Hydrothermal conditions of southern and northern slope soils of northeastern Great Xing'an Mountain, China

Capa

Citar

Texto integral

Resumo

The purpose of the article is to study the influence features of polar-oriented slopes on the near-surface energy and hydrothermal balance in the seasonal cryolithozone. The authors carried out a complex of field observations including measurement of air and underlying surface temperature, soil moisture, solar radiation and wind speed at the hydrological stations of Songling (southern slope) and Luoguhe (northern slope) in the northeast of the Great Xing'an Mountain (China). The analysis of the data obtained allowed to conclude that, on the one hand, the long-term influence of the thermal balance components causes significant differences in the soil structure and properties on differently oriented slopes. The number of daily freeze-thaw soil cycles on the southern slope (100 cycles) significantly exceeds the ones on the northern slope (56 cycles). The soil on the southern soil is 3 °C warmer than that on the northern slope, and its humidity in the area of the Songling hydrological station is lower than that at the Luoguhe station. On the other hand, differences in soil properties control the energy exchange between the atmosphere and the earth's surface, this means that the incoming short-wave solar radiation and heat flux into the soil on the southern slope is greater than on the northern one. Therefore, slope orientation is one of the significant environmental factors affecting the influx of solar energy, temperature and humidity of the soils in the northeastern Great Xing'an Mountain. It also has a decisive role for the spatial distribution and evolution of seasonal permafrost in the region and, accordingly, affects the stability and safety of engineering structures. The performed research is important for understanding the relationship between climate and frozen soil in the mountainous areas with seasonal cryolithozone as well as for optimization of boundary conditions when modeling rock freeze-thaw processes.

