ТЕОРЕМА БОЛЯ-ПЕРРОНА ОБ АСИМПТОТИЧЕСКОЙ УСТОЙЧИВОСТИ ГИБРИДНЫХ СИСТЕМ И ЕЕ ОБРАЩЕНИЕ
- Авторы: Симонов П.М.1
-
Учреждения:
- ФГБОУ ВО «Пермский государственный национальный исследовательский университет»
- Выпуск: Том 23, № 124 (2018)
- Страницы: 726-737
- Раздел: Статьи
- URL: https://ogarev-online.ru/2686-9667/article/view/297282
- DOI: https://doi.org/10.20310/1810-0198-2018-23-124-726-737
- ID: 297282
Цитировать
Полный текст
Аннотация
Полный текст
Проблемам устойчивости решений линейных гибридных линейных функционально-дифференциальных систем с последействием (ГЛФДСП) посвящено крайне мало работ.Об авторах
Петр Михайлович Симонов
ФГБОУ ВО «Пермский государственный национальный исследовательский университет»
Email: simpm@mail.ru
доктор физико-математических наук, профессор кафедры информационных систем и математических методов в экономике 392000, Российская Федерация, г. Пермь, ул. Букирева, 15
Список литературы
- Марченко В.М., Луазо Ж.Ж. Об устойчивости гибридных дифференциально-разностных систем // Дифференциальные уравнения. 2009. Т. 45. № 5. С. 728-740.
- Симонов П.М. Теорема Боля-Перрона для гибридных линейных систем с последействием // Вестник Пермского университета. Серия: Математика. Механика. Информатика. 2016. № 2 (33). С. 56-60.
- Симонов П.М. К вопросу о теореме Боля-Перрона для гибридных линейных функционально-дифференциальных систем с последействием (ГЛФДСП) // Журнал Средневолжского математического общества. 2016. Т. 18. № 1. С. 75-81.
- Симонов П.М. Теорема Боля-Перрона для гибридных линейных систем с последействием // Итоги науки и техники. Современная математика и ее приложения. Тематические обзоры. 2017. Т. 132. С. 122-126.
- Simonov P.M. The Bohl-Perron theorem for hybrid linear systems with aftereffect // Journal of Mathematical Sciences. 2018. Vol. 230. № 5. P. 775-781.
- Симонов П.М. Теорема Боля-Перрона об асимптотической устойчивости для гибридных линейных функционально-дифференциальных систем с последействием (ГЛФДСП) // Вестник Российской академии естественных наук. 2016. Т. 16. № 3. С. 55-59.
- Симонов П.М. Теорема Боля-Перрона об асимптотической устойчивости гибридных систем // Функционально-дифференциальные уравнения: теория и приложения: материалы конф., посвящ. 95-летию со дня рождения проф. Н.В. Азбелева. Пермь: ПНИПУ, 2018. С. 230-235.
- Азбелев Н.В., Березанский Л.М., Симонов П.М., Чистяков А.В. Устойчивость линейных систем с последействием. IV // Дифференциальные уравнения. 1993. Т. 29. № 2. С. 196-204.
- Азбелев Н.В., Березанский Л.М., Симонов П.М., Чистяков А.В. Устойчивость линейных систем с последействием. III // Дифференциальные уравнения. 1991. Т. 27. № 10. С. 1659-1668.
- Азбелев Н.В., Симонов П.М. Устойчивость решений уравнений с обыкновенными производными. Пермь: Перм. ун-т, 2001. 230 с.
- Барбашин Е.А. Введение в теорию устойчивости. М.: Наука, 1967. 224 с.
- Массера Х.Л., Шеффер Х.Х. Линейные дифференциальные уравнения и функциональные пространства. М.: Мир, 1970. 456 с.
- Канторович Л.В., Акилов Г.П. Функциональный анализ. 4-е изд., испр. СПб.: Невский Диалект; БХВ-Петербург, 2004. 816 с.
- Носов В.Р. Теорема Перрона для стационарных и периодических систем дифференциально-функциональных уравнений // Дифференциальные уравнения с отклоняющимся аргументом / Ун-т дружбы народов им. П. Лумумбы. M., 1979. Т. 11. С. 44-51.
- Колмановский В.Б., Носов В.Р. Устойчивость и периодические режимы регулируемых систем с последействием. М.: Наука, 1981. 448 с.
- Курбатов В.Г. Об устойчивости функционально-дифференциальных уравнений // Дифференциальные уравнения. 1981. Т. 17. № 6. C. 963-972.
- Курбатов В.Г. Линейные дифференциально-разностные уравнения. Воронеж: Изд-во Воронеж. ун-та, 1990. 168 с.
- Пуляев В.Ф., Цалюк З.Б. К вопросу о допустимости некоторых пар пространств для линейных операторов и уравнений Вольтерра // Дифференциальные уравнения. 1983. Т. 19. № 4. С. 684-692.
- Пуляев В.Ф. О допустимости некоторых пар пространств относительно линейных интегральных уравнений Вольтерра // Дифференциальные уравнения. 1984. Т. 20. № 10. С. 1800-1805.
- Пуляев В.Ф. О спектре линейных непрерывных операторов // Известия Северо-Кавказского научного центра высшей школы. Естественные науки. 1985. № 4. С. 25-28.
- Пуляев В.Ф. О спектре операторов Вольтерра // Интегральные операторы и уравнения: сб. науч. тр. Краснодар: Кубанский гос. ун-т, 1987. С. 29-37.
- Пуляев В.Ф. О взаимосвязи нетеровости линейных непрерывных операторов и их сужений // Известия высших учебных заведений. Математика. 1990. № 8 (339). С. 65-73.
- Пуляев В.Ф. Развитие теории линейных интегральных уравнений с периодическими и почти периодическими ядрами: автореф. дис.. д-ра физ.-мат. наук. СПб., 2001. 31 с.
- Пуляев В.Ф., Цалюк З.Б. Об асимптотическом поведении решений интегральных уравнений Вольтерра в банаховых пространствах // Известия высших учебных заведений. Математика. 1991. № 12 (355). С. 47-55.
- Сокол Д.Г. О допустимости некоторых пар пространств для интегральных операторов и уравнений // Известия высших учебных заведений. Северо-Кавказский регион. Серия: естественные науки. 2000. № 1. С. 135-137.
- Бухвалов А.В., Векслер А.И., Лозановский Г.Я. Банаховы решетки - некоторые банаховы аспекты теории // Успехи математических наук. 1979. Т. 34. Вып. 2 (206). С. 137-183.
- Kurbatov V.G. Functional differential operators and equations. Dordrect: Kluwer Academic Publ., 1999. 433 p.
Дополнительные файлы
