Особенности строения и процессы формирования сложнопостроенного гидрогеохимического разреза в Байкальской рифтовой зоне

Обложка

Цитировать

Полный текст

Аннотация

Целью данной работы являлось исследование влияния органического вещества на формирование ионно-солевого и газового состава азотно-метановых и метановых термальных вод, распространенных в осадочных породах глубоких горизонтов артезианских бассейнов. Объектом исследования стали Тункинский межгорный артезианский бассейн Байкальской рифтовой зоны и Тунгорское газонефтяное месторождение Охотско-Сахалинского бассейна, где в глубоких горизонтах распространены содовые (инверсионные) низко- и высокоминерализованные подземные воды. Работа основана на синтезе результатов традиционного изучения состава природных растворов и количественного исследования физико-химических взаимодействий в системе «вода – порода», проведенного с помощью программного комплекса «Селектор» по степени протекания гидрогеохимического процесса, которая задавалась величиной отношения порода / вода. При взаимодействии использовались химически чистая вода и порода среднего химического состава. Применение физико-химического моделирования позволило проследить процессы формирования состава термальных вод в осадочных породах в зависимости от степени взаимодействия воды с породой и количества органического вещества. В результате установлено определяющее влияние содержащегося в породе органического вещества на интенсивность протекания гидрогеохимического процесса: величину минерализации, соотношение компонентов и количество образующихся метана, азота и углекислоты. Соответствие состава модельных и природных растворов показало возможность формирования различной степени газонасыщенности как низко-, так и высокоминерализованных гидрокарбонатных натриевых подземных вод в пластовых условиях глубоких горизонтов осадочных бассейнов за счет внутренних резервов системы «вода – порода» без привлечения каких-либо компонентов из внешних источников.

