Особенности инверсии данных высокоплотных электромагнитных зондирований при нефтегазопоисковых исследованиях на территории Непско-Ботуобинской антеклизы

Обложка

Цитировать

Полный текст

Аннотация

Данные нестационарных электромагнитных зондирований становлением поля в ближней зоне, широко применяемых для решения нефтегазопоисковых задач на Непско-Ботуобинской антеклизе, чаще всего интерпретируются в рамках горизонтально-слоистых моделей сред. Целью данного исследования являлась разработка подхода к инверсии кривых электромагнитных зондирований, полученных с использованием высокоплотных 3Dсетей наблюдений. В основу исследования легло математическое моделирование, результаты которого позволили оценить латеральные пространственные параметры нестационарного электромагнитного поля и понять отличия результатов одномерной инверсии данных зондирования становлением поля в ближней зоне относительно истинных параметров целевого горизонта. В результате была получена характеристика электромагнитного поля, которая описывается экспоненциальной функцией и применяется при латеральной закрепленной инверсии высокоплотных электромагнитных зондирований становлением поля в ближней зоне. Предлагаемый подход протестирован на практических данных в пределах участка исследований, расположенного на склоне Непско-Ботуобинской антеклизы. Показано, что использование пространственной невязки при инверсии данных зондирования становлением поля в ближней зоне позволяет получать геоэлектрические модели, характеризующиеся латеральной выдержанностью геоэлектрических параметров разреза. Применение подхода, основанного на методике пространственного накопления в процессе инверсии, позволяет повысить устойчивость решения обратной задачи данных зондирования становлением поля в ближней зоне.

Об авторах

Е. В. Мурзина

Институт земной коры СО РАН; ООО «СИГМА-ГЕО»

Email: mkv@sigma-geo.ru
ORCID iD: 0000-0002-1125-8838

А. В. Поспеев

Институт земной коры СО РАН

Email: avp@crust.irk.ru

И. К. Семинский

Институт земной коры СО РАН; ООО «СИГМА-ГЕО»

Email: iks@sigma-geo.ru
ORCID iD: 0000-0002-7530-0716

И. В. Буддо

Институт земной коры СО РАН; Иркутский национальный исследовательский технический университет; ООО «СИГМА-ГЕО»

Email: biv@sigma-geo.ru
ORCID iD: 0000-0002-5204-9530

Д. Б. Немцева

Институт земной коры СО РАН; ООО «СИГМА-ГЕО»

Email: ndb@sigma-geo.ru
ORCID iD: 0000-0003-0585-0349

В. С. Емельянов

ООО «СИГМА-ГЕО»

Email: evs@sigma-geo.ru

Ю. А. Агафонов

ООО «СИГМА-ГЕО»

Email: agafonov@sigma-geo.ru

Список литературы

  1. Козлов Е. А. Модели среды в разведочной сейсмологии: монография. Тверь: Изд-во ГЕРС, 2006. 479 с.
  2. Ваньян Л. Л. Основы электромагнитных зондирований. М.: Недра, 1965. 109 с.
  3. McNeill J. D. Application of transient electromagnetic techniques: technical note TN7. Missasagua: Geonics Limited, 1980. 17 р.
  4. Жданов М. С. Геофизическая электромагнитная теория и методы: монография. М.: Научный мир, 2012. 680 с.
  5. Светов Б. С. Теория, методика и интерпретация материалов низкочастотной индуктивной электроразведки. М.: Недра, 1973. 254 с.
  6. Тихонов А. Н., Гончарский А. В., Степанов В. В., Ягола А. Г. Численные методы решения некорректных задач. М.: Наука, 1990. 230 с.
  7. Oldenburg D. W., Li Y., Aki K., Richards P. G., Alumbaugh D., Newman G.. Inversion for applied geophysics: a tutorial // Near-surface geophysics / ed. D. K. Butler. Tulsa: Society of Exploration Geophysicists, 2005. Р. 89–150.
  8. Тригубович Г. М., Персова М. Г., Соловейчик Ю. Г. 3D-электроразведка становлением поля: монография. Новосибирск: Наука, 2009. 217 с.
  9. Панкратов В. М., Турицын К. С. Геоэлектрические модели горизонтально-слоистого разреза Непского свода // Обеспечение научно-технического прогресса при геофизических исследованиях в Восточной Сибири: сб. науч. тр. Иркутск – Новосибирск: Изд-во СНИИГГиМС, 1987. С. 131–135.
  10. Поспеев А. В., Буддо И. В., Агафонов Ю. А., Шарлов М. В., Компаниец С. В., Токарева О. В.. Современная практическая электроразведка: монография. Новосибирск: Гео, 2018. 231 с.
  11. Семинский И. К., Поспеев А. В., Гусейнов Р. Г. Оптимизация метода ЗСБ средствами математического моделирования: монография. Иркутск: Изд-во ИГУ, 2019. 129 с.
  12. Auken E., Christiansen A. V. Layered and laterally constrained 2D inversion of resistivity data // Geophysics. 2004. Vol. 69. Iss. 3. P. 752–761. https://doi.org/10.1190/1.1759461.
  13. Santos F. A. M. 1-D laterally constrained inversion of EM34 profiling data // Journal of Applied Geophysics. 2004. Vol. 56. Iss. 2. P. 123–134. https://doi.org/10.1016/j.jappgeo.2004.04.005.
  14. Wisén R., Auken E., Dahlin T. Combination of ID laterally constrained inversion and 2D smooth inversion of resistivity data with a priori data from boreholes // Near Surface Geophysics. 2005. Vol. 3. Iss. 2. P. 71–79. https://doi.org/10.3997/1873-0604.2005002.
  15. Конторович А. Э., Мельников Н. В., Старосельцев В. С. Нефтегазоносные провинции и области Сибирской платформы // Геология и нефтегазоносность Сибирской платформы: сб. статей. Новосибирск: Издво СНИИГГиМС, 1975. С. 4–21.
  16. Табаровский Л. А., Эпов М. И., Антонов Е. Ю. Электромагнитное поле в средах со слабонегоризонтальными границами. Новосибирск: Изд-во ИГГ СО АН СССР, 1988. 20 с.
  17. Шарлов М. В., Агафонов Ю. А., Стефаненко С. М. Современные телеметрические электроразведочные станции SGS-TEM и FastSnap. Эффективность и опыт использования // Приборы и системы разведочной геофизики. 2010. № 1. С. 20–24.
  18. Персова М. Г., Соловейчик Ю. Г., Тригубович Г. М. Компьютерное моделирование геоэлектромагнитных полей в трехмерных средах методом конечных элементов // Физика Земли 2011. № 2. C. 3–14.
  19. Емельянов В. С., Суров Л. В., Шарлов М. В., Агафонов Ю. А. Современное программное средство 1D инверсии и моделирования данных ЗСБ Model4 // Применение современных электроразведочных технологий при поисках месторождений полезных ископаемых: XIII Междунар. науч.-практ. семинар. СПб., 2016. С. 115–118.
  20. Агафонов Ю. А., Поспеев А. В., Суров Л. В. Система интерпретации данных и основные направления применения нестационарных электромагнитных исследований на юге Сибирской платформы // Приборы и системы разведочной геофизики. 2006. № 1. С. 33–36.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».