Encapsulation of solar cells in a transparent polymer composite material

Cover Page

Cite item

Full Text

Abstract

Lightweight photovoltaic modules are becoming increasingly popular in many technical applications. This study proposes an approach to the production of a glass-filled prepreg encapsulant for solar cells lamination. Lamination of solar cells strings can result in the creation of a transparent and mechanically strong protective composite material. Prototypes of composite photovoltaic modules with high-efficiency HJT solar cells connected using electroconductive adhesive technology were fabricated. The climatic resistance of the obtained samples was estimated. It was found that composite modules pass successfully thermal cycling, UV exposure and hail tests. Damp heat test has revealed increased degradation. Degradation caused by moisture penetration initiates corrosion processes in the layers of transparent conductive oxide ITO or contact metallization mesh. The use of composite polymer material makes it possible to reduce the weight of photovoltaic modules due to the use of sheet glass in their design while maintaining an acceptable level of their climatic resistance.

About the authors

Ivan Yu. Dmitriev

R&D Center of Thin Film Technologies in Energetics

Author for correspondence.
Email: I.Dmitriev@hevelsolar.com
ORCID iD: 0000-0003-0605-9006

Cand. Sc. (Phys. and Math.), Lead Process Technologist

Russian Federation, 28, Politekhnicheskaya St., Saint Petersburg, 194064

Artem V. Kochergin

R&D Center of Thin Film Technologies in Energetics; Saint Petersburg Electrotechnical University “LETI”

Email: A.Kochergin@hevelsolar.com
ORCID iD: 0009-0005-6670-8508

Postgraduate Student

Russian Federation, 28, Politekhnicheskaya St., Saint Petersburg, 194064; 5, Professora Popova St., Saint Petersburg, 197022

Sergey A. Yakovlev

R&D Center of Thin Film Technologies in Energetics; Ioffe Physical-Technical Institute of the Russian Academy of Sciences

Email: S.Yakovlev@hevelsolar.com
ORCID iD: 0009-0009-3963-8355

Cand. Sc. (Phys. and Math.), Lead Process Technologist

Russian Federation, 28, Politekhnicheskaya St., Saint Petersburg, 194064; 26, Politekhnicheskaya St., Saint Petersburg, 194021

Vladimir S. Levitskii

R&D Center of Thin Film Technologies in Energetics

Email: V.Levitskiy@hevelsolar.com
ORCID iD: 0000-0002-7877-1329

Cand. Sc. (Eng.), Lead Measurements Specialist

Russian Federation, 28, Politekhnicheskaya St., Saint Petersburg, 194064

Alexey S. Abramov

R&D Center of Thin Film Technologies in Energetics

Email: a.abramov@hevelsolar.com
ORCID iD: 0000-0003-4310-4478

Cand. Sc. (Phys. and Math.), Head of Solar Energy Department

Russian Federation, 28, Politekhnicheskaya St., Saint Petersburg, 194064

Eugenii I. Terukov

R&D Center of Thin Film Technologies in Energetics; Ioffe Physical-Technical Institute of the Russian Academy of Sciences; Saint Petersburg Electrotechnical University “LETI”

Email: e.terukov@hevelsolar.com
ORCID iD: 0000-0002-4818-4924

D. Sc (Eng.), Professor, Deputy Director for Science

Russian Federation, 28, Politekhnicheskaya St., Saint Petersburg, 194064; 26, Politekhnicheskaya St., Saint Petersburg, 194021; 5, Professora Popova St., Saint Petersburg, 197022

