О краевой задаче для системы дифференциальных уравнений, моделирующей электрическую активность головного мозга

Обложка

Цитировать

Полный текст

Аннотация

Исследуется модель типа Хопфилда динамики электрической активности головного мозга, представляющая собой  систему дифференциальных уравнений вида
\begin{equation*}
\dot{v}_{i}(t)= -\alpha v_{i}(t)+\sum_{j=1}^{n}w_{ji}f_{\delta}\big(v_{j}(t-\tau_{ji})\big)+I_{i}(t), \quad i=\overline{1,n}, \quad t\geq 0.
\end{equation*}
 Параметры модели считаются заданными: $\alpha>0,$ $\tau_{ii}=0,$ $w_{ii}= 0,$ $\tau_{ji}\geq 0$ и $w_{ji}>0$ при $i\neq j,$  $I_{i}(t)\geq 0$ при $t\geq 0.$ Функция активации $f_{\delta}$ ($\delta$ --- время перехода нейрона в состояние активности) рассмотрена двух типов:
$$
\delta= 0 \ \Rightarrow \
f_{0}(v)=\left\{
\begin{array}{ll}
0,  & v\leq\theta,\\
1, & v>\theta;
\end{array}\right. \ \ \ \ \
\delta> 0 \ \Rightarrow \ f_{\delta}(v)=\left\{
\begin{array}{ll}
0,  & v\leq \theta,\\
{\delta}^{-1}( v-\theta), & \theta < v \leq \theta+\delta,\\
1, & v>\theta+\delta.
\end{array}\right.$$
Для рассматриваемой системы дифференциальных уравнений исследуется краевая задача с условиями ${v_{i}(0)-v_{i}(T)=\gamma_{i},}$ $i=\overline{1,n}.$ В обоих случаях $\delta= 0$ (функция $f_{0}$ разрывная) и $\delta > 0$ (функция $f_{0}$ непрерывная) решение существует, а если
δ>T|W|nn1-e-αT,<br/>  где  W=(wij)n×n,{\delta} > \frac{T|W|_{\mathbb{R}^{n}\to \mathbb{R}^{n}}}{1 - e^{-\alpha T}},
\quad \mbox{где} \quad W=(w_{ij})_{n\times n}, то рассматриваемая задача имеет единственное  решение. В работе также получены оценки решения и его производной.  Используются теоремы о неподвижных точках непрерывных отображений метрических и нормированных пространств и о неподвижных точках монотонных отображений  частично упорядоченных пространств. Полученные результаты применены к исследованию периодических решений рассматриваемой дифференциальной системы.

Об авторах

Анастасия Сергеевна Патрина

ФГБОУ ВО «Тамбовский государственный университет им. Г.Р. Державина»

Автор, ответственный за переписку.
Email: lanina.anastasiia5@mail.ru
ORCID iD: 0000-0002-8076-5745

магистр, кафедра функционального анализа

Россия, 392000, Российская Федерация, г. Тамбов, ул. Интернациональная, 33

Список литературы

  1. [1] J.J. Hopfield, “Neural networks and physical systems with emergent collective computational properties”, Proc. Nat. Acad. Sci., 79:8 (1982), 2554–2558.
  2. [2] В.Л. Быков, Цитология и общая гистология, Сотис, Санкт-Петербург, 2018, 237 с.
  3. [3] P. Van den Driesche, X. Zou, “Global attractivity in delayed Hopfield neural network models”, SIAM J. Appl. Math., 58 (1998), 1878–1890.
  4. [4] А.С. Ланина, Е.А. Плужникова, “О свойствах решений дифференциальных систем, моделирующих электрическую активность головного мозга”, Вестник российских университетов. Математика, 27:139 (2022), 270–283.
  5. [5] Е.С. Жуковский, “Неравенства Вольтерра в функциональных пространствах”, Матем. сб., 195:9 (2004), 3–18.
  6. [6] Е.С. Жуковский, “Об упорядоченно накрывающих отображениях и неявных дифференциальных неравенствах”, Дифференциальные уравнения, 52:12 (2016), 1610–1627.
  7. [7] E.O. Burlakov, E.S. Zhukovskiy, “On absrtact Volterra equations in partially ordered spaces and their applications”, CONCORD-90: Mathematical Analysis With Applications. V. 318, International conference in honor of the 90th Birthday of Constantin Corduneanu (2018, Ekaterinburg, Russia), Springer Proceedings in Mathematics & Statistics, eds. S. Pinelas, A. Kim, V. Vlasov, 2020, 3–11.
  8. [8] С. Бенараб, З.Т. Жуковская, Е.С. Жуковский, С.Е. Жуковский, “О функциональных и дифференциальных неравенствах и их приложениях к задачам управления”, Дифференциальные уравнения, 56:11 (2020), 1471–1482.
  9. [9] Л.В. Канторович, Г.П. Акилов, Функциональный анализ, Наука, М., 1984.
  10. [10] А.Н. Колмогоров, С.В. Фомин, Элементы теории функций и функционального анализа, 5-е изд., Физматлит, М., 2019.
  11. [11] A.V. Arutyunov, E.S. Zhukovskiy, S.E. Zhukovskiy, “Coincidence points principle for mappings in partially ordered spaces”, Topology and its Applications, 179:1 (2015), 13–33.
  12. [12] Л.А. Люстерник, В.И. Соболев, Краткий курс функционального анализа, Высшая школа, М., 1982, 271 с.
  13. [13] Н.В. Азбелев, В.П. Максимов, Л.Ф. Рахматуллина, Введение в теорию функционально-дифференциальных уравнений, Наука, М., 1991.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).