Sobre autores

Miao Yu

Ammosov North-Eastern Federal University

Email: hss_yumiao@126.com

N. Pavlova

Melnikov Permafrost Institute SB RAS

Email: pavlova@mpi.ysn.ru
ORCID ID: 0000-0001-5473-7778

Changlei Dai

Heilongjiang University

Email: daicahgnlei@126.com

Bibliografia

  1. Ran Y., Li X., Cheng G., Zhang T., Wu Q., Jin H., et al. Distribution of permafrost in China: an overview of existing permafrost maps // Permafrost and Periglacial Processes. 2012. Vol. 23. Iss. 4. P. 322–333. https://doi.org/10.1002/ppp.1756.
  2. Mao Y., Li G., Ma W., Mu Y., Wang F., Miao J., et al. Field observation of permafrost degradation under Mo'he airport, Northeastern China from 2007 to 2016 // Cold Regions Science and Technology. 2019. Vol. 161. P. 43–50. https://doi.org/10.1016/j.coldregions.2019.03.004.
  3. Li X., Jin H., Sun L., Wang H., He R., Huang Y., et al. Climate warming over 1961–2019 and impacts on permafrost zonation in Northeast China // Journal of Forestry Research. 2022. Vol. 33. Iss. 3. P. 767–788. https://doi.org/10.1007/s11676-021-01403-y.
  4. Конищев В. Н. Реакция вечной мерзлоты на потепление климата // Вестник Московского университета. Серия. 5. География. 2009. № 4. С. 10–20.
  5. Оберман Н. Г., Лыгин А. М. Прогнозирование деградации многолетнемерзлых пород на примере европейского северо-востока страны // Разведка и охрана недр. 2009. № 7. С. 15–20.
  6. Romanovsky V. E., Drozdov D. S., Oberman N. G., Malkova G. V., Kholodov A. L., Marchenko S. S., et al. Thermal state of permafrost in Russia // Permafrost and Periglacial Processes. 2010. Vol. 33. Iss. 3. P. 136–155. https://doi.org/10.1002/ppp.683.
  7. Малкова Г. В., Павлов А. В., Скачков Ю. Б. Оценка устойчивости мерзлых толщ при современных изменениях климата // Криосфера земли. 2011. Т. 15. № 4. С. 33–36.
  8. Ge S., McKenzie J., Voss C., Wu Q. Exchange of groundwater and surface-water mediated by permafrost response to seasonal and longterm air temperature variation // Geophysical Research Letters. 2011. Vol. 38. Iss. 14. P. L14402. https://doi.org/10.1029/2011gl047911.
  9. Нямдорж С. Мягмаржав М. Батсайхан А. Тамир Ц. Некоторые результаты исследований трещин и полостей, образованных вследствие деградации и исчезновения криолитозоны территории г. Налайха в Монголии // Вестник гражданских инженеров. 2019. № 3. С. 52–62. https://doi.org/10.23968/1999-5571-2019-16-3-52-62.
  10. Woo M. Permafrost hydrology. Berlin: Springer Science & Business Media, 2012. 564 p.
  11. Павлов А. В. Теплофизика ландшафтов. Новосибирск: Наука, 1979. 285 с.
  12. Шепелёв В. В. Надмерзлотные воды криолитозоны. Новосибирск: Гео, 2011. 169 с.
  13. Железняк М. Н. Геотемпературное поле и криолитозона юго-востока Сибирской платформы. Новосибирск: Наука, 2005. 227 с.
  14. Liu G., Zou D., Yang B., Du E., Zhou H., Xiao Y., et al. Preliminary results of permafrost investigation on northern and southern slopes of Mt. Geladandong, interior Qinghai-Tibet Plateau // Journal of Glaciology and Geocryology. 2022. Vol. 44. Iss. 1. P. 83–95. https://doi.org/10.7522/j.issn.1000-0240.2022.0021.
  15. Luo J., Lin Z., Yin G., Niu F., Liu M., Gao Z., et al. The ground thermal regime and permafrost warming at tow upland, sloping, and undisturbed sites, Kunlun Mountain, Qinghai-Tibet Plateau // Cold Regions Science and Technology. 2019. Vol. 167. P. 102862. https://doi.org/10.1016/j.coldregions.2019.102862.
  16. Wu Q., Liu Y., Hu Z. The thermal effect differential solar exposure on embankments along the Qinghai-Tibet Railway // Cold Regions Science and Technology. 2011. Vol. 66. Iss. 1. P. 30–38. https://doi.org/10.1016/j.coldregions.2011.01.001.
  17. Chou Y., Sheng Y., Li Y., Wei Z., Zhu Y., Li J. Sunny-shady slope effect on the thermal and deformation stability of the highway embankment in warm permafrost regions // Cold Regions Science and Technology. 2010. Vol. 63. Iss. 1-2. P. 78–86. https://doi.org/10.1016/j.coldregions.2010.05.001.
  18. Ishikawa M., Sharkhuu N., Zhang Y., Kadota T., Ohata T. Ground thermal and moisture conditions at the southern boundary of discontinuous permafrost, Mongolia // Permafrost and Periglacial Processes. 2005. Vol. 16. Iss. 2. P. 209–216. https://doi.org/10.1002/ppp.483.
  19. Baoleerqimuge, Shu C., Ma X., Liu Z., Li C., Zhang Z. Analysis on the spatial-temporal characteristics of accumulated snow in the northern forestry region of greater khingan range from 1975 to 2016 // Journal of Inner Mongolia Agricultural University (Natural Science Edition). 2021. Vol. 42. Iss. 2. P. 27–35. https://doi.org/10.16853/j.cnki.1009-3575.2021.02.006.
  20. Lu A., Pang D., Ge Y., He Y., Pang H., Yuan L. Effect of landform on seasonal temperature structures across China in the past 52 years // Journal of Mountain Science. 2006. Vol. 3. Iss. 2. P. 158–167. https://doi.org/10.1007/s11629-006-0158-x.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML


Creative Commons License
Este artigo é disponível sob a Licença Creative Commons Atribuição 4.0 Internacional.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).