Об авторах

С. Х. Павлов

Институт земной коры СО РАН

Email: spavlov@crust.irk.ru

Список литературы

  1. Шестаков В.М. Учет геологической неоднородности – ключевая проблема гидрогеодинамики // Вестник Московского университета. Геология. 2003. № 1. С. 29–28.
  2. Карцев А.А., Абукова Л.А. Нефтегазовая гидрогеология на современном этапе // Известия высших учебных заведений. Нефть и газ. 1998. № 4. С. 12–17.
  3. Плюснин А.М., Замана Л.В., Шварцев С.Л., Токаренко О.Г., Чернявский М.К. Гидрогеохимические особенности состава азотных терм Байкальской рифтовой зоны // Геология и геофизика. 2013. Т. 54. № 5. С. 647–664.
  4. Шварцев С.Л., Замана Л.В., Плюснин А.М., Токаренко О.Г. Равновесие азотных терм Байкальской рифтовой зоны с минералами водовмещающих пород как основа для выявления механизмов их формирования // Геохимия. 2015. № 8. С. 720–733. https://doi.org/10.7868/S0016752515060084
  5. Павлов С.Х., Чудненко К.В., Голубева В.А., Оргильянов А.И., Бадминов П.С., Крюкова И.Г. Геологические факторы и физико-химические процессы формирования подземных вод Тункинской впадины // Геодинамика и тектонофизика. 2018. Т. 9. № 1. С. 221–248. https://doi.org/10.5800/GT-2018-9-1-0346
  6. Кавказские минеральные воды / отв. ред. В.В. Иванов. М.: Изд-во ЦНИИКФ, 1972. 158 с.
  7. Лаврушин В.Ю., Лисенков А.Б., Айдаркожина А.С. Генезис Ессентукского месторождения углекислых вод (Северный Кавказ) // Геохимия. 2020. Т. 65. № 1. С. 77–91. https://doi.org/10.31857/S0016752520010082
  8. Абрамов В.Ю., Вавичкин А.Ю. Особенности формирования термогазохимического состава минеральных вод Ессентукского месторождения // Разведка и охрана недр. 2010. № 10. С. 27–32.
  9. Мазилов В.Н., Кашик С.А., Ломоносова Т.К. Олигоценовые отложения Тункинской впадины (Байкальская рифтовая зона) // Геология и геофизика. 1993. Т. 34. № 8. С. 81–87.
  10. Виноградов А.П. Средние содержания химических элементов в главных типах изверженных горных пород земной коры // Геохимия. 1962. № 7. С. 555–571.
  11. Ронов А.Б., Ярошевский А.А., Мигдисов А.А. Химическое строение земной коры и геохимический баланс главных элементов. М.: Наука, 1990. 182 с.
  12. Логачев Н.А. Кайнозойские континентальные отложения впадин байкальского типа // Известия Академии наук СССР. Серия геологическая. 1958. № 4. С. 18–29.
  13. Карпов И.К. Физико-химическое моделирование на ЭВМ в геохимии. Новосибирск: Наука, 1981. 247 с.
  14. Чудненко К.В. Термодинамическое моделирование в геохимии: теория, алгоритмы, программное обеспечение, приложения. Новосибирск: Гео, 2010. 287 с.
  15. Киреева Т.А., Всеволожский В.А. Инверсионные гидрокарбонатно-натриевые воды как показатель нефтегазоносности глубоких частей геологического разреза // Глубинная нефть. 2013. Т. 1. № 2. C. 234–245. URL: http://journal.deepoil.ru/images/stories/docs/DO-1-2-2013/7_Kireeva-Vsevolozhskiy_1-2-2013.pdf (10.02.2021).
  16. Павлов С.Х., Карпов И.К., Чудненко К.В. Диспропорционирование и фракционирование углерода в системе «углерод – вода – газ» // Геохимия. 2006. № 7. С. 797–800.
  17. Helgeson H.C., Knox A.M., Owens C.E., Shock E.L. Petroleum, oil field waters, and authigenic mineral assemblages: are they in metastable equilibrium in hydrocarbon reservoirs // Geochimica et Cosmochimica Acta. 1993. Vol. 57. Iss. 14. P. 3295–3339. https://doi.org/10.1016/0016-7037(93)90541-4
  18. Karpov I.K., Chudnenko K.V., Kulik D.A. Modeling chemical mass transfer in geochemical processes: thermodynamic relations, conditions of equilibria, and numerical algorithms // American Journal of Science. 1997. Vol. 297. Iss. 8. P. 767–806. https://doi.org/10.2475/ajs.297.8.767
  19. Karpov I.K., Chudnenko K.V., Kulik D.A., Bychinskii V.A. The convex programming minimization of five thermodynamic potentials other than Gibbs energy in geochemical modeling // American Journal of Science. 2002. Vol. 302. Iss. 4. P. 281–311. https://doi.org/10.2475/ajs.302.4.281
  20. Palandri J.L., Reed M.H. Reconstruction of in situ composition of sedimentary formation waters // Geochimica et Cosmochimica Acta. 2001. Vol. 65. Iss. 11. P. 1741– 1767. https://doi.org/10.1016/S0016-7037(01)00555-5
  21. Plyasunov A.V., Shock E.L. Standard state Gibbs energies of hydration of hydrocarbons at elevated temperatures as evaluated from experimental phase equilibria studies // Geochimica et Cosmochimica Acta. 2000. Vol. 64. Iss. 16. P. 2811–2833. https://doi.org/10.1016/S0016-7037(00)00401-4
  22. Price L.C., DeWitt E. Evidence and characteristics of hydrolytic disproportionation of organic matter during metasomatic processes // Geochimica et Cosmochimica Acta. 2001. Vol. 65. Iss. 21. P. 3791–3826. https://doi.org/10.1016/S0016-7037(01)00762-1
  23. Павлов С.Х., Чудненко К.В., Хромов А.В. Моделирование формирования фторидных азотных терм в системе «вода – кристаллическая порода» // Геодинамика и тектонофизика. 2020. Т. 11. № 2. С. 378–396. https://doi.org/10.5800/GT-2020-11-2-0481

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».