Modified Heuristic Task Allocation Algorithms for Mobile Robot Teams under Uncertainty
- Authors: Migranov A.B1
-
Affiliations:
- Mavlyutov Institute of Mechanics, Ufa Federal Research Centre, Russian Academy of Sciences
- Issue: Vol 24, No 3 (2025)
- Pages: 884-913
- Section: Robotics, automation and control systems
- URL: https://ogarev-online.ru/2713-3192/article/view/350718
- DOI: https://doi.org/10.15622/ia.24.3.6
- ID: 350718
Cite item
Full Text
Abstract
This study addresses the problem of task allocation among groups of mobile robots under conditions of parametric and stochastic uncertainty arising from sensor errors, environmental non-stationarity, and limited information about controlled objects. The primary objective is to adapt previously developed heuristic algorithms to real-world conditions, where sensor inaccuracies and incomplete knowledge of the environment are present. Three baseline approaches are considered: the ant colony algorithm, the Hopfield neural network, and the genetic algorithm. Each method is enhanced with specific modifications to account for input uncertainty: dynamic pheromone trail updates, adaptive adjustment of neuron weight coefficients, and interval-based estimation of environmental parameters. The paper presents a formal problem statement, mathematical models, and the design principles of the proposed task allocation algorithms. Numerical simulations were conducted to compare the performance of the modified algorithms against their baseline counterparts under varying levels of operational uncertainty. Results show that the proposed adaptive mechanisms improve task allocation efficiency by up to 20% compared to the original methods. Based on these findings, recommendations are formulated for selecting the optimal algorithm depending on specific operating conditions and control objectives. The study concludes that the proposed approaches are effective for the design of intelligent adaptive group control systems for mobile robots. Furthermore, these solutions can be extended to a broader class of problems, including dynamic resource reassignment and the organization of cooperative behavior among technical agents.
About the authors
A. B Migranov
Mavlyutov Institute of Mechanics, Ufa Federal Research Centre, Russian Academy of Sciences
Email: abm.imech.anrb@mail.ru
Oktyabrya Av. 71
References
- Lin X., Gao F., Bian W. A high-effective swarm intelligence-based multi-robot cooperation method for target searching in unknown hazardous environments // Expert Systems with Applications. 2025. vol. 262. doi: 10.1016/j.eswa.2024.125609.
- Cardona G.A., Calderon J.M. Robot Swarm Navigation and Victim Detection Using Rendezvous Consensus in Search and Rescue Operations // Applied Sciences. 2019. vol. 9(8). doi: 10.3390/app9081702.
- Alotaibi E.T., Alqefari S.S., Koubaa A. LSAR: Multi-UAV Collaboration for Search and Rescue Missions // IEEE Access. 2019. vol. 7. pp. 55817–55832. doi: 10.1109/ACCESS.2019.2912306.
- Cao Y.U., Fukunaga A.S., Kahng A. Cooperative mobile robotics: Antecedents and directions // Autonomous Robots. 1997. vol. 4. pp. 7–27.
- Gerkey B.P., Matarić M.J. A Formal Analysis and Taxonomy of Task Allocation in Multi-Robot Systems // International Journal of Robotics Research. 2004. vol. 23(9). pp. 939–954. doi: 10.1177/0278364904045564.
- Kalyaev I.A., Melnik E.S., Klimenko A.V. Distributed Ledger Based Workload Logging in the Robot Swarm // Proc. 4th Int. Conf. Interactive Collaborative Robotics (ICR 2019). LNCS, 2019. pp. 119–128. doi: 10.1007/978-3-030-26118-4_12.
- Kalyaev I.A. Melnik E.S., Klimenko A.V. Distributed Methods for Autonomous Robot Groups Fault-Tolerant Management // Proc. 5th Int. Conf. Interactive Collaborative Robotics (ICR 2020). LNCS, 2020. vol. 12336. pp. 135–147. doi: 10.1007/978-3-030-60337-3_14.
- Brambilla M., Ferrante E., Birattari M., Dorigo M. Swarm robotics: a review from the swarm engineering perspective // Swarm Intelligence. 2013. vol. 7. pp. 1–41. doi: 10.1007/s11721-012-0075-2.
- Parker L.E. ALLIANCE: An Architecture for Fault Tolerant Multi-Robot Cooperation // IEEE Transactions on Robotics and Automation. 1998. vol. 14(2). pp. 220–240. doi: 10.1109/70.681242.
- Dadgar E., Jafari S., Hamzeh A. A PSO-based multi-robot cooperation method for target searching in unknown environments // Neurocomputing. 2016. vol. 177. pp. 62–74. doi: 10.1016/j.neucom.2015.11.007.
- Garg R. E2RGWO: Exploration enhanced robotic Grey Wolf Optimizer for cooperative multiple target search for robotic swarms // Arabian Journal for Science and Engineering. 2023. vol. 48. pp. 9887–9903. doi: 10.1007/s13369-022-07438-5.
- Dorri A., Kanhere S.S., Jurdak R. Multi-Agent Systems: A Survey // IEEE Access. 2018. vol. 6. pp. 28573–28593. doi: 10.1109/ACCESS.2018.2831228.
