Development of a new empirical correlation for predicting formation volume factor of reservoir oil using artificial intelligence
- Autores: Shakirova E.V.1, Aleksandrov A.A.2, Semykin M.V.1
-
Afiliações:
- Irkutsk National Research Technical University
- University of Tyumen
- Edição: Volume 44, Nº 4 (2021)
- Páginas: 408-416
- Seção: Geoinformatics
- URL: https://ogarev-online.ru/2686-9993/article/view/358717
- DOI: https://doi.org/10.21285/2686-9993-2021-44-4-408-416
- ID: 358717
Citar
Texto integral
Resumo
Palavras-chave
Sobre autores
E. Shakirova
Irkutsk National Research Technical University
Email: viva160@mail.ru
ORCID ID: 0000-0003-0605-2920
A. Aleksandrov
University of Tyumen
Email: kavabanga1999@mail.ru
ORCID ID: 0000-0001-6925-762X
M. Semykin
Irkutsk National Research Technical University
Email: siemykin99@mail.ru
ORCID ID: 0000-0002-6134-1656
Bibliografia
Lippmann R. P. An introduction to computing with neural nets // IEEE ASSP Magazine. 1987. Vol. 4. Iss. 2. P. 4–22. Hinton G. E., Osindero S., Teh Y.-W. A fast learning algorithm for deep belief nets // Neural Computation. 2006. Vol. 18. Iss. 7. P. 1527–1554. https://doi.org/10.1162/neco.2006.18.7.1527. Rammay M. H., Abdulraheem A. Automated history matching using combination of adaptive neuro fuzzy system (ANFIS) and differential evolution algorithm // SPE Large Scale Computing and Big Data Challenges in Reservoir Simulation Conference and Exhibition. Istanbul, 2014. SPE-172992-MS. Ben-Hur A., Horn D., Siegelmann H. T., Vapnik V. Support vector clustering // Journal of Machine Learning Research. 2001. Vol. 2. P. 125–137. Jeng J.-T., Chuang C.-C., Su S.-F. Support vector interval regression networks for interval regression analysis // Fuzzy Sets and Systems. 2003. Vol. 138. Iss. 2. P. 283–300. https://doi.org/10.1016/S0165-0114(02)00570-5. Tahmasebi P., Hezarkhani A. A hybrid neural networks-fuzzy logic-genetic algorithm for grade estimation // Computers & Geosciences. 2012. Vol. 42. P. 18–27. https://doi.org/10.1016/j.cageo.2012.02.004. Klir G., Yuan B. Fuzzy sets and fuzzy logic: theory and applications. New Jersey: Prentice Hall, 1995. 574 p. Kaydani H., Mohebbi A., Baghaie A. Neural fuzzy system development for the prediction of permeability from wireline data based on fuzzy clustering // Petroleum Science and Technology. 2012. Vol. 30. Iss. 19. P. 2036–2045. https://doi.org/10.1080/10916466.2010.531345. Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P. Numerical recipes. The art of scientific computing. New York: Cambridge University Press, 2007. 1235 p. Trontl K., Šmuc T., Pevec D. Support vector regression model for the estimation of γ-ray buildup factors for multi-layer shields // Annals of Nuclear Energy. 2007. Vol. 34. Iss.12. P. 939–952. https://doi.org/10.1016/j.anucene.2007.05.001. Gholami R., Shahraki A. R., Jamali Paghaleh M. Prediction of hydrocarbon reservoirs permeability using support vector machine // Mathematical Problems in Engineering. 2012. https://doi.org/10.1155/2012/670723. Семыкин М. В., Шакирова Э. В. Исследование по подбору эффективных деэмульгаторов при обезвоживании нефтей Восточной Сибири // 60 лет снимкам обратной стороны Луны: материалы Всерос. науч.-практ. конф. Иркутск: Изд-во ИРНИТУ, 2019. С. 76–81. Gaisina L. M., Mikhailovskaya I. M., Khairullina N. G., Pilipenko L. M., Shakirova E. V. Features of the formation of the corporate identity of the staff // Biosciences Biotechnology Research Asia. 2015. Vol. 12. Iss. 3. P. 2543–2555. https://doi.org/10.13005/bbra/1934. Averkina E. V., Shakirova E. V. Specifics of drilling wells in the abnormally-high-pressure rock beds in the oiland-gas fields of Eastern Siberia // IOP Conference. Series: Earth and Environmental Science. 2019. Vol. 229. P. 012032. https://doi.org/10.1088/1755-1315/229/1/012032. Белозерова О. В., Коваленко В. В., Шакирова Э. В. Исследование состава и свойств нефти Ичёдинского месторождения // Известия вузов. Прикладная химия и биотехнология. 2020. Т. 10. № 3. С. 522–528. https://doi.org/10.21285/2227-2925-2020-10-3-522-528. Аверкина Е. В., Шакирова Э. В., Николаева М. Б., Климова А. А. Сравнительный анализ реагентовингибиторов набухания глинистых отложений, применяемых на месторождениях Восточной Сибири // Известия Томского политехнического университета. Инжиниринг георесурсов. 2020. Т. 331. № 12. С. 138–145. https://doi.org/10.18799/24131830/2020/12/2947. Gorokhova A. E., Gaisina L. M., Gareev E. S., Shutov N. V., Shakirova E. V. Application of coaching methods at agricultural and industrial enterprises to improve the quality of young specialists’ adaptation // Quality – Access to Success. 2018. Vol. 19. Iss. 164. P. 103–108. Gaisina L. M., Mikhaylovskaya I. M., Khairullina N. G., Ustinova O. V., Shakirova E. V. The role of the media in the spiritual and moral evolution of society // Mediterranean Journal of Social Sciences. 2015. Vol. 6. Iss. 5. P. 93–101. https://doi.org/10.5901/mjss.2015.v6n5s2p93. Gaisina L. M., Dorozhkin Yu. N., Iakupova G. A., Rasuleva I. V., Dallakian G. R., Shakirova E. V. Reflection of contemporary socio-cultural factors on young rural family as a problem of rural development. A study case - the Republic of Bashkortostan // Scientific Papers. Series: Management, Economic Engineering in Agriculture and Rural Development. 2018. Vol. 18. Iss. 3. P. 131–138. Шакирова Э. В., Семыкин М. В., Александров А. А., Брыжеватых Н. В. Современные методы по подбору деэмульгаторов при обезвоживании нефтей Восточной Сибири // Проблемы сбора, подготовки и транспорта нефти и нефтепродуктов. 2021. № 3. С. 36– 44. https://doi.org/10.17122/ntj-oil-2021-3-36-44.
Arquivos suplementares


