Analysis of production well construction features in permafrost conditions
- Authors: Zaitsev V.I.1, Karpikov A.V.1
-
Affiliations:
- Irkutsk National Research Technical University
- Issue: Vol 47, No 3 (2024)
- Pages: 302-315
- Section: Technology and equipment of geological exploration
- URL: https://ogarev-online.ru/2686-9993/article/view/359279
- DOI: https://doi.org/10.21285/2686-9993-2024-47-3-302-315
- EDN: https://elibrary.ru/CGZXIF
- ID: 359279
Cite item
Full Text
Abstract
The purpose of the research is to present the analysis results of construction and operation features of oil and gas wells in permafrost conditions. Considering the materials relevant to this topic, the method of comparative analysis is applied. The object of the research is technologies and equipment used for high-quality and fast construction of deep wells in permafrost conditions. As a result, complications and accidents occur due to the collapse of well walls, occurrence of caverns, stuck pipes, casing deformation and subsidence of wellhead equipment. It is noticed that the most unstable rocks in permafrost sections are located in the range of 0–200 m. The effect of temperature on thermal interaction intensity in the ”flushing agent – wellhead – drill (production) string” system is analyzed. It is found out that maintaining negative temperature of well walls is the main way to prevent complications while drilling in permafrost. The use of thermally insulating casing pipes to form a well conductor string is considered. The rotary method is specified as the main drilling method in the cryolithozone while auger without flushing is relevant for drilling for shaft direction. It is determined that drilling with the use of drilling fluids has to solve the problem of solution freezing prevention when flushing has been stopped continuously. Taking into account that the permafrost zone, as a rule, consists of loose, unstable rocks, the great importance is given to the duration of drilling under the conductor, which should last not more than 3 days. During this time, almost no complications occur when using high-quality clay mud with the temperature in the range from 0.5 to 2.5 °C. The real possibility of using a drilling fluid with a negative temperature as a cleaning agent, as well as the same with a positive temperature, but with the use of additional special technologies, is investigated. The use of drilling fluids with a negative temperature is recornized to be not economical. It is specified that prevention of permafrost rock thawing requires not only pre-cooling of the circulating solution but also selection of increased values of the rotation frequency and axial load on the bottomhole with a simultaneous change in the amount of fluid supplied to the well when designing the drilling mode. Consideration is given to the implementation options of the drilling technology based on increasing mineralization degree of drilling fluids. A conclusion is drawn that “well – rock” system is in isotonic equilibrium if the mineralization degree of drilling fluids and pore water of permafrost rocks is the same.
Keywords
About the authors
V. I. Zaitsev
Irkutsk National Research Technical University
Email: zaicshev@istu.edu
A. V. Karpikov
Irkutsk National Research Technical University
Email: karpikov@istu.edu
References
Аветов Н.Р., Якушев В.С. Распространение и особенности заколонных газопроявлений на Ямбургском нефтегазоконденсатном месторождении // Газовая промышленность. 2017. № 6. С. 26–30. EDN: YUPZHD. Ваганова Н.А., Махнаева В.В., Филимонов М.Ю. Моделирование последствий воздействий на вечную мерзлоту от технических систем на северных нефтегазовых месторождениях // Математическое моделирование в естественных науках. 2017. Т. 1. С. 53–57. EDN: ZMNINN. Мазыкин С.В., Ноздря В.И., Мнацаканов В.А., Полищученко В.П., Царьков А.Ю., Скотнов С.Н. Комплексное решение проблем бурения скважин Северо-Веситинского месторождения // Бурение и нефть. 2014. № 3. С. 23–24. EDN: RXXCZT. Литвиненко Б.С., Кудряшов Б.Б., Чистяков В.К. Бурение скважин в условиях изменения агрегатного состояния горных пород. М.: Недра, 1991. 