I-V curves for detecting faults of operating photovoltaic modules

Cover Page

Cite item

Full Text

Abstract

The present paper focuses on I-V curves for localizing possible defects in a photovoltaic module. The study considers the response of a photovoltaic module to changes in external and internal factors of the urban environment in Chelyabinsk, Russian Federation. To carry out measurements and control the module condition, we use the IV Swinger 2 software package reading data from the module to plot I-V curves and determine the maximum power point in real time. Changes in the internal parameters of the module are simulated by connecting additional resistances of different values to the external terminals of the experimental module. The conducted research has demonstrated additional resistance changing the shape of the I-V curve of the photovoltaic module regardless the type of connection and electrical circuit section of the module. This resistance simulates the main faults according to the given classification. Additional resistance in the cell circuit makes the shunt diode a conductor in the range of values from 0.71 to 1.06 Ohm. If additional resistance is installed between modules, the resistance can increase in a wide range of values without the diode transition to the conducting state. Additional resistance can reduce the power generation of a photovoltaic module. Therefore, we have assessed the impact of different cell shading levels on the module power generation. Given the resulting shunt resistance for all cells of one module, the slope of the I-V curve is inversely proportional to resistance due to the increased current leakage. Thus, the data of the I-V curve and the slope angle near the maximum power points is appropriate to identify and analyze the emerging faults of the photovoltaic module by evaluating its resistance.

About the authors

I. M. Kirpichnikova

South Ural State University

Email: kirpichnikovaim@susu.ru
ORCID iD: 0000-0002-4078-8790

V. A. Zavarukhin

South Ural State University

Email: zavaruhin-425@yandex.ru

V. A. Serov

South Ural State University

Email: va_serov99@mail.ru
ORCID iD: 0009-0003-6415-2935

References

  1. Кирпичникова И.М., Заварухин В.А., Слетова Е.Д. Выбор параметров вольтамперной характеристики для определения возможных причин деградации фотоэлектрических модулей // Энергобезопасность и энергосбережение. 2024. № 3. С. 15–21. EDN: SMFSKD.
  2. Da Silva M.K., Gul M.S., Chaudhry H. Review on the sources of power loss in monofacial and bifacial photovoltaic technologies // Energies. 2021. Vol. 14. Iss. 23. P. 7935. https://doi.org/10.3390/en14237935.
  3. Кирпичникова И.М., Заварухин В.А. Деградация солнечных модулей. Виды, причины, методы диагностики модулей // Энергосбережение и водоподготовка. 2021. № 2. С. 37–42. EDN: PETZHY.
  4. Smith J. Solar panel efficiency over time. Режим доступа: https://www.solarreviews.com/blog/how-has-theprice-and-efficiency-of-solar-panels-changed-over-time (дата обращения: 30.09.2024).
  5. Jordan D.C., Kurtz S.R. Photovoltaic degradation rates – an analytical review // Progress in Photovoltaics: Research and Applications. 2013. Vol. 21. Iss. 1. P. 12–29. https://doi.org/10.1002/pip.1182.
  6. Gyamfi S., Aboagye B., Peprah F., Obeng M. Degradation analysis of polycrystalline silicon modules from different manufacturers under the same climatic conditions // Energy Conversion and Management: X. 2023. Vol. 20. P. 100403. https://doi.org/10.1016/j.ecmx.2023.100403.
  7. Pandey S., Kumar S., Mhatre R., Singh T. Analysis of performance degradation of PV modules. Режим доступа: https://www.powermag.com/analysis-of-performance-degradation-of-pv-modules/ (дата обращения: 30.09.2024).
  8. Libra M., Mrázek D., Tyukhov I., Severová L., Poulek V., Mach J., et al. Reduced real lifetime of PV panels – economic consequences // Solar Energy. 2023. Vol. 259. P. 229–234. https://doi.org/10.1016/j.solener.2023.04.063.
  9. Кирпичникова И.М., Махсумов И.Б., Шестакова В.В. Снижение генерации электрической энергии солнечными модулями в условиях запыленности местности // iPolytech Journal. 2023. Vol. 27. No. 1. Р. 83–93. https://doi.org/10.21285/1814-3520-2023-1-83-93. EDN: URBKSQ.
  10. Satterlee C. IV Swinger 2. Step-by-step construction: arduino Shield PCB Designs. Режим доступа: https://cdn.instructables.com/ORIG/F2T/I6P6/JS0OS2H3/F2TI6P6JS0OS2H3.pdf (дата обращения: 30.09.2024).
  11. Ma Mingyao, Zhang Zhixiang, Xie Zhen, Yun Ping, Zhang Xing, Li Fei. Fault diagnosis of cracks in crystalline silicon photovoltaic modules through I-V curve // Microelectronics Reliability. 2020. Vol. 114. Iss. 6 P. 113848. https://doi.org/10.1016/j.microrel.2020.113848.
  12. Dhimish M., Holmes V., Mehrdadi B., Dales M. The impact of cracks on photovoltaic power performance // Journal of Science: Advanced Materials and Devices. 2017. Vol. 2. Iss. 2. P. 199–209. https://doi.org/10.1016/j.jsamd.2017.05.005.
  13. Швец С.В., Байшев А.В. Назначение шунтирующих диодов солнечной панели и методы их диагностики // Вестник Иркутского государственного технического университета. 2019. Т. 23. № 6. С. 1187–1202. https://doi.org/10.21285/1814-3520-2019-6-1187-1202. EDN: RZXZEQ.
  14. Deng Shifeng, Zhang Zhen, Ju Chenhui, Dong Jingbing, Xia Zhengyue, Yan Xinchun, et al. Research on hot spot risk for high-efficiency solar module // Energy Procedia. 2017. Vol. 130. P. 77–86. https://doi.org/10.1016/j.egypro.2017.09.399.
  15. Wang Ao, Xuan Yimin. Close examination of localized hot spots within photovoltaic modules // Energy Conversion and Management. 2021. Vol. 234. P. 113959. https://doi.org/10.1016/j.enconman.2021.113959.
  16. Naumann V., Lausch D., Hähnel A., Breitenstein O., Hagendorf C. Nanoscopic studies of 2D-extended defects in silicon that cause shunting of Si-solar cells // Current topics in solid state physics. 2015. Vol. 20. Iss. 8. P. 1103– 1107. https://doi.org/10.1002/pssc.201400225.
  17. Gaevskaya A. Approximation algorithm for current-voltage characteristics of PV modules under shading conditions // Vidnovluvana energetika. 2019. Iss. 3. P. 21–29. https://doi.org/10.36296/1819-8058.2019.3(58).21-29.
  18. Honsberg C., Bowden S. Shunt resistance. Режим доступа: https://www.pveducation.org/pvcdrom/solar-celloperation/shunt-resistance (дата обращения: 30.09.2024).
  19. Swanson R., Cudzinovic M., DeCeuster D., Desai V., Jürgens J., Kaminaret N., et al. The surface polarization effect in high-efficiency silicon solar cells // Proceedings of the 15th International Photovoltaic Science & Engineering Conference (Shanghai, 11–13 October 2005). Shanghai, 2005. P. 410–413.
  20. Luo Wei, Khoo Yong Sheng, Hacke Peter, Naumann Volker, Lausch Dominik, Harvey S.P., et al. Potential-induced degradation in photovoltaic modules: a critical review // Energy & Environmental Science. 2017. Vol. 10. Iss. 1. P. 43–68. https://doi.org/10.1039/C6EE02271E.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).