The Jacobi group and its holomorphic discrete series representations on Siegel-Jacobi domains

Cover Page

Cite item

Full Text

Abstract

This is the summary of a part of the talk delivered at the workshop held at the Tambov University in September 2012, reporting several results on Jacobi groups and its holomorphic representations published by the authors.

Full Text

Introduction The Jacobi group is the semidirect product of the real symplectic group with Heisenberg group of adequate dimension [9, 10]. Several generalizations are known [12, 20]. The Jacobi groups are unimodular, nonreductive, algebraic groups of Harish-Chandra type. The Siegel-Jacobi domains are nonreductive symmetric domains associated to the Jacobi groups by the generalized Harish-Chandra embedding [12, 16, 21, 22]. In [1] we have introduced Perelomov coherent states [13] defined on the Siegel-Jacobi disk. Similar constructions have been used previously [11, 14, 17]. The Jacobi group with applications in Quantum Mechanics has been investigated in a series of papers [2-7]. The present note is based manly on [5], where we have not used Perelomov coherent states. The problem of Berezin quantization [8], the fundamental conjecture for homogeneous K¨ahler manifolds, the classical and quantum evolution on Siegel-Jacobi domains, and the orthonormal base of polynomials in which the Bergman kernel is developed, all summarized in our the talk in accord with [2-7], are not included in this note. 1. Canonical automorphy factor and kernel function Let Hn be the Siegel upper half space of degree n consisting of all symmetric matrices 2 Mn(C) with Im > 0: The symplectic group Sp(n;R) of degree n consists of all matrices 2 M2n(R) such that t Jn = Jn; where = a b c d ; a; b; c; d 2 Mn(R); Jn = 0 In In 0 ; (1.1) The group Sp(n;R) acts transitively on Hn by = (a + b)(c + d) 1: Let Gs be a Zariski connected semisimple real algebraic group of Hermitian type. Let D =Gs=Ks be the associated Hermitian symmetric domain, where Ks is a maximal compact subgroup of Gs: Suppose there exist a homomorphism : Gs ! Sp(n;R) and a holomorphic map : D ! Hn such that (gz) = (g) (z) for all g 2 Gs and z 2 D: The Jacobi group GJ [9, 12, 20] is the semidirect product of Gs and the Heisenberg group H[V ] associated with the symplectic R-space V and the nondegenerate alternating bilinear form D : V -V ! A; where A is the center of H[V ]: The multiplication operation of GJ t Gs-V -A is defined by gg0 = ( 0; ( )v0 + v;{ + {0 + 1 2 D(v; ( )v0); where g = ( ; v; {) 2 GJ ; g0 = ( 0; v0;{0) 2 GJ : The Jacobi-Siegel domain associated to the Jacobi group GJ is defined by DJ = D - CN = GJ=(Ks - A); where dim V = 2N (cf. [9, 12, 20]). The definitions above are represented in the scheme below. GJ is an algebraic group of Harish-Chandra type [12, 16, 20]. Following [20] and [12], we obtain [5]. SIEGEL-JACOBI DOMAINS 347 GJ t Gs - V - A H[V ] Gs Sp(n;R) CN ,! DJ = D-CN - D = Gs=Ks Hn = Sp(n;R)=U(n) pr 1 pr 2 pr pr Theorem 1.1. a) The Jacobi group GJ acts transitively on DJ by gx = ( w; v w + t(c (w) + d) 1z); ( ) = a b c d ; where g = ( ; v; {) 2 GJ and x = (w; z) 2 DJ : b) The canonical automorphy factor J for the Jacobi group GJ is given by J(g; x) = (J1( ;w); 0; J2(g; x)); where J1 is the canonical automorphy factor for Gs; and J2(g; x) = { + 1 2 D(v; v w) + 1 2 D(2v + ( )z; J1( ;w)z): c) The canonical kernel function K for the Jacobi group GJ is given by K(x; x0) = (K1(w;w0); 0;K2(x; x0)); where K1 is the canonical kernel function for Gs; and K2(x; x0) = D(2z0 + 1 2 (w0)z; qz) + 1 2 D(z0; q (w)z0); q = (K1(w;w0)) 1: The Heisenberg group