295 с. EDN: YMBEHV. Are F.E. The problem of deep gas release into the atmosphere // Permafrost response to economic development, environmental security and natural resources / eds R. Paepe, V.P. Melnikov, E. Van Overloop, V.D. Gorokhov. Berlin: Springer, 2001. P. 497–509. https://doi.org/10.1007/978-94-010-0684-2_34. Егоров Н.Г. Бурение скважин в сложных геологических условиях: монография. Тула: Гриф и К, 2006. 301 с. EDN: QMYJNF. Nelson F.E., Anisimov O.A., Shiklomanov N.I. Subsidence risk from thawing permafrost // Nature. 2001. Iss. 410. P. 889–890. https://doi.org/10.1038/35073746. Шанаенко В.В. Бурение в вечной мерзлоте – больше не проблема // Нефть. Газ. Новации. 2014. № 11. С. 25–27. EDN: TELLBN. Zubrzycki S. Drilling frozen soils in Siberia // Polarforschung. 2012. Vol. 81. Iss. 2. P. 151–153. Kutasov I.M., Eppelbaum L.V. Time of refreezing of surrounding the wellbore thawed formations // International Journal of Thermal Sciences. 2017. Vol 122. P. 133–140. https://doi.org/10.1016/j.ijthermalsci.2017.07.031. Медведский Р.И. Строительство и эксплуатация скважин на нефть и газ в вечномерзлых породах. М.: Недра, 1987. 230 с. Перейма А.А., Черкасова В.Е. Биополимерные промывочные жидкости для бурения скважин в мерзлых породах // Газовая промышленность. 2010. № 3. С. 66–69. EDN: LABUCF. Перейма А.А., Кондренко О.С., Минченко Ю.С. Биополимерглинистые буровые растворы для проводки скважин в зоне многолетнемерзлых пород // Строительство нефтяных и газовых скважин на суше и на море. 2011. Т. 1. С. 28–31. EDN: NCQHYH. Debruijn G., Popov M., Bellabarba M. Study of cementing practices in the Arctic region // Society of Petroleum Engineers: Arctic Technology сonf. (Houston, 3–5 December 2012). Houston, 2012. Vol. 1. P. 306–317. https://doi.org/10.4043/23744-ms. EDN: WVNQLJ. Орешкин Д.В., Семенов В.С., Розовская Т.А. Облегченные тампонажные растворы с противоморозными добавками для условий многолетнемерзлых пород // Нефтегазовое хозяйство. 2014. № 4. C. 42–45. EDN: SBKKRD. Korostelev A.S. Design and field practice of application of Arctic cement systems for well construction in permafrost zones. Arctic and Extreme Environments Conference and Exhibition (Moscow, October 2011). Moscow, 2011. Vol. 2. P. 880–894. https://doi.org/10.2118/149928-MS. Marques C., Castanier L.M., Kovscek A.R. Super insulated wells to protect permafrost during thermal oil recovery // International Journal of Oil Gas and Coal Technology. 2011. Vol. 4. Iss. 1. Р. 4–30. https://doi.org/10.1504/IJOGCT.2011.037742. Полозков К.А., Близнюков В.Ю., Полозков А.В., Гафтуняк П.И. Теплоизоляция конструкций добывающих скважин в зонах распространения многолетнемерзлых пород // Строительство нефтяных и газовых скважин на суше и на море. 2009. № 11. С. 14–17. EDN: MLJGLZ. Samarskii A.A., Vabischevich P.N. Computational heat transfer, volume 2: the finite difference methodology. New York: John Wiley & Sons, 1996. 432 p. Vaganova N.A., Filimonov M.Yu. Simulation of freezing and thawing of soil in Arctic regions // IOP Conference Series: Earth and Environmental Science (Ekaterinburg, 19 May 2017). Ekaterinburg, 2017. Vol. 72. P. 12005. https://doi.org/10.1088/1755-1315/72/1/012005. Vaganova N.A., Filimonov M.Yu. Computer simulation of nonstationary thermal fields in design and operation of northern oil and gas fields // Applications of Mathematics in Engineering and Economics: 41st Intern. conf. (Sozopol, 8–13 June 2015). Sozopol, 2015. Vol. 1690. Iss. 1. P. 20016. https://doi.org/10.1063/1.4936694. Гасумов П.А., Толпаев В.А., Кондренко О.С. Расчет изотермического фронта протаивания вечной мерзлоты по данным, полученным при бурении скважин // Строительство нефтяных и газовых скважин на суше и на море. 2011. № 11. C. 37–41. EDN: NQRWPB. Wang Z., Wang X., Sun B., Deng X., Zhao Y., Gao Y., et al. Analysis of wellhead stability during drilling in Arctic permafrost zone // ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering (Trondheim, 25–30 June 2017). Trondheim, 2017. Vol. 8. P. 25–32. https://doi.org/10.1115/OMAE2017-61868.
Supplementary files