- Fox D., Ko J., Konolige K., Limketkai B., Schulz D., Stewart B. Distributed multirobot exploration and mapping // Proceedings of the IEEE. 2006. vol. 94(7). pp. 1325–1339. doi: 10.1109/JPROC.2006.876927.
- Dorigo M., Blum C., Stutzle T. Ant Colony Optimization – Introduction and Recent Trends // IEEE Computational Intelligence Magazine. 2007. vol. 1(4). pp. 28–39. doi: 10.1109/MCI.2006.329691.
- Liu F., Tan Y. Multi-robot Task Allocation Based on Ant Colony Algorithm // Journal of Computers. 2012. vol. 7(9). pp. 2160–2167.
- Hopfield J.J. Neural networks and physical systems with emergent collective computational abilities // Proceedings of the National Academy of Sciences USA. 1982. vol. 79(8). pp. 2554–2558. doi: 10.1073/pnas.79.8.2554.
- Cechinel A.K., De Pieri E.R., Pérez A.L.F., Plentz P.D.M. Multi-robot Task Allocation Using Island Model Genetic Algorithm // IFAC-PapersOnLine. 2021. vol. 54(1). pp. 558–563. doi: 10.1016/j.ifacol.2021.08.063.
- Darintsev O.V., Migranov A.B. Multi-criteria Optimization of the Mobile Robot Group Strategy Using the Ant Algorithm // Eds.: Ronzhin A., Shishlakov V. Electromechanics and Robotics. Smart Innovation. Systems and Technologies. Springer. Singapore. 2022. vol. 232. pp. 97–108. doi: 10.1007/978-981-16-2814-6_9.
- Даринцев О.В., Мигранов А.Б. Модификация аппарата нейронной сети Хопфилда для решения задачи оптимального распределения заданий в группе мобильных роботов // Известия РАН. Теория и системы управления. 2024. № 2. С. 169–182.
- Darintsev O.V., Migranov A.B. Task Distribution Module for a Team of Robots Based on Genetic Algorithms: Synthesis Methodology and Testing // Proc. XXI Int. Conf. Complex Systems: Control and Modeling Problems (CSCMP). 2019. pp. 296–300. doi: 10.1109/CSCMP45713.2019.8976649.
- Khamis A.M., Hussein A., Elmogy A.M. Multi-robot Task Allocation: A Review of the State-of-the-Art // Eds. Koubâa A., Martínez-de-Dios J.R. Cooperative Robots and Sensor Networks. Studies in Computational Intelligence. Springer. Cham. 2015. pp. 31–51. doi: 10.1007/978-3-319-18299-5_2.
- Dias M.B., Zlot R., Kalra N., Stentz A. Market-based multirobot coordination: A survey and analysis // Proceedings of the IEEE. 2006. vol. 94(7). pp. 1257–1270. doi: 10.1109/JPROC.2006.876939.
- Garg R., Shukla A., Tiwari R. AERPSO – An adaptive exploration robotic PSO based cooperative algorithm for multiple target searching // Expert Systems with Applications. 2022. vol. 209. doi: 10.1016/j.eswa.2022.118245.
- Zhu B., Xie W.-F. An improved genetic algorithm with Euclidean geometry and hybrid heuristic crossover for the traveling salesman problem //2023 IEEE Congress on Evolutionary Computation (CEC). Chicago, IL, USA, 2023. pp. 1-8. doi: 10.1109/CEC53210.2023.10254179.
- Fan M., Li J. Surrogate-assisted genetic algorithms for the travelling salesman problem and vehicle routing problem // Proc. IEEE Congress on Evolutionary Computation (CEC). 2020. pp. 1–7. doi: 10.1109/CEC48606.2020.9185817.
- Ojeda Rios B.H., Xavier E.C., Miyazawa F., Amorim P., Curcio E., Joao Santos M. Recent dynamic vehicle routing problems: A survey // Computers & Industrial Engineering. 2021. vol. 160. doi: 10.1016/j.cie.2021.107604.
- Ding H., Cheng H.-J., Shan X. Modified Artificial Bee Colony Algorithm for the Capacitated Vehicle Routing Problem // DEStech Transactions on Social Science, Education and Human Science. 2018. doi: 10.12783/dtssehs/amse2018/24837.
- Gendreau M., Hertz A., Laporte G. A tabu search heuristic for the vehicle routing problem // Management Science. 1994. vol. 40(10). pp. 1276–1290. doi: 10.1287/mnsc.40.10.1276.
- Kirkpatrick S., Gelatt C.D., Vecchi M.P. Optimization by simulated annealing // Science. 1983. vol. 220(4598). pp. 671–680. doi: 10.1126/science.220.4598.671.
- Даринцев О.В., Мигранов А.Б. Аналитический обзор подходов к распределению задач в группах мобильных роботов на основе технологий мягких вычислений // Информатика и автоматизация. 2022. Т. 21. № 4. С. 729–757.
- Chao I.M., Golden B.L., Wasil E.A. A new heuristic for the multi-depot vehicle routing problem that improves upon best-known solutions // American Journal of Mathematical and Management Sciences. 1993. vol. 13(3–4). pp. 371–406. doi: 10.1080/01966324.1993.10737363.
- Dorigo M., Stützle T. Ant Colony Optimization, MIT Press, 2004.
Supplementary files