Hn(R) consists of all elements ( ; ; ); where ; 2 M1 n(R); 2 R; with the multiplication law ( ; ; ) ( 0; 0; 0) = ( + 0; + 0; + 0+ t 0 t 0): Let GJ n = Sp(n;R) n Hn(R) endowed with the following multiplication law: ( ; ( ; ; )) ( 0; ( 0; 0; 0)) = ( 0; ( 0; 0; ) ( 0; 0; 0)): The Jacobi group GJ n of degree n acts transitively on the Jacobi-Siegel space HJ n = Hn-Cn by g( ; ) = ( g; g); where g = (a + b)(c + d) 1; g = (c + d) 1; = + + : (1.2) 348 S. Berceanu, A. Gheorghe P r o p o s i t i o n 1.1. The canonical automorphy factor J1 and the canonical kernel function K1 for Sp(n;R) are given by J1( ; ) = t(c + d) 1 0 0 c + d ; K1( 0; ) = 0 0 ( 0 ) 1 0 ; where ; 0 2 Hn and 2 Sp(n;R) is given by (1.1). The canonical automorphy factor = J2(g; ( ; )) for GJ n is given by = + t + t (c + d) 1c t ; = + + ; (1.3) where g = ( ; ( ; ; )) 2 GJ n; is given by (1.1), and ( ; ) 2 HJ n: The canonical automorphy kernel K2 for GJ n is given by K2 (( 0; 0); ( ; )) = 1 2 ( 0 )( 0 0 ) 1(t 0 t ): (1.4) Let Dn be the Siegel disk of degree n consisting of all symmetric matrices W 2 Mn(C) with In WW > 0: Let Sp(n;R) be the multiplicative group of all matrices ! 2 M2n(C) such that ! = p q q p ; tpp tqq = In; tpq = tqp; p; q 2 Mn(C): (1.5) The group Sp(n;R) acts transitively on Dn by !W = (pW + q)(qW + p) 1: Let Kn = U(n) be the maximal compact subgroup of Sp(n;R) consisting of all ! 2 Sp(n;R) given by (1.5) with p 2 U(n) and q = 0: Then Dn = Sp(n;R) =U(n): Let GJ n be the Jacobi group consisting of all elements (!; ( ; {)); where ! 2 Sp(n;R) ; 2 Cn; { 2 iR; and endowed with the multiplication law (!0; ( 0;{0))(!; ( ; {)) = !0!; + ; { + {0 + t t ; where (!; ( ; {)); (!0; ( 0;{0)) 2 GJ n = 0p + 0q; and ! is given by (1.5). The Heisenberg group Hn(R) consists of all elements (In; ( ; {)) 2 GJ n ; with 2 Cn; { 2 iR: The center A = R of Hn(R) consists of all elements (In; (0;{)) 2 GJ n ; { 2 iR: There exists an isomorphism - : GJ n ! GJ n given by -(g) = g ; g = ( ; ( ; ; )) 2 GJ n; g = (!; ( ; {)) 2 GJ n ; = a b c d ; ! = p+ p p p+ ; p = 1 2 (a d) i 2 (b c); = 1 2 ( + i ); { = i 2 : Let DJ n = Dn - Cn = GJ n =(U(n) - R) be the Siegel-Jacobi disk of degree n. GJ n acts transitively on DJ n by g (W; z) = (Wg ; zg ); where Wg = (pW + q)(qW + p) 1; zg = (z + W + )(qW + p) 1: (1.6) SIEGEL-JACOBI DOMAINS 349 We now consider a partial Cayley transform of the Siegel-Jacobi disk DJ n onto the Siegel- Jacobi space HJ n which gives a partially bounded realization of HJ n [22]. The partial Cayley transform : DJ n ! HJ n is defined by = i(In +W)(In W) 1; = 2 i z(In W) 1; (1.7) where ( ; ) = ((W; z)) and (W; z) 2 DJ n: Thr map is a biholomorphic map which satisfies g = g for any g 2 GJ n and g = -(g) [22]. The inverse partial Cayley transform 1 : HJ n ! DJ n is given by W = ( iIn)( + iIn) 1; z = ( + iIn) 1: (1.8) The situation is summarized in the diagram below. GJ n GJ n Hn(R) Sp(n;R) Sp(n;R) Hn(R) Cn ,! HJ n = Hn - Cn - Hn = Sp(n;R)=U(n) Dn ,! DJ n = Dn - Cn - Cn - : GJ n ! GJ n pr iso iso P r o p o s i t i o n 1.2. The canonical automorphy factor J1 and the canonical kernel function K1 for Sp(n;R) are given by J1 (!;W) = t(qW + p) 1 0 0 qW + p ; K1 (W0;W) = In W0W 0 0 t(In W0W) 1 ; where W;W0 2 Dn and ! 