic sulfate – reducing bacterium utilizing ethanol // Microbiology. 1998. Vol. 67. Iss. 1. Р. 123–131. EDN: MPABPV.
  28. Sorokin D.Y., Chernyh N.А., Poroshina M.N. Desulfonatronobacter acetoxydans sp. nov.: a first acetate-oxidizing, extremely salt-tolerant alkaliphilic SRB from a hypersaline soda lake // Extremophiles. 2015. Vol. 19. Iss. 5. P. 899–907. https://doi.org/10.1007/s00792-015-0765-y.
  29. Zhilina T.N., Zavarzina D.G., Kuever J., Lysenko A.M., Zavarzin G.A. Desulfonatronum cooperativum sp. nov., a novel hydrogenotrophic, alkaliphilic, sulfate-reducing bacterium, from a syntrophic culture growing on acetate // International Journal of Systematic and Evolutionary Microbiology. 2005. Vol. 55. Рt 3. Р. 1001–1006. https://doi.org/10.1099/ijs.0.63490-0.
  30. Dada O.I., Abeysinghe S., Rahat S.M.H.S., Liyanage T.U.H., Xiong Xiaochao, Zhu Kuang, et al. Kinetic modeling of sulfate inhibition effects on growth dynamics of novel Thioalkalivibrio sp. isolates from Soap Lake, Washington // Green Chemical Engineering. 2025. https://doi.org/10.1016/j.gce.2025.08.004.
  31. Sonnad J.R., Goudar C.T. Solution of the Haldane equation for substrate inhibition enzyme kinetics using the decomposition method // Mathematical and Computer Modelling. 2004. Vol. 40. Iss. 5-6. P. 573–582. https://doi.org/10.1016/j.mcm.2003.10.051.
  32. Ращенко А.Ф., Файберг А.А., Епифоров А.В., Хвойнов В.Н., Гудков С.С., Елшин В.В. Технология регенерации цианида в оборотных растворах сорбционного цианирования флотоконцентрата руды Березняковского месторождения // Вестник Гомельского государственного технического университета им. П.О. Сухого. 2014. № 1. С. 45–51. EDN: SCWXFJ.
  33. Estay H. Designing the SART process – A review // Hydrometallurgy. 2018. Vol. 176. Р. 147–165. https://doi.org/ 10.1016/j.hydromet.2018.01.011.
  34. Simons A., Breuer P.L. The impact of residence time on copper recovery in Telfer gold mine’s cyanide recycling process // 5th World Gold 2013: Conference Proceedings (Melbourne, 26–29 September 2013). Melbourne: The Australasian Institute of Mining and Metallurgy, 2013. P. 189–196.
  35. Littlejohn P., Kratochvil D., Hall A. Sulfidisation-acidification-recycling-thickening (SART) for complex gold ores // 5th World Gold 2013: Conference Proceedings (Melbourne, 26–29 September 2013). Melbourne: The Australasian Institute of Mining and Metallurgy, 2013. P. 149–155.
  36. Lawrence R., Lopez O. Improving the economics of gold–copper ore projects using SART technology // World Gold 2011: Conference Proceedings (Calgary, 2–5 October 2011). Calgary: Canadian Institute of Mining, Metallurgy and Petroleum, 2011. P. 255–263.
  37. Baker B., Rodriguez F., Littlejohn P. SART implementation at gold mines in Latin America // World Gold 2017: Conference Proceedings (Vancouver, 27–30 August 2017). Vancouver: Canadian Institute of Mining, Metallurgy and Petroleum, 2017.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).