The use of a tactile sensory system in connecting counter workings
- Authors: Skurikhin Y.G.1, Vasilyev D.S.1
-
Affiliations:
- Irkutsk National Research Technical University
- Issue: Vol 43, No 1 (2020)
- Pages: 111-120
- Section: Exploration and Development of Mineral Deposits
- URL: https://ogarev-online.ru/2686-9993/article/view/358521
- DOI: https://doi.org/10.21285/2686-9993-2020-43-1-111-120
- ID: 358521
Cite item
Full Text
Abstract
At present, the problem of advancing mine workings when connecting them is that after advancing, the workings often coincide within the project workings’ contours, which causes a significant increase of the costs, diminishes the safety and creates ecological issues. The instrumental methods cannot provide quality determination of the workings advance direction when connecting the workings, thus the work safety deteriorates, and the cost of eliminating the consequences of the non-quality connection increases. To improve the ways of connecting the workings, either the existing technology should be modified or a new technology is needed. The purpose of the study is to develop a new technology for determining the direction of the counter workings when connecting the workings. The technology involves a tactile sensory system of man and is realized by the comparison of the degree of the rock surface vibration effect on a human palm at different points of the face. The vibration is created by drilling a blast-hole, and it is measured by applying the palm to the face. The suggested technology can enhance the advance exactness and safety, as well as increase the mineral output and reduce the costs of advancing the counter mine workings due to the decrease in the deviation from the target direction when connecting the workings. The technology can be used when advancing counter mine workings and connecting the workings in ore and alluvial mines.
About the authors
Y. G. Skurikhin
Irkutsk National Research Technical University
Email: go_gor@istu.edu
D. S. Vasilyev
Irkutsk National Research Technical University
Email: denisvasilyew@yandex.ru
References
Brink A. Research on prediction of rock bursts at Western Deep // Levels Journal of the South African Institute of Mining and Metallurgy.1983. Vol. l. P. 1–10. Coates D.F., Ignatieff A. Predictions and measurement of pillar stresses // Canada Mining Journal. 1966. Vol. 87. No. 1. P. 50–56. Abraira V.E., Ginty D.D. The sensory neurons of touch // Neuron. 2013. Vol. 79. Iss. 4. P. 618–639. https://doi.org/10.1016/j.neuron.2013.07.051 Ackerley R., Backlund Wasling H., Liljencrantz J., Olausson H., Johnson R.D., Wessberg J. Human C-tactile afferents are tuned to the temperature of a skin- stroking caress // Journal of Neuroscience. 2014. Vol. 34. Iss. 8. P. 2879–2883. https://doi.org/10.1523/JNEUROSCI.2847-13.2014 Alexander R.D. The biology of moral systems. New York: Aldine de Gruyter, 1987. 301 p. Bessou P., Burgess P.R., Perl E.R., Taylor C.B. Dynamic properties of mechanoreceptors with unmyelinated (C) fibers // Journal of Neurophysiology. 1971. Vol. 34. Iss. 1. P. 116–131. https://doi.org/10.1152/jn.1971.34.1.116 Cochrane N. Physical contact experience and depression // Acta Psychiatrica Scandinavica. Supplementum.1990. Vol. 357. P. 1–91. Cole J., Bushnell M.C., McGlone F., Elam M., Lamarre Y., Vallbo A., et al. Unmyelinated tactile afferents underpin detection of low-force monofilaments // Muscle & Nerve. 2006. Vol. 34. P. 105–107. https://doi.org/10.1002/mus.20534 Gordon I., Voos A.C., Bennett R.H., Bolling D.Z., Pelphrey K.A., Kaiser M.D. Brain mechanisms for processing affective touch // Human Brain Mapping. 2011. Vol. 34. Iss. 4. P. 914–922. https://doi.org/10.1002/hbm.21480 Sugiura Y. Spinal organization of C-fiber afferents related with nociception or non-nociception // Progress in Brain Research. 1996. Vol. 113. P. 320–339. Стариков А.П., Снижко В.Д. Передовой производственный опыт скоростного проведения горных выработок на шахте «Заречная» в Кузбассе // Уголь. 2008. № 11. С. 3–6. Оверченко М.Н., Мозер С.П., Галушко Ф.И., Луньков А.Г. Развитие схем контурного взрывания для проходки подземных горных выработок // Взрывное дело. 2016. № 115/72. С. 202–213. Доильницын В.М., Зерщиков С.Г., Ляшенко В.А. Испытания зарядов мягкого взрывания на рудниках ОАО «Апатит» // Горный информационно- аналитический бюллетень. 2007. № S5. С. 74–81. Ляшенко В.И., Хоменко О.Е. Повышение эффективности буровзрывной отбойки руды в зажатой среде // Горный информационно-аналитический бюллетень (научно-технический журнал). 2019. № 11. С. 59–72. Павлов А.М., Васильев Д.С. Повышение эффективности подземной разработки тонких крутопадающих жил // Горная промышленность. 2017. № 1 (131). С. 86–87. Vasilyev D.S., Pavlov A.M. Justification of underground gold placer development parameters for the Konevinsky deposit // IOP Conference. Series: Earth and Environmental Science. 2020. Vol. 408. Iss. 1. P. 012042. https://doi.org/10.1088/1755-1315/408/1/012042 Пат. № 2527955, Российская Федерация, МПК E21D9/00 E21B7/04. Способ проведения встречных выработок при их сбойке / Ю.Г. Скурихин, В.А. Романенко. Заявл. 03.07.2013; опубл. 10.09.2014. Бюл. № 25.
Supplementary files