2 Sp(n;R) is given by (1.5). The canonical automorphy factor = J2(gn ; (W; z)) for GJ n is given by = + z t + t (qW + p) 1q t ; = z + W + ; (1.9) where g = (!; ( ; {)) 2 GJ n ; ! is given by (1.5), and (W; z) 2 DJ n: The canonical automorphy kernel for GJ n is given by K2 ((W0; z0); (W; z)) = A(W0; z0;W; z); where (W; z); (W0; z0) 2 DJ n; and A(W0; z0;W; z) = (z + 1 2 z0W)(In W0W) 1 tz0 + 1 2 z(In W0W) 1W0 tz: (1.10) 350 S. Berceanu, A. Gheorghe 2. Scalar holomorphic discrete series Consider the Jacobi group GJ n: Let be a rational representation of GL(n;C) such that jU(n) is a scalar irreducible representation of the unitary group U(n) with highest weight k; k 2 Z; and (A) = (detA)k [23]. Let m 2 R: Let = m; where the central character m of A = R is defined by m( ) = exp (2 im ) ; 2 A: Any scalar holomorphic irreducible representation of GJ n is characterized by an index m and a weight k: Suppose m > 0 and k > n + 1=2: Let Hmk denote the Hilbert space of all holomorphic functions ' 2 O(HJ n) such that k'kHJ n < 1 with the inner product defined by [18] ('; )HJ n = C Z HJ n '( ; ) ( ; )Kmk( ; ) 1d ( ; ); where C is a positive constant, ( ; ) 2 HJ n and the GJ n -invariant measure on HJ n is given by d ( ; ) = (det Y ) n 2 Y 16i6n d i d-i Y 16j6k6n dXjk dYjk: Here = Re ; - = Im ; X = Re ; Y = Im : The kernel function Kmk is defined by [18] Kmk( ; ) = Kmk(( ; ); ( ; )) = exp 4 m-Y 1 t- (det Y )k; Kmk(( 0; 0); ( ; ))= det( i 2 i 2 0) kexp(2 imK (( 0; 0); ( ; ))) ; where K is given by (1.4). Let mk be the unitary representation of GJ n on Hmk defined by [18] mk(g 1)' ( ; ) = J mk(g; ( ; ))'( g; g); where ' 2 Hmk; g 2 GJ n; ( ; ) 2 HJ n and ( g; g) 2 HJ n is given by (1.2). The automorphic factor J mk for GJ n is defined by [18] J mk(g; ( ; )) = (det(c + d)) k exp(2 im ); where is given by (1.3) and is given by (1.1). Takase proved the following theorem [18, 19]: Theorem 2.1. Suppose k > n + 1=2: Then Hmk 6= f0g and mk is an irreducible unitary representation of GJ n which is square integrable modulo center. Let Hmk denote the complex pre-Hilbert space of all 2 O(DJ n) such that k kDJ n < 1 with the inner product defined by ( 1; 2)DJ n = C Z DJ n 1(W; z) 2(W; z) Kmk (W; z) 1 d (W; z); SIEGEL{JACOBI DOMAINS 351 where C is a positive constant, (z;W) 2 DJ n; Kmk (W; z) = det(In WW) k exp(8 mA(W; z)); and A(W; z) = K2 ((W; z); (W; z)) can be written as A(W; z) = (z + 1 2 zW)(In WW) 1 tz + 1 2 z(In WW) 1W tz: and the GJ n -invariant measure on DJ n is [22] d (W; z)=(det(1 WW)) n 2 Yn i=1 d Rezi d Imzi Y 1 j6k6n d ReWjkd ImWjk: According with [15, 22], and (1.10), the kernel function Kmk is given by Kmk (W; z) = Kmk ((W; z); (W; z)); where Kmk ((z;W); (z0;W0))= det(In W0W) k exp (8 mA(W0; z0;W; z)) : We now introduce the map g 7 ! mk (g ); where mk (g ) : Hmk ! Hmk is defined by mk (g 1 ) (z;W) = Jmk (g ; (z;W)) (zg ;Wg ); 2 Hmk ; g = (!; ( ; {)) 2 GJ n , (z;W) 2 DJ n; and (zg ;Wg ) 2 DJ n is given by (1.6). The automorphic factor Jmk for GJ n is defined by [15, 22] Jmk (g ; (z;W)) = exp(2 im ) (det(qW + p)) k ; where is given by (1.9) and ! given by (1.5). P r o p o s i t i o n 2.1. Suppose m > 0; k > n + 1=2; and C = 2n(n+3)C : Then a) Hmk 6= f0g and mk is an irreducible unitary representation of GJ n on the Hilbert space Hmk which is square integrable modulo center. b) There exists the unitary isomorphism Tmk : Hmk ! Hmk given by '( ; ) = (W; z) (det(In W))k exp(4 mz(In W) 1 tz); where 2 Hmk ; ' = Tmk ( ); (W; z) 2 DJ n; ( ; ) = (( W; z)) 2 HJ n; and is given by (1.7). The inverse isomorphism Tmk : Hmk ! Hmk is given by (W; z) = '( ; ) (det(In i ))k exp 2 m (In i ) 1 t ; where 2 Hmk , = Tmk(') , ( ; ) 2 HJ n , ( W; z) = 1 (( ; )) 2 DJ n; and 1 is given by (1.8). c) The representations mk and mk are unitarily equivalent. Acknowledgements. Stefan Berceanu express his thanks to Professor V. Molchanov for inviting him at the Workshop ¾Harmonic analysis on homogeneous spaces and quantization¿ October, 2012, Tambov, Russia, and for the partial financial support to attend the meeting.
×

