Polyarene analysis-based identification of natural and technogenic processes in underground hydrosphere

Cover Page

Cite item

Full Text

Abstract

The purpose of the study is to analyze the possibility to identify the pollution genesis of the underground hydrosphere based on the data on polyarenes as geochemical markers. Their marker role is due to their toxicity, persistence and confinement to specific pollution sources and natural and technogenic processes. The main research method is the analysis of indicator ratios of polyarenes. The object of research is groundwater from different regions of the world, which are polluted by natural and anthropogenic polyarenes. The main directions of domestic and foreign researches as well as the problems of their implementation are shown. The use of indicator ratios enabled successful identification of pyro- and petrogenically polluted samples of groundwater also the examples of the study of polyarenes as geochemical markers were demonstrated. The polyarenes are shown to be an effective indicator of the pollution genesis in the underground hydrosphere. However, their analysis requires the use of modern methods of sampling, sample preparation and extraction, which significantly complicates research in practice.

About the authors

A. P. Khaustov

RUDN University

Email: khaustov-ap@rudn.ru
ORCID iD: 0000-0002-5338-3960

M. M. Redina

RUDN University

Email: redina-mm@rudn.ru
ORCID iD: 0000-0002-3169-0142

References

  1. Mattox C.F., Humenick M.J. Organic groundwater contaminants from UCG // Proceedings of the 5th Underground Coal Conversion Symposium. Alexandria, 1979.
  2. Richard D.E., Dwyer D.F. Aerated biofiltration for simultaneous removal of iron and polycyclic aromatic hydrocarbons from groundwater // Water Environment Research. 2001. Vol. 73. Iss. 6. P. 673–683. https://doi.org/10.2175/106143001x143411
  3. Groher D.M. An investigation of factors affecting the concentrations of polycyclic aromatic hydrocarbons in groundwater at coal tar waste sites. Cambridge: Massachusetts Institute of Technology, 1990. 145 p.
  4. Ilić P., Nešković Markić D., Stojanović Bjelić L. Evaluation of sources and ecological risk of PAHs in different layers of soil and groundwater // Preprints. 2020. https://doi.org/10.20944/preprints202002.0224.v1
  5. Галицкая И.В., Позднякова И.А. К проблеме загрязнения подземных вод и пород зоны аэрации нефтепродуктами и ПАУ на городских территориях // Геоэкология. Инженерная геология. Гидрогеология. Геокриология. 2011. №. 4. С. 337–343.
  6. Mansilha C., Carvalho A., Guimarães P., Espinha Marques J. Water quality concerns due to forest fires: polycyclic aromatic hydrocarbons (PAH) contamination of groundwater from mountain areas // Journal of Toxicology and Environmental Health. Part A. 2014. Vol. 77. Iss. 14–16. P. 806–815. https://doi.org/10.1080/15287394.2014.909301
  7. Sun Y., Zhang S., Lan J., Xie Z., Pu J., Yuan D., et al. Vertical migration from surface soils to groundwater and source appointment of polycyclic aromatic hydrocarbons in epikarst spring systems, southwest China // Chemosphere. 2019. Vol. 230. P. 616–627. https://doi.org/10.1016/j.chemosphere.2019.05.007
  8. Liang M., Liang H., Rao Z., Xu D. Occurrence of polycyclic aromatic hydrocarbons in groundwater from rural areas in eastern China: spatial distribution, source apportionment and health cancer risk assessment // Chemosphere. 2020. Vol. 259. P. 127534. https://doi.org/10.1016/j.chemosphere.2020.127534
  9. Туров Ю.П., Кадычагов П.Б., Гузняева М.Ю., Альшанский А.М. Полициклические ароматические углеводороды в подземных водах и почвах Обь-Томского междуречья // Химия в интересах устойчивого развития. 1999. №. 7. С. 291–299.
  10. Пиковский Ю.И. Природные и техногенные потоки углеводородов в окружающей среде: монография. М.: Изд-во МГУ, 1993. 208 с.
  11. Хаустов А.П., Редина М.М., Яковлева Е.В. Водопроявления подземных вод как геохимические системообразующие объекты (интерпретация на основе распределения ПАУ) // Геоэкология. Инженерная геология. Гидрогеология. Геокриология. 2018. № 3. С. 3–17.
  12. Хаустов А.П., Редина М.М. Парадоксы концентрирования углеводородов в компонентах геосистем (на примере ПАУ) // Сергеевские чтения: геоэкологические аспекты реализации национального проекта «Экология». Диалог поколений: материалы годичной сессии Научного совета РАН по проблемам геоэкологии, инженерной геологии и гидрогеологии. Вып. 22. М., 2020. С. 94–103.
  13. Khaustov A., Redina M., Goryainov S. Migration of PAHs and phthalates from package materials during water storage: glass or plastic? // Polycyclic Aromatic Compounds. 2020. P. 1–13. https://doi.org/10.1080/10406638.2020.1734033
  14. Schlanges I., Meyer D., Palm W.U., Ruck W. Identification, quantification and distribution of PAC-metabolites, heterocyclic PAC and substituted PAC in groundwater samples of tar-contaminated sites from Germany // Polycyclic Aromatic Compounds. 2008. Vol. 28. Iss. 4–5. P. 320– 338. https://doi.org/10.1080/10406630802377807
  15. Masih A., Lal J.K. Concentrations and carcinogenic profiles of polycyclic aromatic hydrocarbons (PAHs) in groundwater of an urban site at a Terai belt of North India // International Journal of Applied Engineering Research. 2014. Vol. 9. Iss. 1. P. 1–8.
  16. Masih A., Saini R., Taneja A. Contamination and exposure profiles of priority polycyclic aromatic hydrocarbons (PAHs) in groundwater in a semi-arid region in India // International Journal of Water. 2008. Vol. 4. Iss. 1–2. P. 136–147. https://doi.org/10.1504/IJW.2008.018152
  17. Kawka O.E.M. Hydrothermal alteration of sedimentary organic matter in Guaymas Basin, Gulf of California. Corvallis: Oregon State University, 1990. 236 p.
  18. Khaustov A.P., Redina M.M. Indicator ratios of polycyclic aromatic hydrocarbons for geoenvironmental studies of natural and technogenic objects // Water Resources. 2017. Vol. 44. Iss. 7. P. 903–913. https://doi.org/10.1134/S0097807817070065
  19. Moyo S., McCrindle R., Mokgalaka N., Myburgh J., Mujuru M. Source apportionment of polycyclic aromatic hydrocarbons in sediments from polluted rivers // Pure and Applied Chemistry. 2013. Vol. 85. Iss. 12. P. 2175–2196. https://doi.org/10.1351/pac-con-12-10-08
  20. Soclo H.H., Garrigues P., Ewald M. Origin of polycyclic aromatic hydrocarbons (PAHs) in coastal marine sediments: case studies in Cotonou (Benin) and Aquitaine (France) areas // Marine Pollution Bulletin. 2020. Vol. 40. Iss. 5. P. 387–396. https://doi.org/10.1016/S0025-326X(99)00200-3
  21. Ţigănuş D., Coatu V., Lazăr L., Oros A., Spînu A.D. Identification of the sources of polycyclic aromatic hydrocarbons in sediments from the Romanian Black Sea sector // Revista Cercetări Marine. 2013. Vol. 43. Iss. 1. P. 187–196.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).