Encapsulation of solar cells in a transparent polymer composite material
- Authors: Dmitriev I.Y.1, Kochergin A.V.1,2, Yakovlev S.A.1,3, Levitskii V.S.1, Abramov A.S.1, Terukov E.I.1,3,2
-
Affiliations:
- R&D Center of Thin Film Technologies in Energetics
- Saint Petersburg Electrotechnical University “LETI”
- Ioffe Physical-Technical Institute of the Russian Academy of Sciences
- Issue: Vol 9, No 2 (2024)
- Pages: 110-121
- Section: Original papers
- URL: https://ogarev-online.ru/2782-2192/article/view/279627
- DOI: https://doi.org/10.17277/jamt.2024.02.pp.110-121
- ID: 279627
Cite item
Full Text
Abstract
Lightweight photovoltaic modules are becoming increasingly popular in many technical applications. This study proposes an approach to the production of a glass-filled prepreg encapsulant for solar cells lamination. Lamination of solar cells strings can result in the creation of a transparent and mechanically strong protective composite material. Prototypes of composite photovoltaic modules with high-efficiency HJT solar cells connected using electroconductive adhesive technology were fabricated. The climatic resistance of the obtained samples was estimated. It was found that composite modules pass successfully thermal cycling, UV exposure and hail tests. Damp heat test has revealed increased degradation. Degradation caused by moisture penetration initiates corrosion processes in the layers of transparent conductive oxide ITO or contact metallization mesh. The use of composite polymer material makes it possible to reduce the weight of photovoltaic modules due to the use of sheet glass in their design while maintaining an acceptable level of their climatic resistance.
About the authors
Ivan Yu. Dmitriev
R&D Center of Thin Film Technologies in Energetics
Author for correspondence.
Email: I.Dmitriev@hevelsolar.com
ORCID iD: 0000-0003-0605-9006
Cand. Sc. (Phys. and Math.), Lead Process Technologist
Russian Federation, 28, Politekhnicheskaya St., Saint Petersburg, 194064Artem V. Kochergin
R&D Center of Thin Film Technologies in Energetics; Saint Petersburg Electrotechnical University “LETI”
Email: A.Kochergin@hevelsolar.com
ORCID iD: 0009-0005-6670-8508
Postgraduate Student
Russian Federation, 28, Politekhnicheskaya St., Saint Petersburg, 194064; 5, Professora Popova St., Saint Petersburg, 197022Sergey A. Yakovlev
R&D Center of Thin Film Technologies in Energetics; Ioffe Physical-Technical Institute of the Russian Academy of Sciences
Email: S.Yakovlev@hevelsolar.com
ORCID iD: 0009-0009-3963-8355
Cand. Sc. (Phys. and Math.), Lead Process Technologist
Russian Federation, 28, Politekhnicheskaya St., Saint Petersburg, 194064; 26, Politekhnicheskaya St., Saint Petersburg, 194021Vladimir S. Levitskii
R&D Center of Thin Film Technologies in Energetics
Email: V.Levitskiy@hevelsolar.com
ORCID iD: 0000-0002-7877-1329
Cand. Sc. (Eng.), Lead Measurements Specialist
Russian Federation, 28, Politekhnicheskaya St., Saint Petersburg, 194064Alexey S. Abramov
R&D Center of Thin Film Technologies in Energetics
Email: a.abramov@hevelsolar.com
ORCID iD: 0000-0003-4310-4478
Cand. Sc. (Phys. and Math.), Head of Solar Energy Department
Russian Federation, 28, Politekhnicheskaya St., Saint Petersburg, 194064Eugenii I. Terukov
R&D Center of Thin Film Technologies in Energetics; Ioffe Physical-Technical Institute of the Russian Academy of Sciences; Saint Petersburg Electrotechnical University “LETI”
Email: e.terukov@hevelsolar.com
ORCID iD: 0000-0002-4818-4924
D. Sc (Eng.), Professor, Deputy Director for Science
Russian Federation, 28, Politekhnicheskaya St., Saint Petersburg, 194064; 26, Politekhnicheskaya St., Saint Petersburg, 194021; 5, Professora Popova St., Saint Petersburg, 197022References
- Abramov A, Andronikov D, Emtsev K, Orekhov D, et al. Super lightweight flexible HJT solar panel. (eds.) 35th European Photovoltaic Solar Energy Conference and Exhibition, 23 – 28 September 2018. USA: WIP - Renewable Energies; 2019. p.1227-1229. doi: 10.4229/35THEUPVSEC20182018-5CV.1.34
- Yakovlev S, Schebet E, Emtsev K, Andronikov D, et al. Mechanical stability of semi-flexible solar panels. (eds.) 36th European Photovoltaic Solar Energy Conference and Exhibition, 9 – 13 September 2019. France: Fraunhofer Institute for Solar Energy Systems ISE; 2019. p.1040-1041. doi: 10.4229/EUPVSEC20192019-4AV.1.22
- Yakovlev S, Schebet E, Emtsev K, Andronikov D, et al. Environmental stability of semi-flexible HJT solar panels. (eds.) 37th European Photovoltaic Solar Energy Conference and Exhibition, 7 – 10 September 2020. France: Fraunhofer Institute for Solar Energy Systems ISE; 2020. p. 1117-1119. doi: 10.4229/EUPVSEC20202020-4AV.2.18
- Govaerts J, Luo B, Borgers T, Dyck R, et at. Development and testing of light-weight PV modules based on glass-fibre reinforcement. EPJ Photovoltaics. 2022;13:1-13. doi: 10.1051/epjpv/2022007.
