ОБ УСТОЙЧИВОСТИ РЕШЕНИЙ НЕЛИНЕЙНЫХ СИСТЕМ С ИМПУЛЬСНОЙ СТРУКТУРОЙ

Обложка

Цитировать

Полный текст

Аннотация

В работе приводится обзор результатов авторов, связанных с исследованием свойства устойчивости решений для нелинейных систем дифференциальных уравнений, в правой части которых имеются слагаемые, содержащие произведения разрывных функций на обобщенные. Решения таких систем формализуются с помощью замыкания множества гладких решений в пространстве функций ограниченной вариации. Для таких систем получены достаточные условия асимптотической устойчивости невозмущенных решений.

Полный текст

Большое количество статей посвящено вопросам устойчивости решений дифференциальных уравнений с импульсным воздействием. Но абсолютное большинство этих работ при формализации решения используют вариант систем с «толчками», восходящий к работам А.Д. Мышкиса, А.М. Самойлено и Н.А. Перестюка [1], а также многочисленных их последователей (см., например, [2, 3]).
×

Об авторах

Наталья Игоревна Желонкина

ФГБУН «Институт математики и механики имени Н.Н. Красовского УрО РАН Уральского отделения Российской академии наук»; ФГАОУ ВО «Уральский федеральный университет»

Email: 312115@mail.ru
математик; старший преподаватель кафедры прикладной математики 620990, Российская Федерация, г. Екатеринбург, ул. С. Ковалевской, 16; 620002, Российская Федерация, г. Екатеринбург, ул. Мира, 19

Александр Николаевич Сесекин

ФГБУН «Институт математики и механики имени Н.Н. Красовского УрО РАН Уральского отделения Российской академии наук»; ФГАОУ ВО «Уральский федеральный университет»

Email: sesekin@list.ru
доктор физико-математических наук, зав. кафедрой прикладной математики и механики; ведущий научный сотрудник 620990, Российская Федерация, г. Екатеринбург, ул. С. Ковалевской, 16; 620002, Российская Федерация, г. Екатеринбург, ул. Мира, 19

Список литературы

  1. Самойленко А.М., Перестюк Н.А. Дифференциальные уравнения с импульсным воздействием. Киев: Вища школа, 1987. 288 с.
  2. Bainov D.D., Simeonov P.S. Impulsive Differential Equations: Periodic Solutions and Applications. Harlow: Longman, 1993.
  3. Lakshmikantham V., Bainov D.D., Simeonov P.S. Theory of Impulsive Differential Equations. Singapore: World Scientific, 1989.
  4. Zavalishchin S.T., Sesekin A.N. Dynamic Impulse Systems: Theory and Applications. Dordrecht: Kluwer Academic Publ., 1997. 268 p.
  5. Сесекин А.Н. Динамические системы с нелинейной импульсной структурой // Труды Института математики и механики Уральского отделения РАН. 2000. Т. 6. № 2. С. 497-514.
  6. Миллер Б.М., Рубинович Е.Я. Разрывные решения в задачах оптимального управления и их представление с помощью сингулярных пространственно-временных преобразований // Автоматика и телемеханика. 2013. № 12. С. 56-103.
  7. Дыхта В.А. Импульсное оптимальное управление в моделях экономики и квантовой электроники // Автоматика и телемеханика. 1999. № 11. С. 100-112.
  8. Дыхта В.А., Самсонюк О.Н. Оптимальное импульсное управление с приложениями. М.: Физматлит, 2000. 256 c.
  9. Андрианов Д.Л., Арбузов В.О., Ивлиев С.В., Максимов В.П., Симонов П.М. Динамические модели экономики: теория, приложения, программная реализация // Вестник Пермского университета. Серия: Экономика. 2015. № 4 (27). С. 8-32.
  10. Красовский Н.Н. Теория управления движением. Линейные системы. М.: Наука, 1968. 476 с.
  11. Дерр В.Я. Обыкновенные линейные дифференциальные уравнения с обобщенными функциями в коэффициентах: обзор // Функционально-дифференциальные уравнения: теория и приложения: материалы конф., посвящ. 95-летию со дня рождения проф. Н.В. Азбелева. Пермь, 2017. С. 60-86.
  12. Перейра Ф.Л., Сильва Ж.Н. Устойчивость по Ляпунову импульсных систем, управляемых мерой // Дифференциальные уравнения. 2004. Т. 40. № 8. С. 1059-1067.
  13. Liberzon D., Morse A. Basic problems in stability and and design of switched systems // IEEE Control Syst. Mag. 1999. Vol. 19. P. 59-70.
  14. Sesekin A.N., Zhelonkina N.I. The stability of tubes of discontinuous solutions of dynamical systems // AIP. Conference Proceeding. 2017. Vol. 1895. P. 050011 1-7.
  15. Корнилов И.А., Сесекин А.Н. Об устойчивости линейных систем с матрицей, содержащей обобщенные функции // Вестник УГТУ-УПИ. Екатеринбург, 2004. № 3 (33). С. 386-388.
  16. Желонкина Н.И., Сесекин А.Н. Об устойчивости линейных систем с импульсным воздействием в матрице системы // Итоги науки и техники. Современная математика и ее приложения. Тематические обзоры. 2017. Т. 132. С. 30-33.
  17. Sesekin A.N., Zhelonkina N.I. Stability of nonlinear dynamical systems containing the product of discontinuous functions and distributions // AIP. Conference Proceeding. 2016. Vol. 1789. P. 040010 1-8.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».