On the question of using solid electrodes in the electrolysis of cryolite-alumina melts. Part 3. Electric field distribution on the electrodes

Cover Page

Cite item

Full Text

Abstract

The aim of this work is to identify the theoretical limitations of molten salts electrolysis using solid electrodes to overcome these limitations in practice. We applied the theory of electric field distribution on the electrodes in aqueous solutions to predict the distribution of current density and potential on the polycrystalline surface of electrodes in molten salts. By combining the theoretical background of the current density distribution with the basic laws of potential formation on the surface of the electrodes, we determined and validated the sequence of numerical studies of electrolytic processes in the pole gap. The application of the method allowed the characteristics of the current concentration edge effect at the periphery of smooth electrodes and the distribution of current density and potential on the heterogeneous electrode surface to be determined. The functional relationship and development of the electrolysis parameters on the smooth and rough surfaces of electrodes were established by the different scenario simulations of their interaction. It was shown that it is possible to reduce the nonuniformity of the current and potential distribution on the initially rough surface of electrodes with an increase in the cathode polarisation, alumina concentration optimisation and melt circulation. It is, nonetheless, evident that with prolonged electrolysis, physical and chemical inhomogeneity can develop, nullifying all attempts to stabilise the process. We theoretically established a relationship between the edge effect and roughness and the distribution of the current density and potential on solid electrodes, which can act as a primary and generalising reason for their increased consumption, passivation and electrolytic process destabilisation in standard and low-melting electrolytes. This functional relationship can form a basis for developing the methods of flattening the electric field distribution over the anodes and cathodes area and, therefore, stabilising the electrolytic process. Literature overview, laboratory tests and theoretical calculations allowed the organising principle of a stable electrolytic process to be formulated -the combined application of elliptical electrodes and the electrochemical micro-borating of the cathodes. Practical verification of this assumption is one direction for further theoretical and laboratory research.

