Исследование адсорбционных характеристик активированного углеродного материала по отношению к типовым органическим и неорганическим загрязнителям
- Авторы: Шубин И.Н.1, Ананьева О.А.1
-
Учреждения:
- Тамбовский государственный технический университет
- Выпуск: Том 9, № 2 (2024)
- Страницы: 122-131
- Раздел: Оригинальные статьи
- URL: https://ogarev-online.ru/2782-2192/article/view/279635
- DOI: https://doi.org/10.17277/jamt.2024.02.pp.122-131
- ID: 279635
Цитировать
Полный текст
Аннотация
Представлены результаты исследований адсорбционной способности разработанного активированного углеродного материала (АМ), полученного двумя методами активации – с одним (АМ1) и двумя активаторами (АМ2) соответственно, а также его компактированных вариантов (АМК) с использованием в качестве связующих поливинилового спирта (ПВС), поливинилацетата (ПВА) и базальтового волокна (БВ) по отношению к типовым загрязнителям водных сред – органическим красителям и тяжелым металлам. Сорбционная способность углеродных материалов оценивалась по способности удаления молекул красителей – «метиленового синего» (МС) и «желтого «солнечного заката» (СЗ) с помощью спектрофотометрического анализа, а также ионов тяжелых металлов – свинца (Pb2+) с помощью рентгенофлуоресцентной спектрометрии. В результате проведенных адсорбционных кинетических исследований установлена поглотительная способность исходного, активированных и компактированных материалов. Сорбционная емкость по свинцу для материалов карбонизат и АМК1 составила 71 и 65 мг/г соответственно, оптимальное время сорбции – 30 мин; для материалов АМ1, АМ2, АМК1/ПВС, АМК1/ПВА и АМК1/БВ – 65, 66, 49, 45, 42 мг/г соответственно, оптимальное время сорбции – 15 мин. Для красителей МС и СЗ получены значения емкости: 1000 – 2010 мг/г, 66 – 972 мг/г и 15 мин соответственно. Для анализа механизмов поглощения применялись эмпирические уравнения псевдо-первого и псевдо-второго порядка, Еловича и внутричастичной диффузии. Представленные результаты показывают возможность применения разработанного активированного углеродного материала в качестве эффективного сорбента органических и неорганических поллютантов из водных растворов.
Об авторах
Игорь Николаевич Шубин
Тамбовский государственный технический университет
Автор, ответственный за переписку.
Email: i.shubin77@yandex.ru
ORCID iD: 0009-0007-3235-5702
кандидат технических наук, доцент
Россия, ул. Советская, 106/5, пом. 2, Тамбов, 392000Оксана Альбертовна Ананьева
Тамбовский государственный технический университет
Email: oksana.a9993471@gmail.com
ORCID iD: 0000-0002-1188-9402
аспирант
Россия, ул. Советская, 106/5, пом. 2, Тамбов, 392000Список литературы
- Krasnikova EM, Moiseenko NV. Adsorption and structural characteristics of carbon-containing adsorbents from plant raw material modified with oxidizers. «Actual physical and chemical problems of adsorption and synthesis of nanoporous materials: All-Russian symposium with international participation, dedicated to the memory of Corresponding Member of the Russian Academy of Sciences V.A. Avramenko. Proceedings of the symposium. Moscow: IPChE RAS; 2022. p. 219-221. (In Russ.)
- Razmara RS, Daneshfar A, Sahrai R. Determination of methylene blue and sunset yellow in wastewater and food samples using salting-out assisted liquid–liquid extraction. Journal of Industrial and Engineering Chemistry. 2011;17(3):533-536. doi: 10.1016/j.jiec.2010.10.028
- Auta M, Hameed BH. Coalesced chitosan activated carbon composite for batch and fix-bed adsorption of cationic and anionic dyes. Colloids and Surfaces B: Biointerfaces. 2013;105:199-206. doi: 10.1016/j.colsurfb.2012.12.021
- Ruan X, Liu H, Chang C-Y, Fan X-Y. Preparation of organobentonite by a novel semidry-method and its adsorption of 2,4 edichlorophenol from aqueous solution. International Biodeterioration & Biodegradation. 2014;95:212-218. doi: 10.1016/j.ibiod.2014.06.007
- Lillo-Ródenas A, Cazoria-Amorós D, Linares-Solano A. Behaviour of activated carbons with different pore size distributions and surface oxygen groups for benzene and toluene adsorption at low concentrations. Carbon. 2005;43:1758-1767. doi: 10.1016/j.carbon.2005.02.023
- Fomkin AA. Synthesis, properties and application of carbon adsorbents. Moscow: Granitsa; 2021. 312 p. (In Russ.)
- Kadum AHK, Burakova IV, Mkrtchyan ES, Ananyeva OА, Yarkin VO at al. Sorption kinetics of organic dyes methylene blue and malachite green on highly porous carbon material. Journal of Advanced Materials and Technologies. 2023;2:130-140. doi: 10.17277/jamt.2023.02.pp.130-140
- Fenelonov VB. Porous carbon. Novosibirsk: Institute of Catalysis SB RAS; 1995. 518 p. (In Russ.)
