Behavioral Functions Implementation on Spiking Neural Networks

Cover Page

Cite item

Full Text

Abstract

The question of behavioral functions modeling of animals (in particular, the modeling and implementation of the conditioned reflex) is considered. The analysis of the current state of neural networks with the possibility of structural reconfiguration is carried out. The modeling is carried out by means of neural networks, which are built on the basis of a compartmental spiking model of a neuron with the possibility of structural adaptation to the input pulse pattern. The compartmental spike model of a neuron is able to change its structure (the size of the cell body, the number and length of dendrites, the number of synapses) depending on the incoming pulse pattern at its inputs. A brief description of the compartmental spiking model of a neuron is given, and its main features are noted in terms of the possibility of its structural reconfiguration. The method of structural adaptation of the compartmental spiking model of the neuron to the input pulse pattern is described. To study the work of the proposed model of a neuron in a network, the choice of a conditioned reflex as a special case of the formation of associative connections is justified as an example. The structural scheme and algorithm of formation of a conditioned reflex with both positive and negative reinforcement are described. The article presents a step-by-step description of experiments on the associative connection’s formation in general and conditioned reflex (both with positive and negative reinforcement), in particular. The conclusion is made about the prospects of using spiking compartmental models of neurons to improve the efficiency of the implementation of behavioral functions in neuromorphic control systems. Further promising directions for the development of neuromorphic systems based on spiking compartmental models of the neuron are considered.

About the authors

A. M Korsakov

ЦНИИ РТК

Email: anton_korsakov@mail.ru
Tikhoretsky pr. 21

A. V Bakhshiev

Peter the Great St.Petersburg Polytechnic University (SPbPU)

Email: palexab@gmail.com
Politechnicheskaya St. 29

L. A Astapova

Russian state scientific center for robotics and technical cybernetics (RTC)

Email: astapova.la@yandex.ru
Tikhoretsky pr. 21

L. A Stankevich

Russian state scientific center for robotics and technical cybernetics (RTC)

Email: Stankevich_lev@inbox.ru
Tikhoretsky pr. 21

References

  1. Г.С. Мельников, Э.И. Мельникова, В.М. Самков. Нейроморфные системы анализа изображений (обзор) // Труды Международного научно-технического конгресса «Интеллектуальные системы и информационные технологии-2020» («IS&IT’20»). Т.2. Таганрог: Изд-во Ступина С.А. 2020. С. 120-148.
  2. Feng J. Is the integrate-and-fire model good enough a review // Neural Net-works. 2001. vol. 14. no. 6. pp. 955–975.
  3. Kasabov N. K. Evolving Connectionist Systems: The Knowledge Engineering Approach // London, Springer Science & Business Media. 2007. 451 p.
  4. Soltic S., Kasabov N. K. Knowledge extraction from evolving spiking neural networks with rank order population coding // International Journal of Neural Systems. 2010. vol. 20. no. 06. pp. 437–445.
  5. Wysoski S. G., Benuskova L., Kasabov N. Fast and adaptive network of spiking neurons for multi-view visual pattern recognition // Neurocomputing. 2008. vol. 71. no. 13. pp. 2563–2575.
  6. Wysoski S. G., Benuskova L., Kasabov N. K. Evolving spiking neural networks for audiovisual information processing // Neural Networks. 2010. vol. 23. no. 7. pp. 819–835.
  7. Wysoski S. G., Benuskova L., Kasabov N. On-Line Learning with Structural Adaptation in a Network of Spiking Neurons for Visual Pattern Recognition // Artificial Neural Networks. 2006. vol. 4131. pp. 61–70.
  8. Dhoble K., Nuntalid N., Indiveri G., Kasabov N. Online spatio-temporal pattern recognition with evolving spiking neural networks utilising address event representation, rank order, and temporal spike learning // The 2012 International Joint Conference on Neural Networks (IJCNN). 2012. pp. 1–7.
  9. Kasabov N. K., Dhoble K., Nuntalid N., Indiveri G. Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition // Neural Networks. 2013. vol. 41. pp. 188–201.
  10. Wang J., Belatreche A., Maguire L., McGinnity T. M. An online supervised learning method for spiking neural networks with adaptive structure // Neurocomputing. 2014. vol. 144. pp. 526–536.
  11. Wang J., Belatreche A., Maguire L. P., McGinnity T. M. SpikeComp: An Evolving Spiking Neural Network with Adaptive Compact Structure for Pattern Classification // Neural Information Processing. 2015. vol. 9490. pp. 259–267.
  12. Wang J., Belatreche A., Maguire L. P., McGinnity T. M. SpikeTemp: An Enhanced Rank-Order-Based Learning Approach for Spiking Neural Networks With Adaptive Structure // IEEE Transactions on Neural Networks and Learning Systems. 2017. vol. 28. no. 1. pp. 30–43.
  13. Belatreche A., Maguire L. P., McGinnity M. Advances in Design and Application of Spiking Neural Networks // Soft Computing. 2017. vol. 3. no. 11. pp. 239–248.
  14. XinYao, Yong Liu, Guangming Lin. Evolutionary programming made faster // IEEE Transactions on Evolutionary Computation. 1999. vol. 3. no. 2. pp. 82–102.
  15. Belatreche A., Paul R. Dynamic cluster formation using populations of spiking neurons // The 2012 International Joint Conference on Neural Networks (IJCNN). 2012. pp. 1–6.
  16. Dora, S., Subramanian, K., Suresh, S., Sundararajan, N. Development of a Self-Regulating Evolving Spiking Neural Network for classification problem // Neurocomputing. 2016. vol. 171. pp. 1216–1229.
  17. Bakhshiev A.V., Gundelakh F.V. Mathematical Model of the Impulses Transformation Processes in Natural Neurons for Biologically Inspired Control Systems Development // CEUR Workshop Proceedings. 2015. vol. 1452. pp. 1–12.
  18. Асратян Э.А. Учение академика И.П. Павлова о высшей нервной деятель-ности // Серия: Знание, Серия III №1 М.: Знание. 1956. 32 с.
  19. Кубарко, А. И. Нормальная физиология. В 2 ч. Ч. 2: учебник / А. И. Кубар-ко, А. А. Семенович, В. А. Переверзев, Д. А. Александров, Л. М. Лобанок, А. Н. Харламов // Минск: Выш. шк. 2014. 604 с.
  20. Korsakov, A., Bakhshiev, A. The Neuromorphic Model of the Human Visual System // Studies in Computational Intelligence. 2021. vol. 1452. pp. 339–346.
  21. Бахшиев А. В. Библиотека средств разработки моделей нейронных сетей со сложной и динамически меняющейся архитектурой – NMSDK // Нейроинформатика, ее приложения и анализ данных: материалы XVIII Всероссийского семинара, 8–10 октября 2010 г. / под ред. А. Н. Горбаня, Е. М. Миркеса. ИВМ СО РАН. Красноярск. 2010. С. 26–30.
  22. Bakhshiev A. V., Fomin I. S., Gundelakh F. V., Demcheva A. A., Korsakov A. M. The architecture of a software platform for growing spiking neural networks simulator developing // Journal of Physics: Conference Series. 2020. vol. 1679. pp. 042001.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).