Development of bits for directional drilling in complex mining and geological conditions

Cover Page

Cite item

Full Text

Abstract

The purpose of the study is to improve the efficiency of directional drilling using continuous whipstocks in difficult mining and geological conditions. The research involves the description of mining and geological conditions featuring decreased efficiency of continuous whipstock operation as well as the reasons why the decrease is observed. It should be noted that significant problems arise when using the milling-type continuous whipstocks for sidetracking in hard rocks from the plug back total depths of cement mixtures and well deviations in the intervals of normal face weakened rocks. In this case, there is a decrease in deviation accuracy, due to the increased sinking speed that prevents curvature accumulation and which is difficult to control by the drilling mode parameters. Another problem that decreases the well deviation accuracy when using milling-type whipstocks in hard rocks is the deviation of the drift angle build up plane due to the disorienting force that occurs during milling of the borehole wall. The study briefly dwells upon the existing technologies and engineering means, the use of which is aimed at improving the whipstock performance in complex mining and geological conditions, including through the use of bits with a special design. The author has proposed and patented a series of new technical means (bits) and technological solutions that effectively deal with the drop in the performance of continuous whipstocks in the well deviated in hard rocks. Moreover, the developed means took into account the shortcomings of current technical equipment.

About the authors

D. V. Lysakov

Siberian Federal University

Email: lysackovd@yandex.ru
ORCID iD: 0000-0002-9011-5906

References

  1. Ahmed A., lIslam M. A., Alam M. Z., Quazi H. S. Surface settlement induced by horizontal directional drilling // Underground Space. 2023. Vol. 8. P. 94–108. https://doi.org/10.1016/j.undsp.2022.05.001.
  2. Huang W., Wang G., Gao D. A method for predicting the build-up rate of ‘push-the-bit’ rotary steering system // Natural Gas Industry B. 2021. Vol. 8. Iss. 6. P. 622–627. https://doi.org/10.1016/j.ngib.2021.11.010.
  3. Yantao B., Gonghui L., Ghua D., Jun L. Finite element analysis of effect of flexible pupjoints on push-the-bit rotary steering deflecting force // Chemistry and Technology of Fuels and Oils. 2020. Vol. 56. P. 218–225. https://doi.org/10.1007/s10553-020-01132-8.
  4. Gu P., Zhu C., Yu Y., Liu D., Tao Z., Wu Y. Evaluation and prediction of drilling wear based on machine vision // The International Journal of Advanced Manufacturing Technology. 2021. Vol. 114. Iss. 11. P. 2055–2074. https://doi.org/10.1007/s00170-021-06887-w.
  5. Che D., Zhu W.-L., Ehmann K. F. Chipping and crushing mechanisms in orthogonal rock cutting // International Journal of Mechanical Sciences. 2016. Vol. 119. P. 224–236. https://doi.org/10.1016/j.ijmecsci.2016.10.020.
  6. Wang X., Wang Z., Wang D., Chai L. A novel method for measuring and analyzing the interaction between drill bit and rock // Measurement. 2018. Vol. 121. P. 344–354. https://doi.org/10.1016/j.measurement.2018.02.045.
  7. Gu P., Zhu C., Yu Y., Liu D., Tao Z., Wu Y. Evaluation and prediction of drilling wear based on machine vision // The International Journal of Advanced Manufacturing Technology. 2021. Vol. 114. P. 2055–2074. https://doi.org/10.1007/s00170-021-06887-w.
  8. Wang W., Geng Y., Wang N., Pu X., Fiaux J. O. Toolface control method for a dynamic point-the-bit rotary steerable drilling system // Energies. 2019. Vol. 12. Iss. 10. P. 1831. https://doi.org/10.3390/en12101831.
  9. Li Y., Niu W., Li H., Luo Z., Wang L. Study on a new steering mechanism for point-the-bit rotary steerable system // Advances in Mechanical Engineering. 2014. Vol. 6. https://doi.org/10.1155/2014/923178.
  10. Zhang C., Zou W., Cheng N. Overview of rotary steerable system and its control methods // IEEE International Conference on Mechatronics and Automation. 2016. P. 1559–1565. https://doi.org/10.1109/ICMA.2016.7558796.
  11. Zhang C., Zou W., Cheng N. Overview of rotary steerable system and its control methods // IEEE International Conference on Mechatronics and Automation. 2016. P. 1559–1565. https://doi.org/10.1109/ICMA.2016.7558796.
  12. Шраго Л. Г., Юдборовский И. М. Искривление скважин под действием постоянной по величине отклоняющей силы // Методика и техника разведки: сб. статей. Л., 1964. Вып. 48. С. 47–51.
  13. Epikhin A., Zhironkin V., Szurgacz D., Trzop K. Method for determining the loads on the deflection module of the push-the-bit rotary steerable system // IOP Conference. Series: Earth and Environmental Science. 2021. Vol. 684. P. 012001. https://doi.org/10.1088/1755-1315/684/1/012001.
  14. Wang M., Li X., Wang G., Huang W., Fan Y., Luo W., et al. Prediction model of build rate of push-thebit rotary steerable system // Mathematical Problems in Engineering. 2020. P. 4673759. https://doi.org/10.1155/2020/4673759.
  15. Жабин А. Б., Поляков А. В., Аверин Е. А., Линник Ю. Н., Линник В. Ю. Оценка влияния абразивности горных пород на параметры породоразрушающих машин // Записки Горного института. 2019. Т. 240. С. 621–627. https://doi.org/10.31897/pmi.2019.6.621.
  16. Шигин А. О., Шигина А. А. Прогнозируемый ресурс шарошечных долот при бурении сложноструктурных горных массивов // Вестник Иркутского государственного технического университета. 2014. № 1. С. 29–33.
  17. Фомин О. CCK: усталостное разрушение бурильных труб, его прогнозирование и профилактика // ROGTEC. Российские нефтегазовые технологии. 2018.. URL: https://www.rogtecmagazine.com/cck-усталостное-разрушение-бурильных-тр/?lang=ru (03.03.2022).
  18. Пат. № 190484, Российская Федерация, МПК E21B 10/43, E21B 7/08. Долото для бурения / В. В. Нескоромных, П. Г. Петенёв, Д. В. Лысаков. Заявл. 06.03.2019; опубл. 02.07.2019. Бюл. № 19.
  19. Пат. № 189409, Российская Федерация, МПК E21B 10/62, E21B 7/08. Алмазное долото / В. В. Нескоромных, П. Г. Петенёв, Д. В. Лысаков. Заявл. 11.03.2019; опубл. 22.05.2019. Бюл. № 15.
  20. Пат. № 198234, Российская Федерация, МПК E21B 10/43, E21B 7/08. Алмазное буровое долото / В. В. Нескоромных, А. Е. Головченко, Д. В. Лысаков. Заявл. 06.02.2020; опубл. 25.06.2020. Бюл. № 18.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».