Progress in Natural Language Processing Technologies: Regulating Quality and Accessibility of Training Data
- Авторы: Ilyin I.1
-
Учреждения:
- Saint Petersburg State University
- Выпуск: Том 5, № 2 (2024)
- Страницы: 36-56
- Раздел: Искусственный интеллект и право
- URL: https://ogarev-online.ru/2713-2749/article/view/294027
- DOI: https://doi.org/10.17323/2713-2749.2024.2.36.56
- ID: 294027
Цитировать
Полный текст
Аннотация
Ключевые слова
Об авторах
I. Ilyin
Saint Petersburg State University
Автор, ответственный за переписку.
Email: i.g.ilin@spbu.ru
Список литературы
- Dash N.S., Arulmozi S. (2018) History, features, and typology of language corpora. Singapore: Springer, p. 291.
- Feng Z. (2023) Formal analysis for natural language processing: a handbook. Berlin: Springer Nature, pp. 7,8, 25.
- Gavrilov E.P. (2009) Copyright and the content of artistic work. Patenty i litsenzii=Patents and Licenses, no. 7, pp. 31–38 (in Russ.)
- Glauner P. (2024) Technical foundations of generative AI models. Legal Tech — Zeitschrift für die digitale Anwendung, pp. 24–34.
- Goldberg Y. (2017) Features for textual data. In: Neural network methods for natural language processing. Cham: Springer, pp. 65–76.
- Gracheva D.A. (2023) Free use of copyright and related rights in the context of development of digital technologies in Russia. Trudy po intellektualnoy sobstvennosti=Works on Intellectual Property, vol. 45, no. 2, pp. 44–52 (in Russ.)
- Hacker P. (2021) A legal framework for AI training data—from first principles to the Artificial Intelligence Act. Law, Innovation and Technology, vol. 13, no. 2, pp. 257–301.
- Hirschberg J., Manning C.D. (2015) Advances in natural language processing. Science, vol. 349, no. 6245, pp. 261–266.
- Kashanin A.V. (2010) Development of ideas on the form and content of works in the copyright doctrine. The problem of protectability of research works. Vestnik grazhdanskogo prava=Bulletin of Civil Law, vol. 10, no. 2, pp. 68–138 (in Russ.)
- Kelli A., Vider K., Lindén K. (2016) The regulatory and contractual framework as an integral part of the CLARIN infrastructure. CLARIN Annual Conference. Linköping University Electronic Press, pp. 13-24. Available at: https://helda.helsinki.fi/server/api/core/bitstreams/1f7b8a3c-790c-4e66-9677-f5f9aca785d6/content (accessed: 04.07.2024)
- Khyani D. et al. (2021) An interpretation of lemmatization and stemming in natural language processing. Journal of Shanghai University for Science and Technology, vol. 22, no. 10, pp. 350–357.
- Kolain M., Grafenauer C., Ebers M. (2021) Anonymity assessment-a universal tool for measuring anonymity of data sets under the GDPR with a special focus on smart robotics. Rutgers Computer & Technology Law Journal, vol. 48, p. 174.
- Kolzdorf M.A. (2021) Free use of the items subject to copyright and related rights in Big Data processing. Zakon=Law, no. 5, pp. 142–164 (in Russ.)
- Li T.C. (2022) Algorithmic destruction. Southern Methodist University Law Review, vol. 75, pp. 480-505. DOI: https://doi.org/10.25172/smulr.75.3.2
- Lythreatis S. et al. (2022) The digital divide: a review and future research agenda. Technological Forecasting and Social Change, vol. 175, pp. 1–11.
- Mushakov V.E. (2022) Constitutional human rights in the context of addressing the digital divide. Vestnik Sankt-Petersburgskogo universiteta MVD=Bulletin of Saint Petersburg University of Interior Ministry, no. 1, pp. 69–73 (in Russ.)
- Oostveen M. (2016) Identifiability and the applicability of data protection to big data. International Data Privacy Law, vol. 6, no. 4, pp. 299–309.
- Rahman A. (2020) Algorithms of oppression: how search engines reinforce racism. New Media & Society, vol. 22, no. 3, pp. 575–577. DOI: https://doi.org/10.1177/1461444819876115.
- Rogers S.E. (2016) Bridging the 21st century digital divide. TechTrends, vol. 60, no. 3, pp. 197–199.
- Russo A., Proutiere A. (2021) Poisoning attacks against data-driven control methods. 2021 American Control Conference (ACC). IEEE, pp. 3234–3241. Available at: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9482992 (accessed: 04.07.2024). doi: 10.23919/ACC50511.2021.9482992.
- Schneier B. (2015) Data and Goliath: the hidden battles to collect your data and control your world. N.Y.: Norton, 448 p.
- Truyens M., Van Eecke P. (2014) Legal aspects of text mining. Computer Law & Security Review, vol. 30, no. 2, pp. 153–170.
- Zhou M. et al. (2020) Progress in neural NLP: modeling, learning, and reasoning. Engineering, vol. 6, no. 3, pp. 275–290.
Дополнительные файлы
