Induced polarization signal manifestation in multi-spacing installations in offshore areas up to 100 m deep

Cover Page

Cite item

Full Text

Abstract

The purpose of the work is to show the manifestation of an induced polarization signal in the transient electromagnetic signal for multi-spacing axial electrical installations depending on the spacing and sizes of the source at different depths of installation for the offshore conditions of sea depth of up to 100 m. The study uses the solution of the direct problem of a transient electromagnetic field for conducting polarizable media with a description of electrical resistivity dispersion by the Cole – Cole formula. Analysis is given to the change in the transient signal ΔU(t), final difference of the transient signal Δ2U(t) and transform P1(t) (ratio of Δ2U(t) to ΔU(t)) depending on multi-spacing installation size. The study involves installations with a source length (a source is a horizontal grounded electrical line AB) from 50 to 500 m, receiver length (receiver is represented by three-electrode electrical lines) from 50 to 500 m, and distance between the centers of the source and receiver (spacing) multiple of the source length: (3/2)·AB, 2·AB, (5/2)·AB, 3·AB, (7/2)·AB, 4·AB, (9/2)·AB, 5·AB. Comparison is given to the signals from conductive model and conductive polarizing model. A multi-spacing installation was placed inside a conductive medium with a conductive polarizing base. The conductive medium was associated with the layer of sea water in offshore areas with sea depths of up to 100 m. The conductive polarizing base was represented by a geological formation (ground) covered by a layer of water. Calculations performed as a result of conducted research works show the manifestation of various components of the transient process associated with electromagnetic field formation and manifestation of low-frequency dispersion of the electromagnetic properties of the earth caused by both galvanic and eddy currents. These components manifest themselves in different ways on multi-spacing installations at different depths. Therefore, it could be argued that the components of the transient process associated with the transient electromagnetic field, galvanically induced polarization and inductive induced polarization manifest themselves in different ways in multi-spaced installations of different sizes immersed at different depths. Induced polarization manifests itself in two ways for water area conditions as it is associated with both galvanic and eddy currents. Previously, when performing practical measurements, the manifestation of inductive induced polarization was considered as interference manifestation. But being simulated this signal can be considered as information about induced polarization. The factor influencing the manifestation character of induced polarization signal in the transient signal is the installation height above the bottom Δh and the spacing r. Δh is the distance between the installation and the seafloor, which is a polarizing base of the model. r is the distance between the centers of the source and the meter represented by a three-electrode measuring line. Depending on the installation height and spacing the induced polarization signal in the transform P1(t) can appear as an ascending branch at later times, as well as in the form of a descending branch that turns into negative values of P1. 

About the authors

E. V. Ageenkov

Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of the Russian Academy of Sciences