References

  1. Abramov A, Andronikov D, Emtsev K, Orekhov D, et al. Super lightweight flexible HJT solar panel. (eds.) 35th European Photovoltaic Solar Energy Conference and Exhibition, 23 – 28 September 2018. USA: WIP - Renewable Energies; 2019. p.1227-1229. doi: 10.4229/35THEUPVSEC20182018-5CV.1.34
  2. Yakovlev S, Schebet E, Emtsev K, Andronikov D, et al. Mechanical stability of semi-flexible solar panels. (eds.) 36th European Photovoltaic Solar Energy Conference and Exhibition, 9 – 13 September 2019. France: Fraunhofer Institute for Solar Energy Systems ISE; 2019. p.1040-1041. doi: 10.4229/EUPVSEC20192019-4AV.1.22
  3. Yakovlev S, Schebet E, Emtsev K, Andronikov D, et al. Environmental stability of semi-flexible HJT solar panels. (eds.) 37th European Photovoltaic Solar Energy Conference and Exhibition, 7 – 10 September 2020. France: Fraunhofer Institute for Solar Energy Systems ISE; 2020. p. 1117-1119. doi: 10.4229/EUPVSEC20202020-4AV.2.18
  4. Govaerts J, Luo B, Borgers T, Dyck R, et at. Development and testing of light-weight PV modules based on glass-fibre reinforcement. EPJ Photovoltaics. 2022;13:1-13. doi: 10.1051/epjpv/2022007.
  5. Reinders A, Wit H, Boer A. Design of fibre reinforced pv concepts for building integrated applications. (eds.) 24th European Photovoltaic Solar Energy Conference and Exhibition, 21 – 25 September 2009. Germany: WIP - Renewable Energies; 2009. p.3940-3944.
  6. Kyritsis A, Roman E, Kalogirou S, Nikoletatos J, et al. Households with fibre reinforced composite bipv modules in southern europe under net metering scheme. Renewable Energy. 2019;137(3):167-176. doi: 10.1016/j.renene.2017.09.068
  7. Govaers J, Moliya K, Bin L, Borgers T, et al. The potential of glass-fibre-reinforcement: (thermo-) mechanical testing of light-weight PV modules. (eds.) 38th European Photovoltaic Solar Energy Conference and Exhibition, 6 – 9 September 2021. Germany: WIP Wirtschaft und Infrastruktur GmbH & Co Planungs KG. doi: 10.4229/EUPVSEC20212021-1AO.3.1.
  8. Lu S, Holla R, Morley B. Resin suitable for powder coating compositions. United State patent 7,737,238. 15 May 2010.
  9. Tzoumani I, Beobide A, Iatridi Z, Voyiatzis G, et al. Glycidyl methacrylate-based copolymers as healing agents of waterborne polyurethanes. International Journal of Molecular Sciences. 2022;23(15):8118. doi: 10.3390/ijms23158118
  10. Anakabe J, Zaldua Huici AM, Eceiza A, Arbelaiz A. The effect of the addition of poly(styrene- co -glycidyl methacrylate) copolymer on the properties of polylactide/poly(methyl methacrylate) blend. Journal of Applied Polymer Science. 2016;133(37). doi: 10.1002/app.43935
  11. Abdollahi H, Najafi V, Amiri F. Determination of monomer reactivity ratios and thermal properties of poly(GMA-co-MMA) copolymers. Polymer Bulletin. 2021;78:493-511. doi: 10.1007/s00289-020-03123-5
  12. Li JL, Xie XM. Reconsideration on the mechanism of free-radical melt grafting of glycidyl methacrylate on polyolefin. Polymer. 2012;53(11):2197-2204. doi: 10.1016/j.polymer.2012.03.035
  13. Yang P, Razzaq S, Jiao R, Hu Y, Liu L, Tao J. UV Light-induced degradation of industrial silicon HJT solar cells: degradation mechanism and recovery strategies. Journal of Solar Energy Research Updates. 2023;10:36-45. doi: 10.31875/2410-2199.2023.10.04
  14. Kaya I, Ilter Z, Senol D. Thermodynamic interactions and characterisation of poly[(glycidyl methacrylate-co-methyl, ethyl, butyl) methacrylate] by inverse gas chromatography. Polymer. 2002;43(24):6455-6463. doi: 10.1016/s0032-3861(02)00554-2
  15. Heidrich R, Barretta C, Mordvinkin A, Pinter G, et al. UV lamp spectral effects on the aging behavior of encapsulants for photovoltaic modules. Solar Energy Materials and Solar Cells. 2024;266:112674. doi: 10.1016/j.solmat.2023.112674
  16. Tiefenthaler M, Wallner GM, Pugstaller R. Effect of global damp heat ageing on debonding of crosslinked EVA- and POE-glass laminates. Solar Energy Materials and Solar Cells. 2024;264:112602. doi: 10.1016/j.solmat.2023.112602
  17. Sen C, Wang H, Wu X, Khan M, et al. Four failure modes in silicon heterojunction glass-backsheet modules. Solar Energy Materials and Solar Cells. 2023;257:112358. doi: 10.1016/j.solmat.2023.112358
  18. Wu X, Sen C, Wang H, Wang X, et al. Addressing sodium ion-related degradation in SHJ cells by the application of nano-scale barrier layers. Solar Energy Materials and Solar Cells. 2024;264:112604. doi: 10.1016/j.solmat.2023.112604
  19. Call J, Varde U, Konson A, Walters M, et al. Methodology and systems to ensure reliable thin-film PV modules. Reliability of Photovoltaic Cells, Modules, Components, and Systems. 2008;70480S. doi: 10.1117/12.797103

Supplementary files

Supplementary Files
Action
1. JATS XML


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».