Алгоритм оптимизации извлечения ключевых слов на основе применения лингвистического парсера

Обложка

Цитировать

Полный текст

Аннотация

В данной статье представлено аналитическое исследование особенностей двух типов парсинга, а именно синтаксический анализ составляющих (constituency parsing) и синтаксический анализ зависимостей (dependency parsing). Также в рамках проведенного исследования разработан алгоритм оптимизации извлечения ключевых слов, отличающийся применением функции извлечения именных фраз, предоставляемой парсером, для фильтрации неподходящих фраз. Алгоритм реализован с помощью трех разных парсеров: SpaCy, AllenNLP и Stazna. Эффективность предложенного алгоритма сравнивалась с двумя популярными методами (Yake, Rake) на наборе данных с английскими текстами. Результаты экспериментов показали, что предложенный алгоритм с парсером SpaCy превосходит другие алгоритмы извлечения ключевых слов с точки зрения точности и скорости. Для парсера AllenNLP и Stanza алгоритм так же отличается точностью, но требует гораздо большего времени выполнения. Полученные результаты позволяют более детально оценить преимущества и недостатки изучаемых в работе парсеров, а также определить направления дальнейших исследований. Время работы парсера SpaCy значительно меньше, чем у двух других парсеров, потому что парсеры, которые используют переходы, применяют детерминированный или машинно-обучаемый набор действий для пошагового построения дерева зависимостей. Они обычно работают быстрее и требуют меньше памяти по сравнению с парсерами, основанными на графах, что делает их более эффективными для анализа больших объемов текста. С другой стороны, AllenNLP и Stanza используют модели парсинга на основе графов, которые опираются на миллионы признаков, что ограничивает их способность к обобщению и замедляет скорость анализа по сравнению с парсерами на основе переходов. Задача достижения баланса между точностью и скоростью лингвистического парсера является открытой темой, требующей дальнейших исследований в связи с важностью данной проблемы для повышения эффективности текстового анализа, особенно в приложениях, требующих точности при работе в реальном масштабе времени. С этой целью авторы планируют проведение дальнейших исследований возможных решений для достижения такого баланса.

Об авторах

Д. Ю Кравченко

Федеральное государственное автономное образовательное учреждение высшего образования «Южный федеральный университет»

Email: dkravchenko@sfedu.ru
переулок Некрасовский 44

Ю. А Кравченко

Федеральное государственное автономное образовательное учреждение высшего образования «Южный федеральный университет»

Email: krav-jura@yandex.ru
переулок Некрасовский 44

А. Мансур

Федеральное государственное автономное образовательное учреждение высшего образования «Южный федеральный университет»

Email: mansur@sfedu.ru
переулок Некрасовский 44

Ж. Мохаммад

Федеральное государственное автономное образовательное учреждение высшего образования «Южный федеральный университет»

Email: zmohammad@sfedu.ru
переулок Некрасовский 44

Н. С Павлов

Федеральное государственное автономное образовательное учреждение высшего образования «Южный федеральный университет»