Email: AgeenkovEV@ipgg.sbras.ru

A. A. Sitnikov

Siberian Geophysical Research Production Company LLC

Email: aas@dnme.ru

E. N. Vodneva

Limnological Institute, Siberian Branch of the Russian Academy of Sciences

Email: ven21@mail.ru

References

  1. Конторович А. Э., Эпов М. И., Бурштейн Л. М., Каминский В. Д., Курчиков А. Р., Малышев Н. А.. Геология, ресурсы углеводородов шельфов арктических морей России и перспективы их освоения // Геология и геофизика. 2010. Т. 51. № 1. С. 7–17.
  2. Каминский В. Д., Супруненко О. И., Суслова В. В. Континентальный шельф российской Арктики: состояние изучения и освоения нефтегазовых ресурсов // Геология и геофизика. 2011. Т. 52. № 8. С. 977–985.
  3. Уэйт Дж. Р. Геоэлектромагнетизм: пер. с англ. М.: Недра, 1987. 235 с.
  4. Легейдо П. Ю., Мандельбаум М. М., Рыхлинский Н. И. Дифференциально-нормированный метод электроразведки при прямых поисках залежей углеводородов // Геофизика. 1995. № 4. С. 42–45.
  5. Легейдо П. Ю., Мандельбаум М. М., Рыхлинский Н. И. Информативность дифференциальных методов электроразведки при изучении поляризующихся сред // Геофизика. 1997. № 3. С. 49–56.
  6. Ageenkov E. V., Davydenko Yu. A., Fomitskii V. A. Influence of the off-axis position of the transmitter and receiver circuits on the results of differentially normalized electromagnetic sounding // Russian Geology and Geophysics. 2012. Vol. 53. Iss. 1. P. 116–121. https://doi.org/10.1016/j.rgg.2011.12.009.
  7. Богданов А. Г., Кобзарев Г. Ю., Делия С. В., Зеленцов В. В., Иванов С. А., Легейдо П. Ю.. Опыт применения и геологические результаты работ дифференциальным нормированным методом электроразведки на российской акватории Каспийского моря // Геофизика. 2004. № 5. С. 38–41.
  8. Колесов В. В., Вовк В. С., Дзюбло А. Д., Кудрявцева Е. О. Разведка и обустройство месторождений в прибрежной зоне Обской губы // Газовая промышленность. 2008. № 12. С. 66–68.
  9. Veeken P., Legeydo P., Pesterev I., Davidenko Y., Kudryavceva E., Ivanov S. Geoelectric modelling with separation between electromagnetic and induced polarization field components // First Break. 2009. Vol. 27. Iss. 12. P. 53–64. https://doi.org/10.3997/1365-2397.2009020.
  10. Veeken P., Legeydo P., Davidenko Y., Kudryavceva E., Ivanov S., Chuvaev A. Benefits of the induced polarization geoelectric method to hydrocarbon exploration // Geophysics. 2009. Vol. 74. Iss. 2. P. 47–59. https://doi.org/10.1190/1.3076607.
  11. Марков С. Ю., Горбачев С. В., Иванов С. А., Мятчин О. М., Нурмухамедов Т. В., Смилевец Н. П.. Повышение надежности прогноза углеводородов на шельфе Печорского моря по результатам переинтерпретации электроразведочных работ в комплексе с сейсморазведочными данными // Геофизика. 2021. № 3. С. 25–33.
  12. Ситников А. А., Агеенков Е. В., Иванов С. А., Жуган П. П., Мальцев С. Х. Аппаратура, устройства и системы наблюдений для решения нефтегазопоисковых и инженерно-геологических задач на акваториях электроразведочными методами ДНМЭ и НДЭМЗ // Приборы и системы разведочной геофизики. 2017. Т. 60. № 2. С. 42–49.
  13. Ageenkov E. V., Sitnikov A. A., Pesterev I. Yu., Popkov A. V. Manifestation of induction and induced polarization in the case of axial and symmetrical electrical arrays // Russian Geology and Geophysics. 2020. Vol. 61. № 7. P. 795–808. https://doi.org/10.15372/RGG2019151.
  14. Моисеев В. С. Метод вызванной поляризации при поисках нефтеперспективных площадей. Новосибирск: Наука, 2002. 136 с.
  15. Kozhevnikov N. O. Fast-decaying inductive IP in frozen ground // Russian Geology and Geophysics. 2012. Vol. 53. Iss. 4. P. 406–415. https://doi.org/10.1016/j.rgg.2012.02.013.
  16. Kamenetsky F. M., Trigubovich G. M., Chernyshev A. V. Three lectures on geological medium induced polarization. Munich: Vela Verlag, 2014. 58 p.
  17. Lee T. Transient electromagnetic response of a polarizable ground // Geophysics. 1981. Vol. 46. Iss. 7. P. 1037–1041. https://doi.org/10.1190/1.1441241.
  18. Pelton W. H., Ward S. H., Hallof P. G., Sill W. R., Nelson P. H. Mineral discrimination and removal of inductive coupling with multi-frequency IP // Geophysics. 1978. Vol. 43. Iss. 3. P. 588–609. https://doi.org/10.1190/1.1440839.
  19. Губатенко В. П. Эффект Максвелла – Вагнера в электроразведке // Физика Земли. 1991. № 4. С. 88–98.
  20. Петров А. А. Возможности метода становления электрического поля при поисках углеводородов в шельфовых зонах // Геофизика. 2000. № 5. С. 21–26.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).