- Reinders A, Wit H, Boer A. Design of fibre reinforced pv concepts for building integrated applications. (eds.) 24th European Photovoltaic Solar Energy Conference and Exhibition, 21 – 25 September 2009. Germany: WIP - Renewable Energies; 2009. p.3940-3944.
- Kyritsis A, Roman E, Kalogirou S, Nikoletatos J, et al. Households with fibre reinforced composite bipv modules in southern europe under net metering scheme. Renewable Energy. 2019;137(3):167-176. doi: 10.1016/j.renene.2017.09.068
- Govaers J, Moliya K, Bin L, Borgers T, et al. The potential of glass-fibre-reinforcement: (thermo-) mechanical testing of light-weight PV modules. (eds.) 38th European Photovoltaic Solar Energy Conference and Exhibition, 6 – 9 September 2021. Germany: WIP Wirtschaft und Infrastruktur GmbH & Co Planungs KG. doi: 10.4229/EUPVSEC20212021-1AO.3.1.
- Lu S, Holla R, Morley B. Resin suitable for powder coating compositions. United State patent 7,737,238. 15 May 2010.
- Tzoumani I, Beobide A, Iatridi Z, Voyiatzis G, et al. Glycidyl methacrylate-based copolymers as healing agents of waterborne polyurethanes. International Journal of Molecular Sciences. 2022;23(15):8118. doi: 10.3390/ijms23158118
- Anakabe J, Zaldua Huici AM, Eceiza A, Arbelaiz A. The effect of the addition of poly(styrene- co -glycidyl methacrylate) copolymer on the properties of polylactide/poly(methyl methacrylate) blend. Journal of Applied Polymer Science. 2016;133(37). doi: 10.1002/app.43935
- Abdollahi H, Najafi V, Amiri F. Determination of monomer reactivity ratios and thermal properties of poly(GMA-co-MMA) copolymers. Polymer Bulletin. 2021;78:493-511. doi: 10.1007/s00289-020-03123-5
- Li JL, Xie XM. Reconsideration on the mechanism of free-radical melt grafting of glycidyl methacrylate on polyolefin. Polymer. 2012;53(11):2197-2204. doi: 10.1016/j.polymer.2012.03.035
- Yang P, Razzaq S, Jiao R, Hu Y, Liu L, Tao J. UV Light-induced degradation of industrial silicon HJT solar cells: degradation mechanism and recovery strategies. Journal of Solar Energy Research Updates. 2023;10:36-45. doi: 10.31875/2410-2199.2023.10.04
- Kaya I, Ilter Z, Senol D. Thermodynamic interactions and characterisation of poly[(glycidyl methacrylate-co-methyl, ethyl, butyl) methacrylate] by inverse gas chromatography. Polymer. 2002;43(24):6455-6463. doi: 10.1016/s0032-3861(02)00554-2
- Heidrich R, Barretta C, Mordvinkin A, Pinter G, et al. UV lamp spectral effects on the aging behavior of encapsulants for photovoltaic modules. Solar Energy Materials and Solar Cells. 2024;266:112674. doi: 10.1016/j.solmat.2023.112674
- Tiefenthaler M, Wallner GM, Pugstaller R. Effect of global damp heat ageing on debonding of crosslinked EVA- and POE-glass laminates. Solar Energy Materials and Solar Cells. 2024;264:112602. doi: 10.1016/j.solmat.2023.112602
- Sen C, Wang H, Wu X, Khan M, et al. Four failure modes in silicon heterojunction glass-backsheet modules. Solar Energy Materials and Solar Cells. 2023;257:112358. doi: 10.1016/j.solmat.2023.112358
- Wu X, Sen C, Wang H, Wang X, et al. Addressing sodium ion-related degradation in SHJ cells by the application of nano-scale barrier layers. Solar Energy Materials and Solar Cells. 2024;264:112604. doi: 10.1016/j.solmat.2023.112604
- Call J, Varde U, Konson A, Walters M, et al. Methodology and systems to ensure reliable thin-film PV modules. Reliability of Photovoltaic Cells, Modules, Components, and Systems. 2008;70480S. doi: 10.1117/12.797103
Supplementary files