- Plaksin GV. Porous carbon materials of sibunite type. Khimiya v interesakh ustoychivogo razvitiya = Chemistry for Sustainable Development. 2001;9(5):609-620. (In Russ.)
- Jafari S, Ghorbani-Shahna F, Bahrami A, Kazemian H. Adsorptive removal of toluene and carbon tetrachloride from gas phase using zeolitic imidazolate framework-8: effects of synthesis method, particle size, and pretreatment of the adsorbent. Microporous and Mesoporous Materials. 2018;268:58-68. doi: 10.1016/j.micromeso.2018.04.013
- Kucherova AE, Shubin IN, Pasko TV. Perspective sorbents based on zeolite modified with nanostructures for the purification of aqueous media from organic impurities purification of aqueous media from organic impurities. Nanotechnologies in Russia. 2018;13(5-6):1-5. doi: 10.1134/S1995078018030096
- Sui H, An P, Li X, Cong S, He L. Removal and recovery of o-xylene by silica gel using vacuum swing adsorption. Chemical Engineering Journal. 2017;316:232-242. doi: 10.1016/j.cej.2017.01.061
- Popova АА, Shubin IN. Technology for modifying sorbents based on zeolite with carbon nanotubes. Vestnik tambovskogo gosudarstvennogo tekhnicheskogo universiteta. 2021;27(4):656-663. doi: 10.17277/vestnik.2021.04.pp.656-663 (In Russ.)
- Liu F, Jin YJ, Liao HB, Cai L, Tong MP, Hou YL. Facile self-assembly synthesis of titanate/Fe3O4 nanocomposites for the efficient removal of Pb2+ from aqueous systems. Journal of Materials Chemistry A. 2013;1(3):805-813. doi: 10.1039/C2TA00099G
- Olontsev VF, Farberova EA, Minkova AA, Generalova KN, Belousov KS. Optimization of porous structure of absorbent carbon in the course of technological production. Vestnik permskogo natsional′nogo issledovatel′skogo politekhnicheskogo universiteta. Khimicheskaya tekhnologiya i biotekhnologiya. 2015;4:9-23. (In Russ.)
- Mishchenko SV. Carbon nanomaterials: production, properties and application. Moscow: Mashinostroenie; 2008. 320 p. (In Russ.)
- Dyachkova TP, Tkachev AG. Methods of functionalisation and modification of the carbon nanotubes. Moscow: “Spektr” Publ. house; 2013. 152 p. (In Russ.)
- Shubin IN, Popova AA. Features of implementation options for the process of high-temperature activation of carbon material. Journal of Advanced Materials and Technologies. 2023;8(1):041-048. doi: 10.17277/jamt.2023.01.pp.041-048.
- Carvalho AP, Cardoso B, Pires J, Carvalho MB. Preparation of activated carbons from cork waste by chemical activation with KOH. Carbon. 2003;41(14): 2873-2876. doi: 10.1016/S0008-6223(03)00323-3
- Yoon SH, Lim S, Song Y, Ota Y et al. KOH activation of carbon nanofibers. Carbon. 2004;42(8-9): 1723-1729. doi: 10.1016/j.carbon.2004.03.006
- Chesnokov NV, Mikova NM, Ivanov IP, Kuznetsov BN. Synthesis of carbon sorbents by chemical modification of fossil coals and plant biomass. Zhurnal Sibirskogo federal′nogo universiteta. Khimiya. 2014;7(1): 42-53. (In Russ.)
- Dong W, Xia W, Xie K, Peng B at al. Synergistic effect of potassium hydroxide and steam co-treatment on the functionalization of carbon nanotubes applied as basic support in the Pd-catalyzed liquid-phase oxidation of ethanol. Carbon. 2017;121:452-462. doi: 10.1016/j.carbon.2017.06.019
- Raymundo-Pinero E, Azaıs P, Cacciaguerra T, Cazorla-Amoros D at al. KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organization. Carbon. 2005;43(4):786-795. doi: 10.1016/j.carbon.2004.11.005
- Popova АА, Shubin IN. Investigation of the process of high-temperature alkaline activation of carbon material with additional action of water vapor. Vestnik tambovskogo gosudarstvennogo tekhnicheskogo universiteta. 2022;28(3):476-486. doi: 10.17277/vestnik.2022.03.pp.476-486.9 (In Russ.)
- Ouyang J, Zhou L, Liu Z, Heng JYY, Chen W. Biomass-derived activated carbons for the removal of pharmaceutical mircopollutants from wastewater: a review. Separation and Purification Technology. 2020;253: 117536. doi: 10.1016/j.seppur.2020.117536
- Han X, Wang H, Zhang L. Efficient removal of methyl blue using nanoporous carbon from the waste biomass. Water, Air, and Soil Pollution. 2018;229(2):26. doi: 10.1007/s11270-017-3682-0
- Shubin IN. Features of hardware and technological process formation in obtaining the compacted carbon materials. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroyeniye. 2024;1:57-67. doi: 10.18698/0536-1044-2024-01-57-67 (In Russ.)
