Line Standards of Length. Part I. Review of the Current State of the Regulatory and Technical Framework

Cover Page

Cite item

Full Text

Abstract

Video measuring systems are characterized by high accuracy due to their high degree of automation, which allows them to effectively solve production and business tasks. For their calibration and metrological verification, line standards of length are used as material measures reproducing a measurement unit of length. Line standards of length are employed as working standards in various fields of science and technology. However, the continuous development of the regulatory framework and technical standards requires timely updataing of dataa and approaches used in the process of metrological support for line standards of length. The aim of the review is to assess the current state of the regulatory and technical framework used in the Russia for the metrological support of line standards of length. It analyzes the methodological approaches employed for the verification and calibration of line standards of length in accordance with the current State Verification Schedule and outlines potential ways for their further improvement.Based on the analysis of legislative and regulatory acts, a review of scientific literature, as well as the authors’ own professional experience, factors hindering the development of the metrological support system for line standards of length have been identified. Firstly, the regulatory and technical framework is characterized by a high degree of wear and requires comprehensive modernization. The implementation of modern technologies, such as laser interferometers, will enhance the accuracy and speed of measurements, which is critically important for ensuring the required measurement accuracy and work productivity.Secondly, it has been established that the application of digital information processing methods, in particular artificial intelligence and machine vision technologies (for example, CCD cameras – cameras equipped with a charge-coupled device as an image sensor) is a promising direction for automating the measurement process and reducing the influence of the human factor. Consequently, the transfer of the measurement unit of length from line standards of length using the comparison method can be adapted to modern realities through an automated reading system. However, this requires solving the problem of the lack of production of line standards of length longer than 1 mm and updataing the technical inventory of existing working standards of the 1st, 2nd, 3rd, and 4th grades.Thus, the analysis of the current state of metrological support for line standards of length presented in the article convincingly substantiates the urgent need to develop and create a modern installation for verification of line standards of length that meets the requirements for secondary standards of the measurement unit of length. This will ensure high accuracy and reliability of measurements for precision guidance: length gauges – for measuring internal and external dimensions; comparators – for the verification of lower-grade line standards, and also enhance the competitiveness of domestic products on the international market.

About the authors

K. V. Chekirda

D. I. Mendeleyev Institute for Metrology

Email: K.V.Chekirda@vniim.ru
ORCID iD: 0000-0003-3462-1027

V. V. Miloradov

State Regional Center for Standardization, Metrology and Testing in the Sverdlovsk Region

Email: geo@uraltest.ru
ORCID iD: 0009-0005-6350-8332

References

  1. Левин Г. Г., Минаев В. Л. Цифровая метрология видеоизмерительных систем // Законодательная и прикладная метрология. 2021. № 3 (171). С. 28–33.
  2. Митяева А. И. Влияние видеоизмерительных машин на микроэлектронное промышленное производство // Математические методы и модели в высокотехнологичном производстве: Сборник тезисов докладов III Международного форума. В 2-х частях, Санкт-Петербург, 08 ноября 2023 г. / Санкт-Петербургский государственный университет аэрокосмического приборостроения. Санкт-Петербург : Санкт-Петербургский государственный университет аэрокосмического приборостроения, 2023. С. 269–270.
  3. Kaušinis S., Kasparaitis A., Jakštas A. Length metrology and calibration systems // Modern Metrology Concerns / L. Cocco. 2012. 472 p.
  4. Макаревич В. Б., Горошкова А. Н., Стрижевская М. И. Метрологическое обеспечение штриховых мер длины в диапазоне измерений от 0 до 200 мм // Метрология и приборостроение. 2017. № 3 (78). С. 17–19.
  5. Котляр Т. Ю. Применение цифровых камер при поверке стеклянных штриховых мер длины // Электротехнические и компьютерные системы. 2012. № 6 (82). С. 72–75.
  6. Устройство для аттестации штриховых мер : пат. SU771463 A1 ; заявл. 29.08.1978 ; опубл. 15.10.1980, Бюл. № 38.
  7. Интерференционное устройство для измерения штриховых мер : пат. SU1224568 А ; заявл. 21.01.1983 ; опубл. 15.04.1986, Бюл. № 14.
  8. Компаратор для поверки штриховых мер длины : пат. SU943523 ; заявл. 20.02.1981 ; опубл. 15.07.1982, Бюл. № 26.
  9. Компаратор для поверки штриховых мер : пат. SU847033 ; заявл. 17.09.1974 ; опубл. 15.07.1981, Бюл. № 26. 10. Компаратор для аттестации линейных штриховых мер : пат. SU441444 ; заявл. 14.01.1970 ; опубл. 30.08.1974, Бюл. № 32.

Supplementary files

Supplementary Files
Action
1. JATS XML


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).