EWT-CGAN Data Augmentation for Measurement Systems

Cover Page

Cite item

Full Text

Abstract

The article presents a new data augmentation method for measurement systems, designed for industrial equipment condition monitoring tasks. The relevance of the study stems from the significant limitations of traditional synthetic data generation methods, which fail to adequately reproduce complex non-stationary signals with characteristic transient processes, trends, and seasonal variations observed in real industrial environments. The proposed method integrates two advanced techniques: empirical wavelet transform (EWT) and conditional generative adversarial networks (Conditional GAN). The method is implemented in three stages: (1) adaptive decomposition of raw signals into modes using EWT, (2) mode categorization with label assignment, and (3) synthetic data generation using Conditional GAN. A set of statistical metrics was used to comprehensively assess the quality of synthesized signals, including Wasserstein distance (WS), Pearson correlation coefficient (PCC), and root mean square error (RMSE). Experimental studies were conducted on real-world temperature sensor data obtained under non-stationary industrial equipment conditions. The results demonstrate a significant advantage of the proposed method over the traditional TimeGAN approach: a 17% reduction in Wasserstein distance, a 57% increase in Pearson correlation coefficient, and a 21% decrease in RMSE. These findings confirm the method’s effectiveness in reproducing key characteristics of the original signals. The developed method enables the creation of synthetic datasets required for training modern neural network models in industrial equipment diagnostics. Its practical application significantly reduces the costs associated with experimental data collection while ensuring high-quality synthesized signals, as validated by statistical metrics.

About the authors

A. V Erpalov

South Ural State University (National Research University)

Email: erpalovav@susu.ru
Lenin Ave. 76

V. V Sinitsin

South Ural State University (National Research University)

Email: sinitcinvv@susu.ru
Lenin Ave. 76

A. L Shestakov

South Ural State University (National Research University)

Email: president@susu.ru
Lenin Ave. 76

References

  1. Musa N., Gital A.Y., Aljojo N., et al. A systematic review and Meta-data analysis on the applications of Deep Learning in Electrocardiogram. J. Ambient Intell. Humaniz. Comput. 2023. vol. 14. no. 7. pp. 9677–9750. doi: 10.1007/s12652-022-03868-z.
  2. Zhang D., Ma M., Xia L. A comprehensive review on GANs for time-series signals. Neural Comput. Appl. 2022. vol. 34. no. 5. pp. 3551–3571. doi: 10.1007/s00521-022-06888-0.
  3. Brophy E., Wang Z., She Q., Ward T. Generative Adversarial Networks in Time Series: A Systematic Literature Review. ACM Comput. Surv. 2023. vol. 55. no. 10. doi: 10.1145/3559540.
  4. Goodfellow I., Pouget-Abadie J., Mirza M., Xu B., Warde-Farley D., Ozair S., Courville A., Bengio Y. Generative adversarial nets. Adv. Neural Inf. Process. Syst. 2014. vol. 27. pp. 2672–2680.
  5. Radford A., Metz L., Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks. 4th Int. Conf. Learn. Represent. (ICLR 2016). 2016. pp. 1–16.
  6. Karras T., Aila T., Laine S., Lehtinen J. Progressive growing of GANs for improved quality, stability, and variation. 6th Int. Conf. Learn. Represent. (ICLR 2018). 2018. pp. 1–26.
  7. Mirza M., Osindero S. Conditional Generative Adversarial Nets. arXiv preprint arXiv:1411.1784. 2014. pp. 1–7.
  8. Mao X., Li Q., Xie H., Lau R.Y.K., Wang Z., Smolley S.P. Least Squares Generative Adversarial Networks. Proc. IEEE Int. Conf. Comput. Vis. (ICCV). 2017. vol. 2017. pp. 2813–2821. doi: 10.1109/ICCV.2017.304.
  9. Arjovsky M., Chintala S., Bottou L. Wasserstein GAN. Proceedings of the 34 th International Conference on Machine Learning. 2017. vol. 70. pp. 214–223.
  10. Fabbri C. Conditional Wasserstein Generative Adversarial Networks. 2017.
  11. Akcay S., Atapour-Abarghouei A., Breckon T.P. GANomaly: Semi-supervised Anomaly Detection via Adversarial Training. Lect. Notes Comput. Sci. 2019. vol. 11363. pp. 622–637. doi: 10.1007/978-3-030-20893-6_39.
  12. Zenati H., Foo C.-S., Lecouat B., Manek G., Chandrasekhar V.R. Efficient GAN-Based Anomaly Detection. 2018.
  13. Maaten L. van der Hinton G. Visualizing Data using t-SNE. Journal of Machine Learning Research. 2008. vol. 9. pp. 2579–2605.
  14. Bryant F.B., Yarnold P.R. Principal-components analysis and exploratory and confirmatory factor analysis. Reading and understanding multivariate statistics. Washington, DC, US: American Psychological Association, 1995. pp. 99–136.
  15. Yoon J., Jarrett D., van der Schaar M. Time-series generative adversarial networks. Adv. Neural Inf. Process. Syst. 2019. vol. 32. pp. 1–11.
  16. Salimans T., Goodfellow I., Zaremba W., Cheung V., Randford A., Chen X. Improved techniques for training GANs. 30th Conference on Neural Information Processing Systems (NIPS 2016). Barcelona, 2016.
  17. Heusel M., Ramsauer H., Unterthiner T., Nessler B., Hochreiter S. GANs trained by a two time-scale update rule converge to a local Nash equilibrium. Adv. Neural Inf. Process. Syst. 2017. vol. 2017. pp. 6626–6637.
  18. Wang Z., Bovik A.C., Sheikh H.R., Simoncelli E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004. vol. 13. no. 4. pp. 600–612. doi: 10.1109/TIP.2003.819861.
  19. Huang N.E., Shen Z., Long S.R., Wu M.C., Shih H.H., Zheng Q., Yen N.-C., Tung C.C., Liu H.H. The empirical mode decomposition and the Hubert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. A Math. Phys. Eng. Sci. 1998. vol. 454. pp. 903–995. doi: 10.1098/rspa.1998.0193.
  20. Dragomiretskiy K., Zosso D. Variational Mode Decomposition. IEEE Trans. Signal Process. 2014. vol. 62. no. 3. pp. 531–544. doi: 10.1109/TSP.2013.2288675.
  21. Gilles J. Empirical wavelet transform. IEEE Trans. Signal Process. 2013. vol. 61. no. 16. pp. 3999–4010. doi: 10.1109/TSP.2013.2265222.
  22. Singh P., Joshi S.D., Patney R.K., Saha K. The Fourier decomposition method for nonlinear and non-stationary time series analysis. Proc. R. Soc. A Math. Phys. Eng. Sci. 2017. vol. 473. no. 2199. doi: 10.1098/rspa.2016.0871.
  23. Gilles J. Empirical Wavelet Transform. IEEE Trans. Signal Process. 2013. vol. 61. no. 16. pp. 3999–4010. doi: 10.1109/TSP.2013.2265222.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).