About the authors

Stefan Berceanu

Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering

Email: Berceanu@theory.nipne.ro
Professor RO-077125, Bucharest-Magurele P.O.Box MG-6, Romania

Alexandru Gheorghe

Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering

Professor RO-077125, Bucharest-Magurele P.O.Box MG-6, Romania

References

  1. S. Berceanu, “A holomorphic representation of the Jacobi algebra”, Reviews in Mathematical Physics, 18:2 (2006), 163-199, arXiv:math/0408219v3.
  2. S. Berceanu, “Coherent states associated to the Jacobi group - a variation on a theme by Erich K¨ahler”, Journal of Geometry and Symmetry in Physics, 9 (2007), 1-8 c r os s r ef.
  3. S. Berceanu, “A holomorphic representation of Jacobi algebra in several dimensions”, The Theta Foundation, Perspectives in Operator Algebras and Mathematical Physics (Bucharest, August 10-17, 2005), Theta Series in Advanced Mathematics, 11, eds. F.P. Boca, R. Purice, S. Strˇatilˇa, Conference Proceedings, 2008, 1-25.
  4. S. Berceanu, A. Gheorghe, “Applications of the Jacobi group to Quantum Mechanics”, Romanian Journal of Physics, 53:9-10 (2008), 1013-1021.
  5. S. Berceanu and A. Gheorghe, “On the geometry of Siegel-Jacobi domains”, International Journal of Geometric Methods in Modern Physics, 8 (2011), 1783-1798.
  6. S. Berceanu, “A convenient coordinatization of Siegel-Jacobi domains”, Reviews in Mathematical Physics, 24:10 (2012), 1-38 c r os s r ef.
  7. S. Berceanu, “Consequences of the fundamental conjecture for the motion on the Siegel-Jacobi disk”, International Journal of Geometric Methods in Modern Physics, 10:01 (2013), 1-18 c r os s r ef.
  8. F.A. Berezin, “Quantization in complex symmetric spaces”, Math. USSR-Izv., 9:2 (1975), 341-379 c r os s r ef.
  9. R. Berndt and R. Schmidt, Progress in Mathematics: Elements of the Representation Theory of the Jacobi Group, 163, Birkh¨auser, Basel, 1998, 216 pp.
  10. M. Eichler and D. Zagier, Progress in Mathematics: The Theory of Jacobi Forms, 55, Birkh¨auser, Boston, 1985.
  11. P. Kramer and M. Saraceno, “Semicoherent states and the group ISp(2,R)”, Physica A: Statistical Mechanics and its Applications, 114:1-3 (1982), 448-453 c r os s r ef.
  12. M.H. Lee, “Theta functions on hermitian symmetric domains and Fock representations”, Journal of the Australian Mathematical Society, 74:2 (2003), 201-234 c r os s r ef.
  13. A.M. Perelomov, Generalized Coherent States and their Applications, Springer, Berlin, 1986.
  14. C. Quesne, “Vector coherent state theory of the semidirect sum Lie algebras wsp (2N,R)”, Journal of Physics A: Mathematical and General, 23:6 (1990), 847-862.
  15. I. Satake, “Unitary representations of a semi-direct products of Lie groups on ∂ -cohomology spaces”, Mathematische Annalen, 190:3 (1971), 177-202.
  16. I. Satake, Algebraic Structures of Symmetric Domains, Princeton University Press, Princeton, 1980.
  17. K. Shuman, “Complete signal processing bases and the Jacobi group”, Journal of Mathematical Analysis and Applications, 278:1 (2003), 203-213 c r os s r ef.
  18. K. Takase, “A note on automorphic forms”, J. Reine Angew. Math., 409 (1990), 138-171.
  19. K. Takase, “On unitary representations of Jacobi groups”, J. Reine Angew. Math., 430 (1992), 130-149.
  20. K. Takase, “On Siegel modular forms of half-integral weights and Jacobi forms”, Trans. Amer. Math. Soc., 351:2 (1999), 735-780.
  21. J.-H. Yang, “The method of orbits for real Lie groups”, Kyungpook Mathematical Journal, 42:2 (2002), 199-272.
  22. J.-H. Yang, “A partial Cayley transform for Siegel-Jacobi disk”, Journal of the Korean Mathematical Society, 45 (2008), 781-794.
  23. C. Ziegler, “Jacobi forms of higher degree”, Abhandlungen aus dem Mathematischen Seminar der Universitat Hamburg, 59:1 (1989), 191-224.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».