- Falco C, Marco-Lozar JP, Salinas-Torres D, Morallo´n E at al. Tailoring the porosity of chemically activated hydrothermal carbons: Influence of the precursor and hydrothermal carbonization temperature. Carbon. 2013;62:346-355. doi: 10.1016/j.carbon.2013.06.017
- Shubin IN, Mkrtchyan ES, Ananyeva OA. Promising sorbents based on compacted highly porous carbon materials. Journal of Advanced Materials and Technologies. 2023;8(4):270-278. doi: 10.17277/jamt.2023.04.pp.270-278
- Mkrtchyan ES, Popova AA, Shubin IN. Investigation of promising carbon sorbents obtained by high-temperature activation in the processes of purification of aqueous solutions from dyes. Perspektivnyye Materialy = Prospective Materials. 2023;11:28-38. doi: 10.30791/1028-978X-2023-11-28-38 (In Russ.)
- Zgrzebnicki M, Kałamaga A, Wrobel R. Sorption and textural properties of activated carbon derived from charred beech wood. Molecules. 2021;26:7604. doi: 10.3390/molecules26247604
- Cychosz KA, Thommes M. Progress in the physisorption characterization of nanoporous gas storage materials. Engineering. 2018;4:559-566. doi: 10.1016/j.eng.2018.06.001
- Bahadur J, Melnichenko YB, He L, Contescu CI at al. SANS investigations of CO2 adsorption in microporous. Carbon. 2015;95:535-544. doi: 10.1016/j.carbon.2015.08.010
- Mukhin VM, Klushin VN. Production and application of carbon adsorbents: textbook. Moscow: Mendeleev Russian University of Chemical Technology; 2012. 308 p. (In Russ.)
- Al-Ghouti MA, Sweleh AO. Optimizing textile dye removal by activated carbon prepar froedm olive stones. Environmental Technology and Innovation. 2019;16:100488. doi: 10.1016/j.eti.2019.100488
- Ji B, Wang J, Song H, Chen W. Removal of methylene blue from aqueous solutions using biochar derived from a fallen leaf by slow pyrolysis: Behavior and mechanism. Journal of Environmental Chemical Engineering. 2019;7(3):103036. doi: 10.1016/j.jece.2019.103036
- Li Z, Hanafy H, Zhanga L, Sellaouid L at al. Adsorption of congo red and methylene blue dyes on an ashitaba waste and a walnut shell-based activated carbon from aqueous solutions: Experiments, characterization and physical interpretations. Chemical Engineering Journal. 2020;388:124263. doi: 10.1016/j.cej.2020.124263
- Canales-Flores RA, Prieto-García F. Taguchi optimization for production of activated carbon from phosphoric acid impregnated agricultural waste by microwave heating for the removal of methylene blue. Diamond and Related Materials. 2020;109:108027. doi: 10.1016/j.diamond.2020.108027
- Wang B, Gao B, Zimmerman AR, Lee X. Impregnation of multiwall carbon nanotubes in alginate beads dramatically enhances their adsorptive ability to aqueous methylene blue. Chemical Engineering Research and Design. 2018;133:235-242. doi: 10.1016/j.cherd.2018.03.026
- Crini G. Non-conventional low-cost adsorbents for dye removal: a review. Bioresource technology. 2006; 97(9):1061-1085. doi: 10.1016/j.biortech.2005.05.001
- Nayeri D, Mousavi SA. Dye removal from water and wastewater by nanosized metal oxides-modified activated carbon: a review on recent researches. Journal of Environmental Health Science and Engineering. 2020;18(2):1671-1689. doi: 10.1007/s40201-020-00566-w
- Mariana M, Khalil AHPS, Mistar EM, Yahya EB, et al. Recent advances in activated carbon modification techniques for enhanced heavy metal adsorption. Journal of Water Process Engineering. 2021;43:102221. doi: 10.1016/j.jwpe.2021.102221
- Sabzehmeidani MM, Mahnaee S, Ghaedi M, Heidari H. Carbon based materials: A review of adsorbents for inorganic and organic compounds. Materials Advances. 2021;2(2):598-627. doi: 10.1039/D0MA00087F
- Han Z, Tang Z, Shen S, Zhao B, at al. Strengthening of graphene aerogels with tunable density and high adsorption capacity towards Pb2+. Scientific Reports. 2014;4:5025. doi: 10.1038/srep05025
- Purnendu SS. Graphene-based 3D xerogel as adsorbent for removal of heavy metal ions from industrial wastewater. Journal of Renewable Materials. 2017;5(2):96-102. doi: 10.7569/JRM.2016.634134
- Wang B, Zhang F, He S, Huang F, Peng Z. Adsorption behavior of reduced graphene oxide for removal of heavy metal ions. Asian Journal of Chemistry. 2014;26:4901-4906. doi: 10.14233/ajchem.2014.17024
- Gautam RK, Chattopadhyaya MC. Nanomaterials for Wastewater Remediation. Oxford: Elsevier; 2016. 347 p.
Дополнительные файлы