Email: npavlov@sfedu.ru
переулок Некрасовский 44

Список литературы

  1. Brown T., Mann B., Ryder N., Subbiah M., Kaplan J.D., Dhariwal P., Neelakantan A., Shyam P., Sastry G., Askell A., et al. Language models are few-shot learners // Advances in neural information processing systems. 2020. vol. 33. pp. 1877–1901.
  2. Zhang Y., Clark S. A tale of two parsers: Investigating and combining graph-based and transition-based dependency parsing // Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing. 2008. pp. 562–571.
  3. Gao L., Madaan A., Zhou S., Alon U., Liu P., Yang Y., Callan J., Neubig G. Pal: Program aided language models. 2023. pp. 10764–10799.
  4. Kravchenko Yu.A., Bova V.V., Kuliev E.V., Rodzin S.I. Simulation of the semantic network of knowledge representation in intelligent assistant systems based on ontological approach // Futuristic Trends in Network and Communication Technologies: Third International Conference, FTNCT. 2021. pp. 241–252.
  5. Chen D., Manning C.D. A fast and accurate dependency parser using neural networks // Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP). 2014. pp. 740–750.
  6. Kiperwasser E., Goldberg Y. Simple and accurate dependency parsing using bidirectional LSTM feature representations // Transactions of the Association for Computational Linguistics. 2016. vol. 4. pp. 313–327.
  7. Kulmizev A., de Lhoneux M., Gontrum J., Fano E., Nivre J. Deep Contextualized Word Embeddings in Transition-Based and Graph-Based Dependency Parsing ‒ A Tale of Two Parsers Revisited // arXiv preprint arXiv: 07397. 2019.
  8. Vasiliev Y. Natural language processing with Python and SpaCy: A practical introduction. No Starch Press, 2020. 216 p.
  9. Qi P., Zhang Y., Zhang Y., Bolton J., Manning C.D. Stanza: A Python natural language processing toolkit for many human languages // arXiv preprint arXiv: 07082. 2020.
  10. Gardner M., Grus J., Neumann M., Tafjord O., Dasigi P., Liu N., Peters M., Schmitz M., Zettlemoyer L. Allennlp: A deep semantic natural language processing platform // arXiv preprint arXiv: 07640. 2018.
  11. Yamada H., Matsumoto Y. Statistical dependency analysis with support vector machines // Proceedings of the eighth international conference on parsing technologies. 2003. pp. 195–206.
  12. Nivre J. An efficient algorithm for projective dependency parsing // Proceedings of the eighth international conference on parsing technologies. 2003. pp. 149–160.
  13. Kim G., Baldi P., McAleer S. Language models can solve computer tasks. arXiv preprint arXiv:2303.17491. 2023.
  14. Liu B., Jiang Y., Zhang X., Liu Q., Zhang S., Biswas J., Stone P. Llm+p: Empowering large language models with optimal planning proficiency. arXiv preprint arXiv:2304.11477. 2023.
  15. Pei W., Ge T., Chang B. An effective neural network model for graph-based dependency parsing // Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. 2015. vol. 1. pp. 313–322.
  16. McDonald R., Crammer K., Pereira F. Online large-margin training of dependency parsers // Proceedings of the 43rd annual meeting of the association for computational linguistics (ACL’05). 2005. pp. 91–98.
  17. Eisner J. Three new probabilistic models for dependency parsing: An exploration // arXiv preprint cmp-lg/ 9706003. 1997.
  18. Tenney I., Das D., Pavlick E. BERT rediscovers the classical NLP pipeline // arXiv preprint arXiv: 05950. 2019.
  19. Hewitt J., Manning C.D. A structural probe for finding syntax in word representations // Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2019. vol. 1. pp. 4129–4138.
  20. Dozat T., Manning C.D. Deep biaffine attention for neural dependency parsing // arXiv preprint arXiv: 01734. 2016.
  21. Mao X., Huang S., Li R., Shen L. Automatic keywords extraction based on co-occurrence and semantic relationships between words // IEEE Access. 2020. vol. 8. pp. 117528–117538.
  22. Yang S., Nachum O., Du Y., Wei J., Abbeel P., Schuurmans D. Foundation models for decision making: Problems, methods, and opportunities. arXiv preprint arXiv:2303.04129. 2023.
  23. Honnibal M., Johnson M. An Improved Non-monotonic Transition System for Dependency Parsing. Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing ‒ Lisbon, Portugal: Association for Computational Linguistics. 2015. pp. 1373–1378. doi: 10.18653/v1/D15-1162.
  24. Campos R., Mangaravite V., Pasquali A., Jorge A., Nunes C., Jatowt A. YAKE! Keyword extraction from single documents using multiple local features // Information Sciences. 2020. vol. 509. pp. 257–289.
  25. Rose S., Engel D., Cramer N., Cowley W. Automatic keyword extraction from individual documents // Text mining: applications theory. 2010. pp. 1–20.
  26. Hulth A. Improved automatic keyword extraction given more linguistic knowledge // Proceedings of the 2003 conference on Empirical methods in natural language processing. 2003. pp. 216–223.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».