About the authors

E. S. Gorlanov

EXPERT-AL, LLC

Author for correspondence.
Email: gorlanove@yandex.ru

A. A. Polyakov

Saint-Petersburg Mining University

Email: polyakovandrej@yandex.ru

References

  1. Кругликов С.С., Титова Н.В., Некрасова Н.Е., Кругликова Е.С., Тележкина А.В., Бродский В.А.Прогнозирование микрораспределения скорости электроосаждения металла из электролитов с положительной и отрицательной выравнивающей способностью // Электрохимия. 2019. Т. 55. № 1. С. 78-84. https://doi.org/10.1134/S0424857018140050
  2. Ibl N. Current Distribution // Comprehensive Treatise of Electrochemistry / eds. E. Yeager, J.O. Bockris, B.E. Conway, S. Sarangapani. Boston: Springer; 1983, р. 239315. https://doi.org/10.1007/978-1-4615-6690-8_4
  3. Newman J., Thomas-Alyea K.E. Electrochemical systems. 3rd ed. New Jersey: Published by John Wiley & Sons, 2004. 647 p.
  4. Гамбург Ю.Д., Зангари Дж. Теория и практика электроосаждения металлов: монография / пер. с англ. Ю.Д. Гамбург. М.: Бином, Лаборатория знаний, 2019. 439 с.
  5. Барабошкин Н.А. Электрокристаллизация металлов из расплавленных электролитов. М.: Наука, 1976. 279 с.
  6. Ветюков М.М., Цыплаков А.М., Школьников С.Н. Металлургия алюминия и магния. М.: Металлургия, 1987. 320 с.
  7. Grjotheim K., Krohn C., Malinovsky M., Matiasovsky K., Thonstad J. Aluminium electrolysis fundamentals of the Hall-Heroult process. 2nd ed. Dusseldorf: Aluminium-Verlag, 1982. 360 р.
  8. Николаев А.Ю., Ясинский А.С., Суздальцев А.В., Поляков П.В., Зайков Ю.П. Электролиз алюминия в расплавах и суспензиях KF-AIF3-AI2O3 // Расплавы. 2017. № 3. С. 205-213.
  9. Николаев А.Ю., Ясинский А.С., Суздальцев А.В., Поляков П.В., Зайков Ю.П. Вольтамперометрия в расплаве и суспензиях KF-AIF3-AI2O3 // Расплавы. 2017. № 3. С. 214-224.
  10. Nikolaev A.Yu., Suzdaltsev A.V., Zaikov Yu.P. Cathode process in the KF-AIF3-AI2O3 melts // Journal of the Electrochemical Society. 2019. Vol. 166. No. 15. P. D784-D791. https://doi.org/10.1149/2.0521915jes
  11. De Nora V., Nguyen T. Inert anode: Challenges from fundamental research to industrial application // Light Metals - 2009: Proceedings of the Technical Sessions Presented by the TMS Aluminum Committee at the TMS 2009 Annual Meeting and Exhibition (San Francisco, 1519 February, 2009). San Francisco, 2009. P. 417 -421.
  12. Wang Zhaohui, Friis J., Ratvik A.P. Transport of sodium in TiB2 materials investigated by a laboratory test and DFT calculations // Light Metals 2018. TMS 2018: The Minerals, Metals & Materials Series / eds. O. Martin. Cham: Springer, 2018. P. 1321-1328. http://doi.org/10.1007/978-3-319-72284-9_173
  13. Kovrov V.A., Shurov N.I., Khramov A.P., Zaikov Yu.P. Character of the corrosion destruction of inert anodes during electrolysis of cryolite alumina melt and the reasons for it // Russian Journal of Non-Ferrous Metals. 2009. Vol. 50. No. 5. P. 492-499. https://doi.org/10.3103/S1067821209050113
  14. Горланов Е.С. К вопросу о применении твердых электродов для электролиза криолитоглиноземных расплавов. Часть 2. Механизм пассивации и условия стабильного электролиза // Вестник Иркутского государственного технического университета. 2021. Т. 25. № 1. С. 108-121. https://doi.org/10.21285/1814-3520-2021-1-108-121
  15. Brown C.W. The wettability of TiB2-based cathodes in low-temperature slurry-electrolyte reduction cells // JOM. 1998. Vol. 50. Iss. 5. P. 38-40.
  16. Wang J., Lai Y., Tian Z., Liu Y. Investigation of 5Cu-(10NiO-NiFe2O4) inert anode corrosion during low temperature aluminum electrolysis // Light Metals - 2007: Proceedings of the Technical Sessions Presented by the TMS Aluminum Committee at the TMS 2007 Annual Meeting and Exhibition (Orlando, 25 February - 1 March 2007). Part 2. Orlando, 2007. Р. 525-530.
  17. Zaikov Yu., Khramov A., Kovrov V., Kryukovsky V., Apisarov A., Chemesov O., et al. Electrolysis of aluminum in the low melting electrolytes based on potassium cryolite // Light Metals - 2008: Proceedings of the Technical Sessions Presented by the TMS Aluminum Committee at the TMS 2008 Annual Meeting and Exhibition (New Orleans, 9-12 March 2008). Part 2. New Orleans, 2008. P. 505-508.
  18. Tkacheva O., Hryn J., Spangenberger J., Davis B., Alcorn T. Operating parameters of aluminum electrolysis in a KF-AlF3 BASED electrolyte // Light Metals / eds. C.E. Suarez. Cham: Springer, 2012. Р. 675-680. https://doi.org/10.1007/978-3-319-48179-1_116
  19. Hryn J.N., Tkacheva O.Y., Spangenberger J.S. Ultra-High-efficiency aluminum production cell // Report of Energy Systems Division, Argonne National Laboratory. Award Number: DE-AC02-06CH11357. April 2014. P. 86.. URL: https://www.energy.gov/eere/amo/downloads/ultrahigh-efficiency-aluminum-production-cells (19.08.2020).
  20. Bao Shengzhong, Chai Dengpeng, Shi Zhirong, Wang Junwei, Liang Guisheng, Zhang Yanan. Effects of current density on current efficiency in low temperature electrolysis with vertical electrode structure // Light Metals 2018. TMS 2018: The Minerals, Metals & Materials Series / eds. O. Martin. Cham: Springer, 2018. Р. 611-619. https://doi.org/10.1007/978-3-319-72284-9_79
  21. Solheim A. Inert anodes - the blind alley to environ-mental friendliness // Light Metals 2018. TMS 2018: The Minerals, Metals & Materials Series / eds. O. Martin. Cham: Springer, 2018. Р. 1253-1260. https://doi.org/10.1007/978-3-319-72284-9_164
  22. Sheppard M.C., Socolow R.H. Sustaining fossil fuel use in a carbon-constrained world by rapid commercialization of carbon capture and sequestration // American Institute of Chemical Engineers Journal. 2007. Vol. 53. Iss. 12. P. 3022-3028. https://doi.org/10.1002/aic.11356
  23. Lorentsen O.-A., Dynay A., Karlsen M. Handling CO2EQ from an aluminum electrolysis cell // Light Metals - 2009: Proceedings of the Technical Sessions Presented by the TMS Aluminum Committee at the TMS 2009 Annual Meeting and Exhibition (San Francisco, 15-19 February, 2009). San Francisco, 2009. P. 263-268. https://doi.org/10.1002/9781118647851.ch144
  24. Jilvero H., Mathisen A., Eldrup N.-H., Normann F., Johnsson F., MQller G.I., Melaaen M.C. Techno-economic analysis of carbon capture at an aluminum production plant - comparison of post-combustion capture using MEA and ammonia // Energy Procedia. 2014. Vol. 63. P. 6590-6601. https://doi.org/10.1016/j.egypro.2014.11.695
  25. Пат. № 2534772, Российская Федерация, МПК B01D 71/48. Отделение кислых компонентов с помощью мембран из самоорганизующегося полимера / С.Т. Маттеуччи, Л.К. Лопес, Ш.Д. Фейст, П. Никиас, У.Дж. Харрис; заявитель и патентообладатель Дау Глобал Текнолоджиз. № 2012139032/05. Заявл. 11.02.2011; опубл. 10.12.2014. Бюл. № 8. 34 с.
  26. Горланов Е.С., Кавалла Р., Поляков А.А. Электролитическое производство алюминия. Обзор. Часть 2. Перспективные направления развития // Цветные металлы. 2020. № 10. С. 42-49. https://doi.org/10.17580/tsm.2020.10.06
  27. Маршалл В.К. Основные опасности химических производств / пер. с англ. Г.Б. Барсамяна. М.: Мир, 1